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Abstract

Athanasiadis conjectured that, for every positive integer r, the local h-polynomial
of the rth edgewise subdivision of any simplex has only real zeros. In this paper,
based on the theory of interlacing polynomials, we prove that a family of poly-
nomials related to the desired local h-polynomial is interlacing and hence confirm
Athanasiadis’ conjecture.

Mathematics Subject Classifications: 26C10, 05E45, 05A15

1 Introduction

The objective of this paper is to prove a real-rootedness conjecture of Athanasiadis [3]
about the local h-polynomials of edgewise subdivisions of simplices.

Let us first review some background. Let ∆ be a (d−1)-dimensional simplicial complex
with fi faces of dimension i with f−1 = 1 by convention. The h-polynomial of ∆ is defined
as h(∆, x) =

∑d
i=0 fi−1x

i(1− x)d−i. The notion of local h-polynomials was introduced by
Stanley [16] in the study of the face enumeration of subdivisions of simplicial complexes.
Given an n-element set V , let 2V be the abstract simplex consisting of all subsets of the
set V and let Γ be a simplicial subdivision of the simplex 2V . The local h-polynomial of
Γ is defined as

`V (Γ, x) =
∑
F⊂V

(−1)n−|F | h (ΓF , x) ,
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where ΓF is the restriction of Γ to the face F ∈ 2V . In a recent survey, Athanasiadis [3,
Section 4] studied several interesting examples of local h-polynomials and asked whether
these polynomials have only real zeros.

This paper is concerned with the local h-polynomials of the rth edgewise subdivision
(2V )〈r〉 of the simplex 2V . Edgewise subdivision has appeared in several mathematical
contexts, see [5, 7, 8, 9, 11, 12]. One of its properties is that its faces F are divided into
rdim(F ) of the same dimension. Athanasiadis [1, 2] showed that

`V
(
(2V )〈r〉, x

)
= Er

(
(x+ x2 + · · ·+ xr−1)n

)
, (1)

where Er is a linear operator defined on polynomials by setting Er(x
n) = xn/r, if r

divides n, and Er(x
n) = 0 otherwise. The local h-polynomial `V

(
(2V )〈r〉, x

)
can also be

interpreted combinatorially as the ascent generating function of certain Smirnov words
[14], see [3, Theorem 4.6] for more details. We would like to point out that the real-
rootedness of Er ( (1 + x+ x2 + · · ·+ xr−1)n), which is slightly different from the right
hand side of (1), has been studied in [11, 19] and references therein.

The main result of this paper is as follows.

Theorem 1.1. For any positive integer r, the local h-polynomial `V
(
(2V )〈r〉, x

)
has only

real zeros.

The above theorem provides an affirmative answer to Athanasiadis’ conjecture. Note
that this conjecture was also proved independently by Leander [13].

2 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. We first review the theory of interlacing
polynomials, especially some useful criteria. We proceed to introduce a sequence of poly-
nomials and prove that these polynomials are interlacing. Finally, we show that one of
these polynomials is just the polynomial Er (x+ x2 + · · ·+ xr−1)n. Our proof of Theorem
1.1 is based on the theory of interlacing polynomials, which has been widely used to prove
the real-rootedness of several polynomials arising in combinatorics ([11, 15, 17, 18]).

Given two real-rooted polynomials f(x) and g(x) with positive leading coefficients,
let {ui} and {vj} be the set of zeros of f(x) and g(x), respectively. We say that g(x)
interlaces f(x), denoted g(x) � f(x), if either deg f(x) = deg g(x) = d and

vd 6 ud 6 vd−1 6 · · · 6 v2 6 u2 6 v1 6 u1,

or deg f(x) = deg g(x) + 1 = d and

ud 6 vd−1 6 · · · 6 v2 6 u2 6 v1 6 u1.

For convention, we let 0� f and f � 0 for any real-rooted polynomial f . A sequence of
real polynomials (f1(x), . . . , fm(x)) with positive leading coefficients is said to be inter-
lacing if fi(x)� fj(x) for all 1 6 i < j 6 m.
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Following Brändén [6], let Fn be the set of all interlacing sequences (fi)
n
i=1 of poly-

nomials, and F+
n be the subset of (fi)

n
i=1 ∈ Fn such that the coefficients of fi are all

nonnegative for all 1 6 i 6 n. A central problem in this area is to characterize m × n
matrices G = (Gij(x)) of polynomials which maps F+

n to F+
m via a matrix multiplication

as follows:
G · (f1, . . . , fn)T = (g1, . . . , gm)T .

Brändén [6, Theorem 8.5] gave a characterization of the case when the polynomials con-
sidered have all nonnegative coefficients.

Lemma 2.1 ([6, Theorem 8.5]). Let G = (Gij(x)) be an m × n matrix of polynomials.
Then G : F+

n → F+
m if and only if

1. Gij(x) has nonnegative coefficients for all 1 6 i 6 m and 1 6 j 6 n, and

2. for all λ, µ > 0, 1 6 i < j 6 n and 1 6 k < ` 6 m,

(λx+ µ)Gkj(x) +G`j(x)� (λx+ µ)Gki(x) +G`i(x). (2)

Given a polynomial f(x), there exist uniquely determined polynomials f 〈r,0〉(x), f 〈r,1〉(x),
. . . , f 〈r,r−1〉(x) such that

f(x) = f 〈r,0〉(xr) + xf 〈r,1〉(xr) + · · ·+ xr−1f 〈r,r−1〉(xr).

In order to prove Theorem 1.1, we next give the following result which plays a key role in
our proof.

Theorem 2.2. Let r and ` be two positive integers with ` 6 r−1. Suppose that f(x) and
g(x) are two polynomial with nonnegative coefficients satisfying(

1 + x+ · · ·+ x`
)
f(x) = g(x). (3)

If the sequence
(
f 〈r,r−1〉(x), . . . , f 〈r,1〉(x), f 〈r,0〉(x)

)
is interlacing, then so is

(
g〈r,r−1〉(x),

. . . , g〈r,1〉(x), g〈r,0〉(x)
)
.

Proof. For any 1 6 i 6 r, taking all the terms of form xmr−i where m is a non-negative
integer from both sides of (3), we get that

xr−ig〈r,r−i〉(xr) =
i+`−r∑
j=1

xr+j−i · xr−jf 〈r,r−j〉(xr) +
i+∑̀
j=i

xj−i · xr−jf 〈r,r−j〉(xr)

= x2r−i
i+`−r∑
j=1

f 〈r,r−j〉(xr) + xr−i
i+∑̀
j=i

f 〈r,r−j〉(xr),
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where r + j − i 6 ` for 1 6 j 6 i + ` − r in the first summation and j − i 6 ` for
i 6 j 6 i+ ` in the second summation, and hence

g〈r,r−i〉(x) = x

i+`−r∑
j=1

f 〈r,r−j〉(x) +
i+∑̀
j=i

f 〈r,r−j〉(x).

Thus we obtain an alternative expression of (3) in a matrix form

G ·
(
f 〈r,r−1〉(x), . . . , f 〈r,1〉(x), f 〈r,0〉(x)

)T
=
(
g〈r,r−1〉(x), . . . , g〈r,1〉(x), g〈r,0〉(x)

)T
,

where G = (Gi,j(x)) is a square matrix of order r with

Gi,j(x) =


1, i 6 j 6 i+ `,
x, j 6 i+ `− r,
0, otherwise.

One example of G for r = 9 and ` = 5 is as follows:

1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1
x 0 0 0 1 1 1 1 1
x x 0 0 0 1 1 1 1
x x x 0 0 0 1 1 1
x x x x 0 0 0 1 1
x x x x x 0 0 0 1


.

All the possible two-by-two submatrices of G are(
1 1
0 1

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
1 1
1 1

)
,

(
1 0
1 1

)
,

(
1 0
1 0

)
,

(
0 0
1 0

)
,

(
0 0
0 0

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,(

0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 1
0 1

)
,

(
1 1
x 0

)
,

(
1 1
x 1

)
,(

1 0
x 1

)
,

(
1 0
x 0

)
,

(
0 0
x 1

)
,

(
0 0
x 0

)
,

(
0 1
x 0

)
,(

0 1
x 1

)
,

(
x 0
x 0

)
,

(
x 1
x 0

)
,

(
x 1
x 1

)
,

(
1 1
x x

)
,(

0 0
x x

)
,

(
0 1
x x

)
,

(
x 0
x x

)
,

(
x 1
x x

)
,

(
x x
x x

)
.
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One can check all these submatrices satisfy the condition (2) of Lemma 2.1. We take the
first matrix as an example, and all the other matrices can be treated similarly. We need
to check for all λ, µ > 0 the following interlacing relation is satisfied,

λx+ µ+ 1� λx+ µ.

Equivalently, it suffices to prove for all λ, µ > 0

−µ+ 1

λ
6 −µ

λ
,

which is obviously true. Hence it follows that the matrix G preserves interlacing poly-
nomials. Since

(
f 〈r,r−1〉(x), . . . , f 〈r,1〉(x), f 〈r,0〉(x)

)
is interlacing, so is

(
g〈r,r−1〉(x), . . . ,

g〈r,1〉(x), g〈r,0〉(x)
)
. This completes the proof.

By iteratively using the above theorem, we obtain the following result.

Corollary 2.3. Let r and ` be two positive integers with ` 6 r − 1. Suppose that(
1 + x+ x2 + · · ·+ x`

)n
= hn,0(x

r) + xhn,1(x
r) + · · ·+ xr−1hn,r−1(x

r). (4)

Then the polynomial sequence (hn,r−1(x), . . . , hn,1(x), hn,0(x)) is interlacing.

Proof. We shall use induction on the integer n. For the base n = 1, the polynomial
sequence (0, . . . , 0, 1, . . . , 1) is interlacing by the convention that 0 � f for any real-
rooted polynomial f . Assume that the statement is true for n = k, that is to say that, the
polynomial sequence (hk,r−1(x), . . . , hk,1(x), hk,0(x)) is interlacing. We proceed to show
that (hk+1,r−1(x), . . . , hk+1,1(x), hk+1,0(x)) is also interlacing. By (4), we have(

1 + x+ x2 + · · ·+ x`
) (
hk,0(x

r) + xhk,1(x
r) + · · ·+ xr−1hk,r−1(x

r)
)

= hk+1,0(x
r) + xhk+1,1(x

r) + · · ·+ xr−1hk+1,r−1(x
r).

Then, by the induction hypothesis and Theorem 2.2, we obtain the interlacing property
of the sequence (hk+1,r−1(x), . . . , hk+1,1(x), hk+1,0(x)). This completes the proof.

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Taking ` = r − 2 in (4), it follows that(
x+ x2 + · · ·+ xr−2 + xr−1

)n
= xnhn,0(x

r) + xn+1hn,1(x
r) + · · ·+ xn+r−1hn,r−1(x

r).

Note that there exists one and only one integer in {0, 1, . . . , r − 1}, say j, such that r
divides n+ j. Thus for this j,

Er

(
(x+ x2 + · · ·+ xr−1)n

)
= x(n+j)/rhn,j(x)

by the definition of the linear operator Er. By Corollary 2.3, the polynomial hn,j(x) has
only real zeros, so does `V

(
(2V )〈r〉, x

)
. This completes the proof.
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