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Abstract

Answering an open question from 2007, we construct infinite k-crossing-critical
families of graphs that contain vertices of any prescribed odd degree, for any suffi-
ciently large k. To answer this question, we introduce several properties of infinite
families of graphs and operations on the families allowing us to obtain new fami-
lies preserving those properties. This conceptual setup allows us to answer general
questions on behaviour of degrees in crossing-critical graphs: we show that, for any
set of integers D such that min(D) > 3 and 3, 4 ∈ D, and for any sufficiently large
k, there exists a k-crossing-critical family such that the numbers in D are precisely
the vertex degrees that occur arbitrarily often in (large enough) graphs of this fam-
ily. Furthermore, even if both D and some average degree in the interval (3, 6) are
prescribed, k-crossing-critical families exist for any sufficiently large k.
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1 Introduction

Reducing the number of crossings in a drawing of a graph is considered one of the most
important drawing aesthetics. Consequently, a great deal of research work has been
invested into understanding what forces the number of edge crossings in a drawing of
the graph to be large. There exist strong quantitative lower bounds, such as the famous
Crossing Lemma [1, 14]. However, the quantitative bounds typically show their strength
only in dense graphs, while in the area of graph drawing, we often deal with graphs having
few edges.

The reasons for sparse graphs to have many crossings in any drawing are structural
(there is a lot of “nonplanarity” in them). These reasons can be understood via so
called k-crossing-critical graphs, which are the subgraph-minimal graphs that require at
least k edge crossings (the “minimal obstructions”). While there are only two 1-crossing-
critical graphs, up to subdivisions—the Kuratowski graphs K5 and K3,3—it has been
known already since Širáň’s [19] and Kochol’s [13] constructions that, for any k > 2, the
structure of k-crossing-critical graphs is quite rich and non-trivial.

Although 2-crossing-critical graphs can be efficiently (although not easily) character-
ized [5], a full description for any k > 3 is clearly out of our current reach. Consequently,
research has focused on interesting properties shared by all k-crossing-critical graphs (for
certain k); successful attempts include, e.g., [7, 8, 10, 12, 17]. While we would like
to establish as many specific properties of crossing-critical graphs as possible, the real-
ity unfortunately seems to be against it. Many desired and conjectured properties of
crossing-critical graphs have already been disproved by often complex and sophisticated
constructions showing the odd behaviour of crossing-critical families, e.g. [6, 9, 11, 18].

We study properties of infinite families of k-crossing-critical graphs, for fixed values
of k, since sporadic “small” examples of k-crossing-critical graphs tend to behave very
wildly for every k > 1. Among the most studied such properties are those related to
vertex degrees in the critical families, see [3, 6, 8, 11, 18]. Often the research focused
on the average degree a k-crossing-critical family may have—this rational number clearly
falls into the interval [3, 6] if we forbid degree-2 vertices. It is now known [8] that the true
values fall into the open interval (3, 6), and all the rational values in this interval can be
achieved [3]. However, for a fixed k, one cannot come arbitrarily close to 6 [8].

In connection with the proof of bounded pathwidth for k-crossing-critical families
[9, 10], it turned out to be a fundamental question whether k-crossing-critical graphs
have maximum degree bounded in k. The somehow unexpected negative answer was
given by Dvořák and Mohar [6]. In 2007, Bokal noted that all the known (by that time)
constructions of infinite k-crossing-critical families seem to use only vertices of degrees
3, 4, 6, and he asked what other degrees can occur frequently (see the definition in Sec-
tion 2) in k-crossing-critical families. Shortly after that Hliněný extended his previous
construction [9] to include an arbitrary combination of any even degrees [11], for suffi-
ciently large k. The characterization of 2-crossing-critical graphs [5] implied that also
vertices of degree 5 occur arbitrarily often in 2-crossing-critical graphs.

Though, [11] answered only the easier half of Bokal’s question, and it remained a wide
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open problem of whether there exist infinite k-crossing-critical families whose members
contain many vertices of odd degrees greater than 5. Our joint investigation has recently
led to an ultimate positive answer.

The contribution and new results of our paper can be summarized as follows:

• In Section 2, we review the tools which are commonly used in constructions of
crossing-critical families.

• Section 3 presents the key new contribution—a construction of crossing-critical
graphs with repeated occurrence of any prescribed odd vertex degree (Proposi-
tion 3.1 and Theorem 3.2).

• In Section 4, we combine the new construction of Section 3 with previously known
constructions to prove the following: for any set of integers D such that min(D) = 3
and 3, 4 ∈ D, and for all sufficiently large k, there exists an infinite k-crossing-
critical family such that the numbers in D are precisely the vertex degrees which
occur frequently in this family (Theorem 4.3).

• We extend the previous results in Section 5 to include an exhaustive discussion of
possible average vertex degrees attained by our degree-restricted crossing-critical
families (Theorem 5.1).

• Then, in Section 6, we pay special attention to infinite families of 2-crossing-critical
graphs and summarize an exhaustive survey of their degree-related properties. The
full detailed proofs for this section can be found in the arXiv version:1803.10509.

• Finally, in concluding Section 7, we list some remaining interesting open questions.

2 Preliminaries

We consider finite multigraphs without loops by default (i.e., we allow multiple edges unless
we explicitly call a graph simple), and use the standard graph terminology otherwise. The
degree of a vertex v in a graphG is the number of edges of G incident to v (cf. multigraphs),
and the average degree of G is the average of all the vertex degrees of G.

2.1 Crossing number

In a drawing of a graph G, the vertices of G are points and the edges are simple curves
joining their endvertices. It is required that no edge passes through a vertex, and no three
edges cross in a common point. The crossing number cr(G) of a graph G is the minimum
number of crossing points of edges in a drawing of G in the plane. For k ∈ N, we say that
a graph G is k-crossing-critical, if cr(G) > k but, for every edge e of G, cr(G− e) < k.

Note that a vertex of degree 2 in G is not relevant for a drawing of G and for the
crossing number, and we will often replace such vertices by edges between their two
neighbours. Since also vertices of degree 1 are irrelevant for the crossing number, it is
quite common to assume minimum degree 3.
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2.2 Degree-universality

The following terms formalize a vague notion that a certain vertex degree occurs frequently
or arbitrarily often in an infinite family. For a finite set D ⊆ N, we say that a family of
graphs F is D-universal , if and only if, for every integer m, there exists a graph G ∈ F
such that, for every d ∈ D, G has at least m vertices of degree d. It follows easily that F
has infinitely many such graphs.

Clearly, if F is D universal and D′ ⊆ D, then F is also D′-universal. The family
of all sets D, for which a given F is D-universal, therefore forms a poset under relation
⊆. Maximal elements of this poset are of particular interest, and for “well-behaved” F ,
these maximal elements are finite and unique. We distinguish this case with the following
definition: F is D-max-universal , if it is D-universal, there are only finitely many degrees
appearing in graphs of F that are not in D, and there exists an integer M , such that any
degree not in D appears at most M times in any graph of F .

Note that if F is both D-max-universal and D′-max-universal, then D = D′. It can
also be easily seen that if F is D-max-universal, then there exists infinite F ′ ⊆ F such
that, for any m, every sufficiently large member of F ′ has, for each d ∈ D, at least m
vertices of degree d. Though, we do not specifically mention this property in the formal
definition.

2.3 Tools for constructing crossing-critical graphs

A principal tool used in construction of crossing-critical graphs are tiles. They were
used already in the early papers on infinite families of crossing-critical graphs by Kochol
[13] and Richter and Thomassen [17], although they were formalized only in the work of
Pinontoan and Richter [15, 16], answering Salazar’s question [18] on average degrees in
infinite families of k-crossing-critical graphs. Bokal built upon these results to fully settle
Salazar’s question when combining tiles with zip product [3]. Also a recent result that
all large 2-crossing-critical graphs are composed of large multi-sets of specific 42 tiles [5]
demonstrates that tiles are intimately related to crossing-critical graphs. In this section,
we summarize the known results from [3, 5, 15], which we need for our constructions.

Tiles are essentially graphs equipped with two sequences of vertices that are identified
among tiles or within a tile in order to, respectively, form new tiles or tiled graphs. The
tiles can be drawn in the unit square respecting the order of these sequences of vertices,
thus providing special, restricted drawings of tiles. Due to the restriction, the crossing
number of these special drawings is an upper bound to the crossing number of either
underlying graphs, or the graphs obtained by identifying these specific vertices. The
formal concepts allowing these operations are summarized in the following definition and
the lemma immediately after it:

Definition 2.1. Let λ = (λ1, . . . , λl) and ρ = (ρ1, . . . , ρr) be two sequences of distinct
vertices of a graph G, where no vertex of G appears in both λ and ρ.

1. For any sequence λ, let λ̄ denote its reversed sequence.

2. A tile is a triple T = (G, λ, ρ).
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3. The sequence of vertices λ is called the left wall and the sequence of vertices ρ is
called the right wall of T .

4. A tile drawing of a tile T = (G, λ, ρ) is a drawing of G in unit square [0, 1] × [0, 1]
such that:

– all vertices of the left wall are drawn in {0}× [0, 1] and all vertices of the right
wall are drawn in {1} × [0, 1];

– the left wall and the right wall have both decreasing y-coordinates.

5. The tile crossing number cr(T ) of a tile T is the smallest crossing number over all
tile drawings of T .

6. A tile T = (G, λ, ρ) is compatible with a tile T ′ = (G′, λ′, ρ′) if |ρ| = |λ′| and
cyclically-compatible if it is compatible with itself.

7. A sequence of tiles (T0, . . . , Tm) is compatible, if, for i = 0, . . . ,m − 1, tiles Ti and
Ti+1 are compatible. It is cyclically-compatible if also Tm is compatible with T0.

8. The join of two compatible tiles T = (G, λ, ρ) and T ′ = (G′, λ′, ρ′) is defined as the
tile T ⊗ T ′ = (G⊗G′, λ, ρ′), where G⊗G′ represents the graph obtained from the
union of graphs G and G′, by identifying, for i = 1, . . . , |ρ|, ρi with λ′i. If a vertex
of degree 2 is introduced, then all maximal paths whose internal vertices are all of
degree 2 are contracted to a single edge. Introduced double edges are retained.

9. Since the operator ⊗ is associative, the join ⊗T of a compatible sequence of tiles
T = (T0, . . . , Tm) is defined as ⊗T = T0 ⊗ . . .⊗ Tm.

10. Let T = (G, λ, ρ) be a cyclically-compatible tile. The cyclization ◦T of a tile T is
the graph G obtained by identifying, for i = 1, . . . , |λ|, λi with ρi.

11. Let T = (T0, . . . , Tm) be a cyclically-compatible sequence of tiles with T0 = (G, λ, ρ),
Tm = (G′, λ′, ρ′). The cyclization of T is defined as ◦T = ◦(T0 ⊗ . . .⊗ Tm).

12. Let T = (G, λ, ρ) be a tile. The right-inverted tile T l is the tile (G, λ, ρ̄) and the left-
inverted tile lT is the tile (G, λ̄, ρ). The inverted tile of T is the tile lT l = (G, λ̄, ρ̄)
and the reversed tile of T is the tile T↔ = (G, ρ, λ).

13. For a compatible sequence of tiles T , the twist is T l = (T0, . . . , T
l
m), and the i-cut

of T is T /i = (Ti+1, . . . , Tm, T0, . . . , Ti−1).

Lemma 2.2 ([15]). Let T be a cyclically-compatible tile. Then, cr(◦T ) 6 tcr(T ). Let
T = (T0, . . . , Tm) be a compatible sequence of tiles. Then, tcr(⊗T ) 6

∑m
i=0 tcr(Ti).

The above Lemma applies without any information on the internal structure of the
tiles. However, by exploiting their internal structure (planarity and enough connectivity),
we can also prove a lower bound on the tile crossing number, which can, with sufficiently
many tiles, be exploited for the lower bound on the crossing number of the graph result-
ing from the tile. Prerequisites for these applications are summarized in the following
definition and applied in the theorem that follows.
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Definition 2.3. Let T = (G, λ, ρ) be a tile. Then:

1. T is connected if G is connected.

2. T is planar if tcr(T ) = 0.

3. T is perfect if the following holds:

– |λ| = |ρ|;
– G− λ and G− ρ are connected;

– for every v ∈ λ there is a path to the right wall ρ in G internally disjoint from
λ and for every u ∈ ρ there is a path to the left wall λ in G internally disjoint
from ρ;

– for every 0 6 i < j 6 |λ|, there is a pair of disjoint paths, one joining λi and
ρi, and the other joining λj and ρj.

Theorem 2.4 ([3]). Let T = (T0, . . . , T`, . . . , Tm) be a cyclically-compatible sequence of
tiles. Assume that, for some integer k > 0, the following hold: m > 4k − 2 and, for
every i ∈ {0, . . . ,m} \ {`}, tcr(⊗(T /i)) > k, and the tile Ti is a perfect planar tile. Then,
cr(◦T ) > k.

This theorem can yield exact crossing number under the assumptions of the next
corollary.

Corollary 2.5 ([3]). Let T = (T0, . . . , T`, . . . , Tm) be a cyclically-compatible sequence
of tiles and let k = mini∈{0,...,m}\{`} tcr(⊗(T /i)). If m > 4k − 2 and, for every i ∈
{0, . . . ,m} \ {`}, the tile Ti is a perfect planar tile, then cr(◦T ) = k.

Exact lower bounds facilitate establishing criticality of the tiles and graphs, as the
smallest drop in crossing number suffices for criticality of an edge. For combinatorially
handling the criticality of the constructed graph on the basis of the properties of tiles, we
introduce degeneracy of tiles and criticality of sequences of tiles as follows:

Definition 2.6.

1. A tile T is k-degenerate if it is perfect, planar and, for any e ∈ E(T ), tcr(T l−e) < k.

2. A sequence T = (T0, . . . , Tm) is k-critical if, for every i = 0, . . . ,m, the tile Ti is
k-degenerate and mini∈{0,...,m−1} tcr(⊗((T /i)l)) > k.

Using these concepts, Corollary 2.5 can be applied to establish criticality of graphs re-
sulting from crossing critical sequences of tiles or from degenerate tiles.

Corollary 2.7 ([3]). Let T = (T0, . . . , Tm) be a k-critical sequence of tiles. Then, T = ⊗T
is a k-degenerate tile. If m > 4k − 2 and T is cyclically-compatible, then ◦(T l) is a k-
crossing-critical graph.
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To estimate the tile crossing number, we use an informal tool called gadget. This can
be any structure inside of a tile T , which guarantees a certain number of crossings in
every tile drawing of T . The gadgets we use are twisted pairs of paths, guaranteeing one
crossing each, and staircase strips of width n, guaranteeing

(
n
2

)
− 1 crossings.

Definition 2.8. A traversing path in a tile T = (G, λ, ρ) is a path P in the graph G, for
which there exist indices i(P ) ∈ {1, . . . , |λ|}, and j(P ) ∈ {1, . . . , |ρ|}, so that P is a path
from λ(P ) = λi(P ) to ρ(P ) = ρj(P ) and λ(P ) and ρ(P ) are the only wall vertices of P .

A pair of disjoint traversing paths {P,Q} is twisted if i(P ) < i(Q) and j(P ) > j(Q),
and aligned otherwise. A family W of pairs of disjoint traversing paths is aligned , if all
the pairs in W are aligned. The family is twisted , if all the pairs are twisted.

The disjointness of a twisted pair {P,Q} implies one crossing in any tile drawing of
T . This is generalized to twisted families in the following lemma:

Lemma 2.9 ([3]). Let W be a twisted family in a tile T , such that no edge occurs in two
distinct paths of ∪W. Then, tcr(T ) > |W|.

The following definition presents a staircase tile, adapted from [3]. Such detailed
definition is needed as this tile is later used as a part of our new constructed tile defined
in Section 3. A reader should understand it quickly when referring to Figure 1.

λ
4

P
1

P
2

P
4

P
5

P
6

P
7

P
8

λ
1

v
1

u
1

v
2v’

2

v
3

ρ
7

ρ
6

ρ
1

ρ
2

ρ
3

ρ
4

ρ
5

λ
2

λ
3

λ
5

λ
6

λ
7

u
2 u’

2

u
3

v’
3

v’
4

v
4

u’
3

u
5 u’

5

u
6 u’

6

u
7

u
4 u’

4

v’
5

v’
6

v
5

v
6

v
7

P
3

Figure 1: A staircase tile S8. The wall vertices are drawn in white and internal vertices
in black.

Definition 2.10 ([3]). Let n ∈ N, n > 3. The staircase tile of width n is a tile Sn =
(G, λ, ρ) with λ = (λ1, λ2, . . . , λn−1), ρ = (ρ1, ρ2, . . . , ρn−1) for which the following holds:

• Sn consists of a sequence of traversing paths P = {P1, P2, . . . , Pn} with the property:

– λ(P1) = λ1, ρ(P1) = ρ1 and λ(Pn) = λn−1, ρ(Pn) = ρn−1,
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– for i = 2, . . . , n− 1, λ(Pi) = λi−1 and ρ(Pi) = ρi.

• The only non-wall vertices of Sn are, for i = 1, n− 1, ui ∈ Pi+1, vi ∈ Pn−i, and, for
i = 2, . . . , n− 2, ui, u

′
i ∈ Pi+1 and vi, v

′
i ∈ Pn−i.

• For i = 2, 3, . . . , n − 2, the position of a non-wall vertices of Sn is such that
|e(ui) ∩ e(λi)| = 1, |e(ui) ∩ e(u′i)| = 1, |e(vi) ∩ e(ρn−i)| = 1 and |e(vi) ∩ e(v′i)| = 1.

• The additional edges are u1u2, v1v2 and, for i = 2, . . . , n− 2, u′iui+1 and viv
′
i+1.

For n > 3, a staircase tile Sn is a perfect planar tile.

Definition 2.11 ([3]). Let n > 3 be integer and let m > 3 be an odd integer. The
staircase sequence of length m is defined as Sn,m = (Sn,

lSn
l, Sn,

lSn
l, . . . , lSn

l, Sn) and
the staircase strip graph as S(n,m) = ◦(Sn,ml).

Proposition 2.12 ([3]). The staircase strip graph, S(n,m), of width n and odd length
m > 4

(
n
2

)
− 5 is a crossing-critical graph with cr(S(n,m)) =

(
n
2

)
− 1.

This concludes our discussion of known results on tiles in graphs. Tiled graphs are
joined together using zip product construction [2, 3]. We use the version restricted to
vertices of degree three, as introduced in [11].

Definition 2.13. For i ∈ {1, 2}, let Gi be a graph and let vi ∈ V (Gi) be its vertex of
degree 3, such that Gi−vi is connected and vi is incident only to simple edges. We denote
the neighbours of vi by uij for j ∈ {1, 2, 3}. The zip product of G1 and G2 according to
vertices v1, v2 and their neighbours, is obtained from the disjoint union of G1 − v1 and
G2 − v2 by adding three edges u11u

2
1, u

1
2u

2
2, u

1
3u

2
3.

While crossing number is super-additive over general zip products only under a tech-
nical connectivity condition, the following theorem holds for zip products of degree (at
most) three:

Theorem 2.14 ([4]). Let G be a zip product of G1 and G2 as in Definition 2.13. Then,
cr(G) = cr(G1) + cr(G2). Consequently, if, for i = 1, 2, Gi is ki-crossing-critical, then G
is (k1 + k2)-crossing-critical.

3 Crossing-Critical Families with High Odd Degrees

We first present a new construction of a crossing-critical family containing many vertices
of an arbitrarily prescribed odd degree (recall that the question of an existence of such
families has been the main motivation for this research).

The construction defines a graph G(`, n,m) with three integer parameters ` > 1, n > 3
and odd m > 3, as follows. There is a tile H`,n, with the walls of size 2` + n − 1, which
is illustrated in Figure 2. Formally, H`,n consists of 2` + n pairwise edge disjoint paths,
grouped into three families P ′1, . . . , P

′
`, Q

′
1, . . . , Q

′
`, and S ′1, . . . , S

′
n, and an additional set

F ′ of 2(n − 2) edges not on these paths, see Figure 2. We continue with more detailed
definition:
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S ′3
S ′4
S ′5
S ′6
S ′7
S ′8
Q′1
Q′2
Q′3
Q′4

Figure 2: A tile drawing of H4,8. The wall vertices are drawn in white and internal vertices
in black.

• The paths S ′1, . . . , S
′
n are pairwise vertex-disjoint except that S ′1 shares one vertex

with S ′2 (w1 in Figure 2) and S ′n−1 shares one vertex with S ′n (w2 in Figure 2).
The additional 2 edges of F ′ appear between vertices of paths: S ′2 and S ′3 (edge
z1z2 in Figure 2), S ′1 and S ′2 (edge u1z2(n−1)−1 in Figure 2). If n > 3, then, for
i = 2, . . . , n− 2, additional n− 3 edges of F ′ appear between vertices of paths S ′i+1

and S ′i+2 (edges z2i−1z2i in Figure 2) and additional n−3 edges of F ′ appear between
vertices of paths S ′i and S ′i+1 (edges z2(n−3)+2iz2(n−3)+2i+1 in Figure 2).

• The union S ′1 ∪ . . . ∪ S ′n ∪ F ′ is (consequently) a subdivision of the aforementioned
staircase tile from Definition 2.10.

• Let λ = (λ1, . . . , λ2`+n−1) be the left wall and ρ = (ρ1, . . . , ρ2`+n−1) the right wall of
H`,n. The paths P ′1, . . . , P

′
` are ordered such that, for i = 1, . . . , n, λ(Pi) = λ`+1−i

and ρ(Pi) = ρ`+1−i. The paths Q′1, . . . , Q
′
` are ordered such that, for i = 1, . . . , n,

λ(Qi) = λ`+n−1+i and ρ(Pi) = ρ`+n−1+i.

• The paths P ′1, . . . , P
′
` all share the top-most vertex u1 of S ′1.

• The paths Q′1 and S ′n shares exactly two vertices of degree 4 (v1 and v2 in Figure 2).
For i = 1, . . . , ` − 2, Q′i shares exactly two vertices with Q′i+1 and these shared
vertices are of degree 4, as depicted in Figure 2 (vertices vi+2, . . . , v2`−2). The paths
Q′`−1 and Q′` shares exactly one vertex of degree 4 (v2`−1 in Figure 2).
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Figure 3: A tile drawing of G3,4. The wall vertices are drawn in white and internal vertices
in black.

Let G`,n be a tile composed of three copies of H`,n such that G`,n = H`,n⊗lH`,n
l⊗H`,n,

which is illustrated in Figure 3. Let G(`, n,m) = (G`,n,
lG`,n

l, G`,n . . . ,
lG`,n

l, G`,n) be a
sequence of such tiles of length m, and let G(`, n,m) be constructed as the cyclization
◦
(
G(`, n,m) l

)
.

In the degenerate case of ` = 0, the graph G(0, n,m) is a staircase strip graph (see
Definition 2.11), and G(0, n,m) will be contained in G(`, n,m) as a subdivision for every `.

For i = 1, . . . , ` and j = 1, . . . , n, let P ′′i , Q
′′
i , S

′′
j denote the paths obtained by three

copies of each of P ′i , Q
′
i, S
′
i from H`,n as P ′′i = ⊗(P ′i , Q

′
i, P

′
i ), Q

′′
i = ⊗(Q′i, P

′
i , Q

′
i) and

S ′′j = ⊗(S ′j, S
′
n+1−j, S

′
j). Then P ′′1 , . . . , P

′′
` , Q′′1, . . . , Q

′′
` , and S ′′1 , . . . , S

′′
n are all traversing

paths of G`,n.
For i = 1, . . . , ` and j = 1, . . . , n, let P̄i, Q̄i, S̄i denote the paths which are obtained
by m copies of each of P ′′i , Q

′′
i , S

′′
i from G`,n as P̄i = ⊗(P ′′i , Q

′′
i , P

′′
i , . . . , Q

′′
i , P

′′
i ), Q̄i =

⊗(Q′′i , P
′′
i , Q

′′
i , . . . , P

′′
i , Q

′′
i ) and S̄j = ⊗(S ′′j , S

′′
n+1−j, S

′′
j , . . . , S

′′
n+1−j, S

′′
j ). Then P̄i, Q̄i, S̄i

are all traversing paths of ⊗G(`, n,m).
The proof of the following basic properties is straightforward, as attentive reader

could easily verify from the illustrating pictures of H`,n (recall that degree-2 vertices are
contracted in a tile join).

Proposition 3.1. For every ` > 1 and n > 3, the tiles H`,n, and hence also G`,n, are
perfect planar tiles. The graph G(`, n,m) has 3m(2`+4n−8) vertices, out of which 3m ·2`
have degree 4, 3m(4n− 9) have degree 3, and remaining 3m vertices have degree 2`+ 3.
The average degree of G(`, n,m) is

5l + 6n− 12

l + 2n− 4
.

We conclude with the main desired property of the graph G(`, n,m).
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Theorem 3.2. Let ` > 1, n > 3 be integers. Let k = (`2 +
(
n
2

)
− 1 + 2`(n − 1)) and let

m > 4k − 1 be odd. Then the graph G(`, n,m) is k-crossing-critical.

Proof. By using Theorem 2.4 and symmetry, it suffices to prove the following:

I) tcr
(
⊗ G(`, n,m) l

)
> k, and

II) every edge of G`,n corresponding to one copy of H`,n in it is critical, meaning that,
for every edge e ∈ E(H`,n) ⊆ E(G`,n), tcr(G`,n

l − e) < k.

Recall the pairwise edge-disjoint traversing paths P̄1, . . . , P̄`, Q̄1, . . . , Q̄`, and S̄1, . . . , S̄n

of the join ⊗G(`, n,m). We define the following disjoint sets of pairs of these paths, such
that each pair is formed by vertex-disjoint paths:

• A =
{
{P̄i, Q̄j} : 1 6 i, j 6 `

}
where |A| = `2,

• B =
{
{P̄i, S̄j} : 1 6 i 6 `, 1 < j 6 n

}
where |B| = `(n− 1),

• C =
{
{Q̄i, S̄j} : 1 6 i 6 `, 1 6 j < n

}
where |C| = `(n− 1).

Each pair in A ∪ B ∪ C is twisted in ⊗G(`, n,m)l, and so these pairs account for
at least |A| + |B| + |C| = 2`(n − 1) + `2 crossings in a tile drawing of ⊗G(`, n,m)l,
by Lemma 2.9. Importantly, each of these crossings involves at least one edge of R =
P̄1 ∪ . . .∪ P̄` ∪ Q̄1 ∪ . . .∪ Q̄`. The subgraph ⊗G(`, n,m)−E(R) contains a subdivision of
the staircase strip ⊗G(0, n,m).
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Figure 4: A tile drawing of H4,5 depicted with 4 types of edges.
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Hence any tile drawing of ⊗G(`, n,m)l contains at least another tcr
(
⊗ G(0, n,m)l

)
crossings not involving any edges of R. Since tcr

(
⊗G(0, n,m)l

)
=
(
n
2

)
− 1 by Proposition

2.12, we get tcr
(
⊗ G(`, n,m)l

)
>
(
n
2

)
− 1 + 2`(n− 1) + `2 = k, thus proving (I).

To prove (II), we investigate the tile drawing in Figure 5. It is routine to count that a
natural generalization of this drawing has precisely

(
n−2
2

)
+ 2(n− 2) + 2`(n− 1) + `2 = k

crossings, and so it is optimal. Three types of crossings are presented in Figure 5, Figure 6,
Figure 7 and Figure 8:

• grey triangles are the `2 crossings of each pair in A;

• grey 4-stars are the 2`(n− 1) crossings of each pair in B ∪ C;

• grey squares are the
(
n−2
2

)
+ 2(n − 2) =

(
n
2

)
− 1 crossings of edges in a staircase

part, G(0, n,m), of a graph G(`, n,m). The
(
n−2
2

)
crossings appear in the middle of

Figure 5 caused by edges, for i = 1, . . . , n− 2, z2i−1z2n+2i−5. The n− 2 crossings are
caused by edge w1u1 and n− 2 crossings by edge z2n−4w2.
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Figure 5: A fragment of an optimal tile drawing of G2,5
l. Grey triangles, 4-stars and

squares present three types of crossings. For clearer presentation we use different ` com-
pared to Figure 4. Here ` = 2 and n = 5, which means that an optimal drawing has
29 crossings: `2 = 4 of triangles, 2`(n − 1) = 16 of 4-stars and

(
n
2

)
− 1 = 9 of squares.

Dotted lines show other possible renderings for certain edges. Note that we only change
a single edge in each alternative drawing. The same observation holds for the following
two figures.

To show that each edge of H`,n is critical, we first present H`,n with 4 types of edges
(see Figure 4): thin solid, thin dashed, thick dashed and thick solid. Then we present
four figures, where each figure focuses its attention on one special type of edges: Figure 5
for thin solid edges, Figure 6 for thin dashed edges, Figure 7 for thick dashed edges and
Figure 8 for thick solid edges. Every edge of a given type is crossed in the appropriate
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figure. Sometimes, some edge e is used in different optimal drawings to cross different
ones of the edges of the specific type. The required optimal redrawings of such edges e
are indicated with dotted curves.
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Figure 6: A fragment of an optimal tile drawing of G2,5
l. See Figure 5 for additional

explanation.
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Figure 7: A fragment of an optimal tile drawing of G2,5
l. See Figure 5 for additional

explanation.
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Figure 8: A fragment of an optimal tile drawing of G4,4
l. Here ` = n = 4, which means

that an optimal drawing has 45 crossings: `2 = 16 of triangles, 2`(n− 1) = 24 of 4-stars
and

(
n
2

)
− 1 = 5 of squares. For clearer presentation we use different n compared to

Figure 4. See Figure 5 for additional explanation.

4 Families with Prescribed Frequent Degrees

We now get back to the primary question which motivated the research leading to [11] and
this paper: which vertex degrees other than 3, 4, 6 can occur arbitrarily often in infinite
k-crossing-critical families? First, we summarize the relevant particular constructions—
our future building blocks—obtained so far (note that some of the claimed results have
been proved in a more general form than stated here, but we state them right in the form
we shall use).

Proposition 4.1. There exist (infinite) families F of simple, 3-connected, k-crossing-
critical graphs such that, in addition, the following holds:

a) ([11, Section 4].) For every k > 10 or odd k > 5, and every rational r ∈ (4, 6− 8
k+1

),
a family F which is {4, 6}-max-universal and each member of F is of average degree
exactly r, and another F which is {4}-max-universal and of average degree exactly 4.
Every graph of the two families has the set of its vertex degrees equal to {3, 4, 6} (e.g.,
degree 3 repeats six times in each).
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b) ([11, Section 3 and 4].) For every ε > 0, any integer k > 5 and every set De of even
integers such that min(De) = 4 and 6 6 max(De) 6 2k − 2, a family F which is
De-max-universal, and each graph of F has the set of its vertex degrees De ∪ {3} and
is of average degree from the interval (4, 4 + ε).

c) ([13] for k = 2 and [3] for general k, see G(0, n,m).) For every k =
(
n
2

)
− 1 where

n > 3 is an integer, a family F which is {3, 4}-max-universal and each member of F
is of average degree equal to 3 + 1

4n−7 .

d) (G(`, 3,m) in Theorem 3.2.) For every k = `2 + 4` + 2 where ` > 1 is an integer,
a family F which is {3, 4, 2` + 3}-max-universal and each member of F is of average
degree 5− 4

`+2
.

Having the particular constructions of Proposition 4.1 and the zip product with The-
orem 2.14 at hand, it is now quite easy to give the “ultimate” combined construction as
follows. For two graph families F1,F2 of simple 2-connected graphs such that each graph
in F1∪F2 has a vertex of degree 3, we define the zip product of F1 and F2 as the family of
all graphs H such that there exist G1 ∈ F1, G2 ∈ F2 and vertices v1 ∈ V (G1), v2 ∈ V (G2)
of degree 3, and H is the zip product of G1 and G2 according to v1, v2.

Lemma 4.2. Let Fi, i = 1, 2, be a Di-max-universal family of simple 2-connected graphs
such that each graph in Fi has a vertex of degree 3. Then the zip product of F1 and F2 is
a (D1 ∪D2)-max-universal family.

Proof. Let F denote the zip product of F1 and F2. We first prove that F is (D1 ∪D2)-
universal. Choose any set of integers {md | d ∈ D1 ∪D2}, and, for i = 1, 2, graphsGi ∈ Fi,
such that, for each d ∈ Di\ {3}, Gi contains at least md vertices of degree d, and, if 3 ∈ Di,
Gi has at least m3 + 1 vertices of degree 3. Then, for each d ∈ D1 ∪D2, the zip product
of G1 and G2 (according to any pair of their degree-3 vertices) has at least md vertices of
degree d.

Conversely, assume that F is {d}-universal for some integer d. Then, for every integer
m, there exists G ∈ F such that G has at least 2m vertices of degree d. Since G is a
zip product of graphs Gi ∈ Fi, i = 1, 2, one of G1, G2 contains at least m vertices of
degree d. W.l.o.g., this happens infinitely often for i = 1, and so (up to symmetry) F1 is
{d}-universal. Therefore, d ∈ D1∪D2 which proves that F is (D1∪D2)-max-universal.

Theorem 4.3. Let D be any finite set of integers such that min(D) > 3. Then there is
an integer K = K(D), such that for every k > K, there exists a D-universal family of
simple, 3-connected, k-crossing-critical graphs. Moreover, if either 3, 4 ∈ D or both 4 ∈ D
and D contains only even numbers, then there exists a D-max-universal such family. All
the vertex degrees in the families are from D ∪ {3, 4, 6}.

Proof. It suffices to prove the second claim (D-max-universal) since a (D ∪ {3, 4})-max-
universal family is also D-universal. Furthermore, if D contains only even numbers, then
the claim has already been proved in [11], here in Proposition 4.1 b).
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Hence assume the case 3, 4 ∈ D, and let De ⊆ D be the subset of the even integers
from D. Let Fe denote the family from Proposition 4.1 b) with ke = 1

2
max(De) + 1,

and F3 the family from Proposition 4.1 c) with k = 2. For every a ∈ D \ De, a > 3,
let Fa denote the family from Proposition 4.1 d) with 2`a + 3 = a and crossing number
ka = `2a + 4`a + 2. Since, in particular, F3 is {3}-universal, we may assume that every
graph in F3 has more than |D \De| vertices of degree 3. We now construct a family F as
the iterated zip product of F3, Fe, and (possibly) of each Fa where a ∈ D \De, a > 3.

Clearly, every graph from F is simple and 3-connected. By Lemma 4.2, F is D-
max-universal, and by Theorem 2.14, F is K-crossing-critical where K = ke + 2 +∑

a∈D\De,a>3 ka. This construction creates only vertices of degrees from D ∪ {3, 4, 6}.
To extend the construction of F to any parameter k > K, we simply replace the family
Fe by analogous F ′e from Proposition 4.1 b) with the parameter k′e = ke + (k −K).

Figure 9: A possible (alternative) way of combining the ideas of the construction [11] with
the tile G5,3.

At last we shortly remark that building blocks of the “crossed belt” construction of
[11] (Proposition 4.1 b) can be directly combined with the new construction of G(`, n,m),
without invoking a zip product. Such a combination is outlined in Figure 9. However,
since this construction can only achieve a combination of various even degrees with one
prescribed odd degree (greater than 3), it cannot fully replace the proof of Theorem 4.3
and so we refrain from giving the lengthy technical details in this paper.

5 Families with Prescribed Average Degree

In addition to Theorem 4.3, we are going to show that the claimed D-max-universality
property can be combined with nearly any feasible rational average degree of the family.

Theorem 5.1. Let D be any finite set of integers such that min(D) > 3 and A ⊂ R be
an interval of reals. Assume that at least one of the following assumptions holds:

a) D ⊇ {3, 4, 6} and A = (3, 6),

b) D ) {3, 4} and A = (3, 4], or D = {3, 4} and A = (3, 4),
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c) D ) {3, 4} and A = (3, 5 − 8
b+1

) where b is the largest odd number in D and b > 9
(note that b = 7 is covered in (b)),

d) D ⊇ {4, 6} contains only even numbers and A = (4, 6), or D = {4} and A = {4}.

Then, for every rational r ∈ A, there is an integer K = K(D, r) such that for every
k > K, there exists a D-max-universal family of simple 3-connected k-crossing-critical
graphs of average degree precisely r.

Before we prove the theorem, we informally review the coming steps. The basic idea
of balancing the average degree in a crossing-critical family is quite simple; assume we
have two families Fa,Fb of fixed average degrees a < b, respectively, and containing some
degree-3 vertices. Then, we can use zip product of graphs from the two families to obtain
new graphs of average degrees which are convex combinations of a and b. This simple
scheme, however, has two difficulties:

• If one combines graphs G1 ∈ Fa and G2 ∈ Fb, then the average degree of the disjoint
union G1 ∪G2 is the average of a, b weighted by the sizes of G1, G2. Hence we need
great flexibility in choosing members of Fa,Fb of various size, and this will be taken
care of by the notion of a scalable family.

• Second, after applying a zip product of G1, G2 the resulting average degree is no
longer this weighted average of a, b but a slightly different rational number. We will
take care of this problem by introducing a special compensation gadget whose role
is to revert the change in average degree caused by the zip product.

Figure 10: The k-crossing-critical “crossed belt” construction of [11]: the shaded part is
any plane graph consisting of an edge-disjoint union of k cycles, satisfying certain (rather
weak) technical and connectivity conditions; the six marked vertices are all of degree
three.

We start with addressing the second point. The compensation gadget (one for a whole
family) will be picked from the family in Proposition 4.1 a). To describe it precisely,
we have to (at least informally) introduce the very general crossed belt construction of
crossing-critical families from [11]—see it is Figure 10. Let T be the planar tile depicted
in Figure 11 on the left, and let M ′

m be the planar graph obtained as the cyclization
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Figure 11: The tile T (left) used to construct our “compensation gadget” Mm, and the
tile T ′′ (called “double-split” in [11]) that can replace T in the compensation gadget.

◦(T0, . . . , Tm−1) where each Ti = T . Let Mm, m > 12, be constructed from M ′
m by adding

six new degree-3 vertices and five new edges as in Figure 10, such that four of the new
vertices subdivide rim edges of the tiles T0, Tbm/4c, Tbm/2c, Tb3m/4c. Let M c

m be constructed
exactly as Mm but replacing arbitrary c > 0 of the tiles T with T ′′ shown on the right in
Figure 11.

Proposition 5.2 ([11]). For any m > 12 and 0 6 c 6 m, the graph M c
m is 5-crossing-

critical.

The way “compensating by” the gadget M c
m works, is formulated next.

Lemma 5.3. Let G1, . . . , Gt be graphs, each having at least two degree-3 vertices, and
let q ∈ N and m > max(q + t, 12). If H is a graph obtained using the zip product of all
G1, . . . , Gt and of M q+t

m (in any order and any way), then the average degree of H is equal
to the average degree of the disjoint union of G1, . . . , Gt and M q

m.

Proof. Let ni = |V (Gi)| and si be the sum of degrees in Gi, and let n0 = 6m + 6 + 2q,
s0 = 28m+18+6q be the same quantities in M q

m. Then n′′0 = |V (M q+t
m )| = n0+2t and the

sum of degrees of M q+t
m is s′′0 = s0 + 6t. Since performing one zip operation decreases the

number of vertices by 2 and the sum of degrees by 6, we have |V (H)| = n′′0 +n1+ · · ·+nt−
2t = n0+n1+· · ·+nt and the sum of degrees in H is s′′0+s1+· · ·+st−6t = s0+s1+· · ·+st,
and the claim follows.

To address the first point, we give the following definition. A family of graphs F is
scalable if all the graphs in F have equal average degree and for every G ∈ F and every
integer a, there exists H ∈ F such that |V (H)| = a|V (G)|. Furthermore, F is D-max-
universal scalable if, additionally, H contains at least a vertices of each degree from D
and the number of vertices of degrees not in D is bounded from above independently of a.

Trivially, the families of Proposition 4.1 c),d) are D-max-universal scalable for D =
{3, 4} and D = {3, 4, 2`+ 3}, respectively. For the families as in Proposition 4.1 a),b), we
have:

Lemma 5.4. There exist families, satisfying the conditions of Proposition 4.1 a) and b),
respectively, which are D-max-universal scalable for their respective sets D.

Note that in the previous case of Proposition 4.1 b), the claimed family from [11] was
not required to have fixed average degree. Now also the family extending this case b) will
be of fixed average degree.
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Proof. The proof is completely based on the constructions from [11], but since the question
of scalability is not considered there, we have to discuss some further details of the crossed
belt construction of [11] (recall Figure 10).

First, consider a {4}-max-universal family F4 of simple, 3-connected, k-crossing-
critical graphs of average degree 4, as in Proposition 4.1 a). Pick any G ∈ F4; then G has
precisely six degree-3 vertices, and since the only other vertex degrees occurring in G are 4
and 6, G has precisely three degree-6 vertices. Let G′ be the “planar belt” of G (the shaded
part in Figure 10, without degree-3 vertices). Then G′ can be cut to form a perfect planar
tile TG′ such that ◦TG′ = G′. For integer a > 1, let G′a denote the cyclization of a copies
of TG′ , and let G′′a denote the graph G′a with the six degree-3 vertices added back (such
that four of them subdivide the same edges of one copy of the tile TG′ as they do in G).
By [11], G′′a is again k-crossing-critical. If n = |V (G′)| and s is the degree sum of G′, then
|V (G)| = n+6 and the degree sum of G is s+18. Furthermore, |V (G′′a)| = an+6 and the
degree sum of G′′a is as+ 18, and G′′a has 3a degree-6 vertices. We denote by Ga the graph
obtained by 3a − 3 “double split” operations each replacing a degree-6 vertex by three
degree-4 vertices as illustrated in Figure 11. Then |V (Ga)| = an+6+2(3a−3) = a|V (G)|
and the degree sum of Ga is as + 18 + 6(3a − 3) = a(s + 18), and so the average degree
is the same as of G. There are only three degree-6 vertices left in Ga. Hence, for every
a > 1, we may assume Ga ∈ F4 as well.

Second, consider a {4, 6}-max-universal family Fr of simple 3-connected k-crossing-
critical graphs of average degree r ∈ (4, 6− 8

k+1
), as in Proposition 4.1 a). Then the proof

follows the same line as in the previous paragraph, only that now we have many degree-6
vertices by the assumption of {6}-universality.

Third, consider a De-max-universal family Fe of simple 3-connected k-crossing-critical
graphs, as in Proposition 4.1 b). This case is somehow different from the previous two since
we have no vertices of degree 6 (unless 6 ∈ De) and Fe contains graphs of various average
degrees. Though, for any fixed ε > 0, Fe can be chosen such that the average degree
of every member of Fe is from the interval (4, 4 + ε/2). Pick arbitrary but sufficiently
large G ∈ Fe. Then one can find (see [11] for details) three edges in G not close to each
other and not having vertices of degree other than 4 in close neighbourhood, and let G1

be obtained by contracting these three edges (into vertices of degree 6). By [11], G1 is
again k-crossing-critical. Since G is sufficiently large, the average degree of G1 is equal
to some r1 ∈ (4, 4 + ε). Now the construction from the first case above applies to G1 and
gives a whole scalable family of average degree r1.

The next step is to combine suitable scalable families to obtain arbitrary rational
average degrees in a given interval (roughly, between the sparsest and the densest available
family).

Lemma 5.5. Assume, for i = 1, . . . , t, that Fi is a Di-max-universal scalable family of
simple 3-connected ki-crossing-critical graphs of average degree exactly ri, and that every
graph in F1 ∪ · · · ∪ Ft has at least two degree-3 vertices. For every k > k1 + · · ·+ kt + 5,
there exists rational r0 ∈ (3, 6), such that the following holds for every a1, . . . , at, c ∈ N:
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a) there exists a simple, 3-connected, k-crossing-critical graph G having at least ai vertices
of each degree from Di,

b) the number of vertices of G of degree not in D1 ∪ · · · ∪Dt is bounded from above by a
number depending only on c, k and the families F1, . . . ,Ft, and

c) the average degree of G is precisely

r =

∑t
i=1 airi + cr0∑t

i=1 ai + c
. (1)

Proof. Let ` = k − (k1 + · · · + kt + 5) and denote by K` a set of ` disjoint copies of
the graph K3,3. Pick arbitrary Gi ∈ Fi, i = 1, . . . , t. We may w.l.o.g. assume that
n0 = |V (G1)| = · · · = |V (Gt)| and n0 divisible by 6, since otherwise we take the least
common multiple of 6 and all the graph sizes and apply scalability of the families Fi.
Clearly, n0 can be chosen arbitrarily large as well, such as n0 > 6(4` + t + 4). Let
G0 = M0

n0/6−(`+1) (the compensation gadget defined above) and H0 denote the disjoint

union of K` and G0. Then |V (H0)| = n0 and we choose r0 to be the average degree of H0;

r0 =
18`+ 28(n0

6
− (`+ 1)) + 18

n0

=
14n0

3
− 10(`+ 1)

n0

.

Again by scalability, for i = 1, . . . , t, there exist G ∗aii ∈ Fi (of average degree ri) such

that |V (G ∗aii )| = ain0. Similarly, we let G ∗c0 = M
3(c−1)(`+1)
cn0/6−c(`+1). It is simple calculus to verify

that the disjoint union of K` and G ∗c0 has cn0 vertices and the average degree equal to

18`+ 28( cn0

6
− c(`+ 1)) + 18(c− 1)(`+ 1) + 18

cn0

=
14cn0

3
− 10c(`+ 1)

cn0

= r0 .

Hence the average degree of the disjoint union of K` and G ∗c0 and G ∗a11 , . . . , G ∗att indeed
is ∑t

i=1 ain0ri + cn0r0∑t
i=1 ain0 + cn0

= r . (2)

Finally, we let G′0
∗c = M

3(c−1)(`+1)+`+t
cn0/6−c(`+1) and construct the simple 3-connected graph G

as the zip product of K` and G′0
∗c and G ∗a11 , . . . , G ∗att . By Theorem 2.14, G is k-crossing-

critical with k = ` + 5 + k1 + · · · + kt, as required. The degrees condition in a) follows
from max-universal scalability of F1, . . . ,Ft, and b) then follows as well since the size of
G′0
∗c is bounded with respect to c, k. Moreover, by compensation Lemma 5.3, the average

degree of G is equal to r, as in (2).

Corollary 5.6 (Lemma 5.5). Assume Di-max-universal scalable ki-crossing-critical fam-
ilies Fi of average degree ri, i = 1, . . . , t, as in Lemma 5.5, such that r1 < r2. Then, for
every k > k1 + · · · + kt + 5 and every r ∈ (r1, r2) ∩ Q, there exists a (D1 ∪ · · · ∪ Dt)-
max-universal family of simple, 3-connected, k-crossing-critical graphs of average degree
exactly r.
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Proof. The proof is a simple exercise in calculus based on Lemma 5.5. Let r = p
q

where
p, q are relatively prime integers. Our task is to find infinitely many suitable choices of
a1, . . . , at such that, by (1),

p

q
=

∑t
i=1 airi + cr0∑t

i=1 ai + c
(3)

for some (unknown) rational r0 ∈ (3, 6) and suitable (but fixed, see below) c.
To further simplify the task, we choose sufficiently large integer m such that r′1 =

(mr1 + r3 + · · ·+ rt)/(m + t− 2) < r and set a1 = ma, a3 = · · · = at = a, a2 = b for yet
unknown a, b. Then (3) reads:

p

q
=
mar1 + ar3 + · · ·+ art + br2 + cr0

a(m+ t− 2) + b+ c
=
a(m+ t− 2)r′1 + br2 + cr0
a(m+ t− 2) + b+ c

Let s = m+ t− 2, and r′1 = pa
qa

, r2 = pb
qb

, r0 = p0
q0

. We continue with equivalent processing:

p

q
=
aspa

qa
+ bpb

qb
+ cp0

q0

as+ b+ c

p(as+ b+ c)qaqbq0 = asqqbq0pa + bqqaq0pb + cqqaqbp0

Finally, we get that (3) under our special substitution for a1, . . . , at, is equivalent to the
following linear Diophantine equation in a, b:

a · sqbq0(pqa − paq) + b · qaq0(pqb − pbq) = cqaqb(p0q − pq0)

Setting c = q0 · GCD
(
sqb(pqa − paq), qa(pqb − pbq)

)
, this equation has infinitely many

integer solutions, and since r′1 < r < r2, we have that pqa − paq > 0 and pqb − pbq < 0
and so infinitely many of the solutions are among positive integers (regardless of whether
the right-hand side is positive, zero or negative).

Proof of Theorem 5.1. The case d) has already been proved in [11], see Proposition 4.1 a).
In all other cases, let F1 be the family from Proposition 4.1 c) such that the parameter n
satisfies r1 = 3 + 1

4n−7 < r (where r ∈ A ∩Q, r > 3, is the desired fixed average degree).
In the case a), let F2 be a family from Proposition 4.1 a) with average degree equal to

arbitrary (but fixed) r2 ∈ (r, 6) 6= ∅, which can be chosen as scalable by Lemma 5.4. In
the case c), let F2 be the family from Proposition 4.1 d) with the parameter ` such that
b = 2` + 3; in this case r2 = 5 − 8

b+1
> r. Finally, we consider the remaining subcases

of b). If D = {3, 4}, then let F2 be the second family from Proposition 4.1 a) with average
degree r2 = 4. If D ) {3, 4}, then let F2 be the family from Proposition 4.1 b), made
scalable and of fixed average degree r2 > 4 by Lemma 5.4.

In each one of the choices of F1,F2 above, r1 < r < r2 holds. Furthermore, if necessary
in order to fulfil D-max-universality, we introduce additional scalable families F3, . . . as
in the proof of Theorem 4.3. Then, Theorem 5.1 follows directly from Corollary 5.6.
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6 Degree Properties in 2-Crossing-Critical Families

In the previous constructions, we have always assumed that the fixed crossing number k
of the families is sufficiently large. One can, on the other hand, ask what happens if we
fix a (small) value of k beforehand (i.e., independently of the asked degree properties).

In this direction, there is the remarkable result of Dvořák and Mohar [6] proving the
existence of k-crossing-critical families with unbounded maximum degree for any k > 171.
Unfortunately, since [6] is not really constructive, we do not know anything exact about
the degrees occurring in these families. An explicit construction of a k-crossing-critical
family with unbounded maximum degree is known only in the projective plane [12] for
k > 2, but that falls outside of the area of interest of this paper.

Figure 12: The two frames.

Figure 13: The thirteen pictures for Definition 6.1.

It thus appears natural to thoroughly investigate the least non-trivial case of k = 2,
with significant help of the characterization result [5]. In a nutshell, [5] claims that nearly
all 2-crossing-critical graphs are built from a certain rather small finite set of tiles. The
formal result is stated next.

We refer to Section 2.3 for definitions of the operations ◦, ⊗ and l on tiles.

Definition 6.1. Let S denote the set of tiles which are obtained as combinations of
one of the two frames, illustrated in Figure 12, and the 13 pictures, shown in Figure 13.
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(a) tile Ta (b) tile Tb (c) tile Tc

(d) tile Td (e) tile Te

Figure 14: Examples of tiles from S.

These are combined in a way that a picture is inserted into a frame by identifying the two
geometric squares (typically by subdividing some edges of the frame). A given picture
may be inserted into a frame either with the given orientation or with a 180◦ rotation.
Note that S contains 42 different tiles.

We inductively define the following: The set of odd tiles To(S) consists of all the tiles
that are either in S or are obtained as Te⊗T with Te ∈ Te and T ∈ S. The set of even tiles
Te(S) consists precisely of the tiles obtained as To ⊕ lT l, where To ∈ To(S) and T ∈ S.
Note that an odd number of tiles of S is used to construct a tile of To(S), and an even
number for Te(S).

Let the set G(S) consist precisely of all the graphs of the form G = ◦(T ) where T ∈
To(S) \S. Note that each graph of G(S) is obtained as G = ◦(T l), where T is a sequence
(T0,

l T1
l, T2, . . . ,

l T2m−1
l, T2m) such that m > 1 and Ti ∈ S for each i = 0, 1, 2, . . . , 2m.

Some examples of tiles from S, hereafter named from Ta to Te, are shown in Figure 14.
We will use these tiles from Ta to Te in what follows.

Theorem 6.2. ([5]) There exist only finitely many 3-connected 2-crossing-critical graphs
which do not contain a subdivision of the graph V10, which is obtained from a 10-cycle by
adding all the 5 main diagonals.

Then, G is a 3-connected 2-crossing-critical graph containing a subdivision of V10, if
and only if G ∈ G(S).

Since we are interested exclusively in infinite families of 2-crossing-critical graphs, we
can focus on the graphs in G(S), as any remaining (necessarily finite) subset of graphs
disjoint from G(S) would not affect degree properties of our families. Note also that any
3-connected, 2-crossing-critical family of graphs contains at most finitely many graphs
which are not almost-planar because any graph from G(S) is almost-planar.

Theorem 6.3. A 3-connected 2-crossing-critical D-max-universal family

a) of simple graphs exists if and only if {3} ( D ⊆ {3, 4, 5, 6}.

b) exists if and only if D ⊆ {3, 4, 5, 6}, |D| > 2, and D ∩ {3, 4} 6= ∅.
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(a) ⊗(Ta,
l Ta

l, Ta) for {3, 4}. (b) ⊗(Ta,
l Tb

l, Ta) for {3, 5}.

(c) ⊗(Tb,
l Tb

l, Tb) for {3, 6}. (d) ⊗(Tc,
l Td

l, Tc) for {3, 4, 6}.

Figure 15: Tiles which can be used to construct the family F in the proof of Theo-
rem 6.3 a) in four particular cases of D. The remaining constructions can be obtained,
e.g., as follows: the base tile for {3, 4, 5} is a join of two tiles (a) and one tile (b), for
{3, 5, 6} it is a join of two tiles (b) and one tile (c), and for {3, 4, 5, 6} it is a join of two
tiles (b) and one tile (d).

(a) ⊗(Tf ,
l Tf

l, Tf ) for {4, 5}. (b) ⊗(Te,
l Te

l, Te) for {4, 6}.

Figure 16: Two non-simple tiles which cover cases D ∩ {3, 4} = {4} for Theorem 6.3 b).
The set {4, 5, 6} can be obtained as a combination of these two tiles.

Proof. Let D be a set of positive integers and let F be any 3-connected 2-crossing-critical
D-max-universal family. By Theorem 6.2, we may assume F ⊆ G(S). For case a), there
are only nine simple tiles in S, and by join of any two of them we can only construct
vertices with degrees 3, 4, 5 and 6, so D ⊆ {3, 4, 5, 6}. On the other hand, any simple tile
from S has a vertex of degree 3 that is not in its left or right wall, so {3} ⊆ D, and we get
some other vertex with degree not equal to 3 after we join any two of them, so {3} ( D.

Now it only remains to construct a family F for a set D such that {3} ( D ⊆
{3, 4, 5, 6}. For that see pictures in Figure 15.

We do similar for case b). Using Theorem 6.3 a) (for D such that 3 ∈ D), only the
cases D ∩ {3, 4} = {4} remain to be resolved. For that see pictures of constructions in
Figure 16.

In order to study average degrees in 2-crossing-critical graphs, we introduce the density
characteristics of a tile T as the pair of integers (a, b), where (i) a is the number of vertices
of T , counting wall vertices of degree greater than 1 as 1/2 and those of degree 1 as 0, and
(ii) b is the sum of degrees of T counting all degrees in full except those of wall vertices
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with degree 1. Then we define the density of a tile T as b
a
. Relevance of this concept is

revealed through the following lemma:

Lemma 6.4. Let T ∈ To(S) be the join of T = (T0,
l T1

l, T2, . . . ,
l T2m−1

l, T2m) so that
m > 1 and Ti ∈ S for each i = 0, 1, 2, . . . , 2m, let G = ◦(T l), and let (ai, bi) be
the density characteristics of the tile Ti. Then the average degree of G is equal to(∑2m

i=0 bi
) / (∑2m

i=0 ai
)
. Hence if each Ti has density b

a
, then the average degree of G is

equal to their density.

Lemma 6.4 implies that the lowest and highest achievable average degrees in an infinite
family of 2-crossing-critical graphs are determined by the lowest and highest density of
some tiles in S. This implies the following theorem:

Theorem 6.5. A simple, 3-connected, 2-crossing-critical infinite family of graphs with
average degree r ∈ Q exists if and only if r ∈

[
31
5
, 4
]
.

Proof. An elementary checking yields that the smallest density of a simple tile in T is 31
5
,

achieved by Ta of characteristics (5, 16), and the largest is 4, achieved by Tc and Td of
characteristics (4, 16). Lemma 6.4 combined with Theorem 6.2 implies that the average
degree r of an infinite family must be in the specified interval. Sequences consisting of
just one of these tiles establish the boundary cases r ∈

{
31
5
, 4
}
, which are thus easily

achievable.
Let r = p

q
∈ (31

5
, 4). Since sequences consisting of only Ta and Tc, Td may violate the

parity condition trying to establish average degree r, we add also some tiles Tb with char-
acteristics (5, 18) to the construction. Solving diophantine equations, we find a solution

T (k) = (Ta,
lTa
l, . . . , Ta,

lTa
l, Tb,

lTb
l, . . . , Tb,

lTb
l, Tc,

lTc
l, . . . , lTc

l, Tc),

where tiles Ta and lTa
l together appear `k = (96q − 24p− 4)(2k − 1)-times, Tb and lTb

l

together appear mk = 8(2k − 1)-times, and Tc,
lTc
l together appear nk = (30p − 96q −

5)(2k − 1)-times.
Since 31

5
< r < 4, we have `k, nk > 0 for sufficiently large p, q (which are not required

to be relatively prime) such that r = p
q
. The total length of the sequence T (k) then

is (6p − 1)(2k − 1), which is an odd number required for ◦T (k)l ∈ G(S). Now Lemma
6.4 and a routine calculation imply that Fr =

{
◦T (k)l | k ∈ N

}
is a family of simple,

3-connected, 2-crossing-critical graphs with average degree 96p(2k−1)
96q(2k−1) = p

q
= r.

Theorem 6.6. A 3-connected, 2-crossing-critical infinite family with average degree r ∈ Q
exists if and only if r ∈

[
31
5
, 42

3

]
.

Proof. The argument is as in the previous proof, with an additional observation that
the largest possible density 42

3
among non-simple tiles in S is obtained by the tile Te of

characteristics (3, 14). For r = p
q
∈
(
31
5
, 42

3

)
, we use the sequence

T (k) = (Ta,
lTa
l, . . . , Ta,

lTa
l, Tc,

lTc
l, . . . , lTc

l, Tc,
lTe
l, Te, . . . ,

lTe
l, Te),
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where Ta and lTa
l together appear (112q − 24p− 4)(2k − 1)-times, Tc and lTc

l together
appear 11(2k− 1)-times, and Te and lTe

l together appear (40p− 128q− 8)(2k− 1)-times.
The length of this sequence is (16p− 16q − 1)(2k − 1) which is an odd number, and the
average degree of each graph ◦(T (k)l) is r.

We finish with the last theorem which summarizes results of this and previous section.

Theorem 6.7. Let D be such that there exists a D-max-universal 3-connected 2-crossing-
critical family. Then let ID (or IsD for simple graphs) be the set of all rational numbers,
such that there is a D-max-universal 3-connected 2-crossing-critical (simple) family with
average degree r if and only if r ∈ ID (r ∈ IsD). Then IsD and ID are rational intervals
and moreover:

D IsD ID

{3, 4} [16
5
, 18

5
] [16

5
, 15

4
]

{3, 5} {17
5
} [17

5
, 11

3
]

{3, 6} {18
5
} {18

5
}

{4, 5} ∅ {9
2
}

{4, 6} ∅ {14
3
}

{3, 4, 5} (16
5
, 4] (16

5
, 9
2
)

{3, 4, 6} (16
5
, 4] (16

5
, 14

3
)

{3, 5, 6} (17
5
, 18

5
) (17

5
, 11

3
)

{4, 5, 6} ∅ (9
2
, 14

3
)

{3, 4, 5, 6} (16
5
, 4] (16

5
, 14

3
)

The lengthy proof of Theorem 6.7 can be found in the arXiv version:1803.10509.

7 Final Remarks

We conclude with some challenges for further possible research. The statement of Theo-
rem 4.3 always requires 4 ∈ D, but from Theorem 6.3 we know that there exist D-max-
universal families of simple, 3-connected, 2-crossing-critical graphs for D = {3, 5} and
D = {3, 6} (Figure 16 b) and c)) e.g., when 4 6∈ D, and these can be generalized to any
k > 2 by a zip product with copies of K3,3.

Hence it is an interesting open question of whether there exists a D-max-universal k-
crossing-critical family such that D ∩ {3, 4} = ∅. It is unlikely that the answer would be
easy since the question is related to another long standing open problem—whether there
exists a 5-regular k-crossing-critical infinite family. Related to this is the same question
of existence of a 4-regular k-crossing-critical family, which does exist for k = 3 [17] and
the construction can be generalized to any k > 6, but the cases k = 4, 5 remain open.

Many more questions can be asked in a direct relation to the statement of Theorem 5.1,
but we only mention a few of the most interesting ones. E.g., if 6 6∈ D, can the average
degree of such a family be from the interval [5, 6)? Or, assuming 3 ∈ D but 4 6∈ D,

the electronic journal of combinatorics 26(1) (2019), #P1.53 26



for which sets D one can achieve D-max-universality and what are the related average
degrees?

Concerning specifically 2-crossing-critical graphs, there are no open questions or cases
left by the results of Section 6. Yet, there is a natural open question related to Theo-
rem 6.7, namely; how would the sets of admissible average degrees ID and IsD change if we
require all the vertex degrees in the constructed D-max-universal family to belong to D?
There is a two-fold effect of this restriction. First, we would not be allowed to resolve the
parity problem by adding an arbitrary small tile, and second, we could get some undesired
degrees when joining two different tiles.

This question of precise degree set is nontrivial since, for example, in the case of simple
graphs and D = {3, 4}, we have only two tiles and there exist values of r which actually
force the total number of these tiles to be even (so our construction is not realizable). We
leave this question open for further investigation.

We finish with another interesting structural conjecture:

Conjecture 7.1. There is a function g : N→ R+ such that, any sufficiently large simple
3-connected k-crossing-critical graph has average degree greater than 3 + g(k).

Note that corresponding result “on the upper side”, i.e., bounding average degrees
away from 6, has been established in [8]. Furthermore, note that the staircase strip
generalization of Kochol’s original implies g(

(
n
2

)
− 1) < 1

4n−7 , cf. Theorem 3.2. The
following problem therefore poses itself naturally:

Problem 7.2. Do staircase strips yield the sparsest k-crossing-critical graphs, ie. does
there exist a k-crossing-critical family of graphs with average degree less than

3 +
1

2
√

1 + 8(k + 1)− 5
?
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