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Abstract

A graph G is said to be determined by its generalized spectra (DGS for short) if,
for any graph H, graphs H and G are cospectral with cospectral complements imply
that H is isomorphic to G. In Wang [16] (J. Combin. Theory, Ser. B, 122 (2017)
438-451), the author gave a simple method for a graph to be DGS. However, the
method does not apply to Eulerian graphs. In this paper, we give a simple method
for a large family of Fulerian graphs to be DGS. Numerical experiments are also
presented to illustrate the effectiveness of the proposed method.

Mathematics Subject Classifications: 05C50

1 Introduction

The spectrum of a graph encodes a lot of combinatorial information about the given graph
and thus has long been a useful tool in spectral graph theory.

A fundamental question in this area is: “Which graphs are determined by their spectra
(DS for short)?”. The problem was first raised in 1956 by Giinthard and Primas [8], which
relates the theory of graph spectra to Hiickel’s theory [9] from chemistry. It is also closely
related to a famous question of Kac [10]: “Can one hear the shape of a drum?”. Fisher [6]
modelled the drum by a graph, and the frequency of the sound was characterized by the
eigenvalues of the graph. Thus, the two problems are essentially the same.

Another motivation for the above question comes from complexity theory. It is a long
standing open question whether the graph isomorphism problem is an easy or a hard
problem, despite the recent breakthrough result of Babai [1]. Since the spectrum can be
computed in polynomial time, the focus is checking isomorphism for cospectral graphs.

*The corresponding author. Supported by National Science Foundation of China (11471005).
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However, as is generally known, proving graphs to be DS is more challenging than
constructing cospectral graphs. Up to now, the techniques for proving DS graphs heavily
depend on some special properties of the spectra of these graphs, which cannot be ex-
tended to general graphs. For the background and some known results about this problem,
we refer the reader to [4, 5] and the references therein.

In recent years, Wang and Xu [13, 14] and Wang [15, 16] considered the above problem
in the context of the generalized spectra. A graph G is determined by its generalized spectra
(DGS for short) if, for any graph H, graphs H and G are cospectral with cospectral
complements imply that H is isomorphic to G. In Wang [15, 16], the author gave a
simple method for determining whether a graph G is DGS, which works for a large family
of general graphs. To describe the result, let G be a graph on n vertices with adjacency
matrix A. The walk-matriz of G is defined as W = W(G) := [e, Ae,--- , A" le] (e is the
all-one vector). In [15, 16}, Wang proved the following

Theorem 1 (Wang [15, 16)). If det W (G)/2"/2) (which is always an integer) is odd and
square-free, then G is DGS.

It is noticed, however, the above theorem fails for Eulerian graphs. (Recall that a
graph is Fulerian if it admits an Eulerian tour, which traverses each edge exactly once; or
equivalently, if it is connected and the degree of every vertex is even). This is because for
an Eulerian graph, every entry (except for the ones in the first column) of the walk-matrix
is divisible by 2, and hence 2"~! divides det W and det W/2"/2] can never be odd and
square-free.

This paper is devoted to investigating whether an Eulerian graph is DGS. The main
contributions of the paper are as follows:

e We show that for an Eulerian graph G with det W (G)/2L*2" being odd and square-
free, GG is either DGS or there exists a regular rational orthogonal matrix ) with
level two (see Section 2 for the definitions) such that QT A(G)Q is a (0,1)-matrix;

e Based on the above result, we give a simple sufficient condition for an Eulerian graph
with the above property to be DGS, by constructing a digraph associated with G
and using a simple dimension argument.

It turns out that Eulerian graphs are among the most difficult family of graphs for
which the existing method in [15, 16] does not work well. The main reason is that the
exponent of 2 in the prime factorization of det W is usually too high for Eulerian graphs,
and “excluding” the prime 2 constitutes the most difficult part in showing a graph G to
be DGS, as we shall see later.

We would like to mention that the proof of the main result of the paper follows the
line of that in [15, 16]. However, several new ingenious ideas are needed to make the proof
work.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries
that will be needed later in the paper. In section 3, we show that for Eulerian graphs

n—3

G with det W(G)/ ol ¥5] being odd and square-free, the rational orthogonal matrices @)
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such that QT A(G)Q is (0,1)-matrix, must have level 1 or 2. In Section 4, an effective and
novel method is provided to determine whether an Eulerian graph is DGS. In Section 5,
we give some numerical results for illustrations. Conclusions and future work are given
in Section 6.

2 Preliminaries

For convenience of the reader, we present some preliminary results that will be needed
later in the paper.

Throughout, let G = (V, E') be a simple graph with (0, 1)-adjacency matrix A = A(G).
The spectrum of G consists of all the eigenvalues (together with their multiplicities) of the
matrix A(G). The spectrum of G together with that of its complement will be referred
to as the generalized spectrum of G in the paper (for some notions and terminologies in
graph spectra, see e.g. [2]).

Two graphs are cospectral if they have the same spectrum. For a given graph G, we
say that G is determined by its spectrum (DS for short), if any graph having the same
spectrum as G is necessarily isomorphic to G. (Of course, the spectrum concerned should
be specified.)

The walk-matriz of a graph G, denoted by W (G) or simply W, is defined as

e, Ae, A%e,--- | A" Le]

where e denotes the all-one vector (we use this notation henceforth). There is a well-
known combinatorial interpretation of W, that is, the (i, j)-th entry of W is the number
of walks of G starting from vertex ¢ with length j — 1.

A graph G is called controllable if W is non-singular (see also [7]). Denoted by G,, the
set of all controllable graphs on n vertices. It was conjectured by Godsil that almost all
graphs are controllable. Recently, O’'Rourke and Touri [11] confirmed that the conjecture
is true.

A rational orthogonal matriz () is an orthogonal matrix with all entries being rational
numbers, and it is called regular if Qe = e.

The following theorem gives a simple characterization of cospectral graphs with respect
to the generalized spectra.

Lemma 2 (c.f. Wang and Xu [13]). Suppose G € G,. Then G and H are cospectral
with respect to the generalized spectra if and only if there exists a unique reqular rational
orthogonal matriz Q) such that

QTA(G)Q = A(H). (1)
Define
Q(G) ={Q € 0,(Q) | QTAQ is a (0,1)-matrix and Qe = e},

where O, (Q) denotes the set of all orthogonal matrices with rational entries.
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Theorem 3 (c.f. Wang and Xu [13]). Let G € G,,. Then G is DGS if and only if the set
Q(G) contains only permutation matrices.

By Theorem 3, in order to determine whether a given graph G € G, is DGS or not,
we only need to check whether all the ’s in Q(G) are permutation matrices. For this
purpose, the following definition is proved to be useful.

Definition 4. Let ) be an orthogonal matrix with rational entries. The level of @),
denoted by ¢(Q) or simply ¢, is the smallest positive integer [ such that IQ) is an integral
matrix.

Clearly, ¢ is the least common denominator of all the entries of the matrix Q. If £ =1,
then () is a permutation matrix.

When dealing with integral and rational matrices, the Smith Normal Form (SNF for
short) is a useful tool. An integral matrix V' of order n is called unimodular if det V = £1.
The following theorem is well-known.

Theorem 5 ([3]). For an integral matriz M, there exists unimodular matrices Vi and V3
such that M = V1SV, where S = diag(dy,da, -+ ,d,) is the SNF of M with d; | d;iy1 for
1=1,2,--- ,n— 1. d; is called the i-th elementary divisor.

Note that the SNF of a matrix can be computed efficiently (see e.g. page 50 in [12]).

Theorem 6 (Wang and Xu [13]). Let W(G) be the walk-matriz of a graph G € G, and
Q € Q(G) with the level L. Then { | d,, where d, is the n-th elementary divisor of the
walk-matriz W(Q).

By the above theorem, ¢ is always a divisor of d,,, and hence is a divisor of det V.
However, the following theorem shows that not every divisor of det W can be a divisor of
l.

Theorem 7 (Wang [15]). Let G € G,, and Q € Q(G) with level L. Let p be an odd prime.
If p | det W and p*{ det W, then p cannot be a divisor of (.

By the above theorem, if det W = 4+2"b with b being odd and square-free, then ¢ can
only be a power of 2. This fact will be heavily used in the sequel.

Now, we introduce the following family of Eulerian graphs which are the main focus
of this paper:

Y, = {G is an Eulerian graph of order n | det W(G)/ 2177°) is 0dd and square-free}.

1—3

We remark that det W (G)/2"%") is always an integer (see Corollary 17 in Section 3).
By the definition of 3, the exponent of 2 is much higher in the prime factorization of
det W(G) than that in [15, 16], and unfortunately, all the previous methods cannot be
applied to this situation, therefore we need to deal with the case from a new perspective.

Notations: We shall use the finite field notation F, and mod p (for a prime p) interchange-
ably, and shall use rank,(M) to denote the rank of an integral M over F,,.
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3 The level of Q € Q(G) for G € %,

By the previous discussions, we know that for a given graph G, in order to tell whether
G is DGS or not, it is crucial to determine the level of every regular rational orthogonal
matrix @ € Q(G). In this section, we show for any Eulerian graph G € X,,, the level of
Q € Q(G) is very restrictive. The main result of this section is the following

Theorem 8. Let G € X, be an Fulerian graph. Let Q € Q(G) with level €. Then ¢ =1
or 2.

The proof of Theorem 8 is based on the following two theorems:

Theorem 9. Let G € ¥,,. Then the SNF of W is as follows:

diag(1,2,---,2,2% 2% ... 22 2%), (2)
[ 1252

where b is an odd and square-free integer.
Theorem 10. Let G € %,,. Let Q € Q(G) with the level £, then 41 (.

We postpone the proofs of the above theorems to the end of this section.

3.1 A simple arithmetic property of Eulerian graphs

In this subsection, we will present an arithmetic property about Eulerian graphs, which
plays an important role in the sequel.

Lemma 11. Let Q € Q(G) with level (. Suppose { is even. Then there exists a (0,1)-
vector v Z 0 (mod 2) such that

vT AFy =0 (mod 4), W v =0 (mod 2), (3)
for any k > 0.

Proof. By definition, Q € Q(G) implies that QT AQ = B for some (0,1)-matrix B. Let ©
be the i-th column of ¢Q) such that v # 0 (mod 2) (such a v always exists by the definition
of £). Tt follows from QT A*Q = B* that v7 A*s = ¢*(B*);; = 0 (mod 4). Let v = v + 203
be a (0,1)-vector for some integral vector . Then

v Ay = T AFp + 40478 + 48T AFB = 0 (mod 4). (4)

The last assertion follows from the fact that Q7 A*Q = B* and Qe = e imply that WTQ
is an integral matrix. Thus W7v = 0 (mod 2) holds. O

Lemma 12. Let Q € Q(G) with level £ = 0 (mod 4). Let v = (vi, vy, ,v,)" be any
column of Q. Suppose m is the number of odd entries of v. Then m =0 (mod 4).
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Proof. Since ¢ =0 (mod 4), we have ¢ = 4t for some integer t. Moreover, v/¢ is a column
of Q, it follows from the orthogonality of Q that (v/0)T(v/l) =1, i.e., vTv = {2 = 16t%, or
equivalently, v + v2 + - - - +v2 = 16t%. For an odd entry v;, we have v; = 2t; + 1 for some
integer t;. It follows that v? = 1 (mod 4). Thus v? + v + -+ +v2 =m =0 (mod 4).

O

The following lemma plays a significant role in establishing the main result in the
paper.

Lemma 13. Let G be an Eulerian graph and Q € Q(G) with level ¢ =0 (mod 4). Then
there exists a (0,1)-vector v # 0 (mod 2) such that

W'y =0 (mod 4). (5)
Moreover, v satisfies vI A*v = 0 (mod 4) for any k > 0.

Proof. Let © be any column of £Q with ¥ # 0 (mod 4). Then we have W7o = 0 (mod 4).
Let v = v + 2u, where v is a (0, 1)-vector and u is an integral vector. Then W'v =
W™ (v+2u) =0 (mod 4). ie.,

wTy

Whu = (mod 2) (6)

Note that W = [e, Ae, - -- , A" Le]. Tt follows that

T TA TAnfl
[ule,u” Ae, - ,ul A" et = [E, v e’ e u]T (mod 2). (7)
2 2 2
Since G is an Eulerian graph, we have Ae = [dy,dy, - ,d,]T with every d; being even,

for i = 1,2,--- ,n. Therefore uT A’e = 0 (mod 2), and hence # = 0 (mod 2), for

1 =1,2,--- ,n— 1. In addition, the parity of v is the same as that of v. By Lemma 12,
we have vTe = m = 0 (mod 4), where m is the number of odd entries of ©. It follows that

WPy =0 (mod 4).

According to Lemma 11, v satisfies v7 A*» = 0(mod 4) for any k = 0,1,---. The
proof is complete. O

By Lemma 13, we introduce a new matrix

- Ae Arle
B 27 72

]

which is clearly an integral matrix and satisfies WTv = 0 (mod 2). The matrix W plays
a similar role as that of W(G) in [16].
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3.2 Some auxiliary lemmas

In this subsection, we will present some lemmas, which are needed in the proof of the
theorems in this section.

Lemma 14. Let G be an Eulerian graph with adjacency matriz A. Then e’ A%e =
0 (mod 4), and ef A*¢ = 0 (mod 8), for any integer k > 3,

Proof. First, we show e A% = 0 (mod 4) holds. Let d = (dy,da, - - ,dn)T, where d; is
the degree of the i-th vertex. Let d = Ae = %l. Then it is clear that d is an integral

vector since every vertex degree is even 1n an Eulerian graph. It follows that ef A%e =
(Ae)T(Ae) = (2d)7(2d) = 4d"d = 0 (mod 4).

Next, we show e’ A*e = 0 (mod 8) for any k > 3.

Note that el A¥e = (Ae)T A¥2(Ae) = (2d)TAk 2(2d) = 4dTA*2d. Let | ==k — 2,
then e’ A¥e = 4dAld. So it suffices to show d” A'd = 0 (mod 2) for any [ > 1. Next, we
distinguish the following two cases:

Case 1. [ is even. It follows that

dTAld = (A2d)T(A2d) = dTAze = dT A2~ (Ae) = 2dT A2~ 'd = 0 (mod 2).

Case 2. [ is odd. Let u:= A5d = (ug,ug, -+ ,u,)’. Tt follows that

1 A =1 »

dATAld = (ATd)TA(AT ) = Z Q; U U5 = 2 Z Qg U U5 =0 (Il’lOd 2)

1<i,j<n 1<i<j<n
Combining Cases 1 and 2, the proof is complete. n

Lemma 15. Let G be an Fulerian graph with adjacency matriz A. Then we have either
el'Ae =0 (mod 4) or eT Ae = 2 (mod 4). Moreover, if e’ Ae = 0 (mod 4), then el A%e =
0 (mod 8); otherwise if e Ae = 2 (mod 4), then e A%c = 4 (mod 8).

Proof. Note that d = = (dy,dy, -+ ,d,)T. If T Ae = Z = 0 (mod 4), then it
=

follows that S d; = 0 (mod 2). Note > d2 = S d; = 0 (mod 2). It follows that

i=1 i=1

cZ = 2 (mod 4),

||M:

eT A% = (Ae)T(Ae) =43 d? = 0 (mod 8). Similarly, if eZAe =
i=1

then it follows that S d; = 1 (mod 2). Note > d2=Yd; =1 (mod ) It follows that
=1

= 1=

eT A% = (Ae)T(Ae) =43 d2 = 4 (mod 8). This completes the proof. O
i=1

Lemma 16. Let G be an Eulerian graph. Then rank,(W(G)) < [2£1].
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Proof. We shall prove the lemma in two cases: n is even and n is odd.
First suppose n is even. Let W; be the matrix obtained from W by doubling the first
two columns. Then it follows from Lemma 14 that

T A2 T An—1_, =
2eTe el Ae eTAe e %
GTAG el A%e el Ae el Ane
—5— — - -
7T _ T A2 el Ade el Ae el Antle
Wiw, = | e A%e - 1 A
T An—1 elAre  eTAntle el A2n—2¢
(& A e e, T/
- 2 4 4 -
[0 0 0 0] ¥
0O 00 ... 0
=10 00 0] (mod 2).
000 ... 0

It follows that rankg(_I/T/) + ranks(W7) < n. Furthermore, ranky(W7) > rankQ(W) -
Thus we have rank,(W) < %2 = [2H],
Now suppose n is odd. We further distinguish the following two cases:

Case 1. If e" Ae = 0 (mod 4), then from Lemma 15, we can get ¢ A%¢ =0 (mod 8). So
it follows from Lemma 14 that

B €T€ e' Ae el A2e el An—le 7
2
el Ae el A2e el A3e el Ame
2
— - TA2€ TA36 ETA4 eTA'rH»le
WIw = | ¢
2 4 4 4
TAn—l TAne eTAn+1 TA2n 2
2 4 4 4 -
100 0] )
000 ... 0
=10 00 ... 0f(mod 2).
000 ... 0

Note that 2rank2( V) = ranky(W7T) + ranky(W) < n + ranke(WTW) = n + 1. It follows
that rank, (W) < % = [2H].

Case 2. If e Ae = 2 (mod 4), then from Lemma 15, we can get e’ A%¢ =4 (mod 8). So
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it follows from Lemma 14 that

B €T€ el Ae 6T12426 eT A 1le 7
el Ae el A%e el A3e el Ane
T T el A2e T A3e el A4 elAntle
WIw = 2 4 4 4
elAn—le eT;4”e eTA:”‘He eTAQ.”_Qe
-2 i 1 T (10)
110 0
110 0
=10 00 0] (mod 2).
000 ... 0
Similarly 2ranks(W) < n + ranks(WTW) = n + 1. It follows that rank,(W) < 2 =
(%31,
This completes the proof. n

As a corollary, we have

Corollary 17. Let G be an FEulerian graph. Then the exponent of 2 of in the prime
factorization of det W is at least [*2].

Proof. Since ranks(W(G)) < [242], the number of even numbers in the diagonal entries

of W is at least n — [%] = [251]. Tt follows from the definition of W that on-1+125"]
always divides det W. [

The following lemma gives the SNF of W, the proof of which follows the same idea as
Lemma 3.5 in [16].

Lemma 18. Let G € X,. Then ranks(W) = [2] and the SNF of W is as follows:

S:dlag(1717 717272a"' 7272b)7

[244 125+

where b is an odd square-free integer.

Proof. Since det VV/2L%J is odd and square-free, we have det W = j:2LnT_1Jp1p2 e Dsy
where p;’s are distinct odd primes for each i. Thus the SNF of W can be written as
S = diag(1,1,...,1,2 22 2tph) where b = pips...ps is an odd square-free integer.
It follows from Lemma 16 that rank,(W) < [%], i.e.,, n —¢ < [%]. Thus, we have ¢ >

n—[224] = | %], Morcover, we have Iy + 1l +...+1, = [%5+], since det(W) = £det(S).

It follows that [y =lb=... =, =1and t = ["T’lj The proof is complete. O

The following corollary says that if G € ¥, is an Eulerian graph with an even number
of vertices, then the number of edges of G must be odd.
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Corollary 19. Let G € X,,. If n is even, then e’ Ae =2 (mod 4).

Proof. We prove the corollary by contradiction. Suppose e’ Ae = 0 (mod 4). According
to Lemma 15, we have e’ A%¢ = 0 (mod 8). Consequently,

B T el Ae el A%e el Ar—1le 7
ece a2 3
e Ae el A%e el A3e el Ane
TT11 eT1242@ ele43e eT%44e o eTi"e
WiWw = 2 4 4 T 4
eTA;L—le eTAne eTA'"‘He ' ETAQIn—Qe
L2 4 4 e T4
000 ... 0
000 ... 0
=0 00 ... 0 (mod 2).
000 ... 0
It follows that 2rank, (W) = rank,(W7) + ranks(W) < n, and hence rank,(W) < 2. By
Lemma 18, we have rank, (W) = [%1]. Since n is even, we have 1 + 2 = [2H] < 2; a
contradiction. This completes the proof. O]

For convenience, next, we fix some notations. Let W be the matrix defined as follows:

((A%e Ade Aze .
[—, e ], if n is even;
2 2 2
; Ae A2 A"
W= [76,76,..., 22 e], if n is odd and e’ Ae = 0 (mod 4).
A A? AT
\[76—6,76,..., 22 e}, if n is odd and e’ Ae = 2 (mod 4).

Lemma 20. Let G € X,,. Then we have ranky(W) = |21,

Proof. Since G € ¥, we have ranky (W) = [%2] =: k according to Lemma 18. It suffices

to show that the first & columns of W are linearly independent over Fy. For contradiction,

k—1 . . .
suppose e, %, S % are linearly dependent, i.e., there exist ¢y, c1, -+ ,c_1 € Fo, not

all zero, such that coe + cl% 4+ 4 Ak;e = 0. Let m be the maximum index among

0,1,--- ,k—1 with ¢,, # 0. Then we have 0 <m < k — 1 and

Am A Am-1
£ —c;llcoe — c;blcl—e — =l ¢ over [y, (11)
2 2
ie., A;ne € span{e, %, e ,AmT_le}. It follows from Eq. (11) that
A™ A Am—1
Te — e — 0;10176 — =Gl € 128 over Z, (12)
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for some integral vector 5. Left-multiplying A on both sides of Eq. (12) gives that

Am+1 A AQ A™
5 62—20_1 076—0_1017—. —c tem-1 2€+2Aﬁ,
ie.,
Am+1 AQ A™
5 €_ —c;blclTe — =l 5 € over F,. (13)

It follows that A ¢ ¢ span{e, 4¢ S, Am e A4——<1}. Similarly, we have

Amtte . ( Ae Am_le}
span{e, —, - - -

2 p Y 2 Y Y 2 Y

for any ¢ > 0. Thus we have rankg(W) <m < k —1; a contradiction. This completes the
proof. O

Lemma 21. Let G be an Eulerian graph and Pg(z) = 2"+ ;2™ '+ -+ ¢,17 + ¢, the
characteristic polynomial of graph G. Then ¢, is even. Moreover, define

W Ae A?e A e A" ¢,

N il — -z 14
[ 2 Y 2 ) ) 2 Y 2 2 e _'_ e] ( )
Then det(W) = =+ det(W).
Proof. By Cayley-Hamilton’s Theorem, we have
A" 4+ AV e At = 0. (15)
Right-multiplying the vector e on both sides of Eq. (15) and using the fact A’e = 0 (mod 2)
fore=1,2,--- ,n gives that ¢, is even. Thus we have
Are N Arle ey Ae L 0.
2 T oty TR
ie.,
Arle P Ae  Ae ¢,
Cq 9 Cn—1 5 = B 5 €.
Recall that W = [e, ge, e An; le] By performing the elementary column operations to
W, it is easy to see that det W = det[—4 e — Zete, ée, e An e ¢]. Then the matrix W
can be obtained by switching the columns of W. It is obvious that det(W) = £det(W).
So the lemma follows and the proof is complete. O

Let W, be the matrix obtained from the matrix W and defined as follows:

A2 An—l
[2e,Ae,Te,..., 5 e], if n is even;
A AQ An—l
Wi = [26,76,76,..., 5 6]7 if n is odd and e? Ae = 0 (mod 4);
A A2 A3 An—l
[26,76—6776—2A6+2€,Te,...7 5 e], if n is odd and e? Ae = 2 (mod 4).
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Similarly, W1 is defined as follows:

([ A3e APe Ar—le ) )
[27 5 Ty ], if n is even.
~ A2 A4 An—l
Wi=<¢| 26, 26,..., 5 6], if n is odd and e? Ae = 0 (mod 4).
A2 A4 An—l
[Te—2Ae+2€,Te,..., 5 6], if n is odd and e’ Ae = 2 (mod 4).
\

Lemma 22. Let G € £,,. If n is even, then rankg(WTZVf/l) = [251], where W is defined

as in Eq. (14). If n is odd, then rankQ(WT;’i’l) =22

Proof. Let n be even. Let W; be defined as the above. It is easy to verify that @ is
an integral matrix. By Lemma 18 and Lemma 21, it can be computed that

n

T
W Wl) = +(2l"7 )2 22 /2" = 12,

det( 5

Therefore, the column vectors of matrix @ are linearly independent, over Fy. It follows

that rankg(wgwl) equals the number of columns of Wy, which is n2 = |22l

Let n be odd. By the definitions of W and W, it is easy to see that WT2W1 is an
integral matrix. By Lemma 18, it can be computed that

WTw,

det( ) = +(2"2 1p)2.2/2" = +1°,

. VT . .
Therefore, the column vectors of matrix % are linearly independent, over Fy. Thus,
wTw,
2

ranks ) equals the number of columns of Wy, which is nol— ol O

3.3 Proof of Theorem 10
Now we are ready to present the proof of Theorem 10:

Proof. We prove the theorem by contradiction. Suppose on the contrary that 4 | £. It
follows from Lemma 11 and Lemma 13 that there exists a vector v Z 0 (mod 2) such
that v A¥v = 0 (mod 4) for any k& > 0 and WTv = 0 (mod 2). Note that v is a solution
to the system of linear equations W7v = 0 (mod 2). Note that G € %,. It follows

from Lemma 18 that ranks(W) = [2:]. According to Lemma 20, we can obtain that

rank, (W) = | 251 |. Moreover, it is not difficult to verify that WTW =0 (mod 2). Since
rank,(W) = [231], the dimension of the solution space of the system of linear equations
W'z =0 (mod 2) is |25 |, which is equal to rank,(WW). Therefore, the column vectors

of W can be chosen as a basis of the solution space of W7z = 0 (mod 2). It follows
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that v can be written as the linear combination of the column vectors of W over [y, i.e.,
v =Wu+ 20, where u and [ are integral vectors and u #Z 0 (mod 2). Thus we have

T ARy = (Wu+28)T AF(Wu + 26)

= WWTAWu+ 4" WTARB + 487 A%
uIWT AR u
= 0 (mod 4).

First, we prove the case that n is even. Note that

oT Adt+ke eT AB+ke T An/2+2+k,
— 1 i e T 1
eTAS-Hce eTAG-Hce eTAn/2+3+ke
WTAMY = 4 4 4 =0 (mod 2).
eTAn/2+2+ke eTAn/2+3+k:e eTAn-Hce
1 1 . — 1

Let M = WTA*W, u = (ur,us, ..., )" (I ="52). Then it follows that

WA = Y Myua,
1<i,j<d
Z 2 Z
1<i<l 1<i<j<l
el Attke N el Abtke R el Anthe
= Uup Uy + ...+ ———y
4 4 4
ol Ad+ke oT A6+k, el An+ke
= IR 1 |u
= 0 (mod 4),
for kK = 0,1,...,n — 1, where we have used Lemma 14 and u? = u; (mod 2) for ¢ =
1,2, 1.
el Attke T AS+ke el Antke

It follows from above equation that [*£—°, &“—= ... ““—Flu = 4q for some
integer ¢. By Lemma 14 , e A*¢ = 0 (mod 8), for any integer & > 3. Thus, we have

eTA4+ke eTAG-Hce eTAn-Hce o .
[, =, S u = 2q, e,
oT Ad+ky T A6+k, el Anthe
s 8§ g Ju=0 (mod 2)

for k=0,1,...,n—1.
Define
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r el Ate el Abe el A8e el Ame 1
8 8 8 : 8
el ASe el A7e el A% el Antle
8 8 8 o 8
M,: = el ASe el A8e el Al0¢ el Ant2e
1 = 8 8 8 e 8
eTAn+3e eTAn+56 eTAn+7€ eTA2n—1e
- 8 8 8 8 -
- JTA A
2
el A2
1 2
. . [A3e Ade A”fle]
2 . 2 2 2
eTAnfl
2
el A™
L P .
- eTA -
2
eTA2
1 2
- . [A3e APe A"’le]
9 . 2 2 2
6TAn—l
TAn 2
_edr e T T
L D) D) e +e |
WTw,

= d 2).
1 (1mod 2)
Then M is an integral matrix and we have Mju =0 (mod 2), i.e.,

W,
2

u =0 (mod 2).

However, by Lemma 22, rankg(WgWI) = | %] and hence, Wng has full column rank. It

follows that u = 0 (mod 2). Therefore v = Wu+28 = 0 (mod 2), which contradicts the
fact that v # 0 (mod 2).

Next, we prove the case that n is odd. According to the different definition of 144 (resp.
Wl) when n is odd, we further distinguish the following two cases.

Case 1. ¢l Ae =0 (mod 4). By Lemma 15, we have e’ A% = 0 (mod 8). Note that

— el A2tke el A3+ke eTAigiJrke
1 1 e
. . eT A3tke el Adtke TA"F Hke
WEARW = 4 4 4 =0 (mod 2).
eTA£2ﬂ+ke eTAEéLS'HCe eTAn—1tke
| 1 e T |
Let M = WTARW, w = (uy,us, ..., w)" (I = %5). Using the same arguments as n is
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even, it follows that

T A2+k, T pd+k T pgn—1+k
< < et A*he el A%e e’ A e
WA WG = | , e Ju
4 4 4
= 0 (mod 4),
for k=0,1,...,n — 1, where we have used Lemma 14 and u? = u; for i = 1,2,--- ,I.
. T A2+4+k T A4+k T An—1+k
It follows from above equation that [< A4 € £ A4 € ..., %]u = 4q’ for some
integer ¢’. By Lemma 14 , eT A¥e = 0 (mod 8), for any integer k > 3. Moreover, by
T p2+k T g4tk T pgn—1+k
Lemma 15, we have e A%¢ = 0 (mod 8). Thus, we have [¢ AS € ¢ AS € ..., %]u =
.
2q', i.e.,
eTAZ-i-ke eTA4+ke eTAn_H_ke B
T3 ,...,T]uZO(modZ)
for k=0,1,...,n—1.
Define
r eTA2%e el Ate el Abe elAn—le T
8 8 8 e 8
el Ade el Ade eTA7e el Ane
M, — eT§44e eTiGe eTilse eTA%'He
2 — ] S ] e B —
eTAn+1e eTA'thiie eTAn+5e eTA2"72e
L8 8 8 e g A

Then M, is an integral matrix and Myu = 0 (mod 2).
Moreover, define

0 0 0 0
el Ae el ASe elA7e elAre
8 8 8 e 8
M.: — el Ade el Abe el A8e el Antle
3 - 8 8 8 e 8
eTAn+le eTAn+Se eTAn+5e eTAQn—Qe
L 8 8 8 8 -
r el A2e el Ate el ABe el A 1e 7
4 4 4 o 4
el A3e el Abe el A7e el Are
8 8 8 e 8
_ el Ate el Abe el ABe el Antle
— 8 8 8 8
eTAn+le eTAn+3€ ETA"+56 eTA2n72e
- 8 8 8 8 -
wTw,
= 5 (mod 2)

According to Lemma 22, ranky(M3) = rankQ(WTQWI) = 2% ie., M; has full column
rank over IFy. Comparing M, and Ms, it is easy to see that ranky(M,) = ranky(M3). Then

it follows from Myu = 0 (mod 2) that v = 0 (mod 2). By the relation v = Wu + 23, we
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get v = 0 (mod 2), which contradicts the fact that v #Z 0 (mod 2).

Case 2. ¢ Ae = 2 (mod 4). By Lemma 15, we have e A%c = 4 (mod 8). Note that

el A% ke T Altke + eT Ake el A3the T A%tk eTAnTH'H“e _ eTAnT71+ke
4 1 2 1 ) p)
N N el A3tke _ el A2 tFke el AttFe eTA%Jrke
wrARwW = 1 2 1 1
eTAnTH+ke _ eTAn;1+ke eTAnTHJrke el An—1tke
4 2 4 T 4
= 0 (mod 2).
Let M = WTARW , u = (uy,us, ..., w)" (I = "5). Using the same arguments as the case
n is even, it follows that
T A2+k T A4+Ek T An—1+k
- . el A*te et A*e et A e
IWTAA W = [T — T AYF 4 T Ake, TR I Ju
= 0 (mod 4),
for k=0,1,...,n — 1, or equivalently,
eTAQ-i-k‘e _ 4€TA1-H<:€ + 4€TAk€ eTA4+k6 eTAn—l-‘rke
S g A Ju=0 (mod 2)
for k=0,1,...,n — 1, where we have used Lemma 14.
Define
B el A2e—4eT Ae+4eTe el Ade el Abe el Ar—1e 7
8 8 8 e 8
el ABe—4eT A2e+4eT Ae el Abe el A'e el Ame
8 8 8 e 8
M,: = eT Ate—4eT Ade+4eT A%e eT ASe eT A8e eTAntle
4 - 8 8 8 e 8
el Artle—geT Anet4eTAn—1e  TAnt3e T AntSe el A2n—2¢
- 8 8 8 e 8 -
Then M, is an integral matrix and we have Myu = 0 (mod 2).
Moreover, define
[ 0 0 0 - 0 ]
el ABe—4eT A2e+4eT Ae el ASe elA'e el Are
8 8 8 e 8
M-: — el Ate—4eT A3e+4eT A2e el Abe el ABe el Antle
5+ — 8 8 8 e 8
el Artle—4eT Anet4eTAn—1e T AnT3e T Ant5e el A2n—2¢
L 8 8 8 e 8 -
r el A2e—4eT Aet4eTe el Ate el Abe el Ar—1e 7
4 4 4 e 4
el ABe—4eT A2e+4eT Ae el ASe eTATe el Are
8 8 8 e 8
_ el Ate—4eT A3e+4eT A2e el ASe el ABe el Antle
p— 8 8 8 Y 8
el Antle_geT Aret4eT A le T Ant3e T Ant5e el A2n—2¢
o 8 8 8 e 8 -
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s
_ W Wl(mod 2).
2

where in deriving the congruence relations, we have used the facts that e Ae = 2 (mod 4),
el A%e = 4 (mod 8) and eT A¥e = 0 (mod 8) for k > 3.

According to Lemma 22, we have ranks(M;) = rankg(WTQWI) = =1 ie., M; has full
column rank over Fy. Comparing M, and Mj, we get that ranks(M,) = ranks(M;). Then
it follows from Myu = 0 (mod 2) that u = 0 (mod 2). Thus v = Wu+28 = 0(mod 2); a
contradiction.

This completes the proof. n

3.4 Proof of Theorem 8 and Theorem 9
First we present the proof of Theorem 9:

Proof. Let W = [e, Ae, -+, A" 'e]. Assume without loss of generality that the SNF of
W is diag(1,21,2%2 ... 2n-1p) where b is an odd square-free integer. Then there exist
two unimodular matrices U and V such that W = Udiag(1,21,2", ... 2-1p)V with
1<l <ly---<1,,_;. It follows that

U'W = [Ule, U Ae,--- U A" ¢
= diag(1,2",2"2 ... 2l-1p)V

B 1 0 a af
o2l W

a al

2A58 2AV; |7
a ol

g W

are column vectors of dimension n — 1, and V] is a square matrix of order n — 1).

where A = diag(2i71, 2271 ... 2lh-171p) and V = { } (a is an integer,  and

T
-1 -1 e -1 pn—1 = a @
It follows from [U~'e,U " Ae,--- , U 1A '] [ A8 2AV; } that
Ae Ale a ol/2
-1 71_ e -1 =
[U 67 U 2 9 JU 2 ] |: QAB A‘/l :| I

ie.,
o 10 a ofj2] 10 ,
w=ulya ]l =] 8] (16)
T
where V' := { ;ﬁ av/ 2 } is an integral matrix.
1
T
Note that det V' = det { g aV/Q } = adet V; (mod 2). Moreover, we have
1
T
detV:det{g O‘é/l } Edet{g ‘91 } =adetV; = £1 (mod 2).
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Taking determinant on both sides of Eq. (16) generates
ol"7 ) = 32X (D) det V. (17)

Note det V" is odd. It is easy to see that Eq. (17) holds only if |25+ = Sl — 1) and
det V' = £+1. That is, V' is a unimodular matrix. Thus, it follows from Eq. (16) that

l é R } is the SNF of W. According to Lemma 18 we have

A = diag(1,1,---,1,2,2, -, 2b).

s

[ 125+

From the above equation we get immediately that the SNF of W is the one given as in
Eq (2), as desired.
This completes the proof. n

Finally, we present the proof of Theorem 8&:

Proof. Note that G € ¥,. It follows from Lemma 9 that the SNF of W is of the form
given as in Eq. (2), where b is an odd and square-free integer. By Theorem 6 we have
(| 4b. Next we show p 1 £ for any odd prime p. For otherwise, if p | £, then p | b and p* { b
(since b is odd and square-free). According to Theorem 7 we get p 1 ¢; a contradiction.
Therefore, we have ¢ | 4. It follows from Theorem 10 that 4 1 £, we get ¢ is equal to either
1 or 2. O

4 Eliminating £ = 2

Let G € 3, and @ € Q(G) with level . In the previous section, we have established that
¢ =1 or 2. If the possibility that ¢ = 2 can be further eliminated, then ¢ = 1 and hence
G is DGS. Unfortunately, however, this is not always the case (see the example below in
this section). In this section, we shall give some simple sufficient conditions for excluding
the case that ¢ = 2.

First, we need the following definitions.

Definition 23. Denote S = {v € {0,1}" | v A*» = 0 (mod 4) for k =0,1,--- ,n — 1},
where A is the adjacency matrix of G.

Definition 24. Denote S’ = {v € S | v has exactly four “1”}.
We have the following theorem.
Theorem 25 (c.f. Wang [15]). Let G € ¥, and Q € Q(G). If ' =0, then G is DGS.

Proof. Let G € ¥, and @ € Q(G) with the level of £. According to Theorem 8, we have
¢ =2 or £ =1. Suppose there exists a Q € Q(G) with level £ = 2, then there must exist
a column v of 2() having exactly four “1” over Fy and hence v € S’. However, this is a
contradiction since S” = (). Therefore £ =1 for every @ € Q(G), which means that Q(G)
contains only permutation matrices. By Theorem 3, GG is DGS. The proof is complete. [J
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We remark that the condition of Theorem 25 can be efficiently verified, since we
can check all (0,1)-vectors with exactly four “1” to see whether the condition v? Akv =
0 (mod 4) holds for k =0,1,--- ,n — 1. This can be done in O(n(’})) = O(n®) times.

The following lemma says that S is closed under left-multiplication by A modulo 2.

Lemma 26. Ifv € S, then Av € S.

Proof. Note that v € S, we have vIA*» = 0 (mod 4) for k¥ = 0,1,---,n — 1. So
it suffices to show that vZA*2y = 0 (mod 4) for k = 0,1,--- ,n — 1. Let Pg(x) =
2" + 2"+ -+ ¢, + ¢, be the characteristic polynomial of graph G. By Cayley-
Hamilton’s Theorem, we have

A" 4+ AV e At el = 0.

Thus we have

v A = — (vt A" o+ - 0T Av 4 o).
So we can get vI A"y = 0 (mod 4). Similarly we have v A"y = 0 (mod 4). This
completes the proof. O

Next we assume that S” # () (and hence S # ). In order to determine whether an
Eulerian graph G € ¥, is DGS, we construct a new directed graph I' = (V(I'), E(T"))
associated with G, as follows.

e The vertex set of I' consists of the vectors in S.

e There is a directed edge from vertex v; to vertex v; if and only if Av; = v; (mod 2),
where v;,v; € S.

We remark that the above definition is motivated by Lemma 26, which says that the
adjacency matrix A acts on the set S, and the dynamics of its behavior can be fully
captured by I'. Also, the structural property of I' is closely related to the existence of a
regular rational orthogonal matrix € Q(G) with ¢ = 2, as we shall see later.

By Lemma 26, for every vector in S, there is exactly one outgoing edge in I'. Note
that T" may have loops, since we may have Av; = v; (mod 2) for some i. In particular,
we always have A 0 = 0, where 0 € S is the zero vector.

Moreover, the directed graph I' constructed above exhibits simple structural charac-
teristics. A directed cycle of I" is a sequence of distinct vertices vy, v, -+ ,v; such that
v;v;11 18 a directed edge of T' for i = 1,2,--- ;1 (v31 = v1); it is a loop as [ = 1 and a
bidirectional edge as [ = 2. It is easy to see that for any two directed cycles (including
bidirectional edges and loops) Cy and C5 of I, the node sets V(C4) and V(Cy) are disjoint.
For any node v € S, consider the trajectory, {v, Av, A%v,---} C S, of v. Since S is finite,
there exist an ng > 0 and a directed cycle C such that A% belongs to the cycle for i > ny.
Thus, I" consists of one or more components, each of which contains exactly one directed
cycle.

Let us give an example for illustrations.
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Example. Let A be the adjacency matrix of an Eulerian graph G. It can be easily
computed that det W = 2 x 7. Thus we have G € ¥,,. By Definition 23, we obtain the
set S which consists of the columns of the following matrix S (to save space, we write the
vectors in S in a compact form). Then the directed graph I' = (V/(I"), E(I")) can be easily
constructed according to the above rules, as shown in Fig. 1.

01 1.0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 1 0 0 1 0 0
01 1.0 0 0 0 0 1 0 1
00 0 00 0 0 0 1 0 1
A= 0o o 1 0 0 0o o 1 0o 1 1 ,
01 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 1 1 0
00 1 1 1 0 0 1 0 0 0
o1 0 0 0 1 1 1 0 0 0
i 0 0 1 1 1 0 0 0 0 04d171%11
oo 0 0o 0 00 0 1 1 1 1 1 1 1 1
o0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
o0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
o000 1 1 0 0 1 1 1 1 0 0 1 1 0 0
~ o0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S=1]10o 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
01 0 1 0 1 0 1 1 0 1 0 1 0 1 0
01 1 0 0 1 1 0 0 1 1 0 0 1 1 0
o0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
o0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
001 1 0 0 1 1 0 1 0 0 1 1 0 0 1d77y16
4 8
10
l 4
12 T
/N ’
5 ——p 16 2/\3
16 —p 14 \3<_11
3 13

Figure 1: The directed graph I' constructed by the set S.

As it can be seen from Fig. 1, I' consists of two components. The left component
contains a directed cycle on vertices 5, 12 and 16, and the right component contains a
loop.

Besides, we remark in this example, although G € ¥, there is a regular rational
orthogonal matrix @) € Q(G) with level 2 and hence, ¢ = 2 cannot be excluded. Actually,
let

—-
lcoro
-
|
-
-

[un
[un
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Then we have

QTAQ =

—OoOO0O0O0CORROOO
HHHRHOOOOROO
oO~rocoOOROOORO
corOROOOOOR
cCorrROROOOOR
mHooOOrROROROO
corrROROROOO
—ooOOoOrROROORO
cCoocorRORRORO
coococooocorR~O
CoorOROOORR

Next, we show the structural property of I' can help us in determining whether a graph
G e Y, is DGS.
First we need the following

Lemma 27. Let G € %,,. Suppose there is a reqular rational orthogonal matriz Q € Q(Q)
with ¢ = 2. Let S" = spanf{uvy, v, - -+ , U, }, where vy, vy, -+ v, are the columns of 2Q
over IF5. Then

1. 8" is an A-invariant subspace;
2. 5" C8S.

Proof. It is obvious that S” is a subspace of F}. Let QTAQ = B for some (0,1)-matrix
B = (bij)nxn- Then A(2Q)) = (2Q)B. It follows that

AUj :bljvl+b2j02+---+bmvn fOI'j: 1,2,"' , n.

Thus Av; € S”. So the first statement is true.

Next, in order to prove the second assertion, we only need to show v; +v; € S for
any v; € S" and any v; € S”. Since v; € S”, then v; € S, we get vl Akv; = 0 (mod 4).
Similarly we get v;frAkvj = 0 (mod 4). It follows from QT AQ = B that A*(2Q) = (2Q)B*
for k=0,1,--- ,n— 1. Let B* = (b};)nxn- Then we have

Arvj =V oy + byvg + - 4 b v, for k=0,1,--- ,n—1.
Thus we have

v Afv; = b0l v + b0l vg + -+ + b7 0] v, = 0 (mod 2).

It follows that

(v; + v))T AF (v + v;) = v] AFv; + vaAkvj + 20 AFv; =0 (mod 4).
So the second assertion follows. This completes the proof. n
Let Cy,C5, - ,C, denote all the directed cycles of I such that the corresponding
component containing C; has at least one vector from S’, for i = 1,2,--- ,s. Let V; :=
span(C;) be the vector space spanned by the nodes in C;, for i = 1,2, --- | s. Next, we give

a simple condition for an Eulerian graph G' € ¥,, to be DGS, by using a simple dimension
argument.
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Theorem 28. Let G € X,,. Assume that dimg,(V;) > dimg, (span(S’)) fori=1,2,---  s.
Then the graph G is DGS.

Proof. Suppose G is not DGS. Then there exists a ) € Q(G) with level 2. Thus there
is a column v of 2Q (mod 2) which belongs to S’. Suppose that A*v is in some Cj
for sufficiently large k. Then V; is a subspace of S” spanned by the column vectors of
2@Q), according to Lemma 27. Thus dimg,(V;) < dimg,(S”) < dimg,(span(S’)). This
contradicts the assumption of the theorem. So for any @ € Q(G), the level £ = 1. Thus
G is DGS. The proof is complete. n

5 Numerical results

In this section, we shall give some numerical results for illustrations. All the Eulerian
graphs are randomly generated using Mathematica 11.0.

First, we shall give several examples to illustrate Theorem 28.
Example 1. Let the adjacency matrix of the Eulerian graph G be given as follows:

r 0 1 1 0 0 1 1 0 0 0O 0 01+ rl o0 1 1 1 0 0 0 A
1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0
1 1 0 1 1 1 1 0 0 O 0 O 0O 0 0 1 1 1 1 0
0o 1 1 0 0 0 o0 1 0 1 1 1 0O 0 0 1 1 1 1 0
o o 1 0 o0 1 1 0 0 1 0 O - 0 1 1 1 0 1 0 O
A_ 1 1 1 0 1 0 1 0 1 0 1 1 S_ 0 1 1 1 0 1 0 O
- 1 1 1 0 1 1 0 1 1 0 O 1 9 - 0 1 1 0o 1 0 1 O
o 1 o0 1 0 0 1 0 1 1 0 1 0 1 1 0o 1 0 1 0O
o o o o o0 1 1 1 0 1 1 1 1 0 1 o0 0 1 1 0
o 0 O 1 1 0 0 1 1 0 0 O 1 0 1 1 1 0 0 O
o 1 o0 1 0o 1 0 o 1 0 0 O 0O 0 o0 1 1 1 1 0
L 0o 1 O 1 0 1 1 1 10 0 04d19%12 L 0O 0 o0 1 1 1 10 d19%8

Figure 2: The directed graph I' constructed by the set S.
It can be computed easily using Mathematica 11.0 that
det W(G) = 2'% x 27925453.

Thus we have G € ¥,,. The set S consists of 23 vectors over Fy. The directed graph I'
consists of exactly one directed 7-cycle and a loop, as shown in Fig. 2. Clearly the loop
consisting of the zero vector can be ignored, since the set S’ does not have zero vector.
Denote the seven circle by C;. Then dimp, (span(Ci)) = 3. However dimg, (span(5’)) = 2,
where the set S = {vy, vy} consists of the first two columns of the matrix S. Note
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dimg, (span(S’)) < dimp, (span(C1)). According to Theorem 28, the graph G is DGS.

Example 2. Let the adjacency matrix of the Eulerian graph G be gives as follows:

-0 1 0 0 0 1 1 1 0 1 1 0 0 -
10 0 0 1 1 1 0 1 1 0 0 0
000 0 1 0 0 0 1 1 0 1 0 0
000 1 0 1 1 0 0 0 1 1 1 0
001 0 1 0 0 0 1 1 0 0 0 0
1 1.0 1 0 0 0 0 0 0O 1 0 0
A= 110 0 0 0 0 1 1 1 1 0 0 ,
10 1.0 1 0 1 0 1 1 0 1 1
01 1 0 1 0 1 1 0 1 0 1 1
1 1 0 1 0 0 1 1 1 0 1 0 1
10 1 1 0 1 1 0 0 1 0 0 0
00 0 1 00 0 1 1 0 0 0 1
Lo o 0o 0 0o 0o 0o 1 1 1 0o 1 0odq343
-1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 -
000 0 0 1 1 1 1 0 0 1 1 1 1 0 0
000 1 0 1 1 0 0 1 1 1 1 0 0 1 0
000 1 0 0 0 1 1 1 1 0 0 1 1 1 0
000 1 0 1 1 0 0 1 1 1 1 0 0 1 0
~ 1 00 1 1 0 1 0 1 0 1 0 1 0 1 0
S=10o 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0
1 00 1 0 1 0 1 1 0 0 1 0 1 1 0
00 1 0 0 0 1 1 1 1 0 0 1 1 1 0
1 1.0 0 0 00 0 1 1 1 1 1 1 0 0
000 0 0 1 1 1 1 0 0 1 1 1 1 0 0
000 0 0 1 1 1 1 0 0 1 1 1 1 0 0
Lo 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0dj3476
14 g—nonu 10 13 #4——— 2

Figure 3: The directed graph I' constructed by the set S.

It can be computed easily using Mathematica 11.0 that
det W(G) = —2'® x 7 x 13 x 17 x 1185703,

Thus we have G € ¥,,. Furthermore, the set S consists of 2* vectors over F,. The directed
graph I consists of exactly three directed 5-cycles and a loop, as shown in Fig. 3. Ignoring
the loop consisting of the zero vector, let us denote the three directed cycles by Cfy, Co
and C3. Then it is easy to compute that dimp, (span(C;)) = 4 for i = 1,2,3. However,
dimp, (span(S’)) = 3, where S” = {vy, v, v3,v4} consists of the first four columns of the
matrix S. Since dimg,(span(S’)) < dimg, (span(C;)) for i = 1,2,3, according to Theo-
rem 28, the graph G is DGS.
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Example 3. Let the adjacency matrix of the Eulerian graph G be gives as follows:

r0 1 0 o 1 1 1 0 0 0 0 1 1 0 -
i 0 0 1 0 1 0 1 0 1 1 0 0 O
00 0 1 o 1 1 0 1 0 1 0 0 1
01 1 0 1 0o 0o 1 1 0 1 1 1 0
1 0 o0 1 0O o0 1 1 1 1 0 o 0 O
i1 1 0 0 0 1 1 1 0 1 0 1 0
A= i 0 1 0 1 1 0 1 1 0 0 0 1 1
- 01 0 1 1 1 1 0 1 0 0 0 1 1
oo 1 1 1 1 1 1 0 1 0 0 1 0
0 1 0 0 1 0O O O 1 0 1 0 0 O
0 1 1 1 0 1 0O O 0O 1 0 0 1 0O
1 0 0 1. 0 0O O O O O O O 1 1
10 0 1 0 1 1 1 1 0 1 1 0 O
Lo o 1 0 0o 0o 1 1 0 0 o0 1 0 0dq1gx14
- 1 0 0 1 1 1 1 1 1 0 o 0 O 0 1 0 A
o 1 0 1 1 1 0 O o 1 1 1 0 0 1 0
i1 0 0 1 1 1 1 1 1 0 O O O O 1 O
o 0 1 1 0 0O 1 1 o0 1 1 0 1 0 1 0
o 0o 1 0 1 0 1 o0 1 1 0 1 0 1 1 0
_ o 1 0 1 1 1 0 O O 1 1 1 0 0 1 0
S— o 1 0 0 0O 1 0O 1 1 1 0 0 1 1 1 0
- o 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0
i1 0 0 0 0 1 1 0O O O 1 1 1 1 1 o0
o 0 1 0 1 0 1 o0 1 1 0 1 0 1 1 0
i 0 0 0 0 1 1 0 O O 1 1 1 1 1 o0
o 0o 0 1 1 0 o0 1 1 0 1 1 1 1 0 O
o 1.0 0 O 1 0 1 1 1 0 0 1 1 1 0
Lo 0o o 1 1.0 0 1 1 0o 1t 1 1 1 0 04digx16
. 9 '
| 14— " T g5 i
' 9/ \2 :
4 \12 '
. 13 a1 Gﬁ !
Do 7 :
. 10 15 .
H T e !

Figure 4: The directed graph I' constructed by the set S.
It can be computed easily using Mathematica 11.0 that
det W(G) = —2" x 3 x 1998050003.

Thus we have G € X,,. The set S consists of 2* vectors over F5. The directed graph I' con-
sists of exactly a directed 15-cycle and a loop, as shown in Fig. 4. Ignore the loop which
consists of the zero vector and denote the 15-circle by C, then we have dimp, (span(C})) =
4. However dimp, (span(S’)) = 3, where the set S” = {v1, v2,v3} consists of the first three
columns of the the matrix S. Since dimg,(span(S’)) < dimg, (span(C})), according to
Theorem 28, the graph G is DGS.
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Example 4. Let the adjacency matrix of the Eulerian graph G be gives as follows:

r O 0 0 1 1 1 1 1 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 0 0 0 1 1 1 0 1 1 1 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 1 1
1 0 0 1 1 0 0 0 1 1 0 1 1 1 0

A= 110 1 1 0 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0 1 1 1 1 1
1 0 1 0 0 1 1 1 0 0 1 1 0 1 0
1 1 1 1 1 0 0 0 1 1 0 1 0 1 1
0 0 1 1 1 0 1 0 1 1 1 0 1 1 1
0 0 1 0 1 0 1 1 1 0 0 1 0 0 0
1 1 1 0 1 1 1 0 1 1 1 1 0 0 0

L 0 1 1 0o 0 1 0 0 1 0 1 1 0 O 0 d15%15

4 5 1
8 — 18 g :
13
»24 14""15)‘/ ?\‘12“/ .
28 =
15
'\29/ F_paf
1 N
3 18 20
10 17
Y
20— 8
Ef 1 Pizeor
P T
g

Figure 5: The directed graph I' = (V(TI"), E(T")) constructed by the set S.

It can be computed easily using Mathematica 11.0 that
det W(G) = 2% x 753033383825423.

Thus we have G € 3,. Furthermore, the set S consists of 2° vectors over Fy (which
are omitted to save space). The directed graph I' consists of exactly four components,
as shown in Fig. 5. The two components in the left-bottom and right-bottom of Fig. 5
can be ignored, since the vertex set of which do not have any entry from S’. Denote
the two components in the left-top and right-top of Fig. 5 by C; for ¢+ = 1,2. Then
we have dimg,(span(C;)) = 4 for ¢ = 1,2. However, dimg,(span(S’)) = 3, where the
set S" = {v1,v9,v3,v4} consists of the first four vectors in S. Since dimg,(span(S’)) <
dimg, (span(C;)) for ¢ = 1,2, according to Theorem 28, the graph G is DGS.

Example 5. Let the adjacency matrix of the Eulerian graph G be gives as follows:

ro o 1 1 1 0 0 O O 0 1 1 1 0 1 1 9
o o 1 o0 o0 1 o0 1 1 1 1 1 O 1 1 1
$1 1 0 1 0 1 0 1 1 1 O O O O O 1
iP 0 1 0 1 1 1 0 1 1 O O O O 1 O
$P 0 o 1 0 O O O O 1 1 0 1 1 0 O
o 1 1 1 o0 o0 1 1 1 O 1 O O 1 1 1
o o0 o 1 0 1 0 0 1 1 1 O O 1 0 O
A_ 0o 1 TP o o 1 o o0 1 0O 1 O O 1 0 O
- o 1 1 1 o0 1 1 1 O O 1 1 O O 1 1
o 1 1 1 1 0 1 O O O O O 1 o0 1 1
i1 o0 o0 1 1 1 1 1 O O 1 O 0 1 1
11 o 0o 0o o o o 1 o 1 o0 1 1 1 1
$P o o o 1 o o0 o0 o0 1 o 1 0 1 1 o0
o 1 o0 o0 1 1 1 1 O O O 1 1 O 1 O
$1 1 o 1 o0 1 o0 o0 1 1 1 1 1 1 0 O
L 1 1 1 0 0 1 0 0 1 1 1 1 0 0O 0 ©

- 16x16
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Figure 6: The directed graph I' = (V(T"), E(T")) constructed by the set S.

It can be computed easily using Mathematica 11.0 that
det W(G) = 2% x 23 x 223 x 1559 x 1794773 x 51791611.

Thus we have G € ¥,,. Furthermore, the set S consists of 2° vectors over Fy (which are
omitted to save space). The directed graph I' consists of exactly four directed cycles (
namely, a 21-cycle, a 7-cycle, a 3-cycle and a loop), as shown in Fig. 6. The 7-cycle,
3-cycle and the loop can be ignored, since the vertex sets of which do not contain any
entry from S’. Denote the 21-cycle by C}, then we have dimg,(span(C})) = 5. However,
dimg, (span(S’)) = 2, where the set S = {v1,v,} consists of the first two vectors in S.
Since dimp, (span(.S”)) < dimg, (span(C})), according to Theorem 28, the graph G is DGS.

Finally, we have conducted a series of numerical experiments to estimate the fraction
of graphs satisfying Theorem 8 and Theorem 25. The main idea is as follows:

Randomly generate m Eulerian graphs of order n (9 < n < 20) independently. Among
these graphs, if there are m’ graphs that belongs to X,,, then the fraction of graphs in X,
among Eulerian graphs is roughly %’; if there are m” graph in Y, which satisfies S’ = 0,
then the probability that a graph is DGS in X, is roughly %’

Set m = 10000, Table 1 displays the result of one of such numerical experiments.

It can be observed from Table 1, there are around 21% Eulerian graphs belong to ¥,
when n is odd, and the ratio is about 11% when n is even. That is, the ratio for even n is
almost half of that for odd n; it would be an interesting future work to give an explanation
of this phenomena.

In addition, the proportion of graphs in ¥, satisfying Theorem 25 (and hence are
DGS) approaches 1 as n increases, which suggests the following

Conjecture 29. Almost all graphs in X, are DGS.

6 Conclusions and future work

In this paper, we have investigated the generalized spectral characterizations of a large
family of Eulerian graphs 3, in which for every graph G, the power of 2 in the prime
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Table 1: Fraction of DGS graphs in X2,

n m_

/

9 0.2021 0.5501
10 0.1141 0.6968
11 0.2272 0.7025
12 0.1120 0.7464
13 0.1955 0.7770
4 01152 0.7960
15 0.2159 0.8425
16 0.1086 0.8720
17 02137 09031
18 0.1085 0.9310
19 0.2085 0.9535
20 01117  0.9642

factorization of det W(G) is high. Thus the existing method does not work. We first show
that the level of every @ € Q(G) is either 1 or 2. Then we present a simple method to
eliminate the possibility that £ = 2, by the means of constructing a digraph associated
with G and then using a simple dimension argument. Numerical experiments have also
been presented to illustrate the proposed method.

Besides Eulerian graphs, we mention that there are many other families of graphs for
which Theorem 1.1 does not work, e.g.,

e For graphs with the degrees of all vertices being odd (of course the order of these
graphs are even), Theorem 1.1 fails. This is because, for such graphs G, all the
entries of W (@) are odd and hence det W(G) is divisible by 2"!;

e For all regular graphs GG, Theorem 1.1 fails, since det W (G) always vanishes;

e For graphs G obtained through some graph operations (such as Cartesian product,
tensor product), the power of 2 in the prime factorization of det W(G) is usually
high, although this is less obvious.

As a future work, we would like to investigate the extent to which Theorem 1.1 can
be generalized, and find more families of graphs that are determined by their generalized
spectra.
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