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Abstract

Assume that G is a chordal graph with edge ideal I(G) and ordered matching
number ord-match(G). For every integer s > 1, we denote the s-th symbolic power
of I(G) by I(G)(s). It is shown that reg(I(G)(s)) 6 2s + ord-match(G) − 1. As
a consequence, we determine the regularity of symbolic powers of edge ideals of
chordal Cameron-Walker graphs.

Mathematics Subject Classifications: 13D02, 05E99

1 Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables over K.
Suppose that M is a nonzero graded S-module with minimal free resolution

0 −→ · · · −→
⊕
j

S(−j)β1,j(M) −→
⊕
j

S(−j)β0,j(M) −→M −→ 0.

The Castelnuovo-Mumford regularity (or simply, regularity) of M , denoted by regS(M),
is defined as

regS(M) = max{j − i | βi,j(M) 6= 0}.
∗This research is partially funded by the Simons Foundation Grant Targeted for Institute of Mathe-
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As a convention, we set regS(M) = ∞, when M is the zero module. When there is no
fear of confusion, we delete the subscript S in the above notation. We mention that the
Castelnuovo-Mumford regularity is an important invariant in commutative algebra and
algebraic geometry.

There is a natural correspondence between quadratic squarefree monomial ideals of
S and finite simple graphs with n vertices. To every simple graph G with vertex set
V (G) =

{
x1, . . . , xn

}
and edge set E(G), we associate its edge ideal I = I(G) defined by

I(G) =
(
xixj : xixj ∈ E(G)

)
⊆ S.

Computing and finding bounds for the regularity of edge ideals and their powers have
been studied by a number of researchers (see for example [1], [2], [3], [4], [5], [8], [10], [15],
[16], [17], [18], [20] and [22]).

Katzman [16], proved that for any graph G,

reg(I(G)) > ind-match(G) + 1,

where ind-match(G) denotes the induced matching number of G. Beyarslan, Hà and
Trung [5], generalized Katzman’s inequality by showing that

reg(I(G)s) > 2s+ ind-match(G)− 1,

for every integer s > 1. Recently, Gu, Hà, O’Rourke and Skelton [9] proved the same
inequality for symbolic powers. More explicit, they proved that

reg(I(G)(s)) > 2s+ ind-match(G)− 1,

for any graph G and any integer s > 1.
Our approach is to determine an upper bound for the regularity of symbolic powers of

edge ideals. Indeed, Hà and Van Tuyl [11, Theorem 6.7] proved that for every graph G,

reg(I(G)) 6 match(G) + 1,

where match(G) denotes the matching number of G. This inequality was strengthen by
Constantinescu and Varbaro [7, Remark 4.8] (see also [19, Corollary 2.5]). To be more
precise, let G be a graph with ordered matching number ord-match(G) (see Definition 1).
Then

reg(I(G)) 6 ord-match(G) + 1.

It is natural to ask whether the inequalities

reg(I(G)s) 6 2s+ ord-match(G)− 1, (1)

and
reg(I(G)(s)) 6 2s+ ord-match(G)− 1 (2)

are true. To the best of our knowledge, it is not known whether inequality (1) is true. In
this paper, we investigate inequality (2) and as the main result, we show that inequality
(2) holds for any chordal graph G and for any integer s > 1 (see Theorem 3. As a
consequence, we determine the regularity of symbolic powers of edge ideals of graphs
belonging to the following classes.
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1. Chordal Cameron-Walker graphs.

2. Complete graphs Kn.

3. Kn − e, where e is an arbitrary edge of Kn.

2 Preliminaries

In this section, we provide the definitions and basic facts which will be used in the next
section.

Let G be a simple graph with vertex set V (G) =
{
x1, . . . , xn

}
and edge set E(G).

For a vertex xi, the neighbor set of xi is NG(xi) = {xj | xixj ∈ E(G)} and we set
NG[xi] = NG(xi) ∪ {xi}. The cardinality of NG(xi) is called the degree of xi. A vertex
of degree one is a leaf and the unique edge incident to a leaf is called a pendant edge. A
pendant triangle of G is a triangle T of G, with the property that exactly two vertices of
T have degree two in G. For every subset U ⊂ V (G), the graph G − U has vertex set
V (G− U) = V (G) \ U and edge set E(G− U) = {e ∈ E(G) | e ∩ U = ∅}. Also, for any
edge e ∈ E(G), we done by G− e, the graph obtained from G by deleting the edge e. A
subgraph H of G is called induced provided that two vertices of H are adjacent if and only
if they are adjacent in G. The induced subgraph of G on the vertex set U ⊆ V (G) will be
denoted by GU . A graph G is called chordal if it has no induced cycle of length at least
four. A subset W of V (G) is a clique of G if every two distinct vertices of W are adjacent
in G. A vertex x of G is a simplicial vertex if NG(x) is a clique. It is well-known that
every chordal graph has a simplicial vertex. A subset A of V (G) is called an independent
subset of G if there are no edges among the vertices of A. A subset C of V (G) is a vertex
cover of G if every edge of G is incident to at least one vertex of C. A vertex cover C is a
minimal vertex cover if no proper subset of C is a vertex cover of G. The set of minimal
vertex covers of G will be denoted by C(G).

For every subset C of
{
x1, . . . , xn

}
, we denote by pC , the monomial prime ideal which

is generated by the variables belong to C. It is well-known that for every graph G with
edge ideal I(G),

I(G) =
⋂

C∈C(G)

pC .

Let G be a graph. A subset M ⊆ E(G) is a matching if e ∩ e′ = ∅, for every pair
of edges e, e′ ∈ M . The cardinality of the largest matching of G is called the matching
number of G and is denoted by match(G). A matching M of G is an induced matching
of G if for every pair of edges e, e′ ∈ M , there is no edge f ∈ E(G) \M with f ⊂ e ∪ e′.
The cardinality of the largest induced matching of G is the induced matching number of
G and is denoted by ind-match(G).

Definition 1. Let G be a graph, and let M =
{
{ai, bi} | 1 6 i 6 r

}
be a nonempty

matching of G. We say that M is an ordered matching of G if the following hold:

(1) A := {a1, . . . , ar} ⊆ V (G) is a set of independent vertices of G; and
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(2) {ai, bj} ∈ E(G) implies that i 6 j.

The ordered matching number of G, denoted by ord-match(G), is defined to be

ord-match(G) = max{|M | |M ⊆ E(G) is an ordered matching of G}.

We close this section by recalling the definition of symbolic powers.
Let I be an ideal of S and let Min(I) denote the set of minimal primes of I. For every

integer s > 1, the s-th symbolic power of I, denoted by I(s), is defined to be

I(s) =
⋂

p∈Min(I)

Ker(R→ (R/Is)p).

Let I be a squarefree monomial ideal in S and suppose that I has the irredundant primary
decomposition

I = p1 ∩ . . . ∩ pr,

where every pi is an ideal generated by a subset of the variables of S. It follows from [12,
Proposition 1.4.4] that for every integer s > 1,

I(s) = ps1 ∩ . . . ∩ psr.

We set I(s) = S, for any integer s 6 0.

3 Main results

In this section, we prove the main result of this paper, Theorem 3. The proof is based on
an inductive argument and the following lemma has a crucial role in our induction.

Lemma 2. Let G be a graph and assume that x1 is a simplicial vertex of G, with NG(x1) ={
x2, . . . xd

}
, for some integer d > 1. Then for every integer s > 1,(

I(G)(s) : x1x2 . . . xd
)

= I(G)(s−d+1).

Proof. Let C be a minimal vertex cover of G. Since GNG[x1] is a complete graph, it follows
that |C ∩ NG[x1]| > d − 1. On the other hand, NG[x1] * C, as otherwise C \ {x1}
would be vertex cover of G which is strictly contained in C. Thus, |C ∩NG[x1]| = d− 1.
Consequently, (

psC : x1x2 . . . xd
)

= ps−d+1
C .

We know that I(G) =
⋂
C∈C(G) pC . Thus,

I(G)(s) =
⋂

C∈C(G)

psC .

It follows that(
I(G)(s) : x1x2 . . . xd

)
=

⋂
C∈C(G)

(
psC : x1x2 . . . xd

)
=

⋂
C∈C(G)

ps−d+1
C = I(G)(s−d+1).
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We are now ready to prove our main result.

Theorem 3. Let G be a chordal graph. Then for every integer s > 1, we have

reg(I(G)(s)) 6 2s+ ord-match(G)− 1.

Proof. Suppose V (G) = {x1, . . . , xn}. We use induction on n + s. The assertion follows
from [11, Corollary 6.9], for s = 1. Thus, assume that s > 2. If n = 2, then I(G) = (x1x2).
Consequently, I(G)(s) = (xs1x

s
2) and

reg(I(G)(s)) = 2s = 2s+ ord-match(G)− 1.

Hence, suppose n > 3.
Assume without loss of generality that x1 is a simplicial vertex of G and NG(x1) ={

x2, . . . , xd
}

, for some integer d > 2. Let S1 = K[x2, . . . , xn] be the polynomial ring

obtained from S by deleting the variable x1 and consider the ideals I1 = I(G)(s) ∩ S1 and
I ′1 = (I(G)(s) : x1). It follows from [8, Lemma 2.10] that

reg(S/I(G)(s)) 6 max{regS1
(S1/I1), regS(S/I ′1) + 1}, (3)

Notice that
I1 = (I(G) ∩ S1)

(s) = I(G \ x1)(s).

As G \ x1 is a chordal graph, it follows from the induction hypothesis that

regS1
(S1/I1) 6 2s+ ord-match(G \ x1)− 2 6 2s+ ord-match(G)− 2.

Thus, using the inequality (3), it is enough to prove that

reg(S/I ′1) 6 2s+ ord-match(G)− 3.

For every subset A ⊆ V (G), set xA :=
∏

xi∈A xi.

Claim. For every subset W ⊆ NG[x1], with x1 ∈ W , we have

reg(S/I ′1) 6 max

{
reg

(
S

I(G\A)(s):xB

)
+ |B| − 1 | x1 ∈ B,A ∩B = ∅, A ∪B = W

}
.

Proof of the Claim. Without loss of generality, assume that W = {x1, . . . , xt}, for
some integer 1 6 t 6 d. We use induction on t. There is nothing to prove for t = 1.
Therefore, suppose that t > 2. Set W ′ = {x1, . . . , xt−1}. We know from the induction
hypothesis that

reg(S/I ′1) 6 max

{
reg

(
S

I(G\A)(s):xB

)
+ |B| − 1 | x1 ∈ B,A ∩B = ∅, A ∪B = W ′

}
.

(4)
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For every pair of subsets A,B ⊆ V (G) with x1 ∈ B,A ∩ B = ∅ and A ∪ B = W ′, it
follows from [8, Lemma 2.10] that

reg

(
S

I(G \ A)(s) : xB

)
+ |B| − 1

6 max

{
reg

(
S

(I(G \ A)(s) : xB), xt

)
+ |B| − 1, reg

(
S

I(G \ A)(s) : xtxB

)
+ |B|

}
= max

{
reg

(
S

(I(G \ A)(s), xt) : xB

)
+ |B| − 1, reg

(
S

I(G \ A)(s) : xtxB

)
+ |B|

}
= max

{
reg

(
S

I(G \ (A ∪ {xt}))(s) : xB

)
+ |B| − 1, reg

(
S

I(G \ A)(s) : xB∪{xt}

)
+ |B|

}
.

The claim now follows by combining this inequality and inequality (4).
Substituting W = NG[x1] in the claim, we deduce that

reg(S/I ′1) 6 max

{
reg

(
S

I(G\A)(s):xB

)
+ |B| − 1 | x1 ∈ B,A ∩B = ∅, A ∪B = NG[x1]

}
.

(5)
Let A and B be subsets of V (G) with x1 ∈ B, A ∩ B = ∅ and A ∪ B = NG[x1].

Obviously, G \ A is a chordal graph and x1 is a simplicial vertex of this graph. Clearly,
NG\A[x1] = B. Hence, using Lemma 2, we conclude that

(I(G \ A)(s) : xB) = I(G \ A)(s−|B|+1).

We consider the following cases.

Case 1. If |B| > s+ 1, then I(G \ A)(s−|B|+1) = S. Thus,

reg

(
S

I(G \ A)(s) : xB

)
+ |B| − 1 = −∞ < 2s+ ord-match(G)− 3.

Case 2. If 2 6 |B| 6 s, then it follows from the induction hypothesis that

reg

(
S

I(G \ A)(s−|B|+1)

)
6 2(s− |B|+ 1) + ord-match(G \ A)− 2

6 2(s− |B|+ 1) + ord-match(G)− 2.

Therefore,

reg

(
S

I(G \ A)(s) : xB

)
+ |B| − 1 = reg

(
S

I(G \ A)(s−|B|+1)

)
+ |B| − 1

6 2(s− |B|+ 1) + ord-match(G)− 2 + |B| − 1

6 2s− |B|+ ord-match(G)− 1

6 2s+ ord-match(G)− 3.
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Case 3. If |B| = 1, then B = {x1} and A = {x2, . . . , xd}. Therefore, G \ A is the
disjoint union of G \NG[x1] and the isolated vertex x1. Thus,

I(G \ A)(s−|B|+1) = I(G \NG[x1])
(s)

and the induction hypothesis implies that

reg

(
S

I(G \ A)(s) : xB

)
+ |B| − 1 = reg

(
S

I(G \NG[x1])(s)

)
6 2s+ ord-match(G \NG[x1])− 2 6 2s+ ord-match(G)− 3,

where the last inequality follows from [19, Lemma 2.1].
Hence, in all cases, we have

reg

(
S

I(G \ A)(s) : xB

)
+ |B| − 1 6 2s+ ord-match(G)− 3.

There, using inequality (5), we conclude that

reg(S/I ′1) 6 2s+ ord-match(G)− 3

and this completes the proof.

As an immediate consequence of Theorem 3, we obtain the following corollary.

Corollary 4. Let G ba chordal graph. Then for any integer s > 1,

reg(I(G)(s)) 6 2s+ match(G)− 1.

The class of Cameron-Walker graphs is an interesting class of graphs, introduced in
[6]. It consists of graphs for which ind-match(G) = match(G). Algebraic properties
of Cameron-Walker graphs have been studied in [13, 14] and [21]. The following result
follows from Corollary 4 and [9, Theorem 4.6].

Corollary 5. Let G ba chordal Cameron-Walker graph. Then for any integer s > 1,

reg(I(G)(s)) = 2s+ ind-match(G)− 1.

The structure of Cameron-Walker graph has been determined in [6]. Indeed, a con-
nected graph G is a Cameron-Walker graph if and only if it is
• a star graph, or
• a star triangle, or
• consisting of a connected bipartite graph H with vertex partition V (H) = X ∪ Y

such that there is at least one pendant edge attached to each vertex of X and that there
may be possibly some pendant triangles attached to each vertex of Y .

Thus, Corollary 5, essentially determines the regularity of symbolic powers of edge
ideal of G, if either G is a star triangle, or the graph H above is a tree.

Let n > 3 be a positive integer and suppose that e is an edge of the complete graph
Kn. Obviously, the graphs Kn and Kn− e are chordal graphs and their ordered matching
number is one. Thus, by using Theorem 3 and [9, Theorem 4.6], we conclude the following
corollary.
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Corollary 6. Assume that either G = Kn or G = Kn − e, for some integer n > 3 and
some edge e ∈ E(Kn). Then for any s > 1, we have

reg(I(G)(s)) = 2s.
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