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Abstract

Schur–Weyl duality is a fundamental framework in combinatorial representation
theory. It intimately relates the irreducible representations of a group to the ir-
reducible representations of its centralizer algebra. We investigate the analog of
Schur–Weyl duality for the group of unipotent upper triangular matrices over a
finite field. In this case, the character theory of these upper triangular matrices is
“wild” or unattainable. Thus we employ a generalization, known as supercharacter
theory, that creates a striking variation on the character theory of the symmetric
group with combinatorics built from set partitions. In this paper, we present a
combinatorial formula for calculating a restriction and induction of supercharacters
based on statistics of set partitions and seashell inspired diagrams. We use these
formulas to create a graph that encodes the decomposition of a tensor space, and
develop an analog of Young tableaux, known as shell tableaux, to index paths in
this graph.

Mathematics Subject Classifications: 05E10

1 Introduction

Schur–Weyl duality forms an archetypal situation in combinatorial representation theory
involving two actions that complement each other. In the basic setup, a G-module M of
a finite group G is tensored together k times to form the tensor space

M⊗k = M ⊗ · · · ⊗M︸ ︷︷ ︸
k factors

.

The commuting actions of G and its centralizer algebra Zk = EndG(M⊗k) on M⊗k produce
a decomposition

M⊗k ∼=
⊕
λ

Gλ ⊗ Zλ
k as a (G,Zk)-bimodule
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where the Gλ are irreducible G-modules and the Zλ
k are irreducible Zk-modules. This

bimodule decomposition intimately relates the irreducible representations of G with the
irreducible representations of Zk.

In the classical situation, the general linear group GLn(C) of n× n matrices over the
field C of complex numbers acts on the tensor space V ⊗k of an n dimensional vector space
V , and its centralizer algebra is the symmetric group Sk on the k tensor factors. More
recently, the study of new versions of Schur–Weyl duality has led to many remarkable
discoveries about algebras of operators on tensor space that are full centralizers of each
other. For example,

1. the Brauer algebra is the centralizer of the symplectic and orthogonal groups acting
on the tensor space (Cn)⊗k [9];

2. the Temperley-Lieb algebra is the centralizer of the special linear Lie group of degree
two acting on the tensor space (C2)⊗k [14];

3. the partition algebra is the centralizer of the symmetric group acting on the tensor
space V ⊗k of its permutation representation V [13].

This paper focuses on a unipotent analog of Schur–Weyl duality.
For a positive integer n and a power of a prime q = pr, consider the finite group of

unipotent n× n upper-triangular matrices

Un =




1 ∗ · · · ∗
0 1

...
...

. . . ∗
0 · · · 0 1




with ones on the diagonal and entries ∗ in the finite field Fq with q elements. Since Un is a
Sylow p-subgroup of GLn(Fq), then every p-group of GLn(Fq) is conjugate to a subgroup
of Un. Embedding every finite p-group in Sn ⊆ GLn(Fq) as permutation matrices, it
follows that every p-group is isomorphic to a subgroup of Un. This is akin to how every
finite group is isomorphic to a subgroup of Sn, so it is not unreasonable to hope that the
representation theories of Un and Sn have comparable structures.

Unlike the combinatorially rich representation theory of Sn [16], the representation
theory of Un is well-known to be intractable or “wild” [12]. Nevertheless, André [2, 3, 4, 5]
and Yan [19] constructed a workable approximation that has been useful in studying
Fourier analysis [11], random walks [7], and Hopf algebras [1]. In [11] Diaconis and Isaacs
generalize this idea to arbitrary finite groups to develop the notion of supercharacter
theory. Supercharacter theory approximates the character theory of a finite group by
replacing conjugacy classes with certain unions of conjugacy classes called “superclasses”
and irreducible characters with certain linear combinations of irreducible characters called
“supercharacters”.
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We study a coarsening of André and Yan’s traditional super-representation theory on
Un [8] where there is a one-to-one correspondence between{

supercharacters
of Un

}
←→

{
Set partitions of
{1, 2, . . . , n}

}
.

It is becoming ever more apparent that the set partition combinatorics of this super-
representation theory is analogous to the classical partition combinatorics of the repre-
sentation theory of the symmetric group, but with some important differences.

We first study the decomposition of V ⊗k where V = CUn⊗CUn−11 as a Un-supermodule.
Much like the partition algebra, we have

V ⊗k ∼= (IndUnUn−1
ResUnUn−1

) · · · (IndUnUn−1
ResUnUn−1

)︸ ︷︷ ︸
k times

(1)

where the trivial supercharacter 1 is restricted and induced k times. We provide a com-
binatorial formula calculating a restriction of supercharacters from Un to Un−1 where the
coefficients of the supercharacters of Un−1 are a product of powers of q and q − 1 based
on statistics of set partitions and seashell inspired diagrams. For example, a shell formed
by two set partitions is shown below.

Using Frobenius reciprocity, we obtain a corresponding formula for inducing superchar-
acters. Together these formulas are known as branching rules. As opposed to the rep-
resentation theory of the symmetric group, they depend on the embedding of Un−1 in
Un.

We then use the branching rules to create a graph that encodes the decomposition of
V ⊗k known as the Bratteli diagram. Since we are approximating by supercharacters, the
Bratteli diagram produces a decomposition of a subalgebra of the centralizer algebra that
treats supermodules as irreducibles. For the partition algebra, paths in the Bratteli dia-
gram are indexed by a set of combinatorial objects called vacillating tableaux. We create
an analog of vacillating tableaux, known as shell tableaux, built from a generalization of
shells. Next, we construct a bijection between shell tableaux and paths in the Bratteli
diagram. When q = 2, we remove a condition on shell tableaux to produce a bijection
with weighted paths in the Bratteli diagram. In contrast with the symmetric group,
these weights account for the multiplicities in our Bratteli diagram. On the whole, the
shell combinatorics developed from this paper may help compute in other algebraic struc-
tures related to the supercharacter theory of Un, such as the Hopf algebra of symmetric
functions in noncommuting variables.
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2 Preliminaries

This section reviews a supercharacter theory for the group of unipotent upper triangular
matrices and the combinatorics of its representation theory based on set partitions.

2.1 A supercharacter theory for Un

A supercharacter theory of a group G consists of a set of superclasses K and a set of
supercharacters X such that

(a) the set K is a partition of G into unions of conjugacy classes,

(b) the set X is a set of characters such that each irreducible character of G is a con-
stituent of exactly one supercharacter,

(c) |K| = |X |,

(d) the supercharacters are constant on superclasses.

Every group G has two “trivial” supercharacter theories: the usual character theory,
and the supercharacter theory with K = {{1}, G − {1}} and X = {1, χreg − 1} where 1
is the trivial character of G and χreg is the regular character. While many finite groups
have several supercharacter theories [11], preference is given to supercharacter theories
that strike a balance between computability and producing better approximations of the
usual character theory.

We focus on the supercharacter theory on Un given in [18] that is a slight coarsening
of the traditional supercharacter theory of André and Yan.

Let Un be the subgroup of unipotent upper-triangular matrices of the general linear
group GLn(Fq) over the finite field Fq with q elements, Bn be the normalizer of Un in
GLn(Fq) consisting of upper triangular matrices, and

un = Un − 1

be the nilpotent Fq-algebra of strictly upper triangular matrices. The subgroup Bn acts
by left and right multiplication on un, and the superclasses are given by the two-sided
orbits

BnunBn ←→ K
BnxBn 7→ 1 +BnxBn.

Following the construction in [8], fix a nontrivial homomorphism ϑ : F+
q → C×. The

Fq-vector space of n×n matrices gln(Fq) decomposes in terms of upper triangular matrices
bn and strictly lower triangular matrices ln as

gln = bn ⊕ ln.

Identifying ln with gln/bn makes ln a canonical set of coset representatives in gln/bn. For
v ∈ gln define

v̄ = (v + bn) ∩ ln.
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Then for v ∈ ln,
C-span{av | a ∈ Bn}

is Un-supermodule with left action

uw = ϑ(tr((u− 1)w)(uw) for u ∈ Un, w ∈ ln

and right action

wu = ϑ(tr(w(u−1 − 1))(wu−1) for u ∈ Un, w ∈ ln.

The two-sided orbits from extending these actions on ln to the normalizer subgroup Bn

yields corresponding supercharacters given by,

BnlnBn ←→ X

BnvBn 7→ g 7→ |Bnv|
|BnvBn|

∑
w∈BnvBn

ϑ(tr((g − 1)w)).

In constructing the supercharacters of Un it is more common to construct a module
structure on the dual u∗n, where un = Un − 1 as in [11]. However, the actions of Bn on ln
are a translation of the actions on u∗n that make studying modules more straightforward
[8].

By elementary row and column operations we may choose orbit representatives for the
two-sided action of Bn on un and ln so that there is a one to one correspondence between{

superclasses
of Un

}
←→

{
u ∈ Un

∣∣∣∣∣ u− 1 has at most one 1
in every row and column

}
{

supercharacters
of Un

}
←→

{
v ∈ ln

∣∣∣∣∣ v has at most one 1
in every row and column

}
.

These representatives are indexed by set partitions.
If instead of considering the orbits of the full subgroup Bn, we consider the Un orbits

on the group un and its dual u∗n, then we obtain the traditional supercharacter theory of
André and Yan. In this case the combinatorics depends on the finite field Fq and is based
on F×q -colored set partitions.

2.2 Set Partition Combinatorics

Define [n] = {1, 2, . . . , n}. A set partition λ of [n] is a subset {(i, j) ∈ [n] × [n] | i < j}
such that if (i, k), (j, l) ∈ λ, then i = j if and only if k = l. We represent each set partition
λ ` [n] diagrammatically as a set of arcs on a row of n nodes so that if (i, j) ∈ λ, then
there is an arc connecting the ith node to the jth node. For example,

{(1, 3), (3, 5), (2, 6)} ←→
1 2 3 4 5 6

or
1 2 3 4 5 6 .
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In these diagrams it is natural to draw the arcs above or below the nodes. We will use
both orientations to compare set partitions. We typically refer to the pair (i, j) as an arc
in λ and write (i, j) = i _ j or (i, j) = i ^ j to specify the arc. For each arc (i, j) ∈ λ
we call i the left endpoint and j the right endpoint. The sets of left and right endpoints
of λ are given by

le(λ) = {i ∈ [n] | (i, j) ∈ λ, for some j ∈ [n]}

re(λ) = {j ∈ [n] | (i, j) ∈ λ, for some i ∈ [n]}.

We say two arcs conflict if they have the same left or right endpoints. Thus no arcs
conflict in a set partition.

We obtain the more traditional definition of set partitions by taking part(λ) for λ ` [n]
to be the set of equivalence classes on [n] given by the reflexive transitive closure of i ∼ j
if (i, j) ∈ λ. For instance,

part

(
1 2 3 4 5 6

)
= {{1, 3, 5}, {2, 6}, {4}}.

Note the connected components of the diagram are the parts of the set partition and the
arcs are the adjacent pairs of elements in each part.

There are some natural statistics on set partitions [10]. For a set partition λ ` [n] the
dimension is

dim(λ) =
∑
i_j∈λ

j − i− 1.

For a pair of set partitions λ, µ ` [n] define

Crs(λ, µ) = {((i, k), (j, l)) ∈ λ× µ | i < j < k < l}, crs(λ, µ) = |Crs(λ, µ)|,
Nstλµ = {((i, l), (j, k)) ∈ λ× µ | i < j < k < l}, nstλµ = |Nstλµ|

as the crossing set, crossing number, nesting set, and nesting number respectively. To
illustrate, if

λ =
and µ = ,

then we have

dim(λ) = 3, crs(λ, λ) = 1, nstλλ = 0, dim(µ) = 4, crs(µ, µ) = 0, nstµµ = 1.

Superimposing λ and µ, where the arcs of λ are dashed

λ ∪ µ =
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yields
Crs(λ, µ) = {(1 _ 4, 2 _ 6), (1 _ 4, 3 _ 5)}, Nstλµ = ∅

but,
Crs(µ, λ) = ∅, Nstµλ = {(2 _ 6, 3 _ 5)}.

While it is not generally true that Crs(λ, µ) = Crs(µ, λ), it follows from the definition of
a crossing number that for all set partitions λ, µ, ν ` [n],

Crs(λ, µ ∪ ν) = Crs(λ, µ) ∪ Crs(λ, ν) (1)

Crs(λ ∪ µ, ν) = Crs(λ, ν) ∪ Crs(µ, ν). (2)

2.3 An uncolored supercharacter theory

We describe the correspondence between set partitions and the superclasses and super-
characters of Un. Given a set partition λ ` [n], we construct a representative uλ of a
superclass of Un by

(uλ)i,j =

{
1 if i _ j ∈ λ or i = j,
0 otherwise.

For instance, the correspondence between λ and uλ is given as follows

λ = ←→ uλ − 1 =


0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The corresponding superclass Kλ is

Kλ = 1 +Bn(uλ − 1)Bn.

Similarly, a representative vλ for the two-sided action of Bn on ln is

(vλ)k,j =

{
1 if j _ k ∈ λ,
0 otherwise

so that
V λ ∼= C-span{avλ | a ∈ Bn}

and for g ∈ Un, the corresponding supercharacter χλ is defined as

χλ(g) =
|Bnvλ|
|BnvλBn|

∑
v∈BnvλBn

ϑ(tr((g − 1) v)).

Amazingly, many properties of these supercharacters can be determined using statistics
of set partitions.
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Proposition 1 ([8, Proposition 2.1]). For λ, µ ` [n], we have

χλ(uµ) =


(−1)|λ∩µ|qdim(λ)(q − 1)|λ−µ|

qnst
λ
µ

if i < j < k, i _ k ∈ λ
then i _ j, j _ k /∈ µ,

0 otherwise.

In particular the trivial supercharacter 1 is the supercharacter χ∅ corresponding to
the empty set partition of [n], and the degree of each supercharacter is

χλ(1) = qdim(λ)(q − 1)|λ|.

It also follows from the formula that supercharacters factor as tensor products of arcs

χλ =
⊙
i_j∈λ

χi_j where (χ� ψ)(g) = χ(g)ψ(g). (3)

With respect to the inner product the supercharacters form an orthogonal set.

Proposition 2. For λ, µ ` [n], we have

〈χλ, χµ〉 = δλµ(q − 1)|λ|qcrs(λ,λ).

Proposition 2 can be proved from [18, (2.3)]. The crossing number crs(λ, λ) helps measure
how close a supercharacter is to being irreducible.

3 Branching Rules

An important property of the supercharacters of Un is that their restriction to any sub-
group is a linear combination of supercharacters with nonnegative integer coefficients [11].
However, the coefficients in the restriction decompositions are not well understood [18].
We provide a combinatorial formula for calculating the restriction of supercharacters of
Un to Un−1. Using Frobenius reciprocity, we obtain a corresponding formula for inducing
supercharacters. Since these formulas depend on the number of nonzero elements in the
field Fq, fix

t = q − 1.

3.1 Restriction

We consider the restriction of supercharacters from Un to Un−1 by embedding Un−1 ⊆ Un
as

Un−1 = {u ∈ Un | (u− 1)ij 6= 0 implies i < j < n}.

Since supercharacters decompose into tensor products of arcs (3), for λ ` [n], we have

χλ =
⊙
i_l∈λ

χi_l and ResUnUn−1
(χλ) =

⊙
i_l∈λ

ResUnUn−1
(χi_l).
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Consequently we compute restrictions for each χi_l and use the tensor product to glue
together the resulting restrictions.

The restriction of the supercharacter χi_l is given using the formulas in [18] for com-
puting restrictions in André and Yan’s traditional supercharacter theory.

Proposition 3. For 1 6 i < l 6 n, the restriction ResUnUn−1
(χi_l) is given by

ResUnUn−1
(χi_l) =


χi_l if l 6= n,

t

(
1 +

∑
i<k<l

χi_k

)
if l = n.

Proof. By the formulas for restriction of colored arcs [18, Theorem 4.5], for l 6= n, we
have

ResUnUn−1
(χi_l) =

∑
a∈F×q

ResUnUn−1
(χi

a
_l) =

∑
a∈F×q

χi
a
_l = χi_l,

and for l = n, we have

ResUnUn−1
(χi_l) =

∑
a∈F×q

ResUnUn−1
(χi

a
_l) =

∑
a∈F×q

(
1 +

∑
i<k<l
b∈F×q

χi
b
_k

)
= t

(
1 +

∑
i<k<l

χi_k

)
.

Intuitively, restricting an arc corresponds to removing the last node and reattaching the
arc in all possible ways.

We now use the tensor product to glue together the resulting restrictions. For 1 6 i <
l, define

χi_×l = t

(
1 +

∑
i<k<l

χi_k

)
and χi×_l = t

(
1 +

∑
i<j<l

χj_l

)
.

Using the formulas in [18] for the colored supercharacter theory yields the following propo-
sition.

Proposition 4. For 1 6 i < l 6 n and 1 6 j < k 6 n such that (i, l) 6= (j, k),

χi_l � χj_k =

 χ{i_l,j_k} if k 6= l, i 6= j,
χi_l � χj_×k if i < j < k = l,
χi_l � χj×_k if i = j < k < l.

Proof. Let 1 6 i < l 6 n and 1 6 j < k 6 n such that (i, l) 6= (j, k). For k 6= l and i 6= j,
the tensor product χi_l � χj_k is given by

χi_l � χj_k =
∑
a∈F×q

∑
b∈F×q

χi
a
_l � χj

b
_k =

∑
a∈F×q

∑
b∈F×q

χ{i
a
_l,j

b
_k} = χ{i_l,j_k},

for i < j < k = l, we have

χi_l � χj_l =
∑
a∈F×q

∑
b∈F×q

χi
a
_l � χj

b
_l =

∑
a∈F×q

∑
b∈F×q

χi
a
_l �

(
1 +

∑
j<k<l

c∈F×q

χj
c
_k

)
= χi_l � χj_×l,
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and for i = j < k < l, we obtain

χi_l � χi_k =
∑
a∈F×q

∑
b∈F×q

χi
a
_l � χi

b
_k =

∑
a∈F×q

∑
b∈F×q

χi
a
_l �

(
1 +

∑
i<j<k

c∈F×q

χj
c
_k

)
= χi_l � χi×_k

by the tensor formulas for colored arcs [18, Lemma 4.6].

Thus the tensor product provides a rule for resolving conflicting arcs that have the same
right endpoint by removing the smaller arc and reattaching it in all possible ways.

Next we work toward providing a combinatorial description of the coefficients in the
tensor product based on statistics of set partitions and seashell inspired diagrams.

Definition 5. Let s′ ∈ {s, s + 1} for s ∈ Z>1 and 1 6 i 6 l 6 n. A shell of size n and
width l − i is a set of arcs on n nodes of the form

s⋃
r=1

{ir _ lr} ∪
s′−1⋃
r=1

{ir ^ lr+1}

where i = i1 < · · · < is 6 ls′ < · · · < l1 = l.

For example, some shells of size 6 and width 6− 2 are

{2 _ 6}, {2 _ 6} ∪ {2 ^ 5}

{2 _ 6, 3 _ 5} ∪ {2 ^ 5}, {2 _ 6, 3 _ 5} ∪ {2 ^ 5, 3 ^ 4}.

A whorl is pair of consecutive arcs (i _ l, i ^ j) in a shell corresponding to a 360◦

rotation in the spiral configuration. Following the notation of Definition 5, the number of
whorls of a shell is ⌈s+ s′ − 1

2

⌉
as each arc is half a whorl. We use the convention that whorls are counted from the right
endpoint l spiraling inward. For instance, in the shell below we count the two whorls
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(1 _ 5, 1 ^ 4) and (2 _ 4, 2 ^ 3) as follows

11
2

1
4

3
4

2 .

If the whorls of a shell are given by (i1 _ l1, i1 ^ l2), . . . , (is _ ls, is ^ ls+1) we say the
pair (i1 _ l1, i1 ^ l2) is the outer whorl and the other whorls are inner whorls.

We can use shells to determine the partitions that appear in the restriction of a
supercharacter. Note that a set partition of [n− 1] is a set partition of [n]. We represent
this diagrammatically by embedding the leftmost n − 1 nodes in a row of n nodes. By
drawing the arcs of a partition µ ` [n−1] below the nodes and identifying these nodes with
the nodes of a partition λ ` [n], we characterize the partitions with nonzero coefficients
in the restriction of λ as the partitions µ ` [n − 1] such that the symmetric difference
between λ and µ form a shell.

Definition 6. For λ ` [n] and 1 6 i < l 6 n with i /∈ le(λ), the shell set Cλ,i_l of
λ ∪ {i _ l} is

Cλ,i_l =
{
µ ` [n] |

(
(λ ∪ {i _ l})− µ

)
∪
(
µ− (λ ∪ {i _ l})

)
is a shell of width l − i

}
.

This corresponds to all the ways to reattach the arc i _ l and “straighten” the resulting
diagram by resolving all the conflicting arcs that share the same right endpoint.

Example 7. Suppose λ = {1 _ 4, 3 _ 5} ` [6]. Consequently, we have

λ ∪ {2 _ 6} =

and

Cλ,2_6 =

 , ,

 .

The seashells created by the symmetric differences between λ ∪ {2 _ 6} and µ ∈ Cλ,2_6

are shown as solid lines

while the arcs in λ ∩ µ are dashed.
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It will be of interest to examine the shell sets Cλ,i_l by considering the right endpoints
re(λ).

Definition 8. For each j _ k ∈ λ with i < j < k define λ|j 7→i as the set partition
obtained by replacing j _ k with i _ k and leaving everything else in λ the same. That
is,

λ|j 7→i = λ ∪ {i _ k} − {j _ k}.

With this notation we can describe the shell set Cλ,i_l as a union of shells with half
a whorl, shells with one whorl, and shells with greater than one whorl.

Lemma 9. For λ ` [n], and i /∈ le(λ), the shell set is given by

Cλ,i_l = {λ} ∪ {λ ∪ {i _ k} | i < k < l, k /∈ re(λ)}
∪{µ ∈ Cλ|j 7→i,j_k | i < j < k < l, j _ k ∈ λ}.

Proof. By definition {λ, λ ∪ {i _ k} | i < k < l, k /∈ re(λ)} ⊆ Cλ,i_l, so it suffices to
show that

Cλ,i_l\{λ, λ∪{i _ k}|i < k < l, k /∈ re(λ)} = {µ ∈ Cλ|j 7→i,j_k |i < j < k < l, j _ k ∈ λ}.

There exist j = j1 < · · · < js < ks′ < · · · < k1 = k with s′ ∈ {s, s+ 1} such that

(λ|j 7→i ∪ {j _ k})− µ = {j1 _ k1, j2 _ k2, . . . , js _ ks}, and

µ− (λ|j 7→i ∪ {j _ k}) = {j1 _ k2, j2 _ k3, . . . , js′−1 _ ks′}

if and only if there exist i < j = j1 < · · · < js < ks′ < · · · < k1 = k < l such that

(λ ∪ {i _ l})− µ = {i _ l, j1 _ k1, . . . , js _ ks}, and

µ− (λ ∪ {i _ l}) = {i _ k, j1 _ k2, . . . , js′−1 _ ks′}.

Thus µ ∈ Cλ|j 7→i,j_k for some i < j < k < l, j _ k ∈ λ if and only if µ ∈ Cλ,i_l\{λ, λ ∪
{i _ k} | i < k < l, k /∈ re(λ)} as desired.

Definition 10. For each µ ∈ Cλ,i_l define the shell coefficient of λ ∪ {i _ l} and µ as

cλ,i_l
µ =

t|(λ∪{i_l})−µ|qcrs((λ∪{i_l})∩µ,(λ∪{i_l})−µ)

qcrs((λ∪{i_l})∩µ,µ−(λ∪{i_l}))

where t = q − 1 and crs(·, ·) is the crossing number of two set partitions given in Section
2.2.

We can associate each shell coefficient cλ,i_l
µ to the shell created by the symmetric differ-

ence of λ ∪ {i _ l} and µ. The next lemma shows the shell coefficient is the product of
the shell coefficient of the outer whorl with the shell coefficient of the inner whorls.
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Lemma 11. Let λ ` [n], i /∈ le(λ), and h _ l, j _ k ∈ λ with 1 6 h < i < j < k < l 6 n.
If µ ∈ Cλ|j 7→i,j_k then

cλ,i_l
µ = cλ,i_l

λ∪{i_k}c
λ|j 7→i,j_k
µ .

Proof. Let µ ∈ Cλ|j 7→i,j_k. By construction i /∈ le(λ|j 7→i), so i _ l /∈ µ. Thus we have

(λ ∪ {i _ l})− µ = {i _ l} ∪ (λ− µ),

hence
(λ ∪ {i _ l}) ∩ µ = λ ∩ µ.

Substituting this and applying the crossing number equation (1), it follows that

cλ,i_l
µ =

t|(λ∪{i_l})−µ|qcrs((λ∪{i_l})∩µ,(λ∪{i_l})−µ)

qcrs((λ∪{i_l})∩µ,µ−(λ∪{i_l}))

=
t|{i_l}∪(λ−µ)|qcrs(λ∩µ,{i_l}∪(λ−µ))

qcrs(λ∩µ,µ−(λ∪{i_l}))

=
t|i_l|qcrs(λ∩µ,i_l)t|λ−µ|qcrs(λ∩µ,λ−µ)

qcrs(λ∩µ,µ−(λ∪{i_l})) .

Similarly since j _ k ∈ λ and i _ k ∈ µ− λ, we have

µ− (λ ∪ {i _ l}) = {i _ k} ∪ (µ− (λ|j 7→i ∪ {j _ k}))

and thus
λ− µ = λ|j 7→i ∪ {j _ k} − µ.

By the crossing number equation (1),

cλ,i_l
µ =

t|i_l|qcrs(λ∩µ,i_l)t|(λ|j 7→i ∪ j_k)−µ|qcrs(λ∩µ,(λ|j 7→i ∪ j_k)−µ)

qcrs(λ∩µ,{i_k}∪(µ−(λ|j 7→i ∪ j_k)))

=
t|i_l|qcrs(λ∩µ,i_l)

qcrs(λ∩µ,i_k)
· t
|(λ|j 7→i ∪ j_k)−µ|qcrs(λ∩µ,(λ|j 7→i ∪ j_k)−µ)

qcrs(λ∩µ,µ−(λ|j 7→i ∪ j_k))
.

Moreover any arc in λ that crosses with i _ k or i _ l must be in µ, implying

cλ,i_l
µ =

t|i_l|qcrs(λ,i_l)

qcrs(λ,i_k)
· t
|(λ|j 7→i ∪ j_k)−µ|qcrs((λ|j 7→i ∪ j_k)∩µ,(λ|j 7→i ∪ j_k)−µ)

qcrs((λ|j 7→i ∪ j_k)∩µ,µ−(λ|j 7→i ∪ j_k))

= cλ,i_l
λ∪{i_k}c

λ|j 7→i,j_k
µ .

Theorem 12. For λ ` [n], i /∈ le(λ), and 1 6 i < l 6 n, we have

χλ � χi_×l =
∑

µ∈Cλ,i_l
cλ,i_l
µ χµ where cλ,i_l

µ =
t|(λ∪{i_l})−µ|qcrs((λ∪{i_l})∩µ,(λ∪{i_l})−µ)

qcrs((λ∪{i_l})∩µ,µ−(λ∪{i_l})) .

where Cλ,i_l is the shell set of λ∪{i _ l} and cλ,i_l
µ is the shell coefficient of λ∪{i _ l}

and µ.
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Before proving the theorem we state a lemma about the q-analog of a crossing number.
In general, the q-analog of a nonnegative integer n is

[n]q =
qn − 1

q − 1
.

Lemma 13. For λ ` [n], and 1 6 j < l 6 n where j /∈ le(λ), we have∑
i_k∈λ
i<j<k<l

qcrs(λ,j_k) =
qcrs(λ,j_l) − 1

q − 1
= [crs(λ, j _ l)]q.

Proof. Let λ ` [n], 1 6 j < l 6 n, and j /∈ le(λ). If the set of arcs in λ that cross with
j _ k is given by

{i _ k ∈ λ | i < j < k < l} = {i1 _ k1, i2 _ k2, . . . , ir _ kr},

then for 1 6 s 6 r

{i _ k ∈ λ | i < j < k < ks} = {i1 _ k1, i2 _ k2, . . . , is−1 _ ks−1}.

By the definition of the crossing number∑
i<j<k<l
i_k∈λ

qcrs(λ,j_k) =
r∑
s=1

q#{i_k∈λ|i<j<k<ks} =
r∑
s=1

qs−1 =
qr − 1

q − 1
=
qcrs(λ,j_l) − 1

q − 1
.

We are now ready to prove Theorem 12.

Proof. We induct on l − i. For the base case assume l − i = 1. Then Cλ,i_l = {λ}, and
we obtain

χλ � χi_×l = χλ � t1 = tχλ = cλ,i_l
λ χλ

as desired.
Assume the formula holds for all 1 6 k < j 6 n such that the difference k− j < l− i.

Then, this yields

χλ � χi_×l = χλ � t
(
1 +

∑
i<k<l

χi_k

)
= tχλ + t

∑
i<k<l

χλ � χi_k

= tχλ + t

( ∑
i<k<l
k/∈re(λ)

χλ � χi_k +
∑

h<i<k<l
h_k∈λ

χλ � χi_k +
∑

i<j<k<l
j_k∈λ

χλ � χi_k

)
,

which by Proposition 4 is equal to

= tχλ + t
∑
i<k<l
k/∈re(λ)

χλ∪{i_k} + t
∑

h<i<k<l
h_k∈λ

χλ � χi_×k + t
∑

i<j<k<l
j_k∈λ

χλ∪{i_k}−{j_k} � χj_×k.
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Recall from Definition 8 that λ|j 7→i = λ ∪ {i _ k} − {j _ k} for each j _ k ∈ λ such
that i < j < k < l. By the induction hypothesis the tensor product χλ � χi_×l is

= tχλ+t
∑
i<k<l
k/∈re(λ)

χλ∪{i_k}+t
∑

h<i<k<l
h_k∈λ

( ∑
µ∈Cλ,i_k

cλ,i_k
µ χµ

)
+t

∑
i<j<k<l
j_k∈λ

( ∑
µ∈Cλ|j 7→i,j_k

cλ|j 7→i,j_k
µ χµ

)
.

By Lemma 13, the coefficient of χλ will be

t+ t
∑

h<i<k<l
h_k∈λ

cλ,i_k
λ = t

(
1 +

∑
h<i<k<l
h_k∈λ

tqcrs(λ,i_k)

)
= t

(
1 + t · q

crs(λ,i_l) − 1

t

)
= tqcrs(λ,i_l) = cλ,i_l

λ .

Similarly for λ ∪ {i _ k′} where i < k′ < l and k′ /∈ re(λ), the coefficient of χλ∪{i_k′} is

t+ t
∑

h<i<k′<k<l
h_k∈λ

cλ,i_k
µ = t

(
1 +

∑
h<i<k′<k<l
h_k∈λ

t
qcrs(λ,i_k)

qcrs(λ,i_k′)

)
= t

(
1 +

∑
h<i<k<l
h_k∈λ

tqcrs(λ−ν,i_k)

)
,

where ν = {h _ k ∈ λ | (h _ k, i _ k′) ∈ Crs(λ, i _ k′)}. This is equivalent to

t

(
1 + t · q

crs(λ−ν,i_l) − 1

t

)
= t

(
1 + t · q

crs(λ,i_l)−crs(λ,i_k′) − 1

t

)
=
tqcrs(λ,i_l)

qcrs(λ,i_k′)
= cλ,i_l

λ∪{i_k}

by Lemma 13. If j _ k′ ∈ λ is such that i < j < k′ < l then we have λ|j 7→i = λ ∪ {i _
k′} − {j _ k′}. Let ν = {h _ k ∈ λ | (h _ k, i _ k′) ∈ Crs(λ, i _ k′)}. Using Lemma
11, the coefficient of χµ for each µ ∈ Cλ|j 7→i,j_k′ is

tcλ|j 7→i,j_k′

µ + t
∑

h<i<k′<k<l
h_k∈λ

cλ,i_k
µ = tcλ|j 7→i,j_k′

µ + t
∑

h<i<k′<k<l
h_k∈λ

cλ,i_k
λ∪i_k′c

λ|j 7→i,j_k′

µ

= tcλ|j 7→i,j_k′

µ

(
1 +

∑
h<i<k′<k<l
h_k∈λ

t
qcrs(λ,i_k)

qcrs(λ,i_k′)

)

= tcλ|j 7→i,j_k′
(

1 + t · q
crs(λ−ν,i_l) − 1

t

)
.

Applying Lemmas 13 and 11 yields

tcλ|j 7→i,j_k′
(

1 + t · q
crs(λ−ν,i_l) − 1

t

)
= tcλ|j 7→i,j_k′

(
1 + t · q

crs(λ,i_l)−crs(λ,i_k′) − 1

t

)
=

tqcrs(λ,i_l)

qcrs(λ,i_k′)
cλ|j 7→i,j_k′

µ

= cλ,i_l
λ∪{i_k}′c

λ|j 7→i,j_k′

µ
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= cλ,i_l
µ .

Substituting this into the equation for χλ � χi_×l and applying Lemma 9 we obtain

χλ � χi_×l = cλ,i_l
λ χλ +

∑
i<k<l
k/∈re(λ)

cλ,i_l
λ∪{i_k}χ

λ∪{i_k} +
∑
µ`[n]

∑
i<j<k<l
j_k∈λ

µ∈Cλ|j 7→i,j_k

cλ,i_l
µ χµ

=
∑

µ∈Cλ,i_l
cλ,i_l
µ χµ.

This combinatorial description of the coefficients in the tensor product leads to a
combinatorial description of the coefficients in the restriction to Un−1.

Corollary 14. For λ ` [n], the restriction ResUnUn−1
(χλ) is given by

ResUnUn−1
(χλ) =

∑
µ`[n−1]

cλµχ
µ

where

cλµ =


δλµ if n /∈ re(λ),
t|λ−µ|qcrs(λ∩µ,λ−µ)

qcrs(λ∩µ,µ−λ)
if µ ∈ Cλ−{i_n},i_n,

0 otherwise.

Proof. Applying Propositions 3, 4, and Theorem 12 respectively,

ResUnUn−1
(χλ) =

⊙
i_l∈λ

ResUnUn−1
(χi_l) =

⊙
j_l∈λ
l 6=n

χj_l � χi_×n

= χλ−{i_n} � χi_×n =
∑

µ∈Cλ−{i_n},i_n
cλµχ

µ

where

cλµ = cλ−{i_n},i_n
µ =

t|λ−µ|qcrs(λ∩µ,λ−µ)

qcrs(λ∩µ,µ−λ)
.

Example 15. Similar to Example 7, let

λ =

so that

Cλ−{2_6},2_6 =

 , ,

 .

Drawing the arcs of µ = {1 _ 4, 2 _ 3 _ 5} below the nodes of λ as shown below
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illustrates that

cλµ =
t1 · q1

q0
= tq

since

λ− µ = {2 _ 6}, Crs(λ ∩ µ, λ− µ) = {(1 _ 4, 2 _ 6)},
crs(λ ∩ µ, λ− µ) = 1, crs(λ ∩ µ, µ− λ) = 0.

We can calculate the other coefficients in the same manner to obtain

ResU6
U5

(χλ) = tqχ{1_4,3_5} + tqχ{2_3_5,1_4} + t2qχ{1_4,2_5}.

3.2 Induction and Superinduction

While the restriction of a supercharacter of Un is a nonnegative integer linear combination
of supercharacters, an induced supercharacter may not be a sum of supercharacters. In
fact, the induced character may not even be a superclass function; for an example see [11,
Section 6]. If instead we generalize to superinduction by averaging over superclasses in the
same way that induction averages over conjugacy classes, then the constructed function
will be a linear combination of supercharacters with rational coefficients [11, Lemma 6.7].

Suppose H ⊆ G and χ is a superclass function of H. If Kg is the superclass containing
g ∈ G, then the superinduction SIndGH(χ) is

SIndGH(χ)(g) = |G : H| 1

|Kg|
∑
x∈Kg

χ̇(x) where χ̇(x) =

{
χ(x) if x ∈ H
0 if x 6∈ H.

A nice property of superinduction is that the analog of Frobenius reciprocity holds.

Proposition 16 (Frobenius Reciprocity [15, Lemma 5.2]). Let H be a subgroup of G.
Suppose ϕ is a superclass function of G and θ is a class function of H. Then

〈SIndGH(θ), ϕ〉G = 〈θ,ResGH(ϕ)〉H .

However, superinduced characters are not necessarily characters so it is useful to know
when superinduction is equivalent to induction.

[17, Section 3.2] examines some cases when this occurs for a larger class of p-groups
known as algebra groups. If J is a finite dimensional nilpotent associative algebra over
Fq, then the algebra group based on J is G = {1 + x | x ∈ J} under the multiplication
(1 + x)(1 + y) = 1 + x + y + xy. In particular, Marberg and Thiem show if we embed
Un−1 into Un by

Un−1 = {u ∈ Un | (u− 1)ij 6= 0 implies i < j < n}
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then for any superclass function χ of Un−1,

SIndUnUn−1
(χ) = IndUnUn−1

(χ).

They also provide some conditions when superinduction is the same as induction.

Proposition 17 ([17, Theorem 3.1]). Let H be a subalgebra group of an algebra group G,
and suppose

1. no two superclasses of H are in the same superclass of G, and

2. x(h− 1) + 1 ∈ H for all x ∈ G, h ∈ H.

Then the superinduction of any superclass function χ of H is

SIndGH(χ) = IndGH(χ).

If we embed Un−1 into Un by

Un−1 = {u ∈ Un | un−1,n = 0 and ui,n−1 = 0 for i < n− 1}

then we have the following corollary.

Corollary 18. Let Un−1 = {u ∈ Un | un−1,n = 0 and ui,n−1 = 0 for i < n− 1}. Then the
superinduction any superclass function χ of Un−1 is

SIndUnUn−1
(χ) = IndUnUn−1

(χ).

Proof. It suffices to show the hypotheses of the previous theorem hold. Because there is
an injective function from superclasses of Un−1 to Un then no two superclasses of Un−1
are in the same superclass of Un.

Let x ∈ Un, h ∈ Un−1 and u = x(h − 1) + 1. Since hi,n−1 − 1 = 0 we have ui,n−1 = 0
for i < n− 1. Similarly, xn−1,j = 0 for j < n− 1 and hn−1,j − 1 = 0 for j > n− 1 implies
un−1,n = 0. This shows u ∈ Un−1. Therefore, SIndUnUn−1

(χ) = IndUnUn−1
(χ) for any superclass

function χ of Un−1 by Proposition 17.

Unlike in the representation theory of the symmetric group, the decomposition of
induced characters depends on the embedding of Un−1 into Un. If we instead consider right
modules, then superinduction is equivalent to induction for the following embeddings

Un−1 = {u ∈ Un | (u− 1)ij 6= 0 implies 1 < i < j}

and
Un−1 = {u ∈ Un | u1,2 = 0 and u2,j = 0 for 2 < j}

[17, Section 3.1]. However, it is not known if superinduction is the same as induction for
other embeddings. In our case we use the embedding of Un−1 ⊆ Un obtained by removing
the last column so that superinduction is in fact induction.

We now derive a corresponding formula for induction from restriction.
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Corollary 19. For µ ` [n− 1], the induction IndUnUn−1
(χµ) is given by

IndUnUn−1
(χµ) =

∑
λ`[n]

dλµχ
λ,

where

dλµ =


δλµ if n /∈ re(λ)
t|µ−λ|qcrs(µ−λ,λ∩µ)

qcrs(λ−µ,λ∩µ)
if µ ∈ Cλ−{i_n},i_n

0 otherwise.

Proof. Let λ ` [n] and µ ` [n− 1]. Frobenius reciprocity, Proposition 16, shows

〈χλ, SIndUnUn−1
(χµ)〉Un = 〈ResUnUn−1

(χλ), χµ〉Un−1 .

Thus if
IndUnUn−1

(χµ) =
∑
γ

dγµχ
γ and ResUnUn−1

(χλ) =
∑
ν

cλνχ
ν

then the inner product, Proposition 2, yields

qcrs(λ,λ)t|λ|dλµ = qcrs(µ,µ)t|µ|cλµ.

Therefore, the coefficient dλµ is

dλµ =
t|µ|−|λ|qcrs(µ,µ)

qcrs(λ,λ)
cλµ

=
t|µ|−|λ|qcrs(µ,µ)

qcrs(λ,λ)
· t
|λ−µ|qcrs(λ∩µ,λ−µ)

qcrs(λ∩µ,µ−λ)

=
t|µ−λ|qcrs(µ,µ)−crs(λ∩µ,µ−λ)

qcrs(λ,λ)−crs(λ∩µ,λ−µ)

since |µ− λ| = |µ| − |λ|+ |λ− µ|. From the crossing number equation (1) we obtain

dλµ =
t|µ−λ|qcrs(µ−(λ∩µ),µ−(µ−λ))

qcrs(λ−(λ∩µ),λ−(λ−µ))

=
t|µ−λ|qcrs(µ−λ,λ∩µ)

qcrs(λ−µ,λ∩µ)
.

Together Corollaries 14 and 19 for decomposing restricted and induced supercharacters
are known as branching rules, which we restate due to their importance.

Theorem 20 (Branching Rules). For λ ` [n], the restriction ResUnUn−1
(χλ) is given by

ResUnUn−1
(χλ) =

∑
µ`[n−1]

cλµχ
µ
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where

cλµ =


δλµ if n /∈ re(λ),
t|λ−µ|qcrs(λ∩µ,λ−µ)

qcrs(λ∩µ,µ−λ)
if µ ∈ Cλ−{i_n},i_n,

0 otherwise.

For µ ` [n− 1], the induction IndUnUn−1
(χµ) is given by

IndUnUn−1
(χµ) =

∑
λ`[n]

dλµχ
λ,

where

dλµ =


δλµ if n /∈ re(λ)
t|µ−λ|qcrs(µ−λ,λ∩µ)

qcrs(λ−µ,λ∩µ)
if µ ∈ Cλ−{i_n},i_n

0 otherwise.

This enables us to quickly compute meaningful examples of restricting and inducing a
supercharacter multiple times. While these formulas allow us to better understand re-
striction and induction, they are also useful for Schur–Weyl duality.

4 Shell Tableaux

We use the branching rules to create a graph known as the Bratteli diagram. For the
symmetric group, paths in the Bratteli diagram are indexed by a set of combinatorial
objects called Young tableaux [16]. Building from the combinatorics of the previous
section, we create an analog of Young tableaux known as shell tableaux and construct a
bijection between shell tableaux and paths in the Bratteli diagram.

For k ∈ Z>1, consider

V k = (IndUnUn−1
ResUnUn−1

) · · · (IndUnUn−1
ResUnUn−1

)︸ ︷︷ ︸
k times

(1)

where 1 is the trivial supercharacter of Un that is restricted and induced k times. This is
reminiscent of the situation in the partition algebra where the permutation representation
of the symmetric group is isomorphic to restricting and then inducing the trivial character.
Note that if V = CUn ⊗CUn−1 1 then

V = CUn ⊗CUn−1 ResUnUn−1
(1) = IndUnUn−1

ResUnUn−1
(1)

by the definition of induction. More broadly, we have the following generalization of the
tensor identity from [13, (3.18)].

Lemma 21. Let H be a subgroup of a group G. For a G-module M , the map

τ : CG⊗CH ResGH(M) −→ (CG⊗CH 1)⊗M
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g ⊗m 7→ (g ⊗ 1)⊗ gm
g ⊗ g−1m ←[ (g ⊗ 1)⊗m

is a G-module isomorphism.

Iterating this identity, we obtain
V k ∼= V ⊗k.

For λ ` [n], let Uλ
n denote the Un-supermodule of the supercharacter χλ and let

Ẑk =
{
λ ` [n] | HomUn(Uλ

n , V
k) 6= ∅

}
Ẑk+ 1

2
=

{
µ ` [n− 1] | HomUn−1(U

µ
n−1,ResUnUn−1

(V k)) 6= ∅
}
.

The Bratteli diagram Λ(n) is the graph with

(a) vertices {(λ, k) | k ∈ Z>0, λ ∈ Ẑk} ∪ {(µ, k + 1
2
) | k ∈ Z>0, µ ∈ Ẑk+ 1

2
},

(b) an edge (λ, k)→ (µ, k + 1
2
) if 〈ResUnUn−1

(χλ), χµ〉 6= 0,

(c) an edge (µ, k + 1
2
)→ (λ, k + 1) if 〈χλ, IndUnUn−1

(χµ)〉 6= 0,

(d) an edge labeling m : E → Z>1 on the set of edges E defined by

m((λ, k)→ (µ, k + 1
2
)) =

(q − 1)|λ−µ|qcrs(λ∩µ,λ−µ)

qcrs(λ∩µ,µ−λ)

m((µ, k + 1
2
)→ (λ, k + 1)) =

(q − 1)|µ−λ|qcrs(µ−λ,λ∩µ)

qcrs(λ−µ,λ∩µ)
.

Recall from the branching rules, Theorem 20, that the edge labeling m((λ, k)→ (µ, k+ 1
2
))

is the restriction coefficient which specifies the multiplicity that χµ appears in ResUnUn−1
(χλ).

Similarly, the edge labeling m((λ, k + 1
2
) → (µ, k + 1)) is the induction coefficient which

specifies the multiplicity that χλ appears in IndUnUn−1
(χµ).

When drawing the Bratteli diagram, we place all the vertices (λ, l) in the lth row and
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simply write λ. For example, the Bratteli diagram for Λ(3) up to row 3 is

t tt

t

t ttt

t

k = 0

k = 1
2

k = 1

k = 11
2

k = 2

k = 21
2

k = 3

where t = q − 1.
A path P in the Bratteli diagram Λ(n) to λ ∈ Ẑk is a sequence

P = (λ0, λ
1
2 , . . . , λk−

1
2 , λk = λ)

such that for 0 6 r 6 k − 1,

(a) (λr, r) and (λr+
1
2 , r + 1

2
) are vertices in Λ(n)

(b) (λr, r)→ (λr+
1
2 , r + 1

2
) and (λr+

1
2 , r + 1

2
)→ (λr+1, r + 1) are edges in Λ(n).

For instance,

P =
(

, , , , , ,
)

is a path in Λ(3).
Taking the edge labeling into account, we say the weight wt(P ) of a path P is the

product
k−1∏
r=1

m((λr, r)→ (λr+
1
2 , r + 1

2
))m((λr+

1
2 , r + 1

2
)→ (λr+1, r + 1))

of its edge labels. The sum of the weights of the paths to λ ∈ Ẑk is the multiplicity that
χλ appears in V k. The path given above has weight t2 since m((λ1, 1) → (λ1

1
2 , 1

2
)) = t

and m((λ2, 2)→ (λ2
1
2 , 1

2
)) = t.

Let Pk(λ) be the set of paths in Λ(n) to λ ∈ Ẑk. There is a combinatorial way to
encode paths in Pk(λ) using a generalization of shells.
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Definition 22. Let s′ ∈ {s, s+ 1} for s ∈ Z>1 and 1 6 i 6 l 6 n. A generalized shell of
width l − i is a set of arcs on n nodes of the form

s⋃
r=1

{j _ minLr | j ∈ Ir} ∪
s′−1⋃
r=1

{max Ir ^ m | m ∈ Lr+1}

where Ir, Lr ⊆ [n] with {i} = I1 < · · · < Is 6 Ls′ < · · · < L1 = {l}.

For subsets I, L ⊆ [n] we say I < L if i < l for each i ∈ I and l ∈ L. If max I = minL, we
say I 6 L. It follows that a generalized shell with |Ir| = 1 and |Lr| = 1 for all r is simply
a shell in the sense of Definition 5. Some generalized shells of size 6 and width 6− 2 are

{2 _ 6}∪{2 ^ m | m ∈ {3, 4}}, {2 _ 6}∪{j _ 5 | j ∈ {3, 4}}∪{2 ^ 5}.

A labeled shell is a pair (ς, τ) for a generalized shell ς and a map τ : ς → Z>0. We
say the labeling τ is strict if every pair of arcs (i, l), (j,m) ∈ ς with dim(i, j) > dim(j,m)
satisfies τ(i, j) < τ(j,m), and τ(j,m) 6= τ(i, l) + 1 if i = j or l = m. If τ(i, j) = a, we
write the labeled arc as (i, j; a). When the orientation of the arc is specified we write
(i _ j; a) or (i ^ j; a). For example, in the case of the shell

3

4

6

{(2 _ 6; 3), (3 _ 5; 6), (2 ^ 5; 4)}.

From strictly labeled shells, we define the key notion shell tableaux.

Definition 23. A shell tableau T = (ς1, . . . , ςk) of length k is a sequence of strictly labeled
shells ςr of size n and width n− ir such that

1. for 1 6 r < k, ςr = {(n _ n; a)} or |ςr| > 2, and ςk = {(ik _ n; a)};

2. each arc has a distinct label in {1, 2, . . . ,
∑k

r=1 |ςr|};

3. the two smallest labels of each labeled shell ςr are less than the smallest label in
ςr+1;

4. for l 6= m and i < j 6 min{l,m}, if (i, l; a) ∈ ςrl then there exists a minimal b > a
such that (i,m; b) ∈ ςrm if and only if (j,min{l,m}; b+ 1) ∈ ςrmin{l,m} ;

5. for i 6= j and max{i, j} 6 l < m, if (j,m; a) ∈ ςrj then there exists a minimal b > a
such that (i,m; b) ∈ ςri if and only if (max{i, j}, l; b+ 1) ∈ ςrmax{i,j} .
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Conditions 1–3 provide the basic set up of the shells and labeling that are analogous to the
condition of increasing entires along the rows and columns in standard Young tableaux.
Intuitively conditions 4 and 5 say a strictly labeled shell in a shell tableau has inner whorls
if and only if its outer whorl conflicts with the outer whorl of another shell. As an example
consider the tableau

T=

( 1

2

,
3

4

6
,

5

7
,

8

)

of length 4. By condition 4, the inner half whorl (3 _ 5; 6) lies in ς2 since (2 ^ 5; 4) ∈ ς2
conflicts with (2 _ 6; 5) ∈ ς3.

Let ST k denote the set of shell tableaux of length k.

Definition 24. Define the map

sh : (Z>0,ST k) −→ Set of Arcs

(a, T ) 7−→
k⋃
r=1

{
(i, l) ∈ ςr

∣∣∣∣ i 6= l and τ((i, l)) is maximal
among all labels b ∈ ςr with b 6 a

}
,

and sh(T ) = sh(|T |, T ) be the shape of a shell tableau T .

For T in the example above, we have

sh(T ) =

because τ(1, 4) = 2 is the maximal label ς1, τ(3, 5) = 6 is the maximal label in ς2 and
τ(2, 3) is the maximal label in ς3. For λ ` [n], let ST k(λ) denote the set of shell tableaux
of shape λ.

Theorem 25. Let λ ∈ Ẑk. There is a bijection between Pk(λ) and ST k(λ).

Proof. Let λ ∈ Ẑk. Given a path P = (λ0, λ
1
2 , λ1, . . . , λk−

1
2 , λk) ∈ Pk(λ) we will recursively

define a sequence
T0, T 1

2
, T1, . . . , Tk− 1

2
, Tk

where Tj is a shell tableau of length j and shape λj, and Tj+ 1
2

is a shell tableau of length

j + 1 and shape λj+
1
2 . Let T0 be the empty shell tableau of length 0.

1. If λj+
1
2 = λj, we define

Tj+ 1
2

= (ς1
j+ 1

2
, ς2
j+ 1

2
, . . . , ςj+1

j+ 1
2

),

where

ςr
j+ 1

2
=

{
ςrj if r < j + 1,
(n, n; |Tj|+ 1) if r = j + 1.
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2. If λj+
1
2 6= λj, suppose

t⋃
s=1

{is _ ls} ∪
t⋃

s=1

{is ^ ls+1}

is the shell created by the symmetric difference of λr and λr+
1
2 . Since sh(Tj) = λj,

for 1 6 s 6 t, (is, ls; as) is an arc with maximal label as 6 |Tj| in a diagram ςrsj of
Tj. Let

Tj+ 1
2

= (ς1
j+ 1

2
, ς2
j+ 1

2
, . . . , ςj+1

j+ 1
2

),

where

ςr
j+ 1

2
=


ςrj if r 6= rs for any s,
ςrj ∪ (is, ls+1; |Tj|+ s) if r = rs for some s,
(n, n; |Tj|+ t+ 1) if r = j + 1.

3. If λj+1 = λj+
1
2 , define Tj+1 = Tj+ 1

2
.

4. If λj+1 6= λj+
1
2 , suppose

t⋃
s=1

{is _ ls} ∪
t−1⋃
s=1

{is ^ ls+1}

is the shell created by the symmetric difference of λr and λr+
1
2 . Since sh(Tj+ 1

2
) =

λj+
1
2 then for 1 6 s 6 t − 1, (is, ls+1; as) is an arc with maximal label as 6 |Tj+ 1

2
|

in a distinct diagram ςrs
j+ 1

2

in Tj+ 1
2
. We define

Tj+1 = (ς1j+1, ς
2
j+1, . . . , ς

j+1
j+1 ),

where

ςrj+1 =


ςr
j+ 1

2

if r 6= rs for any s,

ςr
j+ 1

2

∪ (is+1, ls+1; |Tj+ 1
2
|+ s) if r = rs for some s,

(i1, l1, |Tj+ 1
2
|) if r = j + 1.

In the above construction, we have T 1
2

= (ς11
2

) where ς11
2

= {(n _ n; 1)} is a shell

tableau of length 1 and shape ∅. If Tj is a shell tableau of length j and shape λj, then
Tj+ 1

2
has length j + 1 and

sh(Tj+ 1
2
) = (λj ∩ λj+

1
2 ) ∪ (λj+

1
2 − λj) = λj+

1
2 .

It is straightforward to check that Tj+ 1
2

satisfies conditions 1–4. Since Tj is a shell tableau,

it suffices to prove condition 5 for the arcs (is, ls+1; |Tj|+s). For s > 1, consider (is, ls; as) ∈
ςrs
j+ 1

2

. Then (is−1, ls; |Tj| + s − 1) lies in ς
rs−1

j+ 1
2

where |Tj| + s − 1 > as is minimal, and

(is, ls+1; |Tj| + s) ∈ ςrs
j+ 1

2

. Thus condition 5 holds, so Tj+ 1
2

is in fact a shell tableau. A

similar argument can be used to verify each Tj is a shell tableau of length j and shape λj.
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For λ ∈ Ẑk, define
ϕ : Pk(λ) −→ ST k(λ)

P 7→ Tk.

The map ϕ is bijective since the construction of the sequence of shell tableaux can be
reversed as follows. Given a shell tableau T = (ς1, ς2, . . . , ςk) of shape λ, let Tk = T .

1. If ςj = {(n _ n; a)}, define Tj− 1
2

= Tj.

2. If (i _ n; a) ∈ ςj for i < n, let (i1, l1; a1), (i2, l2; a2), . . . , (it, lt; at) be the arcs in Tj
with is _ ls ∈ ςrsj and as > a. We define

Tj− 1
2

= (ς1
j− 1

2
, ς2
j− 1

2
, . . . , ςj

j− 1
2

),

where

ςr
j− 1

2
=


ςrj if r 6= rs for any s,
ςrj − (is, ls; as) if r = rs for some s,
(n, n, |Tj| − t+ 1) if r = j.

3. If ςj = {(n _ n; a)}, define Tj = (ς1j , ς
2
j , . . . , ς

j−1
j ) where ςrj = ςr

j+ 1
2

.

4. If (i _ n; a) ∈ ςj for i < n, let (i1, l1; a1), (i2, l2; a2), . . . , (it, lt; at) be the arcs in Tj
with is _ ls ∈ ςrsj and as > a. We define

Tj = (ς1j , ς
2
j , . . . , ς

j−1
j ),

where

ςrj =

{
ςr
j+ 1

2

if r 6= rs for any s,

ςr
j+ 1

2

− (is, ls; as) if r = rs for some s.

Therefore the inverse of ϕ is

ϕ−1 : ST k(λ) −→ Pk(λ)
T 7→ P = (sh(T1), sh(T2), . . . , sh(Tk)).

Example 26. For the path

P =

(
, , , , , , , ,

)

the sequence of shell tableaux is

T0 = ( )

T 1
2

=

(
1

)
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T1 =

( 1 )

T1 1
2

=

( 1

2

,
3

)

T2 =

( 1

2

,
3
)

T2 1
2

=

( 1

2

,
3

4

,
5

)

T3 =

( 1

2

,
3

4

6
,

5
)

T3 1
2

=

( 1

2

,
3

4

6
,

5

7
,

8

)

T4 =

( 1

2

,
3

4

6
,

5

7
,

8

)
.

Note that each shell ςr keeps track of the arc introduced at the rth row of the Bratteli
diagram from inducing ResUnUn−1

(V ⊗r−1).
When q = 2, then q − 1 = 1 so that many of the edges in the Bratteli diagram have

weight 1. In this case, we can account for the weights of paths in the Bratteli diagram
by removing the second condition in the definition of a strict labeling. A semi-strict
shell tableau is a shell tableau where we allow τ(j,m) = τ(i, l) + 1 for every pair of arcs
(i, l; τ(i, l)) and (j,m; τ(j,m)) in a labeled shell with dim(i, l) > dim(j,m) and i = j or
k = l. This is reminiscent of semi-standard Young tableaux where we allow the entries
along the rows to be weakly increasing.

Suppose SST k(λ) is the set of semi-strict shell tableaux of length k and shape λ.
Recall the sum of the weights of paths to λ is the multiplicity of χλ in V k. When q = 2,
this is the number of semi-strict shell tableaux.

Proposition 27. Let q = 2 and λ ∈ Ẑk. Then∑
P∈Pk(λ)

w(P ) = |SST k(λ)|.

Proof. Let q = 2 and λ ∈ Ẑk. Let T = (ς1, . . . , ςk) ∈ ST k(λ) be the shell tableau

corresponding to the path P = (λ0, λ
1
2 , . . . , λk−

1
2 , λk) via the bijection in the proof of
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Theorem 25. Since the weight of P is the product of its edge labels, it suffices to consider
the label of a single edge. Recall the label of an edge (λr, r)→ (λr+

1
2 , r + 1

2
) in P is

m((λr, r)→ (λr+
1
2 , r + 1

2
)) =

2crs(λr∩λr+
1
2 ,λr−λr+

1
2 )

2crs(λr∩λr+
1
2 ,λr+

1
2−λr)

.

Suppose
t⋃

s=1

{is _ ls} ∪
t⋃

s=1

{is ^ ls+1}

is the shell created by the symmetric difference of λr and λr+
1
2 where (is, ls+1; as) ∈ ςrs .

For 1 6 s 6 t, define the set

Ys =

{
m

∣∣∣∣∣ (j _ m, is _ ls) ∈ Crs(λr ∩ λr+ 1
2 , λr − λr+ 1

2 ),

(j ^ m, is ^ ls+1) /∈ Crs(λr ∩ λr+ 1
2 , λr+

1
2 − λr)

}
.

Note that

t∑
s=1

|Ys| = crs(λr ∩ λr+
1
2 , λr − λr+

1
2 )− crs(λr ∩ λr+

1
2 , λr+

1
2 − λr).

For each subset Xs ⊆ Ys, add the arcs (is, l; bl) ∈ ςrs for l ∈ Xs. There is a unique
relabeling of the arcs with a distinct label in {1, 2, . . . ,

∑k
r=1 |ςr|+

∑t
s=1 |Xs|} so that the

order of the labels of the original arcs in T is preserved, and every pair of arcs (i, l; τ(i, l))
and (j,m; τ(j,m)) in a labeled shell with dim(i, l) > dim(j,m) satisfies τ(i, l) < τ(j,m).

Then each (X1, . . . , Xt) determines one of the 2
∑t
s=1 |Ys| semi-strict shell tableaux.

Example 28. Consider the path P from Example 26,

P =

(
, , , , , , , ,

)

and corresponding tableaux

T =

( 1

2

,
3

4

6
,

5

7
,

8

)
.

The path P has weight 2 since m((λ3, 3) → (λ3
1
2 , 31

2
)) = 2. The shell created by the

symmetric difference between λ3 and λ3
1
2 is
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and the set Y1 = {4} as (1 _ 4, 2 _ 6) ∈ Crs(λ3 ∩ λ3 1
2 , λ3 − λ3 1

2 ), but (1 ^ 4, 2 ^ 3) /∈
Crs(λ3 ∩ λ3 1

2 , λ3
1
2 − λ3). The two semi-strict tableaux corresponding to ∅ and Y1 are

T =

( 1

2

,
3

4

6
,

5

7
,

8

)

and

T̃ =

( 1

2

,
3

4

6
,

5

8
7

,
9

)

respectively.
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