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Abstract

The vertex set of the Kneser graph K(n,k) is V = ([Z]) and two vertices are
adjacent if the corresponding sets are disjoint. For any graph F', the largest size
of a vertex set U C V such that K(n,k)[U] is F-free, was recently determined by
Alishahi and Taherkhani, whenever n is large enough compared to £ and F. In
this paper, we determine the second largest size of a vertex set W C V such that
K(n, k)[W] is F-free, in the case when F is an even cycle or a complete multi-partite
graph. In the latter case, we actually give a more general theorem depending on
the chromatic number of F.

Mathematics Subject Classifications: 05C35, 05D05
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1 Introduction

Turdn-type problems are fundamental in extremal (hyper)graph theory. For a pair H and
F of graphs, they ask for the maximum number of edges that a subgraph G of the host
graph H can have without containing the forbidden graph F'. A variant of this problem
is the so-called vertex Turan problem where given a host graph H and a forbidden graph
F', one is interested in the maximum size of a vertex set U C V(H) such that the induced
subgraph H[U] is F-free.

This problem has been studied in the context of several host graphs. In this paper we
follow the recent work of Alishahi and Taherkhani [1], who determined the exact answer
to the vertex Turédn problem when H is the Kneser graph K(n,k), which is defined on
the vertex set ([Z]) ={K C[n] ={1,2,...,n} : |K| = k} where two vertices K, K" are
adjacent if and only if K N K’ = {).

Theorem 1 (Alishahi, Taherkhani [1]). For any graph F, let x denote its chromatic
number and let n = n(F') denote the minimum possible size of a color class of G over all
possible proper x-colorings of F. Then for any k there exists an integer ng = no(k, F)
such that if n = ng and for a family G C ([Z}) the induced subgraph K(n,k)[G] is F-free,
then |G| < (Z) — ("ffﬂ) +n—1. Moreover, if equality holds, then there exists a (xy —1)-set
L such that |{G€G:GNL=0} =n—1.

Observe that the vertex Turan problem in the Kneser graph K (n, k) generalizes several

intersection problems in ([Z}):

o If ' = K5, the graph consisting a single edge, then the vertex Turan problem asks
for the maximum size of an independent set in K(n, k) or equivalently the size of

a largest intersecting family F C ([:) (ie. FNF' # () for all F,F" € F). The

celebrated theorem of Erdds, Ko, and Rado states that this is (Zj) if 2k < n holds.
Furthermore, for intersecting families F C ([Z]) of size (Zj) we have NperF # 0
provided n > 2k + 1.

o If ' = K, for some s > 3, then the vertex Turdn problem is equivalent to Erdds’s
famous matching conjecture: K (n, k)[F]is K,-free if and only if F does not contain

a matching of size s (s pairwise disjoint sets). Erdés conjectured that the maximum

size of such a family is max{ (skkfl)’ (Z) _ (n,;:ﬂ)}.

e Gerbner, Lemons, Palmer, Patkds, and Szécsi [8] considered [-almost intersecting
families F C ([z}) such that for any F' € F there are at most [ sets in F that are
disjoint from F'. This is equivalent to K (n, k)[F] being K ;-free.

e Katona and Nagy [10] considered (s,t)-union intersecting families F C ([Z]) suc
that for any Fy, Fy, ..., Fy, F, Fy, ..., F{ € F we have (Uj_,F;) N (U'_, F)) # 0.
This is equivalent to K (n, k)[F] being K +free.

Theorem 1 leads into several directions. One can try to determine the smallest value of
the threshold ng(k, G). Alishahi and Taherkhani [1] improved the upper bound on ny for
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l-almost intersecting and (s, ?)-union intersecting families. Erdds’s matching conjecture
is known to hold if n > (2s + 1)k — s. This is due to Frankl [6] and he also showed [5]
that the conjecture is true if k = 3.

Another direction is to determine the “second largest” family with K (n, k)[F] being
G-free. In the case of ' = K, this means that we are looking for the largest intersecting
family F C ([Z]) with NperF = (). This is the following famous result of Hilton and
Milner.

Theorem 2 (Hilton, Milner [9]). If F C ([Z}) is an intersecting family with n > 2k + 1

and NperF =0, then |F| < (777) — () + 1.

In the case of F' = K, extremal families are not intersecting, so to describe the
condition of being “second largest” precisely, we introduce the following parameter.

Definition 3. For a family F and integer ¢ > 2 let ¢;(F) denote the minimum number
m such that one can remove m sets from F with the resulting family not containing ¢
pairwise disjoint sets. We will write ¢(F) instead of ¢5(F). Note that this is the minimum
number of sets one needs to remove from F in order to obtain an intersecting family.

Observe that if s < t, then for any family F with ¢(F) < s — 1 the induced subgraph
K(n,k)[F] is K -free. In [1], the following asymptotic stability result was proved.

Theorem 4 (Alishahi, Taherkhani [1]). For any integers s < t and k, and positive real
number (B, there exists an ng = ng(k, s,t, 5) such that the following holds for n > ng. If

for F C ([Z]) with ((F) > s, the induced subgraph K(n,k)[F] is Ksi-free, then |F| <

(s + B)((12y) = ("557) holds.

Note that the above bound is asymptotically optimal as shown by any family F;, =
(Fe ("™ :1eF FNS#0U{H\, Hy,..., HYU{F|,F},...,F_,}, where S = [2, sk+1],
H, = [(i — Dk +2,ik+1] for all i« = 1,2,...,s and F|, Fy,..., F{_, are distinct sets
containing 1 and disjoint with S.

We improve Theorem 4 to obtain the following precise stability result for families F
for which K (n, k)[F] is K free.

Theorem 5. For any 2 < s <t and k there exists ng = ng(s,t, k) such that the following
holds for n > ng. If F C ([Z}) is a family with ((F) > s and K(n, k)[F] is K-free, then
we have |F| < (Zj) - (n_ks_kl_l) + s+t — 1. Moreover, equality holds if and only if F is
isomorphic to some F ;.

Using Theorem 5, we obtain a general stability result for the case when F' is a complete
multi-partite graph. We consider the family F; ,, .. ., that consists of s, pairwise
disjoint k-subsets Fy, Fy, ..., F, ., of [n] that do not meet [r] and those k-subsets of [n]
that either (i) intersect [r — 1] or (i) contain [r] and meet U;”}' F; and (iii) s, — 1 other
k-sets containing [r]. Clearly, if s; > 55 > ... > s, > 5,41 holds, then K (n, k)[F, s,...s,11]
i8 K, s,,..5,4,-free and its size is () — ("7,:“) + (7)) - ("78,:?1]“7") + 8 + Spq1 — L.
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Theorem 6. For any k > 2 and integers sy = so = ... = S = Sp41 = 1 there exists
ng = no(k, s1,...,8-11) such that if n > ng and F C ([Z]) is a family with .1 (F) = sp11
and K (n, k)[F| is K, s,,. s, -free, then we have | F| < (z) — (n7£+1) + (Z:I) — (nis,gtllkfr) +

sy +8r41— 1. Moreover, equality holds if and only if F is isomorphic to some Fg, s, . 5101

Note that Frankl and Kupavskii [7] proved the special case s; = 55 = -+ = s, = 1
with the asymptotically best possible threshold ny = (2k + o0,.(1))(r + 1)k.

Actually, Theorem 6 is a special case of a more general result that shows that it is
enough to solve the stability problem for bipartite graphs. For any graph F with x(F') > 3
let us define Br to be the class of those bipartite graphs B such that there exists a subset
U of vertices of F' with F[U] = B and x(F[V(F) \ U]) = x(F) — 2. Note that by
definition, for any B € B we have n(B) > n(F). We define Bp, to be the subset of
those bipartite graphs B € Bp for which n(B) = n(F') holds. To state our result let us
introduce some notation. For any graph F' let ex§,2) (n, k, F') denote the maximum size of
a family F C (") with £,y (F) = n(F) and K (n, k)[F] is F-free. Observe that Theorem
5 is about ez’ (n, k, K, ;) and Theorem 6 determines ext? (n, k, K, s5....5001). We define
ext? (n, k, Br,,) to be the maximum size of a family F C ([Z]) with lo(F) > n(F) such that
K(n, k)[F] is B-free for any B € Bp,,. Similarly, let ez (n, k, Bp,,) be the maximum size
of a family F C ([Z]) with 05(F) = n(F') such that K(n, k)[F] is B-free for any B € Bp,,.
Obviously we have €2.2 (n, k, Br,) < ez’ (n, k,Br,) and we do not know any graph F
for which the two quantities differ.

Theorem 7. For any graph with x(F') > 3 there exists an ng = no(F') such that if n is
larger than ng, then we have

s o n-(()-C0)
<exl?(n = X(F), k, Br,).

Let us remark first that in the case of ' = K, ,
Jj <r+1} and Bg, = {K;
is taken for K

,,,,, srpn We have Bp = {K, ;1 1 <i <
s - 1 < < r}and obviously for both families the minimum
so Theorems 7 and 5 yield the bound of Theorem 6.

Sr419

In view of Theorem 7, we turn our attention to bipartite graphs, namely to the case
of even cycles: F' = (9. According to Theorem 1, the largest families F such that
K (n,k)[F] is Cos-free have ((F) = s — 1, so once again we will be interested in families
for which ¢(F) > s. The case Cy = K3 is solved by Theorem 5 (at least for large enough
n). Here we define a construction that happens to be asymptotically extremal for any
s = 3.

Construction 8. Let us define Gg C ([Z]) as

Gs = {G € <[Z]) 1eG,GN[2,2k+ 1] # @}u{[2,k+1], [k+2,2k+1],[2k+2,3k+1]}.
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So [Gsl = (i20) — (") +3.
For s > 4 we define the family Gy, C ([Z]) in the following way: let K = [2,k+1], K’ =
[k +2,2k] and let Hy, Hs, ..., Hy 1 be k-sets containing K’ and not containing 1. Then

Gos = {Ge ([Z]) :1eG,Gm(KuK’)7é®}U{K,Hl,HQ,...,HS_l}.

S0 |Gz = (371) = (1) +

Somewhat surprisingly, it turns out that the asymptotics of the size of the largest
family is (2k 4+ o(1))(}_2) for s = 2 and s = 3 if k is fixed and n tends to infinity, and it
is (2k — 1+ 0(1))(}2) for s > 4.

Observe that K (n, k)[Gas) is Cos-free and £(Gys) = s. Indeed, if K (n, k)[Gas] contained a
copy of Cy, then this copy should contain all s sets not containing 1 as the sets containing
1 form an independent set in K(n,k). In the case s = 3, Fs does not contain any set
that is disjoint from both [2,k + 1] and [k + 2,2k + 1], so no Cg exists in K (n, k)[Gs].
In the case s > 4, there is no set in Gy, that is disjoint from both K and H; for some
1=1,2,...,5— 1, so no copy of Cy can exist in G,.

The next theorems state that if n is large enough, then Construction 8 is asymptotically
optimal. Moreover, as the above proofs show that K(n, k)[Gss] does not even contain a
path on 2s vertices, Construction 8 is asymptotically optimal for the problem of forbidding
paths as well.

Theorem 9. For any k > 2, there exists ng = ng(k) with the following property: if
n = ng and F C ([Z]) is a family with ((F) > 3 and K(n, k)[F] is Cs-free, then we have

Fl< Go) = (57 +10°(Goy) = ()
Theorem 10. For any s > 4 and k > 3 there exists ng = no(k,s) such if n > ng and
F C ([Z]) is a family with ((F) > s and K(n,k)[F] is Cas-free, then we have |F| <

n—1 n—2k 2 n—3
(k—l) o (k—l) + (k4 1)(k—3)'
Let us finish the introduction by a remark on the second order term in Theorem 10.

Remark 11. If s — 1 < k, then the family Gos can be extended to a family g;; U Gas SO
that K (n, k)[G5, U Goy| is still Cy,-free. Suppose the sets Hy, Hy, ..., Hy_; are all disjoint
from K, say H; = K' U {2k +i} for i =1,2...,s — 1. Then we can define

Gy, = {Ge ([Z]) {1,2k+ 1,2k +2,..., 2k + s — 2} QG}
and observe that K(n,k)[Gas U Gy is still Cys-free. Indeed, a copy of Coy would have
to contain K, Hy, Hs, ..., H,_1 as other vertices form an independent set. Moreover, K
and H; have a common neighbour in Gy, U G5, if and only if i = s — 1, so K cannot be
contained in Cyy.

Clearly, |G, \ Gas| = ("7]“73*1), so in particular if s = 4, then the order of magnitude

k—s+1
of the second order term in Theorem 10 is sharp (when n is large enough compared to k).
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All our results resemble the original Hilton-Milner theorem in the following sense. In
Theorem 5, Theorem 9, Theorem 10, almost all sets of the (asymptotically) extremal
family share a common element = and meet some set S (z ¢ S5) of fixed size. It would be
interesting to know whether this phenomenon is true for all bipartite graphs, not only for
complete bipartite graphs and even cycles.

Question 12. Is it true that for any bipartite graph B and integer k£ > 3 there exists an
integer s = s(B, k) such that the following holds:

o for any family F C () with ¢(F) > n(B) if K(n,k)[F] is B-free, then |F| <
() = (%507 o),

e the family {G € ([Z]) :1eG,GN[2,s+1] # 0} is contained in a family G C ([Z])
with ¢(G) > n(B) such that K(n,k)[G] is B-free.

2 Proofs

Let us start this section by stating the original Turdan number results on the maximum
number of edges in K ;-free and Cy,-free graphs.

Theorem 13 (Kévéari, Sos, Turdn [11]). For any pair 1 < s <t of integers if a graph G
on n vertices is K, ,-free, then e(G) < (1/2+ o(1))(t — 1)Y*n%"% holds.

Theorem 14 (Bondy, Simonovits [3]). If G is a graph on n vertices that does not contain
a cycle of length 2s, then e(G) < 100sn'*Y/* holds.

We will also need the following lemma by Balogh, Bollobds and Narayanan. (It was
improved by a factor of 2 in [1], but for our purposes the original lemma will be sufficient.)

Lemma 15 (Balogh, Bollobés, Narayanan [2]). For any family F C ([Z}) we have

o~

(F)”

e(K(n,k)|F|) > T
(KR >

We start with the following simple lemma.

Lemma 16. Let s <t and let Hy, Hy, ..., Hy, Hy 1 be sets in ([Z]) and x € [n] \ UST H;.
Suppose that F C {F € ([Z]) :x € F} such that for F' := FU{Hy, Hs,... , Hy 1} the
induced subgraph K (n,k)[F'] is Ksi-free. Then there exists ng = no(k,s,t) such that if
n = ng holds, then we have

| F| < (Z:i) — (n_L:iTl)IIJ_l)Hsjtl)(t—l).
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Proof. The number of sets in F that meet at most one H; is at most (s + 1)(t — 1) as
K(n,k)[F'] is K, -free. Let us define ' = {y € [n] : 3i # 7 y € H; N H;}. Those sets
in F that meet at least two of the H;’s must either a) intersect 7" or b) intersect at least

two of the (H; \ T')’s. Clearly, |T| < L(Szl)kj, so the number of sets in F meeting T is at

n— n—1— n— no| stk
most (k;—i) B ( kl—llT‘) < (k_}) - ( s o1 y 1) =: B.

Assume first |T'| < LWJ, then B — ((}_}) — ("fkl_*l'T‘)) = Q(n*72). Observe that

the number of sets in F that are disjoint with 7" and meet at least two H; \ T" is at most
S HNT - THATI(ZS) < (5HR*(25) = O(n*=%). Therefore if n is large enough,

k-3
(s+1)k

then |F| < (77)) — ("_L ]:311 J_l) — en®~2 for some € > 0.
(s+1)k

Assume now T' = |**5~=]. This implies that at most one of the ; \ T' is non-empty,
so F does not contain sets of type b). Thus we have |F| < B+ (s+ 1)(t — 1). O

Now we are ready to prove our main result on families F C ([Z]) with K (n, k)[F] being
K -free.

Proof of Theorem 5. Let F C ([Z}) be a family such that K(n,k)[F| is K,;-free and
\Fl= (02— (") +s+t—1. We consider three cases according to the value of ¢(F).

CASE I: {(F) = s.
Consider Fi, Fy, ..., Fs € F such that F/ = F\ {F; : 1 <i < s} is intersecting. Then,

as
, n—1 n—sk—1 n—1 n—k—1

= - t—1 - 1

a (k—i) ( ko1 )+ ><k—1 k-1 )T

Theorem 2 implies that the sets in F’ share a common element. Since K (n, k)[F] is K-
free F' can contain at most ¢t — 1 sets disjoint from 7" := U;_| F;. So the size of F is at

most
n—1\ (n—|T|-1 o l4s< n—1\ (n—sk—1 fsti_1
k-1 k—1 Sk k—1 s

with equality if and only if F is isomorphic to some F ;.

CaSE II: s+ 1 < U(F) < ((n,l) _ (nfsk:fl))lfi.

k-1 k—1
Let F' be a largest intersecting subfamily of F. As the size of F' is (Zj) — ("_ks_kl_ 1) +
s+t —1—1I(F) which is larger than (Zj) — (";ﬁ;l) + 1 if n is large enough, Theorem 2

implies that the sets in F’ share a common element. Let us apply Lemma 16 to F’ and
s+ 1sets Fi,F,, ..., Fy1 € F\ F' to obtain

n—1 n— Btk 4
/< _ 2 _ )
|‘F|\<k—1> ( b1 )+(s+1)(t 1)

Therefore, we have

R () (I e () ()
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nfl) . (nfskfl

b1 o1 ), if n is large enough.

which is smaller than (

Case 1L ((771) — (2551))' 7% < (7).

Then by Lemma 15, we have
n— n—sk— 2_%
(Go) - ()
2(%) |

For large enough n, this is larger than (1/2 +o(1))(t — 1)+ |F|2~+, so K (n, k)[F] contains
K by Theorem 13. ]

e(K(n, k)[F]) =

1
s

Proof of Theorem 6. Let F C ([Z]) be a family of size (}) — (") + (}_}) — (") 4
Sy + Spy1 — 1 with 4,41 (F) > 5,41 such that K(n, k)[F] is K, s,,..s..,-free. The proof
proceeds by a case analysis according to the number of large degree vertices. We say that
x € [n] has large degree if F, = {F € F : 2 € F} hassize at least d = (}_}) = (" %) +Q
where Q) := Z:;rll s;. Let D denote the set of large degree vertices. We will use the
following claim in which G & G5 denotes the join of G and G, i.e. the graph consisting

of disjoint copies of G; and G5 with all possible edges between the G and Gs.

Claim 17. Suppose F contains a subfamily G C ([”],}D) with |G| < Q — leﬂ s; and
K(n, k)[G] is isomorphic to G, then K (n,k)|[F] contains K, s, ®G.

77777 S|D|

Proof of Claim. Note that d is @ plus the number of k-subsets of [n] containing a fixed
element z of [n] and meeting a set S of size Qk. As K, 5, sip P G contains at most
() vertices, we can pick the sets corresponding to K, s, . greedily. Indeed, for each
high degree vertex, we can choose s; sets containing it which avoid the set spanned by

the already chosen sets and the (at most )) sets corresponding to G. O

Case I: |D| > r.
Let D' C D be of size r and let Fy, Fy, ..., F; ., be sets in F not meeting D’. (There

Y Sr+1

exists such sets as otherwise £, 1(F) < s,4+1 would hold.) Applying Claim 17 with G =
{F1, F, ..., F, .} we obtain that K(n,k)[F] is not K, , -free.

7777 Sr41

Case II: |[D|=r — 1.

Then F' = F \ UgepFz C (["]k\D) has size at least (Z:;) — ("4,;_‘@{“]“) + 8+ 81— 1
with equality if and only if U,cpF, contains all k-sets meeting D. Either K(n, k)[F]
contains Ky, , ., and thus, by Claim 17, F contains K, , . s..,. Otherwise note that
lry1(F) = Spyq implies lo(F') = U(F') = $p41, so Theorem 5 implies that if n is large

enough, then F' is some Fy and thus, F is some Fj, 4,

rySr41 T PEEEy o A PR 81,82, Sr+1°

Case III: |[D| <r—2.
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In this case 7' = F\UpepFs © ([n]k\D) has size at least (" T") + (?77) — ("7 rvF) +

s, + 8,41 — 1. The order of magnitude of this is n*~!, thus it is larger than Qkd if n is
large enough. We claim that K(n, k)[F'] contains K¢ and therefore a copy of K, s, s .,
Indeed, for any F' € F’ there are at most kd sets in F’ that intersect F', thus we can pick
@ pairwise disjoint sets greedily. O

Proof of Theorem 7. First we show the construction for the lower bound. For a graph F
with x(F) > 3, let G C ([nfxch)H]) be a family of size @7(12)(71 — x(F) +2,k, Bg,,) such
that K(n — x(F) +2,k)[Gr] is B-free for any B € Bp,, and {(Gp) = n(F'). Let us define
Fr C ([Z}) as

FFzgpu{Ke (T) K0 [ x(F) +3,7] 7&@}'
Clearly, we have

—v(F) +2 _—
| Fr| = (Z) — (n X(k: ) ) +ex£2)(n—x(F) +2,k, Bry).

We claim that K (n, k)[Fp] is F-free. Indeed, if K(n, k)[Fr| contains F, then K(n, k)[GF]
contains some B € Bp, as

(K e ([Z]) LK N n—x(F) +3,n] £ 0}

is the union x(F') — 2 intersecting families. This is impossible for B € Bp,, by definition
of G, and it is also impossible for B € Br \ Bp,, as {(Gr) = n(F) < n(B).

The proof of the upper bound is basically identical to that of the upper bound in
Theorem 6, so we just outline it. Let F C ([Z]) with €y (F) = n(F) and |F| >
(7)) - (n—x(kF)+2) be such that K (n, k)[F] is F-free. Let us define d = (") — ("_|”(5)|k_1) +
|[V(F)| and let D C V(F') be the set of vertices with degree at least d in F.

Case I: |D| > x(F) — L.
Then one can pick sets of F greedily to form a copy of F'in K (n, k)[F], a contradiction.

Case II: |D| = x(F) — 2.
Then 7' = {K € F : KND # (0} has size at most (}) — ("_X(kFHz). Also K (n, k)[F\F'|
cannot contain any B € Bp,, as otherwise K (n,k)[F] would contain F. Observe that

Uy (F) = n(F) implies £(F \ F') = n(F), so we have |F \ F'| < e:m@(n, k,Br.)-

Cask III: |D| < x(F) — 3.

Then F' = {K € F : KND # 0} has size at most (Z) - ("_X(kFH?’). Therefore F\ F' is

of size at least (””é(_Fl)H). If n is large enough compared to k, then one can pick greedily
a copy of Ky () in K(n,k)[F \ F']. O
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Now we turn our attention to proving theorems on families that induce cycle-free
subgraphs in the Kneser graph.

Proof of Theorem 9. Let F C ([Z]) be a family of subsets such that K (n, k)[F] is Cs-free,
0F) z 3and [F] = (7)) = (75 +10°(Go) = ()

Case I 0(F) < L((17)) — ("2571))%4,

Let Hy, Hy, ..., Hyr) be sets in F such that ' := F \ {Hy, Hy, ..., Hyr)} is inter-
secting. Then as

P> n—1y (n—2k-1 +1_06 n—1\ (n-2k-1\\""
“\k—-1 E—1 2 k—1 E—1
—1 —k—1
>(Z—1)_<nkf1 >+1’

Theorem 2 implies that the sets in F’ share a common element z. The H;’s do not contain
this x, since F’ is a largest intersecting family in F. As |H; U H;| < 2k and

P> n—1 n—2k—1 +106 n—1 n—2k—1\\**
“\k-1 k—1 2 k—1 k-1 ’
for any ¢ # j there exist 3 sets F; j1, F} jo, Fij3 € F' that are disjoint from H; U H;. So
we can find a copy of Cg in F, in which the sets Hy, Hy, H3 represent three independent
vertices and the other three sets can be chosen from {F”k 1<i<j<3,1<k<3}
greedily.
6/ /m—1 n—2k—1

Case II: ((F) = 3-((7)) — ("257))¥/~

By Lemma 15 K (n, k)[F] contains at least %((Zj) — (" 271))%? edges and when
n is large enough, this is bigger than 300|F \4/ 3 so by Theorem 14 it contains a copy of
Cé, as desired. ]

Proof of Theorem 10. Let F C ([Z]) be a family of subsets such that K (n,k)[F] is Cos-
free, {(F) > s and |F| = (}_}) — (72__21]“) + (K +1)(123).

Cask T ((F) < 20s2F((171) — (W22)) 5+

Let Hy, Hy, ..., Hyr) be sets in F such that F' := F\ {Hy, Hy, ..., Hyr)} is inter-
secting. Then as |F'| > (Zj) - (7;_21]“) + (K* + 1) (Z:??:) — 2032’“((2:1) — (’Z__Qlk))% >
(Zj) — (";f;l) + 1, Theorem 2 implies that the sets in F’ share a common element x.
The H;’s do not contain this x, since F’ is a maximal intersecting family in F. Let us
define the following auxiliary graph I' with vertex set {Hy, Ho, ..., H}: two sets H;, H;
are adjacent if and only if there exist s sets in F’ that are disjoint from H; U H;. Ob-
serve that if [' contains a Hamiltonian cycle, then F contains a copy of C5. Indeed,

if Ho1y, Hy(2), .., Hy(s) is a Hamiltonian cycle, then for any pair H, ), Hoi41) (With
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s+ 1= 1) we can greedily pick different sets F; € F' with F; N (H,;) U Hy(i11)) = 0 to
get Ho(1), F1, Ho(2), Fo, - - ., Hos), Fs a copy of Cyg in K (n, k)[F]. Therefore the next claim
and Dirac’s theorem [4] finishes the proof of Case I.

Claim 18. The minimum degree of I is at least s — 2.

Proof of Claim. First note that if H; and H; are not joined in I', then they must be
disjoint. Indeed, otherwise |H; U H;| < 2k — 1 and as |F'| > (Zj) - (7?_21’“) + s, there
are at least s sets in F' avoiding H; U H;. Now assume for contradiction that H; is not

connected to Hy and Hs, so in particular H; N (Hy U H3) = (). Observe the following

e there are at most s —1 sets in F’ that avoid H; U H, and another s — 1 sets avoiding
Hl U H?n

e as |HiU(HyN H;y)| < 2k —1, there are at most (Zj) — (",;_21'“) sets in gcF” that meet
H, U (Hy N Hy).

k k—1
least one element hy € Hy \ Hz and one element hy € Hs \ Hs. Since the number of such

pairs is at most k2, there exists a pair he, hs such that the number of sets in F’ containing
both hs, hg is more than (Z:g) But this is clearly impossible as the total number of k-sets

So there are at least (k% + 1)(":;’) —20s28((7-)) — ("*2’“))%1 sets of F' containing at

containing x, ho, h3 is (’;:g) H

s+1

CasE IL: ((F) > 20s28((;7]) — ("2M) %

k—1
s+1

By Lemma 15 K (n, k)[F] contains at least 40;{{5;%(2:}) — (") > 100s|F[He

edges, and thus by Theorem 14 it contains a copy of Cly;. n
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