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Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences
P.O.B. 127, Budapest H-1364, Hungary

patkos@renyi.hu
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Abstract

The vertex set of the Kneser graph K(n, k) is V =
([n]
k

)
and two vertices are

adjacent if the corresponding sets are disjoint. For any graph F , the largest size
of a vertex set U ⊆ V such that K(n, k)[U ] is F -free, was recently determined by
Alishahi and Taherkhani, whenever n is large enough compared to k and F . In
this paper, we determine the second largest size of a vertex set W ⊆ V such that
K(n, k)[W ] is F -free, in the case when F is an even cycle or a complete multi-partite
graph. In the latter case, we actually give a more general theorem depending on
the chromatic number of F .

Mathematics Subject Classifications: 05C35, 05D05
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1 Introduction

Turán-type problems are fundamental in extremal (hyper)graph theory. For a pair H and
F of graphs, they ask for the maximum number of edges that a subgraph G of the host
graph H can have without containing the forbidden graph F . A variant of this problem
is the so-called vertex Turán problem where given a host graph H and a forbidden graph
F , one is interested in the maximum size of a vertex set U ⊂ V (H) such that the induced
subgraph H[U ] is F -free.

This problem has been studied in the context of several host graphs. In this paper we
follow the recent work of Alishahi and Taherkhani [1], who determined the exact answer
to the vertex Turán problem when H is the Kneser graph K(n, k), which is defined on
the vertex set

(
[n]
k

)
= {K ⊆ [n] = {1, 2, . . . , n} : |K| = k} where two vertices K,K ′ are

adjacent if and only if K ∩K ′ = ∅.

Theorem 1 (Alishahi, Taherkhani [1]). For any graph F , let χ denote its chromatic
number and let η = η(F ) denote the minimum possible size of a color class of G over all
possible proper χ-colorings of F . Then for any k there exists an integer n0 = n0(k, F )
such that if n > n0 and for a family G ⊆

(
[n]
k

)
the induced subgraph K(n, k)[G] is F -free,

then |G| 6
(
n
k

)
−
(
n−χ+1

k

)
+η−1. Moreover, if equality holds, then there exists a (χ−1)-set

L such that |{G ∈ G : G ∩ L = ∅}| = η − 1.

Observe that the vertex Turán problem in the Kneser graph K(n, k) generalizes several
intersection problems in

(
[n]
k

)
:

• If F = K2, the graph consisting a single edge, then the vertex Turán problem asks
for the maximum size of an independent set in K(n, k) or equivalently the size of
a largest intersecting family F ⊆

(
[n
k

)
(i.e. F ∩ F ′ 6= ∅ for all F, F ′ ∈ F). The

celebrated theorem of Erdős, Ko, and Rado states that this is
(
n−1
k−1

)
if 2k 6 n holds.

Furthermore, for intersecting families F ⊆
(
[n]
k

)
of size

(
n−1
k−1

)
we have ∩F∈FF 6= ∅

provided n > 2k + 1.

• If F = Ks for some s > 3, then the vertex Turán problem is equivalent to Erdős’s
famous matching conjecture: K(n, k)[F ] is Ks-free if and only if F does not contain
a matching of size s (s pairwise disjoint sets). Erdős conjectured that the maximum
size of such a family is max{

(
sk−1
k

)
,
(
n
k

)
−
(
n−s+1
k

)
}.

• Gerbner, Lemons, Palmer, Patkós, and Szécsi [8] considered l-almost intersecting
families F ⊆

(
[n]
k

)
such that for any F ∈ F there are at most l sets in F that are

disjoint from F . This is equivalent to K(n, k)[F ] being K1,l-free.

• Katona and Nagy [10] considered (s, t)-union intersecting families F ⊆
(
[n]
k

)
such

that for any F1, F2, . . . , Fs, F
′
1, F

′
2, . . . , F

′
t ∈ F we have (∪si=1Fi) ∩ (∪tj=1F

′
j) 6= ∅.

This is equivalent to K(n, k)[F ] being Ks,t-free.

Theorem 1 leads into several directions. One can try to determine the smallest value of
the threshold n0(k,G). Alishahi and Taherkhani [1] improved the upper bound on n0 for
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l-almost intersecting and (s, t)-union intersecting families. Erdős’s matching conjecture
is known to hold if n > (2s + 1)k − s. This is due to Frankl [6] and he also showed [5]
that the conjecture is true if k = 3.

Another direction is to determine the “second largest” family with K(n, k)[F ] being
G-free. In the case of F = K2 this means that we are looking for the largest intersecting
family F ⊆

(
[n]
k

)
with ∩F∈FF = ∅. This is the following famous result of Hilton and

Milner.

Theorem 2 (Hilton, Milner [9]). If F ⊆
(
[n]
k

)
is an intersecting family with n > 2k + 1

and ∩F∈FF = ∅, then |F| 6
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1.

In the case of F = Ks,t extremal families are not intersecting, so to describe the
condition of being “second largest” precisely, we introduce the following parameter.

Definition 3. For a family F and integer t > 2 let `t(F) denote the minimum number
m such that one can remove m sets from F with the resulting family not containing t
pairwise disjoint sets. We will write `(F) instead of `2(F). Note that this is the minimum
number of sets one needs to remove from F in order to obtain an intersecting family.

Observe that if s 6 t, then for any family F with `(F) 6 s− 1 the induced subgraph
K(n, k)[F ] is Ks,t-free. In [1], the following asymptotic stability result was proved.

Theorem 4 (Alishahi, Taherkhani [1]). For any integers s 6 t and k, and positive real
number β, there exists an n0 = n0(k, s, t, β) such that the following holds for n > n0. If
for F ⊆

(
[n]
k

)
with `(F) > s, the induced subgraph K(n, k)[F ] is Ks,t-free, then |F| 6

(s+ β)(
(
n−1
k−1

)
−
(
n−k−1
k−1

)
) holds.

Note that the above bound is asymptotically optimal as shown by any family Fs,t =

{F ∈
(
[n]
k

)
: 1 ∈ F, F∩S 6= ∅}∪{H1, H2, . . . , Hs}∪{F ′1, F ′2, . . . , F ′t−1}, where S = [2, sk+1],

Hi = [(i − 1)k + 2, ik + 1] for all i = 1, 2, . . . , s and F ′1, F
′
2, . . . , F

′
t−1 are distinct sets

containing 1 and disjoint with S.
We improve Theorem 4 to obtain the following precise stability result for families F

for which K(n, k)[F ] is Ks,t-free.

Theorem 5. For any 2 6 s 6 t and k there exists n0 = n0(s, t, k) such that the following
holds for n > n0. If F ⊆

(
[n]
k

)
is a family with `(F) > s and K(n, k)[F ] is Ks,t-free, then

we have |F| 6
(
n−1
k−1

)
−
(
n−sk−1
k−1

)
+ s + t − 1. Moreover, equality holds if and only if F is

isomorphic to some Fs,t.

Using Theorem 5, we obtain a general stability result for the case when F is a complete
multi-partite graph. We consider the family Fs1,s2,...,sr+1 that consists of sr+1 pairwise
disjoint k-subsets F1, F2, . . . , Fsr+1 of [n] that do not meet [r] and those k-subsets of [n]
that either (i) intersect [r − 1] or (ii) contain [r] and meet ∪sr+1

j=1 Fj and (iii) sr − 1 other
k-sets containing [r]. Clearly, if s1 > s2 > . . . > sr > sr+1 holds, then K(n, k)[Fs1,s2,...,sr+1 ]

is Ks1,s2,...,sr+1-free and its size is
(
n
k

)
−
(
n−r+1
k

)
+
(
n−r
k−1

)
−
(
n−sr+1k−r

k−1

)
+ sr + sr+1 − 1.
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Theorem 6. For any k > 2 and integers s1 > s2 > . . . > sr > sr+1 > 1 there exists
n0 = n0(k, s1, . . . , sr+1) such that if n > n0 and F ⊆

(
[n]
k

)
is a family with `r+1(F) > sr+1

and K(n, k)[F ] is Ks1,s2,...,sr+1-free, then we have |F| 6
(
n
k

)
−
(
n−r+1
k

)
+
(
n−r
k−1

)
−
(
n−sr+1k−r

k−1

)
+

sr +sr+1−1. Moreover, equality holds if and only if F is isomorphic to some Fs1,s2,...,sr+1.

Note that Frankl and Kupavskii [7] proved the special case s1 = s2 = · · · = sr+1 = 1
with the asymptotically best possible threshold n0 = (2k + or(1))(r + 1)k.

Actually, Theorem 6 is a special case of a more general result that shows that it is
enough to solve the stability problem for bipartite graphs. For any graph F with χ(F ) > 3
let us define BF to be the class of those bipartite graphs B such that there exists a subset
U of vertices of F with F [U ] = B and χ(F [V (F ) \ U ]) = χ(F ) − 2. Note that by
definition, for any B ∈ BF we have η(B) > η(F ). We define BF,η to be the subset of
those bipartite graphs B ∈ BF for which η(B) = η(F ) holds. To state our result let us

introduce some notation. For any graph F let ex
(2)
v (n, k, F ) denote the maximum size of

a family F ⊆
(
[n]
k

)
with `χ(F )(F) > η(F ) and K(n, k)[F ] is F -free. Observe that Theorem

5 is about ex
(2)
v (n, k,Ks,t) and Theorem 6 determines ex

(2)
v (n, k,Ks1,s2,...,sr+1). We define

ex
(2)
v (n, k,BF,η) to be the maximum size of a family F ⊆

(
[n]
k

)
with `2(F) > η(F ) such that

K(n, k)[F ] is B-free for any B ∈ BF,η. Similarly, let êx(2)v (n, k,BF,η) be the maximum size

of a family F ⊆
(
[n]
k

)
with `2(F) = η(F ) such that K(n, k)[F ] is B-free for any B ∈ BF,η.

Obviously we have êx(2)v (n, k,BF,η) 6 ex
(2)
v (n, k,BF,η) and we do not know any graph F

for which the two quantities differ.

Theorem 7. For any graph with χ(F ) > 3 there exists an n0 = n0(F ) such that if n is
larger than n0, then we have

êx(2)v (n− χ(F ), k,BF,η) 6 ex(2)v (n, k, F )−
((

n

k

)
−
(
n− χ(F ) + 2

k

))
6 ex(2)v (n− χ(F ), k,BF,η).

Let us remark first that in the case of F = Ks1,s2,...,sr+1 we have BF = {Ksi,sj : 1 6 i <
j 6 r+ 1} and BF,η = {Ksi,sr+1 : 1 6 i 6 r} and obviously for both families the minimum
is taken for Ksr,sr+1 , so Theorems 7 and 5 yield the bound of Theorem 6.

In view of Theorem 7, we turn our attention to bipartite graphs, namely to the case
of even cycles: F = C2s. According to Theorem 1, the largest families F such that
K(n, k)[F ] is C2s-free have `(F) = s − 1, so once again we will be interested in families
for which `(F) > s. The case C4 = K2,2 is solved by Theorem 5 (at least for large enough
n). Here we define a construction that happens to be asymptotically extremal for any
s > 3.

Construction 8. Let us define G6 ⊆
(
[n]
k

)
as

G6 =

{
G ∈

(
[n]

k

)
: 1 ∈ G,G ∩ [2, 2k + 1] 6= ∅

}
∪{[2, k+1], [k+2, 2k+1], [2k+2, 3k+1]}.
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So |G6| =
(
n−1
k−1

)
−
(
n−2k−1
k−1

)
+ 3.

For s > 4 we define the family G2s ⊆
(
[n]
k

)
in the following way: let K = [2, k+1], K ′ =

[k + 2, 2k] and let H1, H2, . . . , Hs−1 be k-sets containing K ′ and not containing 1. Then

G2s =

{
G ∈

(
[n]

k

)
: 1 ∈ G,G ∩ (K ∪K ′) 6= ∅

}
∪ {K,H1, H2, . . . , Hs−1}.

So |G2s| =
(
n−1
k−1

)
−
(
n−2k
k−1

)
+ s.

Somewhat surprisingly, it turns out that the asymptotics of the size of the largest
family is (2k + o(1))

(
n−2
k−2

)
for s = 2 and s = 3 if k is fixed and n tends to infinity, and it

is (2k − 1 + o(1))
(
n−2
k−2

)
for s > 4.

Observe thatK(n, k)[G2s] is C2s-free and `(G2s) = s. Indeed, ifK(n, k)[G2s] contained a
copy of C2s, then this copy should contain all s sets not containing 1 as the sets containing
1 form an independent set in K(n, k). In the case s = 3, F6 does not contain any set
that is disjoint from both [2, k + 1] and [k + 2, 2k + 1], so no C6 exists in K(n, k)[G6].
In the case s > 4, there is no set in G2s that is disjoint from both K and Hi for some
i = 1, 2, . . . , s− 1, so no copy of C2s can exist in G2s.

The next theorems state that if n is large enough, then Construction 8 is asymptotically
optimal. Moreover, as the above proofs show that K(n, k)[G2s] does not even contain a
path on 2s vertices, Construction 8 is asymptotically optimal for the problem of forbidding
paths as well.

Theorem 9. For any k > 2, there exists n0 = n0(k) with the following property: if
n > n0 and F ⊆

(
[n]
k

)
is a family with `(F) > 3 and K(n, k)[F ] is C6-free, then we have

|F| <
(
n−1
k−1

)
−
(
n−2k−1
k−1

)
+ 106(

(
n−1
k−1

)
−
(
n−2k−1
k−1

)
)3/4.

Theorem 10. For any s > 4 and k > 3 there exists n0 = n0(k, s) such if n > n0 and
F ⊆

(
[n]
k

)
is a family with `(F) > s and K(n, k)[F ] is C2s-free, then we have |F| 6(

n−1
k−1

)
−
(
n−2k
k−1

)
+ (k2 + 1)

(
n−3
k−3

)
.

Let us finish the introduction by a remark on the second order term in Theorem 10.

Remark 11. If s − 1 6 k, then the family G2s can be extended to a family G+2s ∪ G2s so
that K(n, k)[G+2s ∪ G2s] is still C2s-free. Suppose the sets H1, H2, . . . , Hs−1 are all disjoint
from K, say Hi = K ′ ∪ {2k + i} for i = 1, 2 . . . , s− 1. Then we can define

G+2s =

{
G ∈

(
[n]

k

)
: {1, 2k + 1, 2k + 2, . . . , 2k + s− 2} ⊆ G

}
and observe that K(n, k)[G2s ∪ G+2s] is still C2s-free. Indeed, a copy of C2s would have
to contain K,H1, H2, . . . , Hs−1 as other vertices form an independent set. Moreover, K
and Hi have a common neighbour in G2s ∪ G+2s if and only if i = s − 1, so K cannot be
contained in C2s.

Clearly, |G+2s \ G2s| =
(
n−k−s+1
k−s+1

)
, so in particular if s = 4, then the order of magnitude

of the second order term in Theorem 10 is sharp (when n is large enough compared to k).
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All our results resemble the original Hilton-Milner theorem in the following sense. In
Theorem 5, Theorem 9, Theorem 10, almost all sets of the (asymptotically) extremal
family share a common element x and meet some set S (x /∈ S) of fixed size. It would be
interesting to know whether this phenomenon is true for all bipartite graphs, not only for
complete bipartite graphs and even cycles.

Question 12. Is it true that for any bipartite graph B and integer k > 3 there exists an
integer s = s(B, k) such that the following holds:

• for any family F ⊆
(
[n]
k

)
with `(F) > η(B) if K(n, k)[F ] is B-free, then |F| 6(

n−1
k−1

)
−
(
n−1−s
k−1

)
+ o(nk−2),

• the family {G ∈
(
[n]
k

)
: 1 ∈ G,G ∩ [2, s + 1] 6= ∅} is contained in a family G ⊆

(
[n]
k

)
with `(G) > η(B) such that K(n, k)[G] is B-free.

2 Proofs

Let us start this section by stating the original Turán number results on the maximum
number of edges in Ks,t-free and C2s-free graphs.

Theorem 13 (Kővári, Sós, Turán [11]). For any pair 1 6 s 6 t of integers if a graph G

on n vertices is Ks,t-free, then e(G) 6 (1/2 + o(1))(t− 1)1/sn2− 1
s holds.

Theorem 14 (Bondy, Simonovits [3]). If G is a graph on n vertices that does not contain
a cycle of length 2s, then e(G) 6 100sn1+1/s holds.

We will also need the following lemma by Balogh, Bollobás and Narayanan. (It was
improved by a factor of 2 in [1], but for our purposes the original lemma will be sufficient.)

Lemma 15 (Balogh, Bollobás, Narayanan [2]). For any family F ⊆
(
[n]
k

)
we have

e(K(n, k)[F ]) >
l(F)2

2
(
2k
k

) .
We start with the following simple lemma.

Lemma 16. Let s 6 t and let H1, H2, . . . , Hs, Hs+1 be sets in
(
[n]
k

)
and x ∈ [n] \ ∪s+1

i=1Hi.

Suppose that F ⊆ {F ∈
(
[n]
k

)
: x ∈ F} such that for F ′ := F ∪ {H1, H2, . . . , Hs+1} the

induced subgraph K(n, k)[F ′] is Ks,t-free. Then there exists n0 = n0(k, s, t) such that if
n > n0 holds, then we have

|F| 6
(
n− 1

k − 1

)
−
(
n− b (s+1)k

2
c − 1

k − 1

)
+ (s+ 1)(t− 1).
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Proof. The number of sets in F that meet at most one Hj is at most (s + 1)(t − 1) as
K(n, k)[F ′] is Ks,t-free. Let us define T = {y ∈ [n] : ∃i 6= j y ∈ Hi ∩ Hj}. Those sets
in F that meet at least two of the Hj’s must either a) intersect T or b) intersect at least

two of the (Hj \ T )’s. Clearly, |T | 6 b (s+1)k
2
c, so the number of sets in F meeting T is at

most
(
n−1
k−1

)
−
(
n−1−|T |
k−1

)
6
(
n−1
k−1

)
−
(
n−b (s+1)k

2
c−1

k−1

)
=: B.

Assume first |T | < b (s+1)k
2
c, then B − (

(
n−1
k−1

)
−
(
n−1−|T |
k−1

)
) = Ω(nk−2). Observe that

the number of sets in F that are disjoint with T and meet at least two Hj \ T is at most∑
i,j |Hi \ T | · |Hj \ T |

(
n−3
k−3

)
6
(
s+1
2

)
k2
(
n−3
k−3

)
= O(nk−3). Therefore if n is large enough,

then |F| 6
(
n−1
k−1

)
−
(
n−b (s+1)k

2
c−1

k−1

)
− εnk−2 for some ε > 0.

Assume now T = b (s+1)k
2
c. This implies that at most one of the Hj \ T is non-empty,

so F does not contain sets of type b). Thus we have |F| 6 B + (s+ 1)(t− 1).

Now we are ready to prove our main result on families F ⊆
(
[n]
k

)
with K(n, k)[F ] being

Ks,t-free.

Proof of Theorem 5. Let F ⊆
(
[n]
k

)
be a family such that K(n, k)[F ] is Ks,t-free and

|F| =
(
n−1
k−1

)
−
(
n−sk−1
k−1

)
+ s+ t−1. We consider three cases according to the value of `(F).

Case I: `(F) = s.

Consider F1, F2, . . . , Fs ∈ F such that F ′ = F \ {Fi : 1 6 i 6 s} is intersecting. Then,
as

|F ′| =
(
n− 1

k − 1

)
−
(
n− sk − 1

k − 1

)
+ t− 1 >

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1,

Theorem 2 implies that the sets in F ′ share a common element. Since K(n, k)[F ] is Ks,t-
free F ′ can contain at most t − 1 sets disjoint from T := ∪si=1Fi. So the size of F is at
most(

n− 1

k − 1

)
−
(
n− |T | − 1

k − 1

)
+ t− 1 + s 6

(
n− 1

k − 1

)
−
(
n− sk − 1

k − 1

)
+ s+ t− 1

with equality if and only if F is isomorphic to some Fs,t.

Case II: s+ 1 6 `(F) 6 (
(
n−1
k−1

)
−
(
n−sk−1
k−1

)
)1−

1
3s .

Let F ′ be a largest intersecting subfamily of F . As the size of F ′ is
(
n−1
k−1

)
−
(
n−sk−1
k−1

)
+

s+ t− 1− l(F) which is larger than
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1 if n is large enough, Theorem 2

implies that the sets in F ′ share a common element. Let us apply Lemma 16 to F ′ and
s+ 1 sets F1, F2, . . . , Fs+1 ∈ F \ F ′ to obtain

|F ′| 6
(
n− 1

k − 1

)
−
(
n− (s+1)k

2
− 1

k − 1

)
+ (s+ 1)(t− 1).

Therefore, we have

|F| 6
(
n− 1

k − 1

)
−
(
n− (s+1)k

2
− 1

k − 1

)
+ (s+ 1)(t− 1) +

((
n− 1

k − 1

)
−
(
n− sk − 1

k − 1

))1− 1
3s

,
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which is smaller than
(
n−1
k−1

)
−
(
n−sk−1
k−1

)
, if n is large enough.

Case III:
((
n−1
k−1

)
−
(
n−sk−1
k−1

))1− 1
3s 6 `(F).

Then by Lemma 15, we have

e(K(n, k)[F ]) >

((
n−1
k−1

)
−
(
n−sk−1
k−1

))2− 2
3s

2
(
2k
k

) .

For large enough n, this is larger than (1/2 + o(1))(t− 1)
1
s |F|2− 1

s , so K(n, k)[F ] contains
Ks,t by Theorem 13.

Proof of Theorem 6. Let F ⊆
(
[n]
k

)
be a family of size

(
n
k

)
−
(
n−r+1
k

)
+
(
n−r
k−1

)
−
(
n−sr+1k−r

k−1

)
+

sr + sr+1 − 1 with `r+1(F) > sr+1 such that K(n, k)[F ] is Ks1,s2,...,sr+1-free. The proof
proceeds by a case analysis according to the number of large degree vertices. We say that
x ∈ [n] has large degree if Fx = {F ∈ F : x ∈ F} has size at least d =

(
n−1
k−1

)
−
(
n−Qk−1
k−1

)
+Q

where Q :=
∑r+1

i=1 si. Let D denote the set of large degree vertices. We will use the
following claim in which G1⊕G2 denotes the join of G1 and G2, i.e. the graph consisting
of disjoint copies of G1 and G2 with all possible edges between the G1 and G2.

Claim 17. Suppose F contains a subfamily G ⊆
(
[n]\D
k

)
with |G| 6 Q −

∑|D|
i=1 si and

K(n, k)[G] is isomorphic to G, then K(n, k)[F ] contains Ks1,s2,...,s|D| ⊕G.

Proof of Claim. Note that d is Q plus the number of k-subsets of [n] containing a fixed
element x of [n] and meeting a set S of size Qk. As Ks1,s2,...,s|D| ⊕ G contains at most
Q vertices, we can pick the sets corresponding to Ks1,s2,...,s|D| greedily. Indeed, for each
high degree vertex, we can choose si sets containing it which avoid the set spanned by
the already chosen sets and the (at most Q) sets corresponding to G.

Case I: |D| > r.

Let D′ ⊂ D be of size r and let F1, F2, . . . , Fsr+1 be sets in F not meeting D′. (There
exists such sets as otherwise `r+1(F) < sr+1 would hold.) Applying Claim 17 with G =
{F1, F2, . . . , Fsr+1} we obtain that K(n, k)[F ] is not Ks1,s2,...,sr+1-free.

Case II: |D| = r − 1.

Then F ′ = F \ ∪x∈DFx ⊆
(
[n]\D
k

)
has size at least

(
n−r
k−1

)
−
(
n−r−sr+1k

k−1

)
+ sr + sr+1 − 1

with equality if and only if ∪x∈DFx contains all k-sets meeting D. Either K(n, k)[F ′]
contains Ksr,sr+1 and thus, by Claim 17, F contains Ks1,s2,...,sr+1 . Otherwise note that
`r+1(F) > sr+1 implies `2(F ′) = `(F ′) > sr+1, so Theorem 5 implies that if n is large
enough, then F ′ is some Fsr,sr+1 and thus, F is some Fs1,s2,...,sr+1 .

Case III: |D| 6 r − 2.
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In this case F ′ = F \∪x∈DFx ⊆
(
[n]\D
k

)
has size at least

(
n−r+1
k−1

)
+
(
n−r
k−1

)
−
(
n−r−sr+1k

k−1

)
+

sr + sr+1 − 1. The order of magnitude of this is nk−1, thus it is larger than Qkd if n is
large enough. We claim that K(n, k)[F ′] contains KQ and therefore a copy of Ks1,s2,...,sr+1 .
Indeed, for any F ∈ F ′ there are at most kd sets in F ′ that intersect F , thus we can pick
Q pairwise disjoint sets greedily.

Proof of Theorem 7. First we show the construction for the lower bound. For a graph F
with χ(F ) > 3, let GF ⊆

(
[n−χ(F )+2]

k

)
be a family of size êx(2)v (n− χ(F ) + 2, k,BF,η) such

that K(n− χ(F ) + 2, k)[GF ] is B-free for any B ∈ BF,η and `(GF ) = η(F ). Let us define

FF ⊆
(
[n]
k

)
as

FF = GF ∪
{
K ∈

(
[n]

k

)
: K ∩ [n− χ(F ) + 3, n] 6= ∅

}
.

Clearly, we have

|FF | =
(
n

k

)
−
(
n− χ(F ) + 2

k

)
+ êx(2)v (n− χ(F ) + 2, k,BF,η).

We claim that K(n, k)[FF ] is F -free. Indeed, if K(n, k)[FF ] contains F , then K(n, k)[GF ]
contains some B ∈ BF , as

{K ∈
(

[n]

k

)
: K ∩ [n− χ(F ) + 3, n] 6= ∅}

is the union χ(F )− 2 intersecting families. This is impossible for B ∈ BF,η by definition
of GF , and it is also impossible for B ∈ BF \ BF,η as `(GF ) = η(F ) < η(B).

The proof of the upper bound is basically identical to that of the upper bound in
Theorem 6, so we just outline it. Let F ⊆

(
[n]
k

)
with `χ(F )(F) > η(F ) and |F| >(

n
k

)
−
(
n−χ(F )+2

k

)
be such that K(n, k)[F ] is F -free. Let us define d =

(
n−1
k

)
−
(
n−|v(F )|k−1

k

)
+

|V (F )| and let D ⊆ V (F ) be the set of vertices with degree at least d in F .

Case I: |D| > χ(F )− 1.

Then one can pick sets of F greedily to form a copy of F in K(n, k)[F ], a contradiction.

Case II: |D| = χ(F )− 2.

Then F ′ = {K ∈ F : K∩D 6= ∅} has size at most
(
n
k

)
−
(
n−χ(F )+2

k

)
. Also K(n, k)[F\F ′]

cannot contain any B ∈ BF,η, as otherwise K(n, k)[F ] would contain F . Observe that

`χ(F )(F) > η(F ) implies `(F \ F ′) > η(F ), so we have |F \ F ′| 6 ex
(2)
v (n, k,BF,η).

Case III: |D| 6 χ(F )− 3.

Then F ′ = {K ∈ F : K∩D 6= ∅} has size at most
(
n
k

)
−
(
n−χ(F )+3

k

)
. Therefore F \F ′ is

of size at least
(
n−χ(F )+2

k−1

)
. If n is large enough compared to k, then one can pick greedily

a copy of K|V (F )| in K(n, k)[F \ F ′].
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Now we turn our attention to proving theorems on families that induce cycle-free
subgraphs in the Kneser graph.

Proof of Theorem 9. Let F ⊆
(
[n]
k

)
be a family of subsets such that K(n, k)[F ] is C6-free,

`(F) > 3 and |F| =
(
n−1
k−1

)
−
(
n−2k−1
k−1

)
+ 106(

(
n−1
k−1

)
−
(
n−2k−1
k−1

)
)3/4.

Case I: `(F) 6 106

2
(
(
n−1
k−1

)
−
(
n−2k−1
k−1

)
)3/4.

Let H1, H2, . . . , H`(F) be sets in F such that F ′ := F \ {H1, H2, . . . , H`(F)} is inter-
secting. Then as

|F ′| >
(
n− 1

k − 1

)
−
(
n− 2k − 1

k − 1

)
+

106

2

((
n− 1

k − 1

)
−
(
n− 2k − 1

k − 1

))3/4

>

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1,

Theorem 2 implies that the sets in F ′ share a common element x. The Hi’s do not contain
this x, since F ′ is a largest intersecting family in F . As |Hi ∪Hj| 6 2k and

|F ′| >
(
n− 1

k − 1

)
−
(
n− 2k − 1

k − 1

)
+

106

2

((
n− 1

k − 1

)
−
(
n− 2k − 1

k − 1

))3/4

,

for any i 6= j there exist 3 sets Fi,j,1, Fi,j,2, Fi,j,3 ∈ F ′ that are disjoint from Hi ∪Hj. So
we can find a copy of C6 in F , in which the sets H1, H2, H3 represent three independent
vertices and the other three sets can be chosen from {Fi,j,k : 1 6 i < j 6 3, 1 6 k 6 3}
greedily.

Case II: `(F) > 106

2
(
(
n−1
k−1

)
−
(
n−2k−1
k−1

)
)3/4.

By Lemma 15 K(n, k)[F ] contains at least 1012

8(2k
k )

(
(
n−1
k−1

)
−
(
n−2k−1
k−1

)
)3/2 edges and when

n is large enough, this is bigger than 300|F|4/3, so by Theorem 14 it contains a copy of
C6, as desired.

Proof of Theorem 10. Let F ⊆
(
[n]
k

)
be a family of subsets such that K(n, k)[F ] is C2s-

free, `(F) > s and |F| =
(
n−1
k−1

)
−
(
n−2k
k−1

)
+ (k2 + 1)

(
n−3
k−3

)
.

Case I: `(F) 6 20s2k(
(
n−1
k−1

)
−
(
n−2k
k−1

)
)
s+1
2s .

Let H1, H2, . . . , H`(F) be sets in F such that F ′ := F \ {H1, H2, . . . , H`(F)} is inter-

secting. Then as |F ′| >
(
n−1
k−1

)
−
(
n−2k
k−1

)
+ (k2 + 1)

(
n−3
k−3

)
− 20s2k(

(
n−1
k−1

)
−
(
n−2k
k−1

)
)
s+1
2s >(

n−1
k−1

)
−
(
n−k−1
k−1

)
+ 1, Theorem 2 implies that the sets in F ′ share a common element x.

The Hi’s do not contain this x, since F ′ is a maximal intersecting family in F . Let us
define the following auxiliary graph Γ with vertex set {H1, H2, . . . , Hs}: two sets Hi, Hj

are adjacent if and only if there exist s sets in F ′ that are disjoint from Hi ∪ Hj. Ob-
serve that if Γ contains a Hamiltonian cycle, then F contains a copy of C2s. Indeed,
if Hσ(1), Hσ(2), . . . , Hσ(s) is a Hamiltonian cycle, then for any pair Hσ(i), Hσ(i+1) (with
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s + 1 = 1) we can greedily pick different sets Fi ∈ F ′ with Fi ∩ (Hσ(i) ∪ Hσ(i+1)) = ∅ to
get Hσ(1), F1, Hσ(2), F2, . . . , Hσ(s), Fs a copy of C2s in K(n, k)[F ]. Therefore the next claim
and Dirac’s theorem [4] finishes the proof of Case I.

Claim 18. The minimum degree of Γ is at least s− 2.

Proof of Claim. First note that if Hi and Hj are not joined in Γ, then they must be
disjoint. Indeed, otherwise |Hi ∪ Hj| 6 2k − 1 and as |F ′| >

(
n−1
k−1

)
−
(
n−2k
k−1

)
+ s, there

are at least s sets in F ′ avoiding Hi ∪Hj. Now assume for contradiction that H1 is not
connected to H2 and H3, so in particular H1 ∩ (H2 ∪H3) = ∅. Observe the following

• there are at most s−1 sets in F ′ that avoid H1∪H2 and another s−1 sets avoiding
H1 ∪H3,

• as |H1∪ (H2∩H3)| 6 2k−1, there are at most
(
n−1
k−1

)
−
(
n−2k
k−1

)
sets in qcF ′ that meet

H1 ∪ (H2 ∩H3).

So there are at least (k2 + 1)
(
n−3
k−3

)
− 20s2k(

(
n−1
k−1

)
−
(
n−2k
k−1

)
)
s+1
2s sets of F ′ containing at

least one element h2 ∈ H2 \H3 and one element h3 ∈ H3 \H2. Since the number of such
pairs is at most k2, there exists a pair h2, h3 such that the number of sets in F ′ containing
both h2, h3 is more than

(
n−3
k−3

)
. But this is clearly impossible as the total number of k-sets

containing x, h2, h3 is
(
n−3
k−3

)
.

Case II: `(F) > 20s2k(
(
n−1
k−1

)
−
(
n−2k
k−1

)
)
s+1
2s .

By Lemma 15 K(n, k)[F ] contains at least 400s222k

2(2k
k )

(
(
n−1
k−1

)
−
(
n−2k
k−1

)
)
s+1
s > 100s|F|1+1/s

edges, and thus by Theorem 14 it contains a copy of C2s.
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