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Abstract

A set in R? is called almost-equidistant if for any three distinct points in the
set, some two are at unit distance apart. First, we give a short proof of the result
of Bezdek and Langi claiming that an almost-equidistant set lying on a (d — 1)-
dimensional sphere of radius r, where r < 1/ V2, has at most 2d + 2 points. Second,
we prove that an almost-equidistant set V' in R? has O(d) points in two cases: if the
diameter of V' is at most 1 or if V is a subset of a d-dimensional ball of radius at
most 1/ V2 + ed=2/3, where ¢ < 1 /2. Also, we present a new proof of the result of
Kupavskii, Mustafa and Swanepoel that an almost-equidistant set in R? has O(d4/ 3)
elements.

Mathematics Subject Classifications: 05C55, 52C99, 51K99

1 Introduction

A set in RY is called almost-equidistant if among any three points in the set, some two
are at unit distance apart. The natural conjecture [12, Conjecture 12] claims that an
almost-equidistant set in R? has O(d) points.
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THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.14 1



Using an elegant linear algebraic argument, Rosenfeld [13] proved that an almost-
equidistant set on a (d — 1)-dimensional sphere of radius 1/4/2 has at most 2d points.
Note that the set of the vertices of two unit (d — 1)-simplices lying on the same (d — 1)-
dimensional sphere of radius 1//2 is almost-equidistant. Bezdek and Langi [2, Theorem 1]
generalized Rosenfeld’s approach and showed that an almost-equidistant set on a (d — 1)-
dimensional sphere of radius at most 1/ V2 has at most 2d + 2 points; this bound is
tight because the vertices of two unit d-simplices inscribed in the same sphere form an
almost-equidistant set.

Balko, Pér, Scheucher, Swanepoel and Valtr [1, Theorem 6] showed that an almost
equidistant set in R? has O(d®?) points. This bound was improved by the author [12,
Theorem 1] to O(d**/?). Recently, Kupavskii, Mustafa, Swanepoel [8] further improved
to O(d*/?). For more references we refer interested readers to [1, Section 1].

The first goal of this paper is to give a short proof of the result of Bezdek-Léngi [2] us-
ing a lifting argument and the fact that an almost-equidistant set on a (d— 1)-dimensional
sphere has at most 2d points. The second aim is to confirm the conjecture in two cases:
for almost-equidistant sets of diameter 1 (see Section 4) and for almost-equidistant sets
lying in a d-dimensional ball of radius 1/v/2 4 cd~%/3, where ¢ < 1/2 (see Section 5). The
third goal is to give a new proof of the upper bound O(d*/?) for the size of an almost-
equidistant set in RY (see Section 6). Also, we discuss several open problems related to
almost-equidistant sets (see Section 7).

2 Preliminaries

Let {vi,...,v,} C R? be an almost-equidistant set. Consider the matrix
U= v —v;|* + L, - J,, (1)

where J,, is the n-by-n matrix of ones and I,, is the identity matrix of size n. We need
two simple facts proved in [12, Corollary 4 and Lemma 5|. We join them in the following
lemma.

Lemma 1. The matriz U satisfies the following two properties.

1. The equalities tr(U) = tr(U?) = 0 hold.

2. The matriz U has at most one eigenvalue larger than 1 and at least n — d — 2
ergenvalues equal to 1.

We use Lemma 1 combined with the following lemma several times.

Lemma 2. Let Ao, 1,...,1, A\, ..., g be the eigenvalues of an Hermitian matriz A of size
n, indexed in nondecreasing order. Assume tr(A) = tr(A3) = 0.

1. If \o = 1, then n < 2k.

2. If \g+ M <0, then n < 2k.

3. If n = 2k and \g > 1, then

Ay >
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Proof. 1. Suppose to the contrary that n > 2k. Introducing the notation [ :=n — 2k, we
can rewrite the equations tr(A) = tr(A3) = 0 as

k k

Z(_/\i) = Z(_/\i)S =k+1

i=1 i=1
To finish the proof, we need Lemma 1 in [2]. For the sake of completeness we provide its

proof here.

Lemma 3. Let xq,...,x,, be real numbers such that v; > —2 for i = 1,...,m. If
Yo xi = (m+1), where l >0, then

m

3
S at s (m+10)°
1 mQ
=1

Here the equality is possible if and only if the z; are equal to 1+ 1/m.
Remark 4. Also, note that (m +1)3/m? > m + 31.

Proof. Consider functions f, g : [—2,+00) — R such that

3r —2, forany —2 <z <1,

3
x) =x° for any x > =2, g(x) =
/(@) Y 9() {a:3, for any 1 < z.

For —2 < x < 1 we have g(z) < f(x) because in this range ¢g(z) has the value of a tangent
line to f(z) at x = 1 and the second point of the intersection of that tangent line and
f(z) is at @ = —2. Further, g(x) is a convex function in the range —2 < x. By Jensen’s
Inequality, we obtain

The equality case we leave as an exercise. O]

Clearly, Lemma 3 implies that

k
> (=X = k43l

=1

and this is a contradiction with the inequality [ > 0.
2. Suppose to the contrary that n > 2k + 1. Introducing the notation [ :=n — 2k — 1,
we can rewrite the equalities tr(A) = tr(A3%) =0 as

k—1

D (=A)F (o= M) = 2(—&)3 NN =kl (2)

i=1 i=1
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By Lemma 3, we obtain

o

-1
(=) + (=X — Xe)® >k + 3L (3)
1

The second equality in (2) implies
E4+1+ (=M= M)+ 2+ A =k + 3L,
and so
— 3X0Ak(Ao + i) = 2. (4)

Since A\g > 0, A\, <0, Ag+ A\, <O0and >0, we get \g+ A\, =0 and [ =0. By Lemma 3,
if A; + Ar = 0 then we have a strict inequality in (3), and thus we get a strict inequality
in (4). This implies a contradiction with the equality [ = 0.

3. Clearly, we can rewrite the equalities tr(A) = tr(A3®) =0 as

k
(M) =Xt+n—k—1>n—k
=1
and
k
N=D (AP —(n—k—-1)
=1

Since n > 2k, Lemma 3 implies that

(n—k)°
T—(n—k—l). O

Ao >
Corollary 5. If the matriz U does not have an eigenvalue larger than 1, then n < 2d+4.
Proof. The proof easily follows from Lemmas 1 and 2 (case 1). O

We need the following technical lemma only in the proof of the fact that an almost-
equidistant set has O(d*/3) points; see Theorem 14.

Lemma 6. If {wg, wy,..., Wi} is an almost-equidistant set in R? such that
Iwill> = 1/2| <2 (5)

for 0 < i < k and a positive x, then

> (Iwo = wil = 1) < ¢ (d? + da'/? + du)

1<i<k

for some positive constant ¢ independent of d and x.
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Proof. We may assume without loss of generality that ||wo—w;|| # 1 for 1 < i < k. Since
the set is almost-equidistant, the points wy, ..., w; form a regular unit (k — 1)-simplex,
and so kK <d+ 1< 2d.

We use the following theorem (see [4, Theorem 1]) several times.

Theorem 7. Let X = {x1,...,%x,} andY = {y1,...,yn} be two point-sets in R%. Then
dolx=vilP= > Ik—-xlP+ Y vyl +elx -yl
1<i,j<n 1<i<j<n 1<i<j<n

where x and 'y are the barycenters of X and Y, respectively, that is,
X= X1+ +Xn)/n, y = (yi+-+yn)/n.
Theorem 7 applied to {wy,...,wo} and {wy,..., w} implies
S lwo—will = 5Lt bllwo—of |2 = ot kwol+ o +0(0)-Klwolllof], (6)

1<i<k

where o' is the center of the simplex w;...wy. Theorem 7 applied to {o,...,0} and
{w1,...,wy}, where o is the origin, and combined with (5) yields

, k-1 k k-1 1
B2 = 3 Iwill? = "= = 2 = 2=+ 0(1) ke = 5+ O(1) ke, ()

, 2 2
1<i<k
By (5) and (7), we obtain

k—1 k 1
(6) = —5—+5 +5+00) ke+0(1) k(1 + o'/2) (k712 4 212

=k+0() - (K2 + ka'/? + kx).

The fact £ < 2d finishes the proof of the lemma. O

3 A simple proof of the result of Bezdek and Langi

Theorem 8 (Bezdek, Langi, 1999). For r < 1/v/2, an almost-equidistant set lying on a
(d — 1)-dimensional sphere S of radius r contains at most 2d + 2 points.

Proof. Assume that S is embedded in R%*! and its center o and a point o’ € R4 are
such that the line o’o is orthogonal to the affine hull of S and |0’ — o|*> = 1/2 — r. Now,
we get that the almost-equidistant set lies on the d-dimensional sphere of radius 1/ V2
with center o’. By Rosenfeld’s theorem [13], the size of the almost-equidistant sets is at
most 2(d + 1). O
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4 Almost-equidistant diameter sets

A subset of R? is called an almost-equidistant diameter set if it is almost-equidistant and
has diameter 1; see [12, Proposition 13 and Problem 14]. The next theorem is about the
maximal size of such sets.

Theorem 9. An almost-equidistant diameter set in R? has at most 2d + 4 points.

Proof. Clearly, the matrix U (see (1)) for an almost-equidistant diameter set in R? has
non-positive entries. Lemma 1 and Corollary 5 imply that we can assume without loss of
generality that U has exactly one eigenvalue A larger than 1.

We need the following week form of the Perron—Frobenius Theorem; see [11, 5].

Theorem 10 (Perron—Frobenius Theorem). If an n-by-n matriz has non-negative entries,
then it has a non-negative real eigenvalue, which has mazimum absolute value among all
eigenvalues.

By the Perron-Frobenius Theorem, the matrix U has a negative eigenvalue X such
that |\'| > A. Therefore, Lemmas 1 and 2 (case 2) imply that the almost-equidistant
diameter set has at most 2d + 2 points. O

5 Almost-equidistant sets in small balls

Theorem 11. Let 0 < ¢o < 1/2 be a fized constant. If an almost-equidistant set lies in a
d-dimensional ball of radius \/1/2 + co/(d + 1)%/3, then its cardinality is O(d)/(1 — 2cp).

Proof. Let {vi,...,v,} be an almost-equidistant set in R? such that n > 2d + 2 and
[vil|? = 1/2 +¢; for 1 < i < n, where ¢; < co/(d+1)%3 = 1.
By Corollary 5 and Lemma 1, without loss of generality we can assume that the matrix
U (see (1)) for this set has exactly one eigenvalue A larger than 1. Hence Lemmas 1 and 2
(case 3) for U yield
(n—d—1)3
(d+1)2

To finish the proof, we need the following special case of Weyl’s Inequality [14, Theorem 1].

A3 > —(n—d—2).

Theorem 12 (Weyl’s Inequality). If o, 5 and v are the largest eigenvalues of Hermitian
matrices A, B and A + B respectively, then v < a + (.

Clearly, by (1), we have
U = (c'j +j'¢) = 2(vi, vj) + 1,

where ¢ = (¢1,...,¢,) and j = (1,...,1). Obviously, the largest eigenvalues of the
matrices ¢'j and j'c do not exceed nr. Therefore, from Weyl’s Inequality and positivity
of the Gram matrix (v;,v;), we conclude that A < 2nr + 1. This forces

(n—d-1)3

9 1 > A%
(2nr+1)° > A° > CEE

—(n—d-2), (8)
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and so

(2coz 4+ 0(1))* > (x —1)* — (x — 1 — 0o(1)),
where = n/(d+1). Hence we get = O(1)/(1 — 2¢p), and thus n = O(d) /(1 — 2¢p). O
Remark 13. Interestingly, an almost-equidistant set lying in a d-dimensional ball of radius
1/4/2 has at most 2d + 4 points. Indeed, in that case r is equal to 0, and hence (8) yields

n < 2d + 2 if U has an eigenvalue larger then 1. Therefore, by Corollary 5, we get
n < 2d+ 4.

6 Almost-equidistant sets: general case

Theorem 14 (Kupavskii, Mustafa, Swanepoel, 2018). The size of an almost-equidistant
set in RY is O(d"/?).

Proof. Assume that {vy,...,v,} is an almost-equidistant set in R¢. Let
fi= max {]Z (v = vl = 1|} (9)
7777 ]:1

Assuming that )" | v; is the origin o, we easily get
—f<nvilP+ > IviIP—n< f
j=1
for 1 < i < n. Summing up these inequalities for 1 < i < n, we obtain
—f/2<) D IvillP = n/2 < f/2.
i=1

The last two inequalities implies
=3f/(2n) < |lvill* = 1/2 < 3f/(2n) (10)
for 1 <i < n. By (9), (10) and Lemma 6, we have
f<O@)- (a2 +d(f /) +d(f/m).
Therefore, we obtain either n = O(d) or
f=001)-(d"*+d*/n). (11)

Suppose to the contrary that n > Cd*?, where C is a positive constant. Hence,
by (10) and (11), the almost-equidistant set lies in a ball of radius 1/v/2 4+ O(d—2/3)/C?.
Hence if C is big enough, then we can apply Theorem 11 to the almost-equidistant set,
and thus n = O(d), a contradiction. O

Remark 15. Tt is possible to prove Theorem 14 using Lemma 6 combined with the Ger-
shgorin Circle Theorem [6]; see [12, Section 3.2] for a similar argument.
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7 Discussion

7.1 Almost-equidistant diameter sets

A graph (V, E) is called a diameter graph if its vertex set V' C R? is a set of points
of diameter 1 and a pair of vertices forms an edge if they are at unit distance apart.
Of course, the set of vertices of two cliques in a diameter graph is an almost-equidistant
diameter set. For instance, in [9, the last paragraph of Section 3| there is given an example
of diameter graph in R? consisting of two cliques without common vertices such that they
have d+1 and Ld%lj vertices respectively. We believe that the vertex set of this diameter
graph has the maximal size among almost-equidistant diameter sets in R,
3(d+1)

Conjecture 16. An almost-equidistant diameter set in R? has at most {TJ points.

There is the following conjecture [7, Conjecture 5.5] that arose in the context of study
of cliques in diameter graphs.

Conjecture 17 (Schur). Let S; and Sy be two unit simplices in R? forming a set of
diameter 1 such that they have & and m vertices respectively. Then S} and S, share at
least min{0, k + 2m — 2d — 2} vertices for k > m.

Clearly, this conjecture is closely related to Conjecture 16. Note that Conjecture 17
was confirmed in two special (but not triviall) cases: (k,m,d) = (d,d,d), where d > 2,
in [9] and (k,m,d) = (5,3,4) in [10].

7.2 Two-distant almost-equidistant sets

A subset of R? is called a two-distant set if there are only two distances formed by any
two distinct points of the set. The following question seems to be interesting.

Problem 18. What is the largest cardinality of a set in RY that is two-distant and
almost-equidistant at the same time?

Consider a two-distant almost-equidistant set V' C R¢ with distances 1 and a between
points of V', where a > 1; the case a < 1 is not interesting because of Theorem 9. Lemma 1
and Corollary 5 imply that we may assume without loss of generality that U for V has
exactly one eigenvalue A larger than 1. Note that the matrix U/(a? — 1) is the adjacency
matrix of a triangle-free graph. By Lemma 1, Problem 18 is reduced to following question.

Problem 19. What is the minimal rank of the matrix A — \;I,,, where A is the adjacency
matrix of a triangle-free graph on n vertices and A, is its second largest eigenvalue provided
that /\2 > 07

It is worth pointing out that for every positive integer n there are a triangle-free graph
on n vertices and an eigenvalue A of the adjecancy matrix A of the graph such that
rank(A — AI) = O(n®/*) and \ > 0; see [3, the proof of Theorem 5, pages 94-95].
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