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Abstract

Let G be a simple graph, and let ∆(G) and χ′(G) denote the maximum de-
gree and chromatic index of G, respectively. Vizing proved that χ′(G) = ∆(G) or
χ′(G) = ∆(G)+1. We say G is ∆-critical if χ′(G) = ∆(G)+1 and χ′(H) < χ′(G) for
every proper subgraph H of G. In 1968, Vizing conjectured that if G is a ∆-critical
graph, then G has a 2-factor. Let G be an n-vertex ∆-critical graph. It was proved
that if ∆(G) > n/2, then G has a 2-factor; and that if ∆(G) > 2n/3 + 13, then G
has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough
graph with at least three vertices has a 2-factor. We investigate the existence of
a 2-factor in a ∆-critical graph under “moderate” given toughness and maximum
degree conditions. In particular, we show that if G is an n-vertex ∆-critical graph
with toughness at least 3/2 and with maximum degree at least n/3, then G has
a 2-factor. We also construct a family of graphs that have order n, maximum de-
gree n − 1, toughness at least 3/2, but have no 2-factor. This implies that the
∆-criticality in the result is needed. In addition, we develop new techniques in
proving the existence of 2-factors in graphs.

Mathematics Subject Classifications: 05C38, 05C42

1 Introduction

In this paper, we consider only simple, undirected, and finite graphs. Let G be a graph.
The notation ∆ is fixed for the maximum degree of G throughout the paper. A k-vertex
of G is a vertex of degree exactly k in G. Denote by V∆ the set of ∆-vertices in G, and
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by χ′(G) the chromatic index of G. The graph G is called critical if χ′(G) > ∆ and
χ′(H) < χ′(G) for every proper subgraph H of G. It is clear that if G is critical then G
must be connected. In 1965, Vizing [15] showed that a graph of maximum degree ∆ has
chromatic index either ∆ or ∆+1. If χ′(G) = ∆, then G is said to be of class 1; otherwise,
it is said to be of class 2. Holyer [8] showed that it is NP-complete to determine whether
an arbitrary graph is of class 1. A critical graph G is called ∆-critical if χ′(G) = ∆ + 1.
So ∆-critical graphs are class 2 graphs. Motivated by the classification problem, Vizing
studied critical class 2 graphs, or ∆-critical graphs, and made two well-known conjectures.

The first conjecture [16] is on the independence number α(G) of G, that is, the size of
a maximum independent set in G.

Conjecture 1 (Vizing’s Independence Number Conjecture). Let G be a ∆-critical graph
of order n. Then α(G) 6 n/2.

Furthermore, Vizing [14] conjectured that the following statement is true.

Conjecture 2 (Vizing’s 2-Factor Conjecture). Let G be a ∆-critical graph. Then G
contains a 2-factor.

As each cycle C satisfying α(C) 6 |V (C)|/2, Conjecture 2 implies Conjecture 1.
For the Independence Number Conjecture, Brinkmann et al. [2], in 2000, proved that

if G is a critical graph, then α(G) < 2n/3; and the upper bound is further improved when
the maximum degree is between 3 and 10. Luo and Zhao [11], in 2008, by improving
the result of Brinkmann et al., showed that if G is an n-vertex ∆-critical graph, then
α(G) < (5∆− 6)n/(8∆− 6) < 5n/8 if ∆ > 6. In 2009, Woodall [17] further improved the
upper bound to 3n/5. By restricting the problem to graphs with large maximum degrees,
in 2006, Luo and Zhao [10] showed that Vizing’s Independence Number Conjecture is true
if ∆(G) > n/2.

Compared to the progresses on the first Conjecture, the progresses on Vizing’s 2-Factor
Conjecture has been slow. In 2004, Grünewald and Steffen [7] established Vizing’s 2-Factor
Conjecture for graphs with the deficiency

∑
v∈V (G)(∆(G)−dG(v)) small; in particular, for

overfull graphs (graphs of an odd order and with the deficiency
∑

v∈V (G)(∆(G)−dG(v)) <

∆(G)). In 2012, Luo and Zhao [12] proved that if G is an n-vertex ∆-critical graph
with ∆ > 6n

7
, then G contains a hamiltonian cycle, and thus a 2-factor with exactly

one component. Continuing the investigation on the existence of a hamiltonian cycle in
∆-critical graphs with “very large” maximum degrees, Luo and Zhao [9] in 2016 showed
that an n-vertex ∆-critical graph with ∆ > 4n

5
is hamiltonian. The lower bound on ∆(G)

assuring an n-vertex ∆-critical graph to be hamiltonian, has been improved to 2n
3

+ 12,
in [3]. Just finding 2-factors, Chen and Shan [5] proved the following result.

Theorem 1.1 ([5]). Let G be an n-vertex ∆-critical graph. Then G has a 2-factor if
∆ > n/2.

As a measure of graph connectivity and “resilience” under removal of vertices, graph
toughness is a useful condition in finding factors in graphs. To be precise, we recall the
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definition of toughness below. The number of components of G is denoted by c(G). Let
t > 0 be a real number. The graph is said to be t-tough if |S| > t · c(G − S) for each
S ⊆ V (G) with c(G− S) > 2. The toughness τ(G) is the largest real number t for which
G is t-tough, or is ∞ if G is complete. A toughset in G is a cutset S ⊆ V (G) of G such

that |S|
c(G−S)

= τ(G). Enomoto et al. [6] proved the classic result below.

Theorem 1.2 (Enomoto et al. [6]). Every k-tough graph has a k-factor if k|V (G)| is even
and |V (G)| > k + 1.

Combining the result in Theorem 1.1 and the result in Theorem 1.2 when restricted to
2-factors, one might wonder — can we get something in between, i.e., is it possible to find
2-factors in an n-vertex ∆-critical graph G, under the condition that ∆(G) < n/2 but
∆(G) > cn for some positive constant c, and τ(G) < 2 but τ(G) > d for some positive
constant d? Particularly, we prove the following result.

Theorem 1.3. Let G be an n-vertex ∆-critical graph. Then G has a 2-factor if τ(G) >
3/2 and ∆ > n/3.

The remaining of the paper is organized as follows: in Section 2, we recall some graph
terminologies and present several lemmas; in Section 3, we recall Tutte’s 2-factor Theorem
and develop techniques for showing the existence of 2-factors upon applying Tutte’s 2-
factor Theorem; in Section 4, we prove Theorem 1.3. In the last Section, we construct a
family of graphs that have order n, maximum degree n − 1, toughness at least 3/2, but
have no 2-factor. This implies that the ∆-criticality in Theorem 1.3 is needed.

2 Notation and Lemmas

Let G be a graph. For x ∈ V (G) we denote by dG(x) the degree of x in G. For disjoint
subsets of vertices S and T in G, we denote by EG(S, T ), the set of edges that has one end
vertex in S and the other in T , and let eG(S, T ) = |EG(S, T )|. If S = {s} is a singleton,
we write eG(s, T ) instead of eG({s}, T ). If H ⊆ G is a subgraph of G, and T ⊆ V (G) with
T ∩ V (H) = ∅, we write EG(H,T ) and eG(H,T ) for notational simplicity. A matching in
G is a set of independent edges. If M is a matching of G, then let V (M) denote the set
of end vertices of the edges in M . For X ⊆ V (G), M is said to saturate X if X ⊆ V (M).
If G is a bipartite graph with partite sets A and B, we denote G by G[A,B] to emphasize
the two partite sets.

To prove Theorem 1.3, we present two lemmas below.

Lemma 2.1 (Vizing’s Adjacency Lemma). Let G be a ∆-critical graph. Then for any
edge xy ∈ E(G), x is adjacent to at least ∆− dG(y) + 1 ∆-vertices z with z 6= y.

The following lemma is a generalization of a result in [10].

Lemma 2.2. Let G be a ∆-critical graph and T be an independent set in G. Let S =
V (G) − T , and let H = G − E(G[S]) be the bipartite graph with partite sets S and T .
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For each x ∈ S, let σx be the number of non-∆-degree neighbors of x from S. Assume
that there are δ0 ∆-vertices in T . Then for each edge xy ∈ E(H) with x ∈ S and y ∈ T ,
dH(y) > dH(x) + 1− δ0 + σx.

Proof. Let xy ∈ E(H) with x ∈ S and y ∈ T . By Vizing’s Adjacency Lemma, x is
adjacent to at least ∆− dG(y) + 1 ∆-vertices in G. As T has δ0 ∆-vertices, we know x is
adjacent to at least ∆−dG(y)+1−δ0 ∆-vertices from S. Let σx be the number of all non
∆-degree neighbors of x in S. Then, dH(x) + ∆− dG(y) + 1− δ0 + σx 6 dG(x) 6 ∆. By
noting that dG(y) = dH(y), the inequality implies that dH(y) > dH(x) + 1− δ0 + σx.

3 Tutte’s 2-factor Theorem and Biased Barriers

One of the main proof ingredients of Theorem 1.3 is to apply Tutte’s 2-factor Theorem
under a new setting that we develop in this section.

Let S and T be disjoint subsets of vertices of a graph G. Let D be a component
of G − (S ∪ T ). Then D is said to be an odd component (resp. even component) if
eG(D,T ) ≡ 1 (mod 2) (resp. eG(D,T ) ≡ 0 (mod 2)). Let H(S, T ) be the set of odd
components of G−(S∪T ) and let h(S, T ) = |H(S, T )|. For y ∈ T , let H(y : S, T ) = {D ∈
H(S, T ), eG(y,D) > 0} and h(y : S, T ) = |H(y : S, T )|. Note that eG(y, V (G)−(S∪T )) >
h(y : S, T ).

Let δ(S, T ) = 2|S| − 2|T |+
∑

y∈T dG−S(y)− h(S, T ). It is easy to see that δ(S, T ) ≡ 0
(mod 2) for every S, T ⊆ V (G) with S ∩ T = ∅. We use the following criterion for the
existence of a 2-factor, which is a restricted form of Tutte’s f -factor Theorem.

Lemma 3.1 (Tutte [13]). A graph G has a 2-factor if and only if δ(S, T ) > 0 for every
S, T ⊆ V (G) with S ∩ T = ∅.

An ordered pair (S, T ) consists of disjoint subsets of vertices S and T in a graph G is
called a barrier if δ(S, T ) 6 −2. By Lemma 3.1, if G does not have a 2-factor, then G
has a barrier. We define a special barrier as below.

Definition 1. Let G be a graph without a 2-factor. A barrier (S, T ) of G is called a
biased barrier if among all the barriers of G,

(1) |S| is maximum; and

(2) subject to (1), |T | is minimum.

Properties of a minimum barrier (a barrier such that |S∪T | is minimum among all the
barriers of G) has been established, for example, in [1, 4]. A biased barrier has similar
nice properties as given in the lemma below.

Lemma 3.2. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G.
Then each of the following holds.

(1) The set T is independent in G.
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(2) If D is an even component with respect to (S, T ), then eG(T,D) = 0.

(3) If D is an odd component with respect to (S, T ), then for any y ∈ T , eG(y,D) 6 1.

(4) If D is an odd component with respect to (S, T ), then for any x ∈ V (D), eG(x, T ) 6 1.

Proof. Let U = V (G) − (S ∪ T ) and z ∈ T be a vertex. By the assumption that
(S, T ) is a biased barrier, we know that δ(S, T − {z}) > 0. So,

0 6 δ(S, T − {z}) = 2|S| − 2|T |+ 2 +
∑

y∈T−{z}
dG−S(y)− h(S, T − {z})

= 2|S| − 2|T |+ 2 +
∑
y∈T

dG−S(y)− eG(z, T − {z})− eG(z, U)− h(S, T − {z})

6 2|S| − 2|T |+ 2 +
∑
y∈T

dG−S(y)− eG(z, T − {z})− eG(z, U)− h(S, T ) + h(z : S, T )

= δ(S, T ) + 2− eG(z, T − {z})− eG(z, U) + h(z : S, T )
6 −eG(z, T − {z})− eG(z, U) + h(z : S, T ), since δ(S, T ) 6 −2.

This implies that
eG(z, T − {z}) + eG(z, U)− h(z : S, T ) 6 0.

Because eG(z, U)−h(z : S, T ) > 0 always holds, the above inequality particularly implies
that

eG(z, T − {z}) = 0 for any z ∈ T and eG(z, U)− h(z : S, T ) = 0.

This proves statements (1)-(3).
To show (4), let D be an odd component with respect to (S, T ) and let x ∈ V (D) be

any vertex. Then by the assumption that |S| is maximum, we know that δ(S∪{x}, T ) > 0.
So,

0 6 δ(S ∪ {x}, T ) = 2|S| − 2|T |+ 2 +
∑
y∈T

dG−(S∪{x})(y)− h(S ∪ {x}, T )

= 2|S| − 2|T |+ 2 +
∑
y∈T

dG−S(y)− eG(x, T )− h(S ∪ {x}, T )

6 2|S| − 2|T |+ 2 +
∑
y∈T

dG−S(y)− eG(x, T )− (h(S, T )− 1)

= δ(S, T ) + 2− eG(x, T ) + 1
6 −eG(x, T ) + 1, since δ(S, T ) 6 −2.

Hence, eG(x, T ) 6 1.
Let G be a graph without a 2-factor and let (S, T ) be a biased barrier of G. We call

(S, T ) a good biased barrier of G if h(S, T ) is smallest among all biased barriers of G.

Lemma 3.3. Let G be a graph without a 2-factor, and let (S, T ) be a good biased barrier
of G. For any y ∈ T , if h(y : S, T ) > 2, then for any D ∈ H(y : S, T ), |V (D)| > 3.

Proof. Let D ∈ H(y : S, T ) be an odd component of G − (S ∪ T ). By (4) of
Lemma 3.2, |V (D)| > 3 if eG(D,T ) > 3. So we assume that eG(D,T ) = 1 and assume to
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the contrary that |V (D)| 6 2. Let x be the vertex in D if |V (D)| = 1, and be a vertex in
D which is not adjacent to any vertex in T if |V (D)| = 2. Let z ∈ T be the vertex such
that eG(D, z) = 1, and let T ′ = (T − {z})∪ {x} and U = V (G)− (S ∪ T ). Let Dz be the
component of G− (S ∪ T ′) which contains the vertex z. Then since eG(z,D′) = 1 for any
D′ ∈ H(z : S, T ) by (3) of Lemma 3.2, we have that

eG(Dz, T ) =


∑

D′∈H(z:S,T )−{D}

(eG(D′, T )− 1) + eG(x, z), if |V (D)| = 1;

∑
D′∈H(z:S,T )

(eG(D′, T )− 1) + eG(x, V (D)− {x}), if |V (D)| = 2.

Since eG(D′, T ) is odd for any D′ ∈ H(z : S, T ), and eG(x, z) = eG(x, V (D) − {x}) = 1,
we know that Dz ∈ H(S, T ′) is an odd component of G − (S ∪ T ′). Hence, h(S, T ′) =
h(S, T )− h(z : S, T ) + 1. So

δ(S, T ′) = 2|S| − 2|T |+
∑
y∈T ′

dG−S(y)− h(S, T ′)

= 2|S| − 2|T |+
∑
y∈T

dG−S(y) + eG(x, V (D − x) ∪ {z})−

eG(z, U)− h(S, T ) + h(z : S, T )− 1
= δ(S, T ) + eG(x, V (D − x) ∪ {z})− eG(z, U) + h(z : S, T )− 1
6 δ(S, T ) 6 −2, since eG(x, V (D − x) ∪ {z}) = 1, and eG(z, U) > h(z : S, T ).

Thus, (S, T ′) is a biased barrier. However, h(S, T ′) = h(S, T )−h(y : S, T )+1 6 h(S, T )−1,
showing a contradiction to the assumption that (S, T ) is a good biased barrier.

4 Proof of Theorem 1.3

Let G be an n-vertex ∆-critical graph such that τ(G) > 3/2 and ∆ > n/3. We show that
G has a 2-factor.

Since G is 3/2-tough, ∆(G) > δ(G) > 3. Assume to the contrary that G does not have
a 2-factor. Then by Tutte’s 2-factor Theorem (Lemma 3.1), G has a barrier. Let (S, T )
be a good biased barrier of G. Since S and T are already fixed, we simply denote H(S, T )
by H. Let U = V (G) − (S ∪ T ) and let Hk be the set of components D of G − (S ∪ T )
with eG(D,T ) = k. Then we have H =

⋃
k>0H2k+1. For any y ∈ T , let

H(y) =
{
D ∈ H

∣∣ eG(y,D) = 1
}
,

H1(y) =
{
D ∈ H1

∣∣ eG(y,D) = 1
}
.

It is clear that H1(y) ⊆ H(y). Note also that H(y) = H(y : S, T ). We use this notation
H(y) for simplicity since S and T are already fixed.

Claim 4.1. |T | > |S|+
∑

k>1 k|H2k+1|+ 2. In particular, |T | > |S|+ 2.
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Proof. Since (S, T ) is a barrier,

δ(S, T ) = 2|S| − 2|T |+
∑
y∈T

dG−S(y)− h(S, T )

= 2|S| − 2|T |+
∑
y∈T

dG−S(y)−
∑
k>0

|H2k+1| 6 −2.

By Lemma 3.2 (1) and (2),∑
y∈T

dG−S(y) =
∑
y∈T

eG(y, U) = eG(T, U) =
∑
k>0

(2k + 1)|H2k+1|.

Therefore, we have

−2 > 2|S| − 2|T |+
∑
k>0

(2k + 1)|H2k+1| −
∑
k>0

|H2k+1|,

which yields |T | > |S|+
∑

k>1 k|H2k+1|+ 2.

We perform the following operations to G.

(1) Remove all even components, and remove all components in H1.

(2) Remove all edges in G[S].

(3) For a component D ∈ H2k+1 with k > 1 introduce a set of k independent vertices
UD = {uD1 , uD2 , . . . , uDk } and replace D with UD. By Lemma 3.2 (3), |NG(D) ∩ T | =
eG(T,D) = 2k + 1. Let NG(D) ∩ T = {v0, v1, . . . , v2k}. Add two new edges uDi v2i−1

and uDi v2i for each i with 1 6 i 6 k. Moreover, add one extra edge uD1 v0.

Let H be the resulting graph, and let

UH =
⋃
k>1

 ⋃
D∈H2k+1

UD

 , X = S ∪ UH.

By the construction, the graph H satisfies the following properties.

(1) H is a bipartite graph with partite sets X and T ,

(2) |UH| =
∑

k>1 k|H2k+1|, |X| = |S|+ |UH| = |S|+
∑

k>1 k|H2k+1|, and

(3) For each k > 1 and each D ∈ H2k+1, dH(uD1 ) = 3 and dH(uDi ) = 2 for each i with
2 6 i 6 k.

We will show that there is a matching in H which saturates T , which gives that
|X| = |S|+

∑
k>1 k|H2k+1| > |T |, giving a contradiction to Claim 4.1.

For notational simplicity, for a set D ⊆ H, let

V (D) =
⋃
D∈D

V (D).
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Claim 4.2. |S| < |UH|.

Proof. Assume to the contrary that |S| > |UH| =
∑

k>1 k|H2k+1|. We may assume
that |UH| > 1. For otherwise, since there is no edge between even component of G−(S∪T )
and T , and each component in H1 is connected to a single vertex in T , c(G − S) > |T |.
Since |T | > 2 by Claim 4.1, S is a cutset of G. This implies that τ(G) 6 |S|

|T | < 1, giving
a contradiction.

For each D ∈ H2k+1 with k > 1, let WD be a set of any 2k vertices in D such that for
each x ∈ WD, eG(x, T ) = 1. Thus, D−WD is only connected to a single vertex in T . Let

W = S ∪

 ⋃
D∈H2k+1,k>1

WD

 .

Since T is an independent set in G, and each component in G−W is connected to S or
only a single vertex in T , we have that c(G −W ) > |T |. Again, W is a cutset of G as
|T | > 2 by Claim 4.1. So

τ(G) 6
|W |
|T |
6
|S|+

∑
k>1 2k|H2k+1|

|S|+ |UH|+ 2

6

∑
k>1 k|H2k+1|+

∑
k>1 2k|H2k+2|∑

k>1 k|H2k+1|+
∑

k>1 k|H2k+1|+ 2
<

3

2
,

showing a contradiction to the assumption that τ(G) > 3/2.
Because of |T | > |S|+ |UH| and |UH| > |S|, we get the following Claim.

Claim 4.3. |T | > 2|S|+ 2.

Claim 4.4. T contains no ∆-vertex of G.

Proof. Suppose to the contrary that there exists z ∈ T such that dG(z) = ∆. We
may assume that |H(z)| > 2. Otherwise, eG(z, S) > ∆− 1 and so |S| > ∆− 1. Hence by
Claims 4.2 and 4.3,

n = |S|+ |T |+ |U |
> 3|S|+ 2 + |UH| (|U | > |UH| by Lemma 3.2 (4))

> 4|S|+ 3 > 4∆− 1 > 4n/3− 1,

implying that n 6 3. This gives a contradiction to the fact that ∆ > 3.
Hence, by Lemma 3.3, we have that

n = |S|+ |T |+ |U | > eG(z, S) + 3|H(z)|+ |T |
> eG(z, S) + 3|H(z)|+ 2eG(z, S) + 2 (|T | > 2|S|+ 2 > 2eG(z, S) + 2)

= 3(eG(z, S) + |H(z)|) + 2 = 3∆ + 2 > n+ 2,

showing a contradiction.
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Claim 4.5. |H| > 2.

Proof. Assume to the contrary that |H| 6 1. By Claim 4.2, we then know that
|H| = 1 and the component is adjacent to at least three vertices in T . Let D be the
only odd component in G− (S ∪ T ) and assume that eG(D,T ) = 2k + 1 for some k > 1.
By Lemma 3.2 (3), |T | > 2k + 1. Again, by Claim 4.2, |S| 6 k − 1. Let W be the
union of the set S and the set of neighbors of vertices in T from the component D. Then
|W | 6 k − 1 + 2k + 1 = 3k and c(G−W ) > |T | > 2k + 1. This gives a contradiction to
the toughness of G.

Let D1 ∈ H be a component such that

|V (D1)| = max
{
|V (D)|

∣∣ D ∈ H },
and D2 ∈ H − {D1} such that

|V (D2)| = max
{
|V (D)|

∣∣ D ∈ H − {D1}
}
.

Claim 4.6. Let D ∈ H−{D1, D2}. Then D contains no ∆-vertex of G. Furthermore, if
D1 contains a ∆-vertex of G, then |V (D)| 6 |V (D1)| − 1; and if D2 contains a ∆-vertex
of G, then |V (D)| 6 |V (D2)| − 2 6 |V (D1)| − 2, and for any x ∈ V (D), dG(x) 6 ∆− 2.

Proof. Note that by the choice of D1 and D2, |V (D)| 6 |V (H)|/3, recall here that
V (H) is the union of vertex sets of components in H. Since |T | > 2|S|+ 2 by Claim 4.3,
we have that n > |S| + |T | + |V (H)| > 3|S| + 2 + |V (H)|. Consequently, |V (H)|/3 6
(n− 2)/3− |S|. Thus, for any x ∈ V (D),

dG(x) 6 |V (D)| − 1 + 1 + |S| 6 |V (H)|/3 + |S| 6 (n− 2)/3 < ∆.

Suppose that D1 contains a ∆-vertex of G, and there exists D ∈ H − {D1, D2} such
that |V (D)| = |V (D1)|. This implies that |V (D1)| = |V (D2)| = |V (D)|, so |V (D1)| 6
|V (H)|/3. Then by exactly the same argument above, we have that for any x ∈ V (D1),

dG(x) 6 |V (D)| − 1 + 1 + |S| 6 |V (H)|/3 + |S| 6 (n− 2)/3 < ∆.

Hence, |V (D)| 6 |V (D1)| − 1.
Suppose now that D2 contains a ∆-vertex of G. Since |V (D1)| > |V (D2)|, we then

have that |V (Di)|+ |S| > ∆ for i = 1, 2. So for any D ∈ H − {D1, D2},

n > |S|+ |T |+ |V (D1)|+ |V (D2)|+ |V (D)|
> |S|+ 2|S|+ 2 + |V (D1)|+ |V (D2)|+ |V (D)|
= |S|+ |V (D1)|+ |S|+ |V (D2)|+ |S|+ |V (D)|+ 2.

Because of |V (Di)|+ |S| > ∆ for i = 1, 2, it follows that

|S|+ |V (D)| 6 n− 2∆− 2 6 n/3− 2 6 ∆− 2.
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Consequently, |V (D)| 6 |V (D2)| − 2 6 |V (D1)| − 2, and for any x ∈ V (D), dG(x) 6
∆− 2.

We introduce some further notation here. Let

T1 =
{
y ∈ T

∣∣ |H1(y)| = 1
}
, and T2 =

{
y ∈ T

∣∣ |H1(y)| > 2
}
.

For each component D ∈ H1, let yD ∈ T be the vertex such that eG(D,T ) = eG(D, yD) =
1. Let

H11 =
{
D ∈ H1

∣∣ yD ∈ T1

}
, and H12 =

{
D ∈ H1

∣∣ yD ∈ T2

}
(= H1 −H11).

Claim 4.7. For each component D ∈ H12, |H(yD)| > 2. Consequently, |V (D)| > 3.

Proof. Since D ∈ H12, we have that |H(yD)| > |H1(yD)| > 2. Then |V (D)| > 3 by
Lemma 3.3.

Denote

m1 = |H11|, m2 = |H12|, and m3 = |H −H1|,
S1 = {x ∈ S |x has a non ∆-degree neighbor in V (G)− T}, and S0 = S − S1,

py = |H1(y)| for any y ∈ T .

Note that by the definition, if m2 6= 0, then m2 > 2.

Claim 4.8. Let y ∈ T be a vertex. Then

|NG(y) ∩ S| >


|S0|+m1/3 +m2 − 1, if ∅ 6= H(y) 6⊆ {D1, D2};
2, if H(y) = {D1} or {D2};
1, if H(y) = {D1, D2}.

Moreover, NG(y) ∩ S 6= ∅.
Proof. Since G is 3/2-tough, δ(G) > 3. As each y ∈ T1 satisfies dG(y) = eG(y, S) +

eG(y, V (H)) and eG(y,Di) 6 1 for i = 1, 2, we get eG(y, S) > 2 if H(y) = {D1} or {D2}.
If H(y) = {D1, D2}, then |NG(y) ∩ S| > 1.

Thus we assume that there exists D ∈ H(y) − {D1, D2}. Let xD be the neighbor of
y in D. By Claim 4.6, xD is not a ∆-vertex of G. Moreover, y is adjacent to at least
∆− dG(xD) + 1 ∆-vertices of G by Vizing’s Adjacency Lemma.

Note that each component in H −H1 contains at least three vertices by Lemma 3.2
(4). So n >
|S|+ |T |+ |V (D1)|+ |V (D2)|+ |V (D)|+m1 + 3(m2 +m3 − 3), if D1, D2, D

∈ H −H11;
|S|+ |T |+ |V (D1)|+ |V (D2)|+ |V (D)|+m1 − 1 + 3(m2 +m3 − 2), otherwise.

Thus, because |T | > 2|S| + 2 by Lemma 4.3, and |UH| > |S| + 1 implying that m3 > 1,
we get that

n > |S|+ |T |+ |V (D1)|+ |V (D2)|+ |V (D)|+m1 + 3(m2 +m3 − 3)
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> 3|S|+ 2 + |V (D1)|+ |V (D2)|+ |V (D)|+m1 + 3(m2 − 2)

>


3|S|+ 3|V (D)|+m1 + 3m2, if D2 contains a ∆-vertex;
3|S|+ 3|V (D)|+m1 + 3m2 − 3, if D1 contains a ∆-vertex;
3|S|+ 3|V (D)|+m1 + 3m2 − 4, if neither D1 nor D2 contains a ∆-vertex.

The above bounds were obtained because of |V (D1)| > |V (D2)| > |V (D)| and Claim 4.6.
Thus since no component in H− {D1, D2} containing a ∆-vertex of G by Claim 4.6, we
have that

|NG(y)∩S ∩V∆| >

 ∆− dG(xD)− 1, if D2 contains a ∆-vertex;
∆− dG(xD), if D1 contains a ∆-vertex but D2 has no ∆-vertex;
∆− dG(xD) + 1, if neither D1 nor D2 contains a ∆-vertex.

Because xD is not a ∆-vertex of G, by the definitions of S0 and S1, we have that NG(xD)∩
S = NG(xD)∩S1. So dG(xD) 6 |S1|+ |V (D)|. Replacing ∆ by n

3
in the above bounds on

|NG(y) ∩ S|, and combining the bounds on n, we get that

|NG(y) ∩ S| >

 |S0|+ m1
3 +m2 − 1, if D2 contains a ∆-vertex;

|S0|+ m1
3 +m2 − 1, if D1 contains a ∆-vertex but D2 has no ∆-vertex;

|S0|+ m1
3 +m2 − 1

3 , if neither D1 nor D2 contains a ∆-vertex.

For the second part of the statement, if H(y) = ∅, then NG(y) = NG(y)∩S. So assume
that H(y) 6= ∅. By the first part of the statement, it easily follows that |NG(y) ∩ S| > 1
unless H(y) 6⊆ {D1, D2}. Let D ∈ H(y)−{D1, D2}, and let xD be the neighbor of y in D.
By Claim 4.6, xD is not a ∆-vertex of G. Moreover, y is adjacent to at least ∆−dG(xD)+1
∆-vertices of G by Vizing’s Adjacency Lemma. Note that no component in H−{D1, D2}
contains a ∆-vertex of G by Claim 4.6. If D2 does not contain a ∆-vertex of G, then y is
adjacent to at least ∆− dG(xD) > 1 ∆-vertices which are contained in S. If D2 contains
a ∆-vertex of G, then by the second part of Claim 4.6, dG(xD) 6 ∆− 2. So y is adjacent
to at least ∆− dG(xD)− 1 > 1 ∆-vertices which are contained in S.

The proof is finished.
If {D1, D2} ∩H1 6= ∅, say D1 ∈ H1, then there exists a unique vertex y ∈ T such that

eG(y,D1) = 1. If {D1, D2} ∩ H1 6= ∅ and there exists y ∈ T such that H(y) = {D1, D2},

we denote y by yω.

Claim 4.9. Let y ∈ T be a vertex such that |H(y)| > 2 and y 6= yω. Then dG(y) > 4.

Proof. Assume to the contrary that dG(y) = 3. Let D ∈ H(y)−{D1, D2}, and let xD
be the neighbor of y in D. Then xD is adjacent to at least ∆− 3 + 1 ∆-vertices of G by
Vizing’s Adjacency Lemma. Since V (D) contains no ∆-vertex of G by Claim 4.6, and T
contains no ∆-vertex of G by Claim 4.4, we conclude that |S| > |NG(xD)∩S∩V∆| > ∆−2.
Since each D ∈ H2k+1 contains at least 2k+1 vertices by Lemma 3.2 (4), |V (H)| > 2|UH|.
Thus

n > |S|+ 2|UH|+ |T | > |S|+ 2(|S|+ 1) + 2|S|+ 2
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= 5|S|+ 4 > 5(∆− 2) + 4 > 5
(n

3
− 2
)

+ 4 =
5n

3
− 6,

implying that n 6 9.
By Claim 4.8, NG(y) ∩ S 6= ∅. Since |H(y)| > 2, by Lemma 3.3, |U | > |V (H(y))| > 6.

Since |S| > 1, |T | > 2|S| + 2 > 4. Hence, n > |S| + |T | + |U | > 1 + 4 + 6 > 11, a
contradiction.

Claim 4.10. Let xy ∈ E(H) be an edge with x ∈ X and y ∈ T . Then each of the
following holds.

(1) If x ∈ S0, then dH(y) + py > dH(x) + 1.

(2) If x ∈ S1, then dH(y) + py > dH(x) + 2.

(3) If x ∈ UH and py = 0, then dH(y) > dH(x).

(4) If x ∈ UH, py > 1, and y 6= yω, then dH(y) + py > dH(x) + 1.

(5) If x ∈ UH and y = yω, then dH(y) + py > dH(x).

Proof. Statements (1) and (2) follow from Lemma 2.2 by taking σx = 0 and 1,
respectively. The statements (3) and (5) are clear, since dH(y) + py = dG(y) > δ(G) > 3,
and dH(x) 6 3 for any x ∈ UH. Now we show statement (4). By the assumption that
x ∈ UH and py > 1, we have that |H(y)| > 2. Then the statement follows by Claim 4.9,
since dH(y) + py = dG(y) > 4, while dH(x) 6 3.

Claim 4.11. H has a matching which saturates T .

Proof. Suppose to the contrary that H has no matching saturating T . By Hall’s
Theorem, there is a nonempty subset B ⊆ T such that |NH(B)| < |B|. Among all
such subsets with this property, we choose B with smallest cardinality. Let A = NH(B)
and H ′ = H[A ∪ B]. Then we claim that in H ′, there is a matching which saturates
A. Suppose this is not the case. By Hall’s Theorem again, there is a nonempty subset
A′ ⊆ A such that |NH′(A′)| < |A′|. Since A′ ⊆ A = NH(B) 6= ∅ (T contains no isolated
vertex of H), NH′(A′) 6= ∅. Let B′ = B − NH′(A′). As |B| > |A| > |NH′(A′)| > 0,
0 < |B′| < |B|. On the other hand, we have NH′(B′) = NH(B′) ⊆ A − A′. However,
|B′| = |B| − |NH′(A′)| > |A| − |NH′(A′)| > |A| − |A′| = |A − A′| > |NH(B′)|, showing a
contradiction to the choice of B.

Let M be a matching of H ′ = H[A ∪ B] which saturates A. We consider two cases
below.

Case 1. B ∩ T2 ⊆ {yω}.
For any y ∈ B with y 6= yω, py 6 1. Since |B| > |A|, there exists y0 ∈ B − V (M).

Since py0 6 1 if y0 6= yω, we have that dH(y0) > 2 if y0 6= yω. Otherwise, dH(y0) > 1.
Assume first that yω 6∈ V (M). So applying Claim 4.10, we have that

eH(A,B) 6
∑
xy∈M

x∈A,y∈B

dH(x)
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6
∑
xy∈M

x∈S0∪S1 or py=1

(dH(y) + py − 1) +
∑
xy∈M

x∈UH,y∈B,py=0

dH(y)

<
∑
xy∈M

x∈A,y∈B

dH(y) + dH(y0) 6 eH(A,B),

showing a contradiction.
Assume now that yω ∈ V (M). By the definition of yω, 1 6 pyω 6 2. If pyω = 2,

then for any edge xyω ∈ E(H), we have that x ∈ S and so dH(yω) + pyω > dH(x) + 1;
and if pyω = 1, then for any edge xyω ∈ E(H), dH(yω) + pyω > dH(x). So for any edge
xyω ∈ E(H), dH(x) 6 dH(yω) + 1. Then applying Claim 4.10, we have that

eH(A,B) 6
∑

xy∈M
x∈A,y∈B

dH(x)

6
∑

xy∈M
x∈S0∪S1 or py=1,y 6=yω

(dH(y) + py − 1) +

 ∑
xy∈M

x∈UH,y∈B,py=0

dH(y)

+ dH(yω) + 1

<

 ∑
xy∈M

x∈A,y∈B

dH(y)

+ dH(y0) 6 eH(A,B),

showing a contradiction again.

Case 2. (B ∩ T2)− {yω} 6= ∅.
For any y ∈ T2, H1(y) ⊆ H12. Since |H1(y)| > 2 if y ∈ T2, the assumption that

(B ∩ T2)− {yω} 6= ∅ implies that m2 > 2. Furthermore, if yω ∈ T2, then m2 > 4.
Since |B| > |A|, there exists y0 ∈ B − V (M). Since NH(y) ∩ S 6= ∅ for any y ∈ T by

Claim 4.8, we have dH(y0) > 1. We claim that if yω exists and y0 6= yω, then dH(y0) > 2. If
|H(y0)| 6 1, then dH(y0) > dG(y0)−1 > 2. So we assume that |H(y0)| > 2. If yω exists and
y0 6= yω, then by Claim 4.8, dH(y0) > |NH(y0)∩S| > |S0|+m1/3+m2−1 > m1/3+m2−1.
Note that if yω ∈ T2 then m2 > 4, and if yω 6∈ T2, then by the definition of yω, m1 > 1.
Thus we have that dH(y0) > 2.

For any y ∈ T2−{yω}, |NH(y)∩S| = |NG(y)∩S| > |S0|+m1/3+m2−1 by Claim 4.8.
Thus, |A ∩ S| > |S0|+m1/3 +m2 − 1. Let A0 = A ∩ S. Then since m2 > 2, if m1 6 1

2|A0 − S0| > 2m1/3 + 2m2 − 2 > m1 +m2 − 1/3, (1)

and if m1 > 2, then
|A0 − S0| > m1/3 +m2 − 1 > m2 − 1/3. (2)

If yω ∈ V (M), then let xω be the vertex with xωyω ∈M .
Assume first that yω 6∈ V (M) or xω ∈ S. Note that in both cases, Claim 4.10 (5) does

not apply. Applying Claim 4.10 (1-4), we have that

eH(A,B) 6
∑
xy∈M

x∈A,y∈B

dH(x) 6
∑
xy∈M
x∈S0

(dH(y) + py − 1) +
∑
xy∈M
x∈S1

(dH(y) + py − 2)
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+
∑
xy∈M

x∈UH,y∈B,py=0

dH(y) +
∑
xy∈M

x∈UH,y∈B,py>1

(dH(y) + py − 1)

6



 ∑
xy∈M

x∈A,y∈B

dH(y)

+
∑

xy∈M
x 6∈S1

py +
∑

xy∈M
x∈S1

(py − 2) ∑
xy∈M

x∈A,y∈B

dH(y)

+
∑

xy∈M
py=1

(py − 1) +
∑

xy∈M
x∈S1 or py>2

(py − 1)

6



 ∑
xy∈M

x∈A,y∈B

dH(y)

+m1 +m2 − 2|A0 − S0| ∑
xy∈M

x∈A,y∈B

dH(y)

+m2 − |A0 − S0|

6

 ∑
xy∈M

x∈A,y∈B

dH(y)

+ 1/3

<

 ∑
xy∈M

x∈A,y∈B

dH(y)

+ dH(y0) 6 eH(A,B),

showing a contradiction.
Assume now that yω ∈ V (M) and xω ∈ UH. By the definition of yω, 1 6 pyω 6 2.

If pyω = 2, then since dH(yω) > pyω = 2, we have dH(yω) + pyω > 4 > dH(x) + 1 for
each edge xyω ∈ E(H) with x ∈ UH; and if pyω = 1, then for any edge xyω ∈ E(H),
dH(yω) + pyω > dH(x). Therefore, combining Claim 4.10, we know that for any edge
xyω ∈ E(H), dH(x) 6 dH(yω) + 1. Applying Claim 4.10 again, we have that

eH(A,B) 6
∑
xy∈M

x∈A,y∈B

dH(x) 6
∑
xy∈M
x∈S0

(dH(y) + py − 1) +
∑
xy∈M
x∈S1

(dH(y) + py − 2)

+
∑
xy∈M

x∈UH,y∈B,py=0

dH(y) +
∑
xy∈M

x∈UH,y∈B,py>1,y 6=yω

(dH(y) + py − 1) + dH(yω) + 1

6



 ∑
xy∈M

x∈A,y∈B

dH(y)

+
∑

xy∈M
x 6∈S1

py +
∑

xy∈M
x∈S1

(py − 2) + 1 ∑
xy∈M

x∈A,y∈B

dH(y)

+
∑

xy∈M
py=1

(py − 1) +
∑

xy∈M
x∈S1 or py>2

(py − 1) + 1
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6



 ∑
xy∈M

x∈A,y∈B

dH(y)

+ 1 +m1 +m2 − 2|A0 − S0| ∑
xy∈M

x∈A,y∈B

dH(y)

+ 1 +m2 − |A0 − S0|

6

 ∑
xy∈M

x∈A,y∈B

dH(y)

+ 1 + 1/3

<

 ∑
xy∈M

x∈A,y∈B

dH(y)

+ dH(y0) 6 eH(A,B), (dH(y0) > 2 in this case)

showing a contradiction again.
Claim 4.11 gives a contradiction to Claim 4.1. The proof of Theorem 1.3 is now

complete. �

5 Essentiality of ∆-criticality

In this section, we construct a family of n-vertex graphs G with ∆(G) = n− 1, τ(G) > 3
2
,

but have no 2-factor. This demonstrates that the condition of ∆-criticality cannot be
dropped from Theorem 1.3.

Let k > 7 be an integer, S be the vertex set of a complete graph of order k, T be a set
of 6k+1 isolated vertices, and H be a set of 5 disjoint complete graphs Q1, Q2, Q3, Q4, Q5,
each with order 2k + 1. Label the vertices in T as u1, u2, · · · , u6k+1. Let G be a graph
with V (G) = S ∪ T ∪ V (H). The edges of G are constructed below:

Step 1 Adding all edges between S and T ∪V (H). (Clearly, every vertex in S is adjacent
to every other vertex of G. )

Step 2 For each i, i = 1, 2, 3, 4, joining each of

u(i−1)×(k−1)+1, u(i−1)×(k−1)+2, · · · , u(i−1)×(k−1)+k−1

to one unused vertex in Qi and one unused vertex in Qi+1; joining each of

u4k−3, u4k−2, u4k−1, u4k, u4k+1, u4k+2, u4k+3, u4k+4

to one unused vertex in Q1 and one unused vertex in Q5. (By “unused,” we meant
that the vertex in Qi has not been joined to any vertex in T . )

Step 3 After Step 2, each of Q2, Q3, and Q4 has only 3 unused vertex left, and each of
Q1 and Q5 has exactly k− 6 unused vertex left. Also, there are exactly (6k+ 1)−
(4k + 4) = 2k − 3 vertices in T that are not joined to any vertex in H. Joining
each vertex of u4k+5, u4k+6, · · · , u6k+1 to exactly one unused vertex in H.
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By the construction,

n := |V (G)| = k + 5(2k + 1) + 6k + 1 = 17k + 6.

All vertices in S have degree n − 1, which are the only maximum degree vertices in G.
Each vertex in T is adjacent to a vertex in H that has degree 2k + 1 + |S| = 3k + 1, and
is adjacent to exactly k vertices of maximum degree. Since n = 17k + 6, and

∆(G)− (3k + 1) + 1 = n− 1− 3k = 14k + 5 > k,

Lemma 2.1 implies that G is not ∆-critical.
We next claim that G has no 2-factor. This is clear, since every Qi is an odd component

of G − (S ∪ T ) that is adjacent to exactly 2k + 1 vertices in T by the construction, and
we have that

δ(S, T ) = 2k − 2× (6k + 1) + 5× (2k + 1)− 5 = −2 < 0.

Thus, (S, T ) is a barrier and G has no 2-factor by Lemma 3.1.
Finally, we show that τ(G) > 3

2
. Let W ⊆ V (G) be a toughset of G. That is, W is a

cutset of G such that |W |
c(G−W )

= τ(G). Assume to the contrary that τ(G) < 3
2
. Since G is

3-connected, the assumption that τ(G) < 3
2

implies that c(G−W ) > 3.
Since every vertex in S is adjacent to every other vertex in G, we get the following

conclusion.

Claim 5.1. S ⊆ W .

Claim 5.2. Let U ⊆ W be a proper non-empty subset of W . Then all vertices in U are
adjacent to in total at least 2|U |

3
+ 1 components of G−W . In particular, for any x ∈ W ,

x is adjacent to at least two components of G−W .

Proof. Assume to the contrary that there exists a proper non-empty subset U of W
such that all vertices in U are adjacent to in total at most 2|U |

3
components of G−W . Let

τ = τ(G). Then |W | = τc(G−W ) and G− (W − U) has at least c(G−W )− 2|U |
3

+ 1 >

c(G−W )− |U |
τ

+1 components of G−W . Since τ(G) < 3
2
, we see that c(G−(W−U)) > 2.

Thus W ∗ = W − U is a cutset of G. However,

|W ∗|
c(G−W ∗)

<
|W − U |

c(G−W )− 1
τ
|U |

= τ,

contradicting the fact that W is a toughset of G.

Claim 5.3. W ∩ T = ∅.

Proof. Assume to the contrary that there exists x ∈ W ∩ T . Note that each vertex
in T , besides being adjacent to all vertices in S, is adjacent to at most two vertices in
H. As S ⊆ W by Claim 5.1, we know by the particular part of Claim 5.2 that x ∈
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{u1, u2, · · · , u4k+4} and the two neighbors of x in H are contained in two distinct compo-
nents of G−W . Assume that the neighbors of x inH are in Q1 and Q5. (The argument for
the other cases is similar.) Then x ∈ {u4k−3, u4k−2, u4k−1, u4k, u4k+1, u4k+2, u4k+3, u4k+4}.
Let W ∗ = W ∩ ({u4k−3, u4k−2, u4k−1, u4k, u4k+1, u4k+2, u4k+3, u4k+4} ∪ V (Q1 ∪ Q5)). It
follows that W ∗ separates the two neighbors of x in Q1 ∪ Q5 into two distinct com-
ponents in G − W . By the construction of the edges of G in Step 2, we know that
there are 8 vertex-disjoint paths between Q1 and Q5 going through the eight vertices
u4k−3, u4k−2, u4k−1, u4k, u4k+1, u4k+2, u4k+3, u4k+4. Thus, |W ∗| > 8. Note that each of
u4k−3, · · · , u4k+4 is only adjacent to Q1 and Q5 in G − S, and Q1 and Q5 are cliques
in G. Assume there are exactly t vertices y from

{u4k−3, u4k−2, u4k−1, u4k, u4k+1, u4k+2, u4k+3, u4k+4}

such that W contains both the two neighbors of y in Q1 ∪ Q5. Then |W ∗| > 8 + t
and vertices in W ∗ are adjacent to at most t + 2 components of G −W . Since t 6 8,
t+ 2 < 2

3
(8 + t) + 1. This gives a contradiction to Claim 5.2.

Claim 5.4. Let x ∈ V (H) such that x is a neighbor of some vertex in {u1, u2, · · · , u4k+4}.
Then x 6∈ W .

Proof. Assume to the contrary and without loss of generality, that x ∈ V (Q1) ∩W
is a neighbor of u1. (The argument for all other cases follows a similar idea, and if x
is a neighbor of a vertex in {u4k−3, u4k−2, · · · , u4k+4}, we replace k − 1 in the follow-
ing argument by 8.) Since the neighbors of x in Q1 form a clique in G, x is adja-
cent to exactly two components of G − W by Claim 5.2, where one of the two com-
ponents contains some neighbors of x in Q1, and the other of the two contains the
vertex u1. Let the neighbor of ui in Q1 be ai, and the neighbor of ui in Q2 be bi,
for i = 1, 2, · · · , k − 1. By this labeling of the vertices, x = a1. Let W ∗ = W ∩
{a1, a2, · · · , ak−1, b1, b2, · · · , bk−1}. To separate u1 from some neighbors of x contained
in Q1, since W ∩ T = ∅ by Claim 5.3, we have that |W ∗| > 2. We assume, without
loss of generality, that a1, a2, · · · , ap ∈ W , b1, b2, · · · , bp 6∈ W , ap+1, ap+2, · · · , ap+q 6∈ W ,
bp+1, bp+2, · · · , bp+q ∈ W , and ap+q+1, bp+q+1, · · · , ap+q+r, bp+q+r ∈ W for some integers
p, q, r with 1 6 p, q, r 6 k− 1 and p+ q+ r 6 k− 1. Then |W ∗| = p+ q+ 2r, and vertices
in W ∗ are adjacent to in total at most r+ 2 components in G−W , and they are adjacent
to in total exactly r + 2 components in G −W only if p + q + r = k − 1. If r > 3, then
r + 2 < 2

3
(2r) + 1 6 2

3
(p + q + 2r) + 1. This gives a contradiction to Claim 5.2. So we

assume that r 6 2. If p + q + r > 3, then since r 6 2, we get r + 2 < 2
3
(p + q + 2r) + 1,

showing a contradiction to Claim 5.2 again. Thus, we have that p + q + r 6 2 < k − 1,
as k > 7. This particularly implies that vertices in W ∗ are adjacent to at most r + 1
components in G−W . As |W ∗| > 2, Claim 5.2, together with the argument above that
vertices in W ∗ are adjacent to at most r + 1 components in G −W , implies that r = 2.
However, r + 1 = 3 < 8

3
+ 1 6 2

3
(p + q + 2r) + 1. Again, we achieve a contradiction to

Claim 5.2.
Let the neighbors of vertices u4k+5, u4k+6, · · · , u6k+1 in H be x1, x2, · · · , x2k−3, respec-

tively. Now by Claim 5.3 and Claim 5.4, we have that W ⊆ S ∪ {x1, x2, · · · , x2k−3}.
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Assume that |W ∩ {x1, x2, · · · , x2k−3}| = t. Then G −W has exactly t + 1 components,
and since t 6 2k − 3, we get

|W |
c(G−W )

=
k + t

t+ 1
>

3

2
.

This gives a contradiction to the assumption that τ(G) < 3
2
.
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