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Abstract

Let G be a simple graph, and let A(G) and x/(G) denote the maximum de-
gree and chromatic index of G, respectively. Vizing proved that x/'(G) = A(G) or
X' (G) = A(G)+1. Wesay G is A-critical if x'(G) = A(G)+1 and x'(H) < X'(G) for
every proper subgraph H of G. In 1968, Vizing conjectured that if G is a A-critical
graph, then G has a 2-factor. Let G be an n-vertex A-critical graph. It was proved
that if A(G) > n/2, then G has a 2-factor; and that if A(G) > 2n/3 4 13, then G
has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough
graph with at least three vertices has a 2-factor. We investigate the existence of
a 2-factor in a A-critical graph under “moderate” given toughness and maximum
degree conditions. In particular, we show that if G is an n-vertex A-critical graph
with toughness at least 3/2 and with maximum degree at least n/3, then G has
a 2-factor. We also construct a family of graphs that have order n, maximum de-
gree n — 1, toughness at least 3/2, but have no 2-factor. This implies that the
A-criticality in the result is needed. In addition, we develop new techniques in
proving the existence of 2-factors in graphs.

Mathematics Subject Classifications: 05C38, 05C42

1 Introduction

In this paper, we consider only simple, undirected, and finite graphs. Let G be a graph.
The notation A is fixed for the maximum degree of G' throughout the paper. A k-vertez
of G is a vertex of degree exactly k in GG. Denote by Va the set of A-vertices in G, and
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by x'(G) the chromatic index of G. The graph G is called critical if xX'(G) > A and
X' (H) < xX'(G) for every proper subgraph H of G. It is clear that if G is critical then G
must be connected. In 1965, Vizing [15] showed that a graph of maximum degree A has
chromatic index either A or A+1. If ¥/(G) = A, then G is said to be of class 1; otherwise,
it is said to be of class 2. Holyer [8] showed that it is NP-complete to determine whether
an arbitrary graph is of class 1. A critical graph G is called A-critical if x'(G) = A + 1.
So A-critical graphs are class 2 graphs. Motivated by the classification problem, Vizing
studied critical class 2 graphs, or A-critical graphs, and made two well-known conjectures.

The first conjecture [16] is on the independence number a(G) of G, that is, the size of
a maximum independent set in G.

Conjecture 1 (Vizing’s Independence Number Conjecture). Let G be a A-critical graph
of order n. Then o(G) < n/2.

Furthermore, Vizing [14] conjectured that the following statement is true.

Conjecture 2 (Vizing’s 2-Factor Conjecture). Let G be a A-critical graph. Then G
contains a 2-factor.

As each cycle C satisfying a(C) < |[V(C)]/2, Conjecture 2 implies Conjecture 1.

For the Independence Number Conjecture, Brinkmann et al. [2], in 2000, proved that
if G is a critical graph, then a(G) < 2n/3; and the upper bound is further improved when
the maximum degree is between 3 and 10. Luo and Zhao [11], in 2008, by improving
the result of Brinkmann et al., showed that if G is an n-vertex A-critical graph, then
a(G) < (BA—=6)n/(8A —6) < 5n/8if A > 6. In 2009, Woodall [17] further improved the
upper bound to 3n/5. By restricting the problem to graphs with large maximum degrees,
in 2006, Luo and Zhao [10] showed that Vizing’s Independence Number Conjecture is true
if A(G) = n/2.

Compared to the progresses on the first Conjecture, the progresses on Vizing’s 2-Factor
Conjecture has been slow. In 2004, Griinewald and Steffen [7] established Vizing’s 2-Factor
Conjecture for graphs with the deficiency >, i) (A(G) — dg(v)) small; in particular, for
overfull graphs (graphs of an odd order and with the deficiency >, cy ) (A(G) —da(v)) <
A(G)). In 2012, Luo and Zhao [12] proved that if G is an n-vertex A-critical graph
with A > 67”, then GG contains a hamiltonian cycle, and thus a 2-factor with exactly
one component. Continuing the investigation on the existence of a hamiltonian cycle in
A-critical graphs with “very large” maximum degrees, Luo and Zhao [9] in 2016 showed
that an n-vertex A-critical graph with A > % is hamiltonian. The lower bound on A(G)
assuring an n-vertex A-critical graph to be hamiltonian, has been improved to %” + 12,
in [3]. Just finding 2-factors, Chen and Shan [5] proved the following result.

Theorem 1.1 ([5]). Let G be an n-vertex A-critical graph. Then G has a 2-factor if
A >=n/2.

As a measure of graph connectivity and “resilience” under removal of vertices, graph
toughness is a useful condition in finding factors in graphs. To be precise, we recall the
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definition of toughness below. The number of components of G is denoted by ¢(G). Let
t > 0 be a real number. The graph is said to be t-tough if |S| > t - ¢(G — S) for each
S C V(G) with ¢(G — S) = 2. The toughness 7(G) is the largest real number ¢ for which
G is t-tough, or is oo if G is complete. A toughset in G is a cutset S C V(G) of G such

that c(c‘il 57 = 7(G). Enomoto et al. [6] proved the classic result below.

Theorem 1.2 (Enomoto et al. [6]). Every k-tough graph has a k-factor if k|V (G)| is even
and |V(G)| = k + 1.

Combining the result in Theorem 1.1 and the result in Theorem 1.2 when restricted to
2-factors, one might wonder — can we get something in between, i.e., is it possible to find
2-factors in an n-vertex A-critical graph G, under the condition that A(G) < n/2 but
A(G) = en for some positive constant ¢, and 7(G) < 2 but 7(G) > d for some positive
constant d? Particularly, we prove the following result.

Theorem 1.3. Let G be an n-vertex A-critical graph. Then G has a 2-factor if 7(G) >
3/2 and A = n/3.

The remaining of the paper is organized as follows: in Section 2, we recall some graph
terminologies and present several lemmas; in Section 3, we recall Tutte’s 2-factor Theorem
and develop techniques for showing the existence of 2-factors upon applying Tutte’s 2-
factor Theorem; in Section 4, we prove Theorem 1.3. In the last Section, we construct a
family of graphs that have order n, maximum degree n — 1, toughness at least 3/2, but
have no 2-factor. This implies that the A-criticality in Theorem 1.3 is needed.

2 Notation and Lemmas

Let G be a graph. For x € V(G) we denote by dg(x) the degree of z in G. For disjoint
subsets of vertices S and T"in G, we denote by Eq(S,T), the set of edges that has one end
vertex in S and the other in 7', and let eq(S,T) = |Eq(S,T)|. If S = {s} is a singleton,
we write eg(s,T) instead of eq({s},T). If H C G is a subgraph of G, and T' C V(G) with
TNV(H) =10, we write Eg(H,T) and eq(H,T) for notational simplicity. A matching in
G is a set of independent edges. If M is a matching of G, then let V(M) denote the set
of end vertices of the edges in M. For X C V(G), M is said to saturate X if X C V(M).
If G is a bipartite graph with partite sets A and B, we denote G by G[A, B] to emphasize
the two partite sets.
To prove Theorem 1.3, we present two lemmas below.

Lemma 2.1 (Vizing’s Adjacency Lemma). Let G' be a A-critical graph. Then for any
edge xy € E(G), x is adjacent to at least A — dg(y) + 1 A-vertices z with z # y.

The following lemma is a generalization of a result in [10].

Lemma 2.2. Let G be a A-critical graph and T be an independent set in G. Let S =
V(G) =T, and let H = G — E(G[S]) be the bipartite graph with partite sets S and T.
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For each x € S, let o, be the number of non-A-degree neighbors of x from S. Assume
that there are 6o A-vertices in T. Then for each edge xy € E(H) with x € S andy € T,
dH(y) 2 dH(Jﬁ) +1- (50 + 0.

Proof. Let xy € E(H) with x € S and y € T. By Vizing’s Adjacency Lemma, x is
adjacent to at least A — dg(y) + 1 A-vertices in G. As T has §y A-vertices, we know x is
adjacent to at least A —dg(y) +1— 0y A-vertices from S. Let o, be the number of all non
A-degree neighbors of = in S. Then, dy(z) + A —dg(y) +1 — 09 + 0, < dg(z) < A. By
noting that dg(y) = dg(y), the inequality implies that dy(y) > dy(x) +1— 09 + 0. 0O

3 Tutte’s 2-factor Theorem and Biased Barriers

One of the main proof ingredients of Theorem 1.3 is to apply Tutte’s 2-factor Theorem
under a new setting that we develop in this section.

Let S and T be disjoint subsets of vertices of a graph G. Let D be a component
of G — (SUT). Then D is said to be an odd component (resp. even component) if
eq(D,T) = 1 (mod 2) (resp. eq(D,T) = 0 (mod 2)). Let H(S,T) be the set of odd
components of G—(SUT) and let h(S,T) = |H(S,T)|. Fory € T, let H(y : S,T) ={D €
H(S,T),eq(y,D) >0} and h(y : S,T) = |H(y : S,T)|. Note that eq(y, V(G)—(SUT)) >
h(y:S,T).

Let 0(S,T) = 2[S| =2|T| + X er da-s(y) — h(S,T). 1t is easy to see that §(5,7) =0
(mod 2) for every S, T C V(G) with SNT = (. We use the following criterion for the
existence of a 2-factor, which is a restricted form of Tutte’s f-factor Theorem.

Lemma 3.1 (Tutte [13]). A graph G has a 2-factor if and only if 6(S,T) = 0 for every
S, TCV(G) with SNT = 0.

An ordered pair (S, T) consists of disjoint subsets of vertices S and T in a graph G is
called a barrier if 6(S,T) < —2. By Lemma 3.1, if G does not have a 2-factor, then G
has a barrier. We define a special barrier as below.

Definition 1. Let G be a graph without a 2-factor. A barrier (S,T) of G is called a
biased barrier if among all the barriers of G,

(1) |S| is mazimum; and
(2) subject to (1), |T| is minimum.

Properties of a minimum barrier (a barrier such that [SUT| is minimum among all the
barriers of (G) has been established, for example, in [1, 4]. A biased barrier has similar
nice properties as given in the lemma below.

Lemma 3.2. Let G be a graph without a 2-factor, and let (S,T) be a biased barrier of G.
Then each of the following holds.

(1) The set T is independent in G.
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(2) If D is an even component with respect to (S,T), then eq(T, D) = 0.
(3) If D is an odd component with respect to (S,T), then for anyy € T, eq(y, D) < 1.
(4) If D is an odd component with respect to (S,T'), then for any x € V(D), eq(z,T) < 1.

Proof. Let U = V(G) — (SUT) and z € T be a vertex. By the assumption that
(S,T) is a biased barrier, we know that §(S,7 — {z}) > 0. So,

0 <o(5,T—{z}) =25 =2T+2+ > da-s(y) =S T—{z})

yeT—{2}
=2[S|-2[T|+2+ ;Tda_s(y) —ea(z,T —{z}) —eq(z,U) = h(S,T —{z})
<2|S| 2T+ 2+ ZTdG_S(y) —eq(z, T —{z}) —eq(z,U) = h(S,T) + h(z: S,T)

=0(S,T)+2—eq(2, T —{z}) —ea(z,U) + h(z: S,T)
< —eq(z, T —{z}) —eq(z,U)+ h(z:S,T), since 0(S,T) < —2.

This implies that
eq(z, T —{z})+eq(z,U)—h(z:5,T)<0

Because eg(z,U) — h(z : S,T) > 0 always holds, the above inequality particularly implies
that

eq(z,T —{z})=0 forany z €T and eq(z,U) = h(z:5,T)=0.

This proves statements (1)-(3).

To show (4), let D be an odd component with respect to (S,7) and let = € V(D) be
any vertex. Then by the assumption that |S| is maximum, we know that §(SU{z},T) > 0
So,

0 <O(S UL} T) = 20S| — 27|+ 24 ¥ do-(supe () — (S U {}.T)
yeT
=2[S| -2T|+2+ Z do-s(y) —ec(z,T) = h(SU{z},T)
<25 =27+ 2+ Z da-s(y) — ec(x,T) — (h(S,T) — 1)
yeT
=0(5,T)+2—eq(z,T)+1
< —eg(z,T)+ 1, since 6(S,T) < —2.
Hence, eq(z,T) < 1. O

Let G be a graph without a 2-factor and let (S,T) be a biased barrier of G. We call
(S,T) a good biased barrier of G if h(S,T') is smallest among all biased barriers of G.

Lemma 3.3. Let G be a graph without a 2-factor, and let (S,T') be a good biased barrier
of G. Foranyy €T, if h(y : S,T) = 2, then for any D € H(y : S,T), |V(D)| = 3.

Proof. Let D € H(y : S,T) be an odd component of G — (S UT). By (4) of
Lemma 3.2, |V(D)| > 3 if eq(D,T) > 3. So we assume that eq(D,T) = 1 and assume to
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the contrary that |V (D)| < 2. Let = be the vertex in D if |[V(D)| = 1, and be a vertex in
D which is not adjacent to any vertex in T"if |V (D)| = 2. Let z € T be the vertex such
that eq(D,z) =1, and let 7" = (T — {z})U{z} and U = V(G) — (SUT). Let D, be the
component of G — (S UT") which contains the vertex z. Then since eg(z, D') = 1 for any
D' € H(z:S,T) by (3) of Lemma 3.2, we have that

Y (ea(D\T)=1) +ea(x,z), if V(D) =1
D'eH(z:5,T)—{D}

> (ea(D\T) = 1) +ea(x, V(D) —{z}), if [V(D)| =2

D'eH(z:S,T)

eg(DZ, T) =

Since eq(D',T) is odd for any D' € H(z : S,T), and eg(x, z) = eq(z, V(D) — {z}) =1,
we know that D, € H(S,T") is an odd component of G — (S UT"). Hence, h(S,T") =
h(S,T) — h(z: 8,T) + 1. So

0(9,T") = 25| = 2[T| + >_ da-s(y) — h(S,T")

yeT’

= 2[5 —2|T| + ;Tda—s(y) +eq(z, V(D —z)U{z})-
ea(z,U) — h(Sy’ T)+h(z:5T)—-1
= 09, 7)+eq(x,V(D—z)U{z}) —eq(z,U)+h(z:5,T)—1
< 0(S,T) < =2, since eq(z, V(D —x)U{z}) =1,and eg(z,U) > h(z: S,T).

Thus, (S,T") is a biased barrier. However, h(S,T") = h(S,T)—h(y : S,T)+1 < h(S,T)—

showing a contradiction to the assumption that (S,7) is a good biased barrier. O]

4 Proof of Theorem 1.3

Let G be an n-vertex A-critical graph such that 7(G) > 3/2 and A > n/3. We show that
G has a 2-factor.

Since G is 3/2-tough, A(G) > §(G) > 3. Assume to the contrary that G does not have
a 2-factor. Then by Tutte’s 2-factor Theorem (Lemma 3.1), G has a barrier. Let (S,T)
be a good biased barrier of G. Since S and T are already fixed, we simply denote H(S,T)
by H. Let U = V(G) — (SUT) and let H;, be the set of components D of G — (SUT)
with eq(D,T) = k. Then we have H = J,., Horr1. For any y € T let

Hy) = {DeH|ex(y,D)=1},
7‘[1(3/) = {DGHl‘eg<y,D):1}.

It is clear that H;(y) € H(y). Note also that H(y) = H(y : S,T). We use this notation
H(y) for simplicity since S and T are already fixed.

Claim 4.1. |T| > [S]| + >, k|[Hara| + 2. In particular, |T| > |S| + 2.
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Proof.  Since (S, T) is a barrier,

5(,T) = 2IS| = 27| + 3 da-s(y) — h(S, T)

yeT
=2[S] = 2|T + Zda—s(y) - Z [ Hon 1| < —2.
yeT k>0

By Lemma 3.2 (1) and (2),

Y dasy) =) ea(y,U) = eq(T,U) = > (2k + 1)[Hops1].

yeT yeT k>0

Therefore, we have

—222|S| = 2T|+ > _(2k + D)[Hoesa| = D> [Harral,

k>0 k=0
which yields |T'| > [S| + > k[Horta| + 2. O
We perform the following operations to G.

(1) Remove all even components, and remove all components in H;.
(2) Remove all edges in G[S].

(3) For a component D € Hapyq with £ > 1 introduce a set of k£ independent vertices
UP = {uP uP, ... uP} and replace D with UP. By Lemma 3.2 (3), |[Ng(D)NT| =
eq(T, D) = 2k + 1. Let Ng(D)NT = {vy,v1,...,ve}. Add two new edges uPvy; 4
and uPv,; for each 7 with 1 <4 < k. Moreover, add one extra edge uvy.

Let H be the resulting graph, and let

vh=J| U v”]. x=s5uU"

k>1 \ DeHap i1
By the construction, the graph H satisfies the following properties.
(1) H is a bipartite graph with partite sets X and T,
(2) (U = 3yor b Haeil, [X] = [S| + U] = |S] + X4, k[Harsa], and

(3) For each k > 1 and each D € Hopy1, dy(uP) = 3 and dy(uP) = 2 for each i with
2< 1< k.

We will show that there is a matching in H which saturates 7', which gives that
| X| = [S]+ D41 FHarsa| = [T, giving a contradiction to Claim 4.1.
For notational simplicity, for a set D C H, let

V(D)= | V(D).

DeD
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Claim 4.2. |S| < |U"|.

Proof. Assume to the contrary that |S| > [U®] = 37, ., k|Haks1]|. We may assume
that |[U™| > 1. For otherwise, since there is no edge between even component of G—(SUT)
and 7T, and each component in H; is connected to a single vertex in 7', ¢(G — S) > |T|.
Since |T'| > 2 by Claim 4.1, S is a cutset of G. This implies that 7(G) < % < 1, giving
a contradiction.

For each D € Hop 1 with £ > 1, let Wp be a set of any 2k vertices in D such that for
each x € Wp, eq(x,T) = 1. Thus, D — W) is only connected to a single vertex in 7'. Let

W=SU U w

DeHaopq1,k21

Since 7" is an independent set in (G, and each component in G — W is connected to S or
only a single vertex in 7', we have that ¢(G — W) > |T'|. Again, W is a cutset of G as
|T'| > 2 by Claim 4.1. So

W o ST+ D ko1 2k Hok g1

7(G) <
N R
Zk>1 k’H2k+1| + Ek>1 Qk’HQkJrZ' < §
h > ws1 Kl Hora| + 20 klHapga| +2 2’
showing a contradiction to the assumption that 7(G) > 3/2. O

Because of |T'| > |S| + |[U"| and |[U?| > |S|, we get the following Claim.
Claim 4.3. |T| > 2|S| + 2.
Claim 4.4. T contains no A-vertezx of G.

Proof.  Suppose to the contrary that there exists z € T such that dg(z) = A. We
may assume that |#H(z)| > 2. Otherwise, eg(z,5) > A —1 and so |S| > A — 1. Hence by
Claims 4.2 and 4.3,

no= |S|+|T|+|U]
> 3|S|+2+ UM (JU| > |U™| by Lemma 3.2 (4))
>

AS|+3=4A —1>4n/3 — 1,

implying that n < 3. This gives a contradiction to the fact that A > 3.
Hence, by Lemma 3.3, we have that

n = |S|+|T|+|U| = ea(z,5) + 3[H(2)| + [T
> eq(z,S)+3H(2)| 4+ 2e(2,S)+2 (|T] =2|S|+ 2 = 2e6(2,5) +2)
= 3(eq(z,S)+|H(z)|) +2=3A+2>n+2,

showing a contradiction. O
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Claim 4.5. |H| > 2.

Proof. Assume to the contrary that |H| < 1. By Claim 4.2, we then know that
|H| = 1 and the component is adjacent to at least three vertices in 7. Let D be the
only odd component in G — (SUT) and assume that eq(D,T) = 2k + 1 for some k > 1.
By Lemma 3.2 (3), |T| > 2k + 1. Again, by Claim 4.2, |S| < k — 1. Let W be the
union of the set S and the set of neighbors of vertices in T from the component D. Then
W[ <k—1+2k+1=3kand ¢(G—W) > |T| > 2k + 1. This gives a contradiction to
the toughness of G. [

Let D, € H be a component such that

\V(Dy)| = max{ |V(D)| | D e H },
and Dy € H — {D;} such that
V(Do)| = max{ |V(D)| | D & H— {Di} }

Claim 4.6. Let D € H — {Dy, Ds}. Then D contains no A-vertex of G. Furthermore, if
Dy contains a A-vertex of G, then |V(D)| < |V(D1)| — 1; and if Dy contains a A-vertex
of G, then |V(D)| < |[V(Dsy)| —2 < |V(Dy)| — 2, and for any x € V(D), dg(x) < A —2.

Proof. Note that by the choice of Dy and D,, |V(D)| < |V(H)|/3, recall here that
V(#H) is the union of vertex sets of components in H. Since |T'| > 2|S| + 2 by Claim 4.3,
we have that n > |S| + |T| + |[V(H)| = 3|5] + 2+ |V(#H)|. Consequently, |V (H)|/3 <
(n —2)/3 —|S|. Thus, for any « € V(D),

da(z) < [VD)|—1+1+5|<|V(H)|/3+|5] < (n—2)/3 <A.

Suppose that D; contains a A-vertex of GG, and there exists D € H — {D;, Dy} such
that |[V(D)| = |V(D1)]. This implies that [V (Dy)| = |V(D2)| = [V(D)], so |V(D1)| <
|[V(H)|/3. Then by exactly the same argument above, we have that for any = € V(Dy),

dg(z) < V(D) =1+ 1+[SI<S|V(H)/3+15]< (n—2)/3 <A
Hence, |V(D)| < [V(Dy)| — 1.

Suppose now that Dy contains a A-vertex of G. Since |V(Dy)| = |V(D,)|, we then

have that |V (D;)| 4+ |S| = A for i = 1,2. So for any D € H — {Dy, D>},

n = ’S] + |T] + ’V(D1)’ + ’V(D2)| + |V(D)]
> |S|+2|S|+ 2+ |[V(Dy)| + |[V(Dy)| + |[V(D)|
= |S|+ |V(Dy)| + |S| + |[V(Dy)| + |S| + [V(D)| + 2.

Because of [V(D;)| + |S| = A for i = 1,2, it follows that

S|+ V(D) <n—2A-2<n/3—-2<A-2.
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Consequently, |V(D)| < |V(Ds)| —2 < |V(Dy)| — 2, and for any = € V(D), dg(z) <
A —2. O
We introduce some further notation here. Let

Ty={yeT||Hi(y)|=1}, and Tr={yeT|[Hi(y)>2}

For each component D € Hy, let yp € T be the vertex such that eq(D,T) = eq(D,yp) =
1. Let

Hqy = {DEHl ‘ YD GTl}, and Hipp = {DEHl } YD ETQ}(:Hl_Hll)-
Claim 4.7. For each component D € Hia, |[H(yp)| = 2. Consequently, |V (D)| > 3.

Proof. Since D € Hyz, we have that [H(yp)| = |Hi(yp)| = 2. Then [V (D)| > 3 by
Lemma 3.3. N
Denote

my = ‘HH‘, mo = |7‘l12|, and mgz = |H H1|
S; = {x € S|xrhas a non A-degree neighbor in V(G) — T}, and Sy=S5— 951,
py = [Hi(y)| foranyyeT.

Note that by the definition, if ms # 0, then mgy > 2.
Claim 4.8. Let y € T be a vertex. Then

[So| +ma1/3+my —1, if 0 #H(y) € {D1, Ds};
ING(y) N S’ = 27 Zf/H<y> - {Dl} or {DQ};
1L, if H(y) = {D1, Da}.

Moreover, Ng(y) NS # (.

Proof. Since G is 3/2-tough, §(G) > 3. As each y € T satisfies dg(y) = eq(y, S) +
eq(y, V(H)) and eq(y, D;) < 1 for i = 1,2, we get eq(y,S) = 2 if H(y) = {D;1} or {Ds}.
If H(y) = {D1, D2}, then |Ng(y) N S| > 1.

Thus we assume that there exists D € H(y) — {D1, D2}. Let xp be the neighbor of
y in D. By Claim 4.6, zp is not a A-vertex of G. Moreover, y is adjacent to at least
A —dg(xp) + 1 A-vertices of G by Vizing’s Adjacency Lemma.

Note that each component in ‘H — H; contains at least three vertices by Lemma 3.2
(4). Son >

S|+ [T+ [V(D1)| + |V(D2)| + [V(D)| + my + 3(mg + mg — 3), if Dy, Dy, D
€ H—Hi;
|S| 4+ 7| + |V (Dy)| + |V(D2)| + V(D) +mq — 1+ 3(me +mg —2), otherwise.

Thus, because |T'| > 2|S| + 2 by Lemma 4.3, and |U*| > |S| + 1 implying that ms > 1,
we get that

n = |S|+|T|+ |V(D)|+ |[V(D2)| +|V(D)| + my + 3(ma + ms3 — 3)
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> 3[S|+2+ V(D) +|V(Da)| + |[V(D)| + mq + 3(ma — 2)
3|S| + 3|V (D)| + mq + 3ma, if Dy contains a A-vertex;
> 3|S| 4+ 3|V(D)| + my 4+ 3my — 3, if D; contains a A-vertex;
3|S| + 3|V (D)| +mq + 3mg — 4, if neither D; nor Dy contains a A-vertex.

The above bounds were obtained because of |V (Dy)| > |V (D2)| = |V (D)| and Claim 4.6.
Thus since no component in ‘H — {D1, Dy} containing a A-vertex of G by Claim 4.6, we
have that

A —dg(xp) — 1, if Dy contains a A-vertex;
INa(y)NSNVaA| =2 A —dg(zp), if Dy contains a A-vertex but Dy has no A-vertex;
A —dg(xp) + 1, if neither D; nor Dy contains a A-vertex.

Because zp is not a A-vertex of G, by the definitions of Sy and Sy, we have that Ng(zp)N
S = Ng(zp)NSi. So dg(wp) < |Si|+|V(D)|. Replacing A by % in the above bounds on
|Nc(y) N'S], and combining the bounds on n, we get that

|So| + "5~ +mg — 1, if Do contains a A-vertex;
|INa(y) N S| = < [So| + B +mg —1, if D; contains a A-vertex but Dy has no A-vertex;
|So| + 5 +mg — %, if neither D nor Dy contains a A-vertex.

For the second part of the statement, if H(y) = 0, then Ng(y) = Ng(y)NS. So assume
that H(y) # 0. By the first part of the statement, it easily follows that |Ng(y) N.S| > 1
unless H(y) € {D1, Da2}. Let D € H(y) —{D1, D2}, and let xp be the neighbor of y in D.
By Claim 4.6, xp is not a A-vertex of G. Moreover, y is adjacent to at least A—dg(xp)+1
A-vertices of G by Vizing’s Adjacency Lemma. Note that no component in H — { D, Do}
contains a A-vertex of G by Claim 4.6. If D, does not contain a A-vertex of GG, then y is
adjacent to at least A — dg(zp) > 1 A-vertices which are contained in S. If Dy contains
a A-vertex of G, then by the second part of Claim 4.6, dg(zp) < A — 2. So y is adjacent
to at least A —dg(xp) —1 > 1 A-vertices which are contained in S.

The proof is finished. O

If {Dy, Dy} NHy # 0, say Dy € Hy, then there exists a unique vertex y € T such that
eq(y, D) = 1. If {D1, Do} NHy # 0 and there exists y € T such that H(y) = {D1, D2},

we denote y by y,.

Claim 4.9. Let y € T be a vertex such that |H(y)| = 2 and y # y,,. Then dg(y) > 4.

Proof. Assume to the contrary that dg(y) = 3. Let D € H(y) —{D1, D3}, and let zp
be the neighbor of y in D. Then xp is adjacent to at least A — 3 + 1 A-vertices of G by
Vizing’s Adjacency Lemma. Since V(D) contains no A-vertex of G by Claim 4.6, and T’
contains no A-vertex of G by Claim 4.4, we conclude that |S| > |[Ng(zp)NSNVa| > A—2.
Since each D € Hap, 1 contains at least 2k +1 vertices by Lemma 3.2 (4), |V (H)| = 2|U"|.
Thus

no > S|+ 2lUM + T > |S| +2(IS| + 1) + 2|5] + 2
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_ 5|S]+4>5(A—2)+4>5(__2>+4:?_67

implying that n < 9.

By Claim 4.8, Ng(y) NS # (. Since |H(y)| = 2, by Lemma 3.3, [U| > |[V(H(y))| = 6.
Since |S| = 1, |T| = 2|S|+2 > 4. Hence, n > |S|+|T|+|U| 2 1+4+6 > 11, a
contradiction. 0

Claim 4.10. Let zy € E(H) be an edge with x € X and y € T. Then each of the
following holds.

(1) If x € Sy, then dy(y) + py = du(z
(2) If x € Sy, then dg(y) + py, =
(3) If v € U™ and p, =0, then dy(y) =
(4) Ift € U™, p, > 1, and y # yo, then dy(y) +p, = du(x) + 1.
(5) If v € U™ and y =y, then du(y) + p, = du(z).

Proof. Statements (1) and (2) follow from Lemma 2.2 by taking o, = 0 and 1,
respectively. The statements (3) and (5) are clear, since dg(y) + p, = da(y) = 0(G) > 3,
and dg(x) < 3 for any z € U™. Now we show statement (4). By the assumption that
z € U™ and p, > 1, we have that |H(y)| > 2. Then the statement follows by Claim 4.9,
since dy(y) + py = da(y) = 4, while dy(x) < 3. O

Y
T
=

Claim 4.11. H has a matching which saturates T'.

Proof.  Suppose to the contrary that H has no matching saturating 7". By Hall’s
Theorem, there is a nonempty subset B C T such that |Ng(B)| < |B|. Among all
such subsets with this property, we choose B with smallest cardinality. Let A = Ny (B)
and H' = H[AU B]. Then we claim that in H’, there is a matching which saturates
A. Suppose this is not the case. By Hall’s Theorem again, there is a nonempty subset
A" C A such that |[Ny/(A")] < |A|. Since A’ C A = Ny(B) # 0 (T contains no isolated
vertex of H), Ng/(A') # 0. Let B = B — Nyg/(A'). As |B| > |A| > |Ny/(A)| > 0,
0 < |B'| < |B|. On the other hand, we have Ny (B') = Nyg(B') C A — A’. However,
B = B] — |[Nus(4)] > |A] - [Nus(A)| > [A] — |A'] = |A = A| > [Ny(B')], showing a
contradiction to the choice of B.

Let M be a matching of H' = H[A U B] which saturates A. We consider two cases
below.

Case 1. BNTy C {y,}.

For any y € B with y # v, p, < 1. Since |B| > |A|, there exists yo € B — V(M).
Since py, < 1if yo # Y, we have that dy(yo) > 2 if yo # yo,. Otherwise, dy(yo) > 1.
Assume first that y, € V(M). So applying Claim 4.10, we have that

en(A,B) < ) du(x)

zyeM
rz€A,yEB
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< Y du)tp, D+ D> du(y)
zyeM zyeM
z€SgUSy or py=1 wEUH,yEB,pyZO
< Z dr(y) + du(y) < en(A, B),
zyeEM
z€A,yeB

showing a contradiction.

Assume now that y,, € V(M). By the definition of y,, 1 < p,, < 2. If p,, = 2,
then for any edge zy, € E(H), we have that x € S and so dH(yw) + pyw dy(x) + 1,
and if p,, = 1, then for any edge zy, € E(H), dy(Yw) + Py, = du(z). So for any edge
2y, € E(H), dy(z) < du(y,) + 1. Then applying Claim 4.10, we have that

xyeEM

rcA,yeB
< > (du(y) +py— 1) + > du(y) | +du(y) +1
zyeM zyeM
zeSguUSy or py=1,y#yw IGU,HVUEByPy:O

< > du(y) | +du(yo) < eun(A, B),

zyeM
z€A,yeB

showing a contradiction again.
Case 2. (BNTy) —{y.} #0.

For any y € Ty, Hi(y) C Hyz. Since [Hi(y)| = 2 if y € Ty, the assumption that
(BNTy) — {y.} # 0 implies that ms > 2. Furthermore, if y, € T, then my > 4.

Since |B| > |A|, there exists yo € B — V(M). Since Ny(y) NS # 0 for any y € T by
Claim 4.8, we have dg(yo) = 1. We claim that if y,, exists and yo # y.,, then dy(yo) = 2. If
|H(yo)| < 1, then dy(yo) = da(yo)—1 = 2. So we assume that [H(yo)| = 2. If y,, exists and
Yo 7 Yuw, then by Claim 4.8, dy (yo) = |Nu(yo)NS| = [So|+ma/3+ma—1 = my/3+ma—1.
Note that if y, € Ty then ms > 4, and if y,, & T5, then by the definition of y,, m; > 1.
Thus we have that dg(yo) > 2.

For any y € To —{y.}, |[Nu(y)NS| = |Na(y)NS| = |So| +m1/3~|—m2—1 by Claim 4.8.
Thus, |[ANS| > |[So| +m1/3+mge — 1. Let Ay = ANS. Then since my > 2, if my < 1

Z‘AO—SO‘22m1/3+2m2—22m1+m2—1/3, (1)
and if my; > 2, then
|A0—S| m1/3—|—m2—1 m2—1/3 (2)

If y, € V(M), then let z,, be the vertex with z,y, € M.
Assume first that y, € V(M) or z,, € S. Note that in both cases, Claim 4.10 (5) does
not apply. Applying Claim 4.10 (1-4), we have that

en(A,B) < Y du(e) < Y (du(y)+py— 1)+ > (duly) +p,—2)

zyeM zyeM ryeM
z€A,yeB €Sy €S
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+ > dul)+ D (duly)+py,—1)

zyeM zyeM
zeUH yeB,py=0 zeUH yeB,py>1
> du(y) |+ X py+ 2 (py—2)
zyeM zyeM TyeM
g z€A,yeB @S €S
H v Yy
> o duy) |+ X (py-D+ X (py—1)
zyeM zyeEM zyeEM
K rz€A,yeEB py=1 z€S] or py=>2
(
> du(y) | +mu+ma—2[Ag — So
zye M
< rz€A,yeEB
Y. du(y) | +ma— Ao — Sol
zyeM
z€AYEB
< E du(y) | +1/3
zyeM
r€A,yeEB

< Z dH(y) + dH(yO) < eH(Aa B)7

zyeM
zeA,yeB
showing a contradiction.

Assume now that y, € V(M) and z, € U". By the definition of y,, 1 < p,, < 2.
If p,, = 2, then since dy(y,) = p,, = 2, we have dg(y,) + py, = 4 > du(z) + 1 for
each edge zy, € E(H) with x € U*; and if p,, = 1, then for any edge zy, € E(H),
di(Yw) + Py, = du(x). Therefore, combining Claim 4.10, we know that for any edge
xy, € E(H), dy(z) < dg(y,) + 1. Applying Claim 4.10 again, we have that

en(A,B) < Y du(e) < Y (du(y)+py— 1)+ > (duly) +p,—2)

zyeM zyeM zyeM
z€A,YyEB z€8y €S
+ > duly)+ > (du(y) +py — 1)+ du(y,) + 1
zyeM zyeM
zeUM yeB,py=0 zeUM yeB,py>1,9#yw
p
> du(y) |+ X pyt > (py—2)+1
zyeM zyeM zyeM
< rz€eA,yeEB rZSq €S
> du(y) |+ X (py— 1+ > (py—1)+1
zyeM zyeM ryeM
\ r€A,yeB py=1 zeS; O py =2
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Z dH(y) —|—1+m1+m2—2\A0—SO|

TyeM
z€A,yeB

N

Yo du(y) | +1+me—|Ag— S

zyeM
\ reA,yeB

N

> duly) | +1+1/3

zyeM
€A, yeB

< Z du(y) | +du(y) < en(A,B),  (du(yo) = 2 in this case)

ryeM

r€A,yEB
showing a contradiction again. O]
Claim 4.11 gives a contradiction to Claim 4.1. The proof of Theorem 1.3 is now
complete. [ |

5 Essentiality of A-criticality

In this section, we construct a family of n-vertex graphs G with A(G) =n—1, 7(G) > 2,

but have no 2-factor. This demonstrates that the condition of A-criticality cannot be
dropped from Theorem 1.3.

Let £ > 7 be an integer, S be the vertex set of a complete graph of order k&, T" be a set
of 6k+1 isolated vertices, and H be a set of 5 disjoint complete graphs @1, Q2, Q3, Q4, @5,
each with order 2k + 1. Label the vertices in T as uy, us, -+ ,ugrr1. Let G be a graph
with V(G) = SUT UV (H). The edges of G are constructed below:

Step 1 Adding all edges between S and TUV (H). (Clearly, every vertex in S is adjacent
to every other vertex of G. )

Step 2 For each ¢, i = 1,2, 3,4, joining each of
Ui —1)x (k=1)+1) U(i=1)x (k—=1)+25 " " » U(i—1)x (k—1)+k—1
to one unused vertex in (); and one unused vertex in ();y1; joining each of
Ugk—3, Uk—2, Udk—1, Udk, Udk+1, Udk+2; Udk+3; Udk+4

to one unused vertex in ()7 and one unused vertex in 5. (By “unused,” we meant
that the vertex in @); has not been joined to any vertex in 7T'. )

Step 3 After Step 2, each of 2, @3, and Q4 has only 3 unused vertex left, and each of
@1 and Q5 has exactly k — 6 unused vertex left. Also, there are exactly (6k+1) —
(4k +4) = 2k — 3 vertices in T' that are not joined to any vertex in H. Joining
each vertex of uyp15, Ugkre, - -, Ugkr1 tO exactly one unused vertex in H.
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By the construction,
n:=|V(G)|=k+52k+1)+6k+1=17k +6.

All vertices in S have degree n — 1, which are the only maximum degree vertices in G.
Each vertex in T is adjacent to a vertex in H that has degree 2k + 1 + |S| = 3k + 1, and
is adjacent to exactly k vertices of maximum degree. Since n = 17k + 6, and

AG)—Bk+1)+1=n—-1-3k=14k+5 >k,

Lemma 2.1 implies that G is not A-critical.

We next claim that G has no 2-factor. This is clear, since every @); is an odd component
of G — (SUT) that is adjacent to exactly 2k + 1 vertices in T" by the construction, and
we have that

8(S,T) =2k —2x (6k+1) +5x (2k+1) =5 = -2 < 0.

Thus, (S,T) is a barrier and G has no 2-factor by Lemma 3.1.
Finally, we show that 7(G) > 3. Let W C V(G) be a toughset of G. That is, W is a

cutset of G such that C((gﬂ/v) = 7(G). Assume to the contrary that 7(G) < 2. Since G is
3-connected, the assumption that 7(G) < 2 implies that ¢(G — W) > 3.
Since every vertex in S is adjacent to every other vertex in G, we get the following

conclusion.

Claim 5.1. SCW.

Claim 5.2. Let U C W be a proper non-empty subset of W. Then all vertices in U are
adjacent to in total at least @ + 1 components of G — W . In particular, for any x € W,
x 18 adjacent to at least two components of G — W.

Proof. Assume to the contrary that there exists a proper non-empty subset U of W

such that all vertices in U are adjacent to in total at most @ components of G—W. Let

7 =7(G). Then |W| = 7¢(G — W) and G — (W — U) has at least ¢(G — W) — @ +1>
o(G-W)— ‘Tﬂjtl components of G—W. Since 7(G) < 2, we see that ¢(G—(W—-U)) > 2.
Thus W* =W — U is a cutset of G. However,

W w-ul
(G=W+) SeG-w) =g "

contradicting the fact that W is a toughset of G. O
Claim 5.3. WNT = 0.

Proof. Assume to the contrary that there exists x € W NT. Note that each vertex
in T, besides being adjacent to all vertices in .S, is adjacent to at most two vertices in
H. As S C W by Claim 5.1, we know by the particular part of Claim 5.2 that = €
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{uy,us, -+ ,ugrs4} and the two neighbors of x in H are contained in two distinct compo-
nents of G—W. Assume that the neighbors of z in H are in @); and Q5. (The argument for
the other cases is similar.) Then = € {ug_3, Uak—2, Usk—1, Uk, Usht1, Udk12, Udk+3, Udktd }-
Let W* = W N ({tar—3, Uak—2, Uak—1, Uak, Usk41, Uakt2, Uakt3, Uagya ) U V(Q1 U Qs5)). Tt
follows that W* separates the two neighbors of x in @ U @5 into two distinct com-
ponents in G — W. By the construction of the edges of G in Step 2, we know that
there are 8 vertex-disjoint paths between )1 and )5 going through the eight vertices
Ugk—3, Ugk—2, Usk—15 Udks Udk+1, Udk+2, Udk+3, Udk+4- Thus, |W*‘ 2 8. Note that each of
Ugp—_3, ", Usriq is only adjacent to @)1 and Q5 in G — S, and ()7 and @5 are cliques
in G. Assume there are exactly t vertices y from

{U4k737 Ugk—2, Uak—1, Uak, Udk+1, Wak+2, Uak+3, U4k+4}

such that W contains both the two neighbors of y in @ U Q5. Then |[W*| > 8 + ¢
and vertices in W* are adjacent to at most ¢ 4+ 2 components of G — W. Since t < 8§,

t+2 < 2(8+1t) + 1. This gives a contradiction to Claim 5.2. O
Claim 5.4. Let v € V(H) such that x is a neighbor of some vertex in {uy, us, - -+ , Usgia}-
Then x & W.

Proof. Assume to the contrary and without loss of generality, that =z € V(Q) N W
is a neighbor of u;. (The argument for all other cases follows a similar idea, and if x
is a neighbor of a vertex in {us_3, Uag_2, " ,Uskra}, We replace k — 1 in the follow-
ing argument by 8.) Since the neighbors of x in @; form a clique in G, z is adja-
cent to exactly two components of G — W by Claim 5.2, where one of the two com-
ponents contains some neighbors of x in ()1, and the other of the two contains the
vertex u;. Let the neighbor of u; in )1 be a;, and the neighbor of u; in Q) be b;,
for « = 1,2,--- ,k — 1. By this labeling of the vertices, * = a;. Let W* = W N
{aj,as, -+ ,ap_1,b1,b9,- -+ ,bp_1}. To separate u; from some neighbors of x contained
in @, since WNT = () by Claim 5.3, we have that [W*| > 2. We assume, without
loss of generality, that ai,as,---,a, € W, by,ba,--- b, €W, apy1,ap40,-+ ,a0prqg € W,
bpi1,bpra, - ,bprg € W, and apigr1, bprgr1, 5 Qprgirs bprgrr € W for some integers
p,q,r with 1 <p,q,r <k—1and p+q+r <k—1. Then |W*| = p+ ¢+ 2r, and vertices
in W* are adjacent to in total at most » + 2 components in G — W, and they are adjacent
to in total exactly » + 2 components in G — W only if p+q+r =k — 1. If r > 3, then
r+2<22r)+1<2(p+q+2r)+ 1. This gives a contradiction to Claim 5.2. So we
assume that r < 2. If p+ ¢ +r > 3, then since r < 2, we get r +2 < 2(p+ ¢+ 2r) + 1,
showing a contradiction to Claim 5.2 again. Thus, we have that p+q¢+7r <2 < k — 1,
as k > 7. This particularly implies that vertices in W* are adjacent to at most r + 1
components in G — W. As |[W*| > 2, Claim 5.2, together with the argument above that
vertices in W* are adjacent to at most r 4+ 1 components in G — W, implies that r = 2.
However, r +1 = 3 < % +1< %(p + g+ 2r) + 1. Again, we achieve a contradiction to
Claim 5.2. m

Let the neighbors of vertices wag15, Uskr6, - -+ , Uekr1 IN H be x1, o, - -+, To_3, TESpPEC-
tively. Now by Claim 5.3 and Claim 5.4, we have that W C S U {x1, 29, -+, Top_3}.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.17 17



Assume that |W N {1, 29, -, x93} = t. Then G — W has exactly ¢t + 1 components,
and since t < 2k — 3, we get

Wl k+t_3

o(G-W) t+17 2

This gives a contradiction to the assumption that 7(G) < 3.
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