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Abstract

A graph is path-pairable if for any pairing of its vertices there exist edge-disjoint
paths joining the vertices in each pair. We investigate the behaviour of the maximum
degree in path-pairable planar graphs. We show that any n-vertex path-pairable
planar graph must contain a vertex of degree linear in n. Our result generalizes to
graphs embeddable on a surface of finite genus.

Mathematics Subject Classifications: 05C07, 05C10, 05C35, 05C40

1 Introduction

We are interested in path-pairability, a graph theoretical notion that emerged from a
practical networking problem. This notion was introduced by Csaba, Faudree, Gyárfás,
Lehel, and Schelp [3], and further studied by Faudree, Gyárfás, and Lehel [4, 5, 6], and by
Kubicka, Kubicki and Lehel [14]. Given a fixed integer k and a simple undirected graph
G on at least 2k vertices, we say that G is k-path-pairable if, for any pair of disjoint sets
of distinct vertices {x1, . . . , xk} and {y1, . . . , yk} of G, there exist k edge-disjoint paths
P1, P2, . . . , Pk, such that Pi is a path from xi to yi, 1 6 i 6 k. The problems of finding
k edge(vertex)-disjoint paths routing some prescribed pairs of vertices in a graph is a
well-known problem in algorithmic graph theory and combinatorial optimization (see the
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surveys[7, 8, 20]). Recently, for a fixed integer k, Kawarabayashi, Kobayashi and Reed [13]
constructed a O(n2) time algorithm which for any graph G on n vertices either finds such
k vertex-disjoint paths or concludes no such paths exist. As a corollary they obtained a
O(n2) time algorithm for the edge-disjoint path problem. This improved upon the seminal
work of Robertson and Seymour [18], which initially gave a O(n3) time algorithm for the
vertex-disjoint path problem. Note that the problem of finding edge(vertex)-disjoint paths
between an unbounded number of prescribed pairs of vertices is known to be NP-complete,
even when restricted to planar graphs [17].

The concept of k-path-pairability is closely related to the well-studied notions of k-
linkedness and k-weak-linkedness. A graph is said to be k-(weakly)linked if for any choice
{s1, . . . , sk, t1, . . . , tk} of 2k vertices (not necessarily distinct) there are vertex(edge) in-
ternally disjoint paths P1, . . . , Pk with Pi joining si to ti, 1 6 i 6 k. While any k-
(weakly)linked graph is (2k− 1)-vertex connected (k-edge connected), the same need not
hold for k-path-pairable graphs. Observe that the stars S2k (k > 1) are k-path-pairable
and yet have very low edge density and edge connectivity. On the other hand, a result of
Bollobás and Thomason [2] shows that if G is a 2k-connected graph with average degree
at least 22k then G is k-linked. This was later improved by Thomas and Wollan [19] who
showed that a 2k-connected graph with average degree at least 10k is necessarily k-linked.
In the context of weakly-linked graphs, a theorem of Hirata, Kubota and Saito [11] states
that a (2k+1)-edge connected graph is (k+2)-weakly-linked for k > 2. A few years later,
Huck [12] showed that any (k + 2)-edge-connected graph is k-weakly-linked.

A k-path-pairable graph on 2k vertices is simply said to be path-pairable. Some of
the most central questions in the study of path-pairable graphs concern determining the
behaviour of their maximum degree. It is fairly easy to construct path-pairable graphs
on n vertices (n even) with maximum degree linear in n. For example, complete graphs
K2n and complete bipartite graphs Km,n are path-pairable for all choices of m,n ∈ N with
m+ n even, m 6= 2, n 6= 2.

It is slightly more challenging to construct an infinite family of path-pairable graphs
where the maximum degree grows sublinearly. We shall now describe such a family. Let
Kt be the complete graph on t vertices and let Kq

t be constructed from Kt by attaching
q − 1 leaves to each of the original vertices of Kt. This family was introduced by Csaba,
Faudree, Gyárfás, and Lehel [3], who also proved that Kq

t is path-pairable as long as t ·q is

even and q 6
⌊

t
3+2
√

2

⌋
. The bound on q has been recently improved to ≈ 1

3
t [9]. Observe

that n = |V (Kq
t )| = t · q and ∆(Kq

t ) = t + q − 2 = O(
√
n) when q = Ω(t). Additional

path-pairable constructions with maximum degree c
√
n can be found in [14] and [16].

The following result due to Faudree [5] shows that the maximum degree of a path-
pairable graph has to grow with the order of the graph.

Theorem 1. If G is path-pairable on n vertices with maximum degree ∆, then n 6 2∆∆.

Letting ∆min(n) := min{∆(G) : G is a path-pairable graph on n vertices}, this result
implies that

∆min(n) > c1
log n

log log n
,
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for some constant c1. To date, the best known upper bound on ∆min(n) is due to
Győri, Mezei, and Mészáros, exhibiting a path-pairable graph with maximum degree
∆ ≈ 5.5 · log n [10]. In summary, we have the following general asymptotic bounds on
∆min(n):

c1
log n

log log n
6 ∆min(n) 6 c2 log n.

Recall that the star K1,n−1 is path-pairable. This is simply due to the presence of a
vertex of large degree. Are there properties we may impose on a general path-pairable
graph to force a vertex of large degree, say, linear in n? Along these lines, Faudree,
Gyárfás and Lehel [6] proved that an n-vertex path-pairable graph with maximum degree
at most n − 2 must have at least 3n/2 − log n − c edges, for some absolute constant c.
Instead of simply imposing a condition on the number of edges, we wished to determine
whether or not a structural property like planarity would be enough to force a vertex of
linear degree in a path-pairable graph. To formulate this precisely, let us define ∆p

min(n)
to be

min{∆(G) : G is a path-pairable planar graph on n vertices}.

Our problem, then, is to determine whether or not ∆p
min(n) = Θ(n). We first note that a

simple application of the Planar Separator Theorem of Lipton and Tarjan [15] shows that
every path-pairable planar graph on n vertices must contain a vertex of degree at least
c
√
n. Indeed, if G is such a graph, then the Separator Theorem allows us to partition

V (G) into three sets S, A, B, where |S| = O(
√
n), |A| 6 |B| 6 2n/3, and there are no

edges between A and B. Now, while path-pairable graphs G need not be highly connected
or edge connected, they must satisfy certain connectivity-like conditions. More precisely,
they must satisfy the cut-condition: for every subset X ⊂ V (G) of size at most n/2,
there are at least |X| edges between X and V (G) \X. Note that the cut-condition is not
sufficient to guarantee path-pairability; see [16] for additional details. Accordingly, since
n/4 < |A| < n/2 and there are no edges between A and B, the cut-condition implies that
there are at least |A| edges between A and S. We therefore obtain a vertex in S of degree
Ω(
√
n).

Our main theorem, which we state below, shows that we can do much better than
this. Namely, every path-pairable planar graph must have a vertex of linear degree.

Theorem 2. There exists c > 10−1010 such that if G is a path-pairable planar graph on n
vertices then ∆(G) > cn.

We have not made an attempt to optimize the constant c obtained in the proof. The
value we give is surely far from the truth.

In the other direction, there are easy examples of path-pairable planar graphs with
very large maximum degree; for example, consider the star K1,n−1. Our second result
finds an infinite family of path-pairable planar graphs with smaller (but of course still
linear) degree.

Theorem 3. There exist path-pairable planar graphs G on n vertices with ∆(G) = 2
3
n.
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Combining Theorems 2 and 3, we have that

10−1010n 6 ∆p
min(n) 6

2

3
n.

However, there is currently a significant gap between the constants in the upper and lower
bounds. Closing this gap and finding the truth is an interesting open problem.

We remark that using the same techniques it is possible to generalize these results to
path-pairable graphs which can be embedded on a surface of a finite genus.

1.1 Organization

The remainder of the paper is organized as follows. In the next short section, we shall
describe our construction establishing Theorem 3. The third section of this paper contains
a proof of our main theorem, Theorem 2. This proof relies on three preparatory lemmas
and on some common facts concerning planar graphs. In particular, we use heavily the
fact that any subset X of the vertices of a planar graph induces less than 3|X| edges, and
any bipartite planar graph on n vertices has less than 2n edges. Finally, we close with
some remarks and open problems.

1.2 Notation

Our notation is standard. Thus, for a graph G and two subsets X, Y ⊂ V (G) we say
that a path in G is an X − Y path if it begins in X and ends in Y . If X = {x} and
Y = {y} are singletons, we shall simply say that the path is an x − y path. For subsets
X, Y ⊂ V (G), e(X, Y ) is the number of edges with one endpoint in X and the other in
Y . As usual, G[X] denotes the graph induced in G with vertex set X.

2 The Construction

Our aim in this section is to prove Theorem 3, which we restate here for convenience.

Theorem 3. There exist path-pairable planar graphs G on n vertices with ∆(G) = 2
3
n.

Proof. Let G be a graph on n = 6k vertices with vertex set V (G) = A ∪ B ∪ C ∪
{xAB, xBC , xCA} where |A| = |B| = |C| = 2k − 1, and xAB, xBC , xCA denote three addi-
tional vertices forming a triangle such that xAB, xBC , xCA are joined to every vertex in
A ∪ B, B ∪ C, and C ∪ A, respectively, and A,B,C are independent sets. This graph is
clearly planar. Let P be a pairing of the vertices and let {u, v} ∈ P . We describe how to
join u and v by a path in all possible cases.

1. If there is an edge between u and v, join them by this edge.

2. If u ∈ {xAB, xBC , xCA} and v ∈ A∪B∪C such that there is no edge between them,
join them by the path uwv where the edge uw is consistent with the cyclic ordering
xAB, xBC , xCA. For example, if u = xAB and v ∈ C, we join u and v by the path
uxBCv. The remaining cases can be dealt using the same pattern.
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3. If u, v ∈ A∪B∪C and they are in the same class, join them by the path uwv where
w is an arbitrary common neighbour (out of the two available).

4. If u, v ∈ A ∪ B ∪ C and they are in different classes, join them by the path uwv
where w is the unique common neighbour.

It is straightforward to check that the above instructions find edge-disjoint paths
joining terminals, regardless of the choice of P .

3 The Proof of Theorem 2

The aim of this section is to prove our main theorem, Theorem 2. Our proof is based
on three preparatory lemmas. First, we shall introduce some terminology. Let G be a
multigraph. We say that two multiedges e, f of G are at distance d if the shortest path
in G joining an endpoint of e and an endpoint of f has length d. If two multiedges are at
distance 0, we shall simply say they are incident. Further, we shall refer to a matching
of size k as a k-matching. We say that a k-matching is good if every pair of edges in
the matching is at distance exactly 1. Notice that contracting all the edges of a good
k-matching results in the complete graph Kk (with potential multiple edges and loops).

If we consider the complete graph whose vertices are the multiedges of some graph,
and 3-colour its edges according to certain notions of ‘density’, then by Ramsey’s theorem
one of the colours must contain a ‘dense’ subgraph. Our first lemma is a Ramsey-type
result in a similar vein (although we do not need to appeal to Ramsey’s theorem itself).
More precisely, our lemma says that in any multigraph with enough multiedges, either
some multiedges cluster together, or many pairs of multiedges are far apart, or one can
find a good k-matching. We first need the following inequality.

Fact 4. If k > 2 then 2−k
(

1+2−k−1

(1−2−k)2

)
6 2−k+1.

The above inequality is easily seen to be equivalent to (2−k+2 − 1)(2−k−1 − 1) > 0.

Lemma 5. Let k be a natural number and ε1, ε2 be positive reals such that ε1 + ε2 6 2−k.
Then, for sufficiently large M = M(k), if G is a multigraph on M multiedges, then at
least one of the following conditions is satisfied.

1. There is a multiedge in G which is incident with at least ε1M multiedges;

2. There are at least ε2

(
M
2

)
pairs of multiedges which are at distance greater than 1;

3. G contains a good k-matching.

Proof. We shall use induction on k. The base case when k = 1 is trivial - Condition 3 is
always satisfied. Assume then that k > 2 and the lemma is true for k − 1.

Suppose every multiedge is incident with at most ε1M multiedges and at most ε2

(
M
2

)
pairs of multiedges are at distance greater than 1. We shall show that G contains a good
k-matching. By an averaging argument there is a multiedge e which is at distance at
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most 1 from at least (1 − ε2)M − 1 multiedges. Let E ′ be the set of those multiedges
which are at distance exactly 1 from e. It follows from our assumptions that M ′ =
|E ′| > (1 − ε1 − ε2)M − 1 > (1 − 2−k)M − 1. Let G′ be the multigraph spanned by E ′.
By assumption, at most ε2

(
M
2

)
of the multiedges in G′ are at distance greater than 1.

Therefore, since M 6 M ′+1
1−2−k , for large enough M (and hence large enough M ′) we have

that at most

ε2

(
M

2

)
6 ε2

(
M ′+1
1−2−k

2

)
=

ε2

(1− 2−k)2

(
1 +

1

M ′

)(
1 +

1 + 2−k

M ′ − 1

)(
M ′

2

)
6
ε2(1 + 2−k−1)

(1− 2−k)2

(
M ′

2

)
,

pairs of multiedges in G′ are at distance greater than 1. Also, for M ′ large enough,
each multiedge in G′ is incident with at most ε1M 6 ε1

M ′+1
1−2−k = ε1

1−2−k (1 + 1
M ′

)M ′ 6
ε1(1+2−k−1)

1−2−k M ′ multiedges. Note that for k > 2 one has

ε1
1 + 2−k−1

1− 2−k
+ ε2

1 + 2−k−1

(1− 2−k)2
6 ε1

1 + 2−k−1

(1− 2−k)2
+ ε2

1 + 2−k−1

(1− 2−k)2

6 2−k
1 + 2−k−1

(1− 2−k)2
6 2−(k−1),

where the last inequality is precisely Fact 4. Therefore, by the induction hypothesis,
G′ contains a good (k − 1)-matching. But since e is at distance 1 from any multiedge in
G′, we also have a good k-matching in G.

Since we shall be operating with planar graphs, we single out the following corollary.

Corollary 6. Let M be a sufficiently large integer and let ε1, ε2 be positive reals such
that ε1 + ε2 6 1

32
. If G is a planar multigraph with M multiedges then either G has a

multiedge which is incident with at least ε1M multiedges or there are at least ε2

(
M
2

)
pairs

of multiedges at distance greater than 1.

Proof. If G contained a good 5-matching then it would contain a K5 minor.

We say that that a pairing of vertices of a graph contributes to k edges if any system
of edge-disjoint paths joining the vertices of each pair uses at least k edges. One strategy
in the proof of our main theorem is to consider a suitable bipartition of our path-pairable
planar graph, and to exploit the fact that any bipartite planar graph on n vertices has at
most 2n− 4 edges. To exploit this last property we shall need ways of finding pairings of
the vertices which contribute to ‘many’ edges to the bipartition. This is formalized in the
following lemma.

Lemma 7. Let D be an integer and 0 < ε 6 1/2. Then there exists c > 0 such that
the following is true. Suppose G is a path-pairable planar graph on n vertices with ∆ =
∆(G) 6 cn. Let A,U ⊂ V (G) be given with U ⊂ A such that every vertex in A has degree
at most D, |A| > (1 − ε)n and |U | > εn. Let B = V (G) \ A. Then there is a pairing of
the vertices in U which contributes to at least 2|U | − 16εn edges between A and B.
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Proof. We say that a path in G is weak if it begins and ends in A, uses no edges inside
B, and uses at most 2 edges between A and B. Now, let C := d4ε−1e and note that since
ε 6 1/2 we have that 3

C−2
6 ε. For every x ∈ U , let X(x) = {u ∈ U : distG(u, x) 6 C}

and Yx = {u ∈ U : ∃ a weak x−u path in G}. Finally, consider the set Ux = X(x)∩Yx.
We claim that Ux is small for every x ∈ U . So fix x ∈ U and consider the vertices reachable
from x at distance at most C using only weak paths. Such a path can either stay entirely
in A, or use precisely two edges between A and B. In the first case, since vertices in A
have degree at most D, the number of such vertices in Ux is at most DC . To bound the
number of vertices reachable from paths of the second type, note that such a path can
first move around inside A, then leave A and use precisely two edges between A and B
(and no edges inside B), then finally move around inside A again. Recalling that the
maximum degree of G is ∆ and the maximum degree of vertices in A is D, we obtain the
bound DC ·D∆ ·DC . It follows that

|Ux| 6 DC +DCD∆DC = DC(1 +DC+1∆).

Choose c = c(D, ε) = ε
4D2C+1 so that ∆ 6 cn. Then |Ux| 6 DC

(
1 +DC+1∆

)
6(

DC +D2C+1
)

∆, and using the upper bound on ∆, we find that

|Ux| 6 εn/2.

Let us define an auxiliary graph GU with vertex set U where we join two vertices x, y
provided y /∈ Ux (equivalently, x /∈ Uy). It is easy to see that GU has a perfect matching
(or ‘almost’ perfect, if |U | is odd; this makes no difference for us). Indeed, the degree of
every vertex in GU is at least |U | − ε

2
n > |U |/2, and therefore GU has a Hamilton cycle.

Fix a perfect matching M in GU according to this Hamilton cycle and fix a pairing P of
the vertices of G where each edge of M forms a pair. Finally, since G is path-pairable,
choose a collection of edge-disjoint paths R that connect the vertices of each pair in P .
Observe that any path from R must use an even number of edges between A and B. We
single out two types of edges e = xy inM with respect to R: either the x− y path in R
is weak but dist(x, y) > C, or this x− y path uses at least 4 edges between A and B. Let
M = E0∪E1∪E2, where E0 denotes the edges satisfying the former condition, E1 the latter,
and E2 denotes the remaining edges. We claim that most edges are in E1. Indeed, observe
that if e = xy ∈ E2, then the x − y path must use edges from B. By planarity we have
e(B) < 3|B|, and therefore |E2| < 3εn. Using planarity again we have that e(A) < 3|A|.
On the other hand, for each edge in E0 its path in R uses more than C edges, at most 2
of which are in the cut {A,B}, and none of which belong to B. Accordingly, since these
paths are edge-disjoint, we have that e(A) > (C − 2)|E0| and so

|E0| <
3

C − 2
|A| 6 ε|A|.

Therefore, |E1| > 1
2
|U | − ε|A| − 3εn > 1

2
|U | − 4εn. It follows that since every path

in R connecting an edge in E1 contributes at least 4 edges between A and B, and these
paths must be edge-disjoint, we have

e(A,B) > 2|U | − 16εn.
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This completes the proof of Lemma 7.

Our final lemma allows us to quantify more precisely the degree distribution in any
bipartite planar graph.

Lemma 8. Let G be a bipartite planar graph on n vertices with parts A, B, and let A′ ⊂ A
be the set of vertices in A with degree at least 3. Then the following are true.

1. The number of vertices in A with degree exactly 2 is at least e(A,B)− n− 3|B|;

2. |A′| < 2|B|;

3. e(A′, B) < 6|B|.

Proof. For each i > 0 let Ai, A6i, and A>i denote the number of vertices in A that have
degree i in G, degree at most i, and degree at least i, respectively. Because of planarity
we have that e(A′, B) < 2(|A′| + |B|). Alternatively, e(A′, B) > 3|A′| so it follows that
A>3 = |A′| < 2|B|, and so e(A′, B) 6 2(|A′| + |B|) < 6|B|, establishing the second and
third items. Further, we can bound the number of edges between A and B as

e(A,B) 6 A61 + 2(|A| − A61 − A>3) + e(A′, B)

6 A61 + 2(|A| − A61 − |A′|) + 2(|A′|+ |B|)
6 2|A| − A61 + 2|B|.

It follows that A61 6 2|A|+ 2|B| − e(A,B). Finally, we see that A2 = |A| − |A′| −A61 >
e(A,B)− |A| − 4|B| = e(A,B)− n− 3|B|, as required.

We are now in a position to prove our main theorem. First, let us give a rough sketch
of the proof. Let G be a path-pairable planar graph. We first partition the vertex set of G
into the set A of vertices of small degree and the set B of vertices of large degree. We can
apply Lemma 7 to find that there are many edges in this cut. We shall then show that
most vertices in A have degree 2 in this bipartite graph. If Y ⊂ A denotes the vertices of
degree 2, then we define a planar multigraph with vertex set B where we join x, y ∈ B
whenever there is a v ∈ Y joined to precisely x and y. Now, using Corollary 6, we are
able to either find a vertex of linear degree in B, or we can find many pairs of multiedges
in our multigraph that are far apart. This, however, allows us to find a pairing which
contributes to more than 2n edges between A and B, a contradiction to planarity.

We restate Theorem 2 for convenience.

Theorem 2. There exists c > 10−1010 such that if G is a path-pairable planar graph on n
vertices then ∆(G) > cn.

Proof. Suppose G is a path-pairable planar graph and fix some large constant D so that
D−1 6 8.5 ·10−6. Partition the vertex set of G into sets A and B, where B = {v ∈ V (G) :
d(v) > D} and A = V (G) \B. Since e(G) < 3n it easily follows that |B| 6 6D−1n := εn.
Suppose that ∆(G) < cn, where c is sufficiently small (depending only on D) given by
Lemma 7. More precisely, we may take c = ε

4D2d4/εe+1 .
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Our aim is to obtain a contradiction by showing such graph G can not exist.
Of course, this is true if cn < 1, so we shall assume throughout that n > 1/c. By

Lemma 7 (with U = A) we have that there are at least 2|A| − 16εn > 2n − 18εn edges
between A and B.

Next, we shall show that there is a large subset of A which induces a graph with
maximum degree at most 2. To see this, let A0 = A,B0 = B. Suppose Ai, Bi have
been defined already. If there is a vertex v ∈ Ai such that dAi

(v) > dBi
(v), then let

Ai+1 = Ai \ {v} and Bi+1 = Bi ∪ {v}. Notice that e(Ai+1, Bi+1) > e(Ai, Bi) + 1, and so
e(Ai+1, Bi+1) > e(A,B)+ i > 2n−18εn+ i. Let t > 0 be such that there is no v ∈ At with
more neighbours in At than in Bt. Observe that t 6 18εn (otherwise e(At, Bt) > 2n), and
accordingly |Bt| = |B|+ t 6 εn+ 18εn = 19εn.

Let X ⊂ At be the set of vertices in At with at least 3 neighbours in At. Since every
vertex in At has more neighbours in Bt than in At, we have that every vertex in X has
at least 3 neighbours in Bt. Therefore, by Lemma 8, |X| 6 2|Bt|, e(X,Bt) 6 6|Bt|,
and there are at least e(At, Bt) − n − 3|Bt| > e(A,B) − n − 3|Bt| vertices in At with
exactly two neighbours in Bt. Let A∗ = At \ X and B∗ = Bt ∪ X. Now we have
that every vertex in A∗ has at most 2 neighbours in A∗ and |B∗| 6 3|Bt| 6 57εn, so
|A∗| > n − 57εn. We have to make sure we still have many vertices in A∗ with exactly
two neighbours in B∗. Notice that if a vertex v ∈ At had two neighbours in Bt and
was not adjacent to any vertex in X then v ∈ A∗ and v still has exactly two neighbours
in B∗. Therefore we only have to worry about the vertices in A∗ which are adjacent to
some vertices in X. Observe that e(X,A∗) 6 e(X,Bt) 6 6|Bt|, and so there are at least
e(A,B)−n− 9|Bt| > (2n− 18εn)−n− 9 · 19εn = n− 189εn vertices in A∗ with exactly 2
neighbours in B∗. Hence there are at most 189εn vertices in A∗ which do not have degree
2 in B∗.

In what follows, we shall deem certain edges of our graph as ‘bad’. It will turn out that
these edges are few in number, and, moreover, that paths connecting vertices in certain
pairings, and which do not contain bad edges, must contribute to many edges between
A∗ and B∗. Formally, we say that an edge uv ∈ G is bad if one of the following holds:

1. (Type I) uv ∈ G[B∗].

2. (Type II) uv ∈ G[A∗] and u (or v) has degree not equal to 2 in B∗.

3. (Type III) uv ∈ G[A∗], dB∗(u) = dB∗(v) = 2, and NB∗(u) 6= NB∗(v).

4. (Type IV) uv ∈ G, such that u ∈ A∗, v ∈ B∗, and dB∗(u) > 3.

We have the following bound on the number of bad edges.

Claim 9. There are at most 1233εn bad edges.

Proof. We are going to bound the number of bad edges of each type.
Note that by planarity, there are at most 3|B∗| edges in B∗ so there are at most

3|B∗| 6 171εn edges of Type I.
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Now, since every vertex in A∗ has at most two neighbours in A∗, each vertex in A∗

with degree not equal to 2 in B∗ contributes to at most two bad edges of Type II. As
there are at most 189εn vertices in A∗ which do not have degree 2 in B∗, it follows that
there are at most 378εn bad edges of Type II.

Let us consider bad edges of Type III. Since G[A∗] has maximum degree 2, we can
partition the edges of G[A∗] into at most 3 matchings, M1,M2,M3. It is well known (and
easy to see) that contracting an edge in a planar graph preserves planarity. It follows that,
for i ∈ {1, 2, 3}, we can contract the edges of Mi while still preserving planarity. Denote
this new graph by G̃i with vertex set Ãi ∪B∗. Since G̃i is planar, from Lemma 8 we have
that there are at most 2|B∗| vertices in G̃i with at least 3 neighbours in B∗. Therefore, at
most 2|B∗| edges in Mi can be bad of Type III. Hence, there are at most 6|B∗| 6 342εn
bad edges of Type III.

Finally, by Lemma 8 there can be at most 6|B∗| 6 342εn bad edges of Type IV.
So in total there are at most 1233εn bad edges of any type.

Let Y ⊆ A∗ be the set of vertices with degree exactly 2 in B∗. We now define an
auxiliary multigraph GB∗ in the following way. The vertex set of GB∗ is B∗ and for any
two vertices x, y ∈ B∗, join x to y by an edge for every v ∈ Y that is joined precisely to
x and y.

Claim 10. GB∗ is planar.

Proof. This is clear since the bipartite graph G[Y,B∗] between Y and B∗ is planar, and
contracting edges preserves planarity.

Apply Corollary 6 to the multigraph GB∗ with ε1 = ε2 = 1/100. Notice that if an edge
in GB∗ is incident with more than 1

100
|Y | vertices then one of its endpoints has degree

at least 1
200
|Y |. However, recall that we initially assumed ∆(G) < cn, and certainly

c 6 1/400 by our choice of D. Accordingly, since |Y | > n − 189εn > n/2, we obtain a
vertex of degree at least

2c|Y | > cn,

a contradiction.
So we may assume that there are at least 1

100

(|Y |
2

)
pairs of edges in GB∗ which are at

distance greater than 1. Note that if H is any graph on n vertices with edge density at
least δ, then it is easy to greedily find a matching of size at least δ

10
n. It follows that we

may select a collection of pairwise disjoint pairs P in Y , such that |P| > 1
1000
|Y | > 1

2000
n,

and such that for every {u, v} ∈ P , their corresponding edges in GB∗ are at distance
greater than 1.

We need the following two claims.

Claim 11. Let P be a path contained in A∗ which has at least two vertices and does not
contain any bad edges. Then every vertex v ∈ P has the same neighbourhood (of size 2)
in B∗.

Proof. This is immediate from the definition of a bad edge.
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Claim 12. Let u, v ∈ Y be two vertices whose corresponding edges in GB∗ are at distance
greater than 1. Then any path in G joining u and v either contains some bad edges, or
uses at least 6 edges between A∗ and B∗.

Proof. Suppose P is a path joining u and v which does not use any bad edges. By
definition and using claim 11, all vertices of V (P ) ∩A∗ are in Y , it can not have an edge
inside B∗ and it must use 2 or 4 edges between A∗ and B∗. We may assume P uses 4
edges as the other case follows from the same argument. Let P = P1e1e2P2e3e4P3, where
{e1, e2, e3, e4} are edges between A∗ and B∗ and P1, P2, P3 are paths inside Y . From claim
11 applied to P1, P2 and P3 we deduce that the edge of u in GB∗ is at distance at most 1
to the edge of v in GB∗ .

The proof of Theorem 2 is nearly complete. Indeed, since G is path-pairable, there
are edge-disjoint paths joining every pair of P , and hence the pairs in P contribute to at
least 6(|P| − 1233εn) edges between A∗ and B∗, by Claims 9 and 12.

Let P be the union of the vertices in P and let U = A∗\P . Recall that |A∗| > n−57εn.
Suppose first that |U | < 57εn. It follows that

2|P| > (n− 57εn)− 57εn,

so |P| > n/2 − 57εn. Then the above pairing contributes at least 6(n/2 − 1290εn) =
3n − 7740εn edges between A∗ and B∗. But this is at least 2n whenever ε 6 7740−1

which is guaranteed by our choice of D, a contradiction. Therefore, we may assume that
|U | > 57εn. By Lemma 7 (since c is small enough) there is a pairing of the vertices in U
which contributes to at least 2|U | − 16 · 57εn = 2|U | − 912εn edges between A∗ and B∗.
Hence in total the number of edges between A∗ and B∗ is

> 6(|P| − 1233εn) + 2|U | − 912εn

= 6(|P| − 1233εn) + 2|A∗| − 4|P| − 912εn.

Recalling that |A∗| > n− 57εn and |P| > n/2000, we have that there are

> 2|P|+ 2(n− 57εn)− 6 · 1233εn− 912εn

> 2n+ n/1000− 8424εn,

edges between A∗ and B∗.
So by our choice of D we get that 8424ε 6 1

1000
, and so there are at least 2n edges

between A∗ and B∗, a contradiction to the planarity of G. It follows that there must exist
a vertex of degree at least cn.

4 Final Remarks and Open Problems

It is worth observing that our proof relies only on the following three properties of a planar
graph G: contracting edges of G preserves planarity, G does not contain a K5-minor, and
any bipartite subgraph H of G has at most 2|H| edges. We remark that it is possible to
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generalize our result in the following sense. Given integers t, c, we say that a graph G is
(t, c)-good if G is Kt-minor-free and any bipartite subgraph H of G has at most 2|H|+ c
edges. Moreover, define Gt,c to be the family of (t, c)-good graphs G such that contracting
edges of G preserves (t, c)-goodness.

Theorem 13. For any integers t, c there is a positive constant C = C(t, c) such that the
following holds. If G is a path-pairable graph on n vertices with G ∈ Gt,c, then ∆(G) > Cn.

We have the following immediate corollary.

Corollary 14. For every non-negative integer g there is a positive constant C = C(g)
such that the following holds. If G is a path-pairable graph on n vertices which has a 2-cell
embedding on a surface with genus g, then ∆(G) > Cn.

Proof. We claim that G ∈ G3g+5,2g. Indeed, it follows from Euler’s formula (see, e.g., [1])
that if G is 2-cell embedded on a surface of genus g then n+m− f = 2− g, where m is
the number of edges G and f is the number of faces of the embedding. Since 2m > 3f
(2m > 4f if G is triangle-free) it follows that e(G) 6 3n + 3g − 6 (e(G) 6 2n + 2g − 4
if G is triangle-free). In particular, if G is bipartite then e(G) 6 2n + 2g − 4 6 2n + 2g.
Suppose for contradiction that G contains a K3g+5-minor. Then K3g+5 could be 2-cell
embedded on a surface of genus g, hence

(
3g+5

2

)
= e(K3g+5) 6 12g+9, which is easily seen

to be a contradiction.

Sketch of a proof of Theorem 13. The proof is essentially the same as the proof of Theo-
rem 2. Certain changes have to be made in the preparatory lemmas first.

Corollary 6 generalizes trivially to multigraphs with no Kt-minors.
In Lemma 7 we only use the fact that any subgraph H of a planar graph has at most

3|H| edges. Observe that if G ∈ Gt,c then any subgraph of H of G has at most 4|H|+ 2c
edges. One can therefore modify the proof, at the expense of a worse constant in front of
εn in the conclusion of the Lemma.

In the proof of Lemma 8 we only use the fact that a bipartite subgraph H of a planar
graph does not use more than 2|H| edges. The lemma can be therefore modified to work
for graphs in Gt,c by introducing some additive constants, depending only on c, to the
inequalities in every part of the Lemma.

In the proof of Theorem 2 all the estimates remain correct by taking ε small enough.
Note that we also need that Gt,c is closed under edge contractions in order to estimate

the number of “bad edges”, as in Claim 9 (there we used that contracting edges preserves
planarity).

We believe that the condition on the number of edges in bipartite subgraphs can be
omitted while still ensuring the existence of a vertex of linear degree. We therefore make
the following conjecture.

Conjecture 15. For any t there exists a constant c = c(t) such that every path-pairable
graph on n vertices without a Kt minor must contain a vertex of degree at least cn.
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Finally, recall that we defined ∆p
min(n) to be the minimum of ∆(G) over all n-vertex

path-pairable planar graphs G. We have shown that ∆p
min(n) grows linearly in n; however,

as mentioned in the Introduction, the constants in the upper and lower bounds are quite
far apart. We close with the following problem.

Problem 16. Determine ∆p
min(n) for sufficiently large n.

We do not know if our construction yielding the upper bound of 2n/3 is optimal, and
a significant improvement on our lower bound would be very interesting.
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pp. 47–100.

[8] Frieze, A. M. Disjoint Paths in Expander Graphs via Random Walks: a Short
Survey. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 1–14.
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