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Abstract

Brane tilings are infinite, bipartite, periodic, planar graphs that are dual to
quivers. In this paper, we study the del Pezzo 2 (dP2) quiver and its associated brane
tiling which arise in theoretical physics. Specifically, we prove explicit formulas
for all cluster variables generated by toric mutation sequences of the dP2 quiver.
Moreover, we associate a subgraph of the dP2 brane tiling to each toric cluster
variable such that the sum of weighted perfect matchings of the subgraph equals
the Laurent polynomial of the cluster variable.

Mathematics Subject Classifications: 13F60, 05B45, 05C20

1 Introduction

Cluster algebras are a class of commutative rings generated by cluster variables, which
are partitioned into sets called clusters. Given an initial seed, an operation known as
seed mutation can be applied iteratively to generate all cluster variables. The concept
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of cluster algebras was first introduced by Fomin and Zelevinsky [4] as a tool to study
total positivity and dual canonical bases in Lie theory. They have rich applications in
different branches of mathematics including algebraic combinatorics, tropical geometry,
Teichmuller theory, and representation theory.

It is common to picture a cluster as a quiver with a cluster variable on each vertex.
Some special quivers have planar duals known as brane tilings which are doubly-periodic,
bipartite, planar graphs. The notion of brane tilings was first introduced in theoretical
physics [3]. They are important in physics since perfect matchings of brane tilings carry
information on the geometry of certain toric varieties which are Calabi-Yau 3-folds. For
such quivers, combinatorial interpretations of the cluster variables have been obtained by
associating a subgraph of the brane tiling to each cluster variable such that the Laurent
polynomial of the cluster variable is recoverable from a weighting scheme applied to the
subgraph ([13], [14], [12]). In particular, the quiver and brane tiling of the third del Pezzo
(dP3) surface ([5]) has been studied widely in [2], [16], [11], and [10]. In this paper, we
generalize the techniques utilized in these papers and focus on the second del Pezzo (dP2)
surface. Specifically, we classify all cluster variables generated by toric mutations and
give combinatorial interpretations for their Laurent polynomials.

In Section 2, we start with background material on quivers and cluster mutations, and
then we introduce our main objects of study: the dP2 quiver and its corresponding brane
tiling. In Section 3, we define ρ-mutations (Definition 5) and show that all toric mutation
sequences can be obtained as a specific form of ρ-mutation sequences (Theorem 7). From
there, we are able to explicitly write down the cluster variables arising from these ρ-
mutation sequences (Theorem 13) and classify all of them in a simple form (Corollary 14).
In the second half of the paper, we give combinatorial interpretations for these toric cluster
variables by associating subgraphs of the dP2 brane tiling to each variable. We prove that
the weighted perfect matchings of a subgraph are terms in the Laurent polynomial of
the cluster variable. Our main theorem (Theorem 24) specifies a contour for each cluster
variable. The weighting scheme is described in Section 5 and the procedure for obtaining a
subgraph from a contour is given in Section 6. The proof of our main theorem is shown in
Section 7 and it proceeds by induction and case work. We provide a detailed description
of our proof techniques and sample proofs for a few cases. The rest of the cases are proved
analogously and we provide the necessary data in Appendix 9. We finish with a discussion
regarding a similar quiver which also generates the Laurent polynomials of the Somos-5
sequence and is studied by David Speyer [15] in Section 8.

2 Preliminaries

2.1 Quiver and Cluster Mutations

Definition 1 (Quiver and Cluster). A quiver is a finite directed graph Q with a set of
vertices V and a set of edges E. We can associate a cluster variable xi to the vertex
labeled i. The cluster is the ordered set of cluster variables {x1, . . . , xn} at each vertex
where n = |V |. For a cluster S = {x1, . . . , xn}, let S[i] refer to the ith cluster variable.
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In this paper, we allow quivers to have multiple edges connecting two vertices but
there can be no 2-cycles or 1-cycles (loops).

Definition 2 (Quiver Mutation). Mutation at vertex i in Q is denoted by µi. Mutating
performs the following actions on the quiver:

• For every 2-path through i (e.g. j → i→ k), add an edge from j to k.

• Reverse the directions of the arrows incident to i.

• Delete any 2-cycles created by the previous two steps.

Correspondingly, the cluster variable at vertex i is updated and all other cluster variables
stay the same. The update follows the binomial exchange relation

x′ixi =
∏

i→j in Q

x
ai→j

j +
∏

j→i in Q

x
aj→i

j ,

where x′i is the new cluster variable at vertex i and ai→j is the number of edges from i to
j.

The binomial exchange relation replaces S[i] by the new cluster variable x′i. We denote
this replacement by

S[i]←

∏
i→j in Q

x
ai→j

j +
∏

j→i in Q
x
aj→i

j

xi
.

2.2 The Del Pezzo 2 Quiver and its Brane Tiling

In this paper, we study a special quiver associated to the second del Pezzo surface (dP2)
[1] and its brane tiling, as shown in Figure 1.
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Figure 1: dP2 quiver Q, where the number of arrowheads stands for the number of arrows,
and its associated brane tiling T (Figure 30 of [5])

To obtain a quiver from its corresponding brane tiling, we look at each edge e up to
translation, noting that any brane tiling is periodic, bipartite, and planar. Assume that
e borders block i and j such that as we go across from block i to block j, the black end
point of e is on the left and the white end point of e is on the right. For this edge e, we
add an edge in the quiver that goes from i to j. The red arrows in Figure 1 show this
process.

We use Q to denote the dP2 quiver and T to denote its associated brane tiling.
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2.3 Toric Mutation and Two Models of Quivers

Definition 3 (Toric Vertex and Toric Mutation). We say that a vertex in a quiver is
toric if it has in-degree 2 and out-degree 2. A toric mutation is a cluster mutation at a
toric vertex.

Definition 4 (Model). We say that two quivers Q1 and Q2 are of the same model if
they are either isomorphic as directed graphs (i.e. if there exists a bijection between their
vertices that preserves edges) or if Q1 is isomorphic to Q2 with all edges in Q2 reversed.

It is easy to show that the dP2 quiver Q has two models that can be reached from the
original quiver by toric mutations. We use model 1 to refer to the original quiver Q and
model 2 to refer to the quiver obtained from Q by mutating at vertex 2. Figure 2 shows
these two models. As a side note, the word “model” sometimes appears as “phase” in
physics literature [5].
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Figure 2: model 1 and model 2 of the dP2 quiver (Figure 30 and 31 of [5])

Transitions between these two models are shown in Figure 3.
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Figure 3: Adjacency between different models (Figure 18 of [2])

3 Classification of Toric Mutation Sequences

Definition 5 (ρ-mutation sequences). We define the following operation sequences for
model 1 dP2 quivers, consisting of mutations and permutations, where operations are
performed from left to right. A permutation permutes the vertices and their associated
cluster variables accordingly.

ρ1 = µ1 ◦ (54321), ρ2 = µ5 ◦ (12345), ρ3 = µ2 ◦ µ4 ◦ (24),
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ρ4 = µ2 ◦ µ1 ◦ µ4 ◦ (531), ρ5 = µ4 ◦ µ5 ◦ µ2 ◦ (351),

ρ6 = µ2 ◦ µ1 ◦ µ2 ◦ (531)(24), ρ7 = µ4 ◦ µ5 ◦ µ4 ◦ (135)(24).

We call each ρi a ρ-mutation and any concatenation of ρi’s a ρ-mutation sequence.

As a side note, it is technically more accurate to refer to our “ρ-mutations” as “ρ-
operations”. However, we choose to follow the conventions set in [11] and [10].

These ρ-mutations all fix the quiver but not the cluster variables so that ρi(Q) = Q
for i = 1, . . . , 7. Notice that in the original quiver Q, there are no edges connecting vertex
2 and 4. This means a mutation at 2 and a mutation at 4 commute, so ρ3 can also be
written as ρ3 = µ4 ◦ µ2 ◦ (24).

From Figure 3, we construct Figure 4 which shows all possible toric mutation sequences
that start from the original dP2 quiver and return to model 1. From this figure, it is clear
that combinations of the seven ρ-mutations give us all possible toric mutation sequences
that start in model 1 and end in model 1 up to a permutation of vertices.

1
2

2

2

24

4

4

4

1

5

5

2 2 2 2

1

1 1

1

1

1 1

Figure 4: All possible toric mutation sequences that start from model 1 and return to
model 1. The red circle represents the initial quiver Q. The number on each edge specifies
which vertex is mutated.

Proposition 6 (Relations between ρ-mutations).

ρ4{x1, x2, x3, x4, x5} = ρ21ρ3{x1, x2, x3, x4, x5},
ρ5{x1, x2, x3, x4, x5} = ρ22ρ3{x1, x2, x3, x4, x5},
ρ6{x1, x2, x3, x4, x5} = ρ21{x1, x2, x3, x4, x5},
ρ7{x1, x2, x3, x4, x5} = ρ22{x1, x2, x3, x4, x5}.

ρ1ρ2{x1, . . . , x5} = ρ2ρ1{x1, . . . , x5} = ρ23{x1, . . . , x5} = {x1, x2, x3, x4, x5},
ρ21ρ3{x1, . . . , x5} = ρ3ρ

2
1{x1, . . . , x5}, ρ22ρ3{x1, . . . , x5} = ρ3ρ

2
2{x1, . . . , x5},

ρ1ρ3ρ2{x1, . . . , x5} = ρ2ρ3ρ1{x1, . . . , x5}.

Note that it suffices to define ρ1, ρ2, ρ3 because ρ4, ρ5, ρ6, ρ7 can be written in terms
of the previous three.

Theorem 7. Any toric mutation sequence in the dP2 quiver that starts and ends at
model 1 can be written, up to a permutation of cluster variables, as ρkt (ρ3ρ1)

mρw3 where
k,m ∈ Z>0, t ∈ {1, 2}, and w ∈ {0, 1}.
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Proof. This essentially states that all ρ-mutation sequences can be written in a certain
form. Fix a generic ρ-mutation sequence.

Since ρ1ρ2 = ρ2ρ1 = ρ23 = 1, we can assume that this sequence does not contain
consecutive ρ3’s and does not contain adjacent ρ1 and ρ2. Therefore, we can write it as
ρα1
j1
ρ3ρ

α2
j2
ρ3 · · · ραN

jN
where ji ∈ {1, 2} and αi ∈ Z>0 and with possibly a ρ3 at the beginning

and a ρ3 at the end.
Notice that by Proposition 6, ρ21 and ρ22 commute with every ρ-mutation. So we move

any two consecutive ρ1’s or consecutive ρ2’s to the front to get ρnt ρ3ρ`1ρ3ρ`2 · · · ρ`s where
t, `1, . . . , `s ∈ {1, 2} and n ∈ Z>0 and with possibly a ρ3 at the end.

Proposition 6 gives ρ1ρ3ρ2 = ρ2ρ3ρ1, which means ρ1 and ρ2 “commute” with a ρ3 in
between. Therefore, we are able to put all ρ1’s in front of ρ2’s in ρ3ρ`1ρ3ρ`2 · · · ρ`s with
possibly a ρ3 at the end. The sequence now has the form ρnt (ρ3ρ1)

r(ρ3ρ2)
s with possibly

a ρ3 at the end.
For a sufficiently large M , we can write the sequence as ρnt ρ

M
2 ρ

M
1 (ρ3ρ1)

r(ρ3ρ2)
s. Since

ρ21 commutes with everything, we can use ρ21 in the term ρM1 to cancel with the ρ2’s in
(ρ3ρ2)

s. Finally, we naturally merge the remaining ρ1’s in the previous ρM1 with ρnt and
ρM2 to get ρkt (ρ3ρ1)

m with t ∈ {1, 2} and m, k ∈ Z>0 and with possibly a ρ3 at the end, as
desired.

Remark 8. Figure 5 gives a visualization of the ρ-mutation sequences as analogs of the
alcove walks discussed for the dP3 case in [10]. In Figure 5, each vertex corresponds to
a cluster with a model 1 quiver. We can arbitrarily select one as the initial cluster. A
horizontal step to the right is ρ1, a horizontal step to the left is ρ2, and a vertical step
is ρ3.

Figure 5: Visualization of ρ-mutation sequences

4 Explicit Formulas for Cluster Variables

In this section, we give explicit formulas for all cluster variables that can be generated
through toric mutations on the dP2 quiver.

Let the initial cluster variables be {x1, x2, x3, x4, x5}.
Definition 9 (Laurent Polynomial for Somos-5 Sequence).

For n > 6, recursively define

xn :=
xn−1xn−4 + xn−2xn−3

xn−5
.
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For n 6 0, recursively define

xn :=
xn+1xn+4 + xn+2xn+3

xn+5

.

Remark 10. For each n ∈ Z, Definition 9 gives us a way to define xn as a rational function
in x1, x2, x3, x4, x5. Moreover, the equation

xnxn+5 = xn+1xn+4 + xn+2xn+3 (1)

is satisfied for each n ∈ Z. Therefore, it is clear that if we assign 1 to x1, . . . , x5, then
both {xn}n=1,2,... and {x6−n}n=1,2,... are the Somos-5 sequence.

Definition 11. Define the following constants

A :=
x1x5 + x23
x2x4

, B :=
x2x6 + x24
x3x5

(
=
x1x

2
4 + x2x3x4 + x22x5

x1x3x5

)
.

Lemma 12. For each n ∈ Z,

A =
x2n−1x2n+3 + x22n+1

x2nx2n+2

, B =
x2nx2n+4 + x22n+2

x2n+1x2n+3

.

Proof. The lemma holds for n = 1 by definition. By an inductive argument, it suffices to
show that for each m ∈ Z,

xmxm+4 + x2m+2

xm+1xm+3

=
xm+2xm+6 + x2m+4

xm+3xm+5

.

According to Equation (1), we have

xm+2xm+6 + x2m+4

xm+3xm+5

=

xm+2
xm+2xm+5 + xm+3xm+4

xm+1

+ x2m+4

xm+3xm+5

=
x2m+2

xm+1xm+3

+
xm+4(xm+2xm+3 + xm+1xm+4)

xm+1xm+3xm+5

=
x2m+2

xm+1xm+3

+
xm+4xmxm+5

xm+1xm+3xm+5

=
xmxm+4 + x2m+2

xm+1xm+3

.

Theorem 13. Define ρk1 := ρ−k2 for k < 0. Define g(s, k) :=
⌊
s
2

⌋ ⌊
s+1
2

⌋
if k is even and

g(s, k) :=
⌊
s−1
2

⌋ ⌊
s
2

⌋
if k is odd. Then for k ∈ Z and s ∈ Z>0,

ρk1(ρ3ρ1)
s{x1, x2, x3, x4, x5} = {Ag(s+1,k)Bg(s+1,k+1)xk+s+1,

Ag(s,k)Bg(s,k+1)xk+s+2,

Ag(s+1,k)Bg(s+1,k+1)xk+s+3,

Ag(s,k)Bg(s,k+1)xk+s+4,

Ag(s+1,k)Bg(s+1,k+1)xk+s+5}.
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Proof. We divide our toric mutation sequence into two steps: ρk1 and (ρ3ρ1)
s. Then we

proceed by a straightforward induction.

Step 1: ρk1{x1, x2, x3, x4, x5} = {xk+1, xk+2, xk+3, xk+4, xk+5} for k ∈ Z.
This holds for k = 0. Assume that this holds for some k > 0. Then

ρk+1
1 {x1, x2, x3, x4, x5} =ρ1{xk+1, xk+2, xk+3, xk+4, xk+5}

=(54321)
(
µ1{xk+1, xk+2, xk+3, xk+4, xk+5}

)
=(54321){xk+2xk+5 + xk+3xk+4

xk+1

, xk+2, xk+3, xk+4, xk+5}

=(54321){xk+6, xk+2, xk+3, xk+4, xk+5}
={xk+2, xk+3, xk+4, xk+5, xk+6}.

By induction, this proves the claim for k > 0. The proof for k 6 0 is analogous.

Note that if k + s is odd, then

g(s+ 1, k) =2g(s, k)− g(s− 1, k) + 1

g(s+ 1, k + 1) =2g(s, k + 1)− g(s− 1, k + 1).
(2)

If k is even, then s is odd and these two equations become⌊
s+ 1

2

⌋⌊
s+ 2

2

⌋
= 2

⌊s
2

⌋⌊s+ 1

2

⌋
−
⌊
s− 1

2

⌋ ⌊s
2

⌋
+ 1

⇔
(s+ 1

2

)2
= 2
(s− 1

2

)(s+ 1

2

)
−
(s− 1

2

)2
+ 1

⌊s
2

⌋⌊s+ 1

2

⌋
= 2

⌊
s− 1

2

⌋ ⌊s
2

⌋
−
⌊
s− 2

2

⌋⌊
s− 1

2

⌋
⇔
(s− 1

2

)(s+ 1

2

)
= 2
(s− 1

2

)2
−
(s− 3

2

)(s− 1

2

)
which clearly hold.

If k is odd, then s is even and these two equations become⌊s
2

⌋ ⌊s+ 1

2

⌋
= 2

⌊
s− 1

2

⌋⌊s
2

⌋
−
⌊
s− 1

2

⌋⌊
s− 2

2

⌋
+ 1

⇔
(s

2

)2
= 2
(s

2

)(s− 2

2

)
−
(s− 2

2

)2
+ 1

⌊
s+ 1

2

⌋⌊
s+ 2

2

⌋
= 2

⌊s
2

⌋ ⌊s+ 1

2

⌋
−
⌊
s− 1

2

⌋⌊s
2

⌋
⇔
(s

2

)(s+ 2

2

)
= 2
(s

2

)2
−
(s− 2

2

)(s
2

)
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which clearly hold.
By the same argument, we can show that if k + s is even, then

g(s+ 1, k) =2g(s, k)− g(s− 1, k)

g(s+ 1, k + 1) =2g(s, k + 1)− g(s− 1, k + 1) + 1.
(3)

Step 2: Calculate ρk1(ρ3ρ1)
s{x1, x2, x3, x4, x5}.

By step 1, ρk1(ρ3ρ1)
s{x1, x2, x3, x4, x5} = (ρ3ρ1)

s{xk+1, xk+2, xk+3, xk+4, xk+5}.
Since g(0, k) = g(1, k) = 0, regardless of the parity of k, the theorem holds when

s = 0. Now assume that the theorem holds for some s− 1 > 0. It suffices to show

(ρ3ρ1){Ag(s,k)Bg(s,k+1)xk+s, A
g(s−1,k)Bg(s−1,k+1)xk+s+1, A

g(s,k)Bg(s,k+1)xk+s+2,

Ag(s−1,k)Bg(s−1,k+1)xk+s+3, A
g(s,k)Bg(s,k+1)xk+s+4}

= {Ag(s+1,k)Bg(s+1,k+1)xk+s+1, A
g(s,k)Bg(s,k+1)xk+s+2, A

g(s+1,k)Bg(s+1,k+1)xk+s+3,

Ag(s,k)Bg(s,k+1)xk+s+4, A
g(s+1,k)Bg(s+1,k+1)xk+s+5}.

Denote ρk1(ρ3ρ1)
s−1{x1, . . . , x5} as S, and let S[i] be the ith element of S. Recall that to

apply ρ3ρ1 to S, we first perform ρ3 = µ2 ◦ µ4 ◦ (24). As we mutate vertex 2, the new
cluster variable at vertex 2 is updated to

S[2]←S[1]S[5] + S[3]2

S[2]

=
A2g(s,k)B2g(s,k+1)(xk+sxk+s+4 + x2k+s+2)

Ag(s−1,k)Bg(s−1,k+1)xk+s+1

According to Lemma 12 and Equation (2), if k + s is odd, the above expression becomes

A2g(s,k)B2g(s,k+1)Axk+s+3

Ag(s−1,k)Bg(s−1,k+1)
= Ag(s+1,k)Bg(s+1,k+1)xk+s+3.

Similarly by Lemma 12 and Equation (3), if k + s is even, we have

A2g(s,k)B2g(s,k+1)Bxk+s+3

Ag(s−1,k)Bg(s−1,k+1)
= Ag(s+1,k)Bg(s+1,k+1)xk+s+3.

By the same argument, we can show that as we mutate vertex 4,

S[4]← Ag(s+1,k)Bg(s+1,k+1)xk+s+1.

So if we let S ′ = ρ3S, then S ′ and S differ only in the 2nd and the 4th coordinate.
Specifically,

S ′[2] = Ag(s+1,k)Bg(s+1,k+1)xk+s+1, S ′[4] = Ag(s+1,k)Bg(s+1,k+1)xk+s+3.

Finally, we mutate at vertex 1 in S ′ and get

S ′[1]←S ′[2]S ′[5] + S ′[3]S ′[4]

S ′[1]
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=
Ag(s+1,k)+g(s,k)Bg(s+1,k+1)+g(s,k+1)(xk+s+1xk+s+4 + xk+s+2xk+s+3)

Ag(s,k)Bg(s,k+1)xk+s

=Ag(s+1,k)Bg(s+1,k+1)xk+s+5.

After applying a permutation (54321), we obtain the desired identity, which completes
the inductive step.

Corollary 14. All cluster variables that may appear in toric mutation sequences can be
written in the form

An
2

Bn(n−1)x2m or An(n−1)Bn2

x2m−1 where m,n ∈ Z.

And conversely, all such expressions can be obtained as cluster variables from some toric
mutation sequences.

Proof. We first show that all cluster variables that arise from toric mutations can be
achieved by ρ-mutation sequences of the form ρk1(ρ3ρ1)

s for some k ∈ Z and s ∈ Z> 0.
According to Theorem 7, every toric mutation sequence starting and ending at model
1 can be written as ρk1(ρ3ρ1)

s or ρk1(ρ3ρ1)
sρ3 for some k ∈ Z and s ∈ Z>0. The proof

for Theorem 13 shows that cluster variables of ρk1(ρ3ρ1)
sρ3{x1, . . . , x5} are included in

ρk1(ρ3ρ1)
s{x1, . . . , x5} and ρk1(ρ3ρ1)

s+1{x1, . . . , x5}. Now we consider any toric mutation
sequence that takes the original model 1 quiver to some model 2 quiver. According to
Figure 4, this model 2 quiver can reach two different model 1 quivers in one step of toric
mutation. So the cluster variables corresponding to this specific toric mutation sequence
that ends on a model 2 quiver are included amongst the cluster variables that are generated
by these two model 1 quivers.

We take a closer look at the cluster variables in Theorem 13. Since g(s, k) only depends
on the value of s and the parity of k, it is easy to see that all cluster variables that arise
can be written as Ag(s,k)Bg(s,k+1)xk+s for some k ∈ Z and s ∈ Z>0. Conversely, for any
k ∈ Z and s ∈ Z>0, A

g(s,k)Bg(s,k+1)xk+s can be generated by a toric mutation sequence
according to Theorem 13. We consider the following four cases according to the parity of
s and k.

Case 1: s is even and k is even. Let s = 2n and k + s = 2m. We have n > 0. Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s
2cb s+1

2 cBb
s−1
2 cb s2cx2m = An

2

Bn(n−1)x2m.

Case 2: s is odd and k is odd. Let s = 2n+ 1 and k+ s = 2m. We have n > 0. Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s−1
2 cb s2cBb

s
2cb s+1

2 cx2m = An
2

Bn(n+1)x2m.

Case 3: s is even and k is odd. Let s = 2n and k + s = 2m − 1. We have n > 0.
Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s−1
2 cb s2cBb

s
2cb s+1

2 cx2m−1 = An(n−1)Bn2

x2m−1.

Case 4: s is odd and k is even. let s = 2n + 1 and k + s = 2m− 1. We have n > 0.
Then

Ag(s,k)Bg(s,k+1)xk+s = Ab
s
2cb s+1

2 cBb
s−1
2 cb s2cx2m−1 = An(n+1)Bn2

x2m−1.
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Cases 1 and 2 can be combined by considering n ∈ Z instead of just n ∈ Z>0. Similarly
cases 3 and 4 can be combined. Finally, we conclude that all cluster variables generated
by toric mutations can be written as either

An
2

Bn(n−1)x2m or An(n−1)Bn2

x2m−1 where m,n ∈ Z.

The conversely holds by simply noticing that all expressions appeared in the proof of
Theorem 13 can be obtained from some ρ-mutation sequences.

5 Subgraphs of the Brane Tiling

In this paper, every graph we consider is a subgraph of the dP2 brane tiling so it is
bipartite, planar, and weighted. For such a bipartite graph G, let V1 and V2 be a partition
of G’s vertices such that there are no edges within V1 or V2. For any vertex set V0 ⊂ V1∪V2,
define G − V0 to be the graph obtained by removing each vertex in V0 and its incident
edges from G.

We want to find a subgraph for each cluster variable that appears through toric mu-
tations such that the subgraph’s weight equals the cluster variable. We use the weighting
scheme utilized in [10], [11], [15], [16], and elsewhere in literature.

Definition 15 (Weight of Subgraphs). Associate a weight of 1
xixj

to each edge bordering

block labeled i and j. For a set of edges M , define its weight w(M) to be the product of
the weights of the edges. Recall that a perfect matching of a graph is a subset of its edges
such that every vertex is incident to exactly one of these edges. For a subgraph G of the
brane tiling, let M(G) be the collection of G’s perfect matchings. We define the weight
of G as

w(G) =
∑

M∈M(G)

w(M).

In order to get recursive relations on the variables which correspond to subgraphs, we
use Kuo’s condensation theorems ([9], [8]) which represent the weight of a large graph in
terms of the weights of its smaller subgraphs.

Lemma 16 (Balanced Kuo Condensation; Theorem 5.1 in [8]). Let G be a weighted planar
bipartite graph with |V1| = |V2|. Assume that p1, p2, p3, p4 are four vertices appearing in
cyclic order on a face of G with p1, p3 ∈ V1 and p2, p4 ∈ V2. Then

w(G)w(G− {p1, p2, p3, p4}) =w(G− {p1, p2})w(G− {p3, p4})
+ w(G− {p1, p4})w(G− {p2, p3}).

Lemma 17 (Unbalanced Kuo Condensation; Theorem 5.2 in [8]). Let G be a weighted
planar bipartite graph with |V1| = |V2| + 1. Assume that p1, p2, p3, p4 are four vertices
appearing in cyclic order on a face of G with p1, p2, p3 ∈ V1 and p4 ∈ V2. Then

w(G− {p2})w(G− {p1, p3, p4}) =w(G− {p1})w(G− {p2, p3, p4})
+ w(G− {p3})w(G− {p1, p2, p4}).
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Lemma 18 (Non-alternating Kuo Condensation; Theorem 5.3 in [8]). Let G be a weighted
planar bipartite graph with |V1| = |V2|. Assume that p1, p2, p3, p4 are four vertices appear-
ing in cyclic order on a face of G with p1, p2 ∈ V1 and p3, p4 ∈ V2. Then

w(G− {p1, p4})w(G− {p2, p3}) =w(G)w(G− {p1, p2, p3, p4})
+ w(G− {p1, p3})w(G− {p2, p4}).

6 Contours for Cluster Variables

In this section, we describe a method to get the subgraph corresponding to any cluster
variable obtained by toric mutations of the dP2 quiver. Specifically, we will use 5-sided
contours to cut our brane tiling and we define rules to obtain subgraphs from these
contours. In Theorem 24, we state the explicit formulas of the contours corresponding to
toric cluster variables.

6.1 Graphs from Contours

Given a 5-tuple (a, b, c, d, e) ∈ Z5 with a + b = d and a + e = c (these relations are
shown in see Figure 6 right), we can define a 5-sided contour whose side-lengths are
a, b, c, d, e in clockwise order starting from the upper right corner. Figure 6 (left) shows
the fundamental shape of the contour where each side length, or integer in the tuple,
is positive. In the case of negative side lengths, we draw the corresponding side in the
opposite direction.

See Figure 7 (left) for an example of a 5-tuple and its contour. We will abuse notation
and denote a geometric contour by its corresponding 5-tuple.

e

a

b

c

d

e

a

b

c

d

a

a

Figure 6: Left: 5-sided fundamental shape; Right: relations between side lengths.

Now we define the rules to obtain a subgraph from a contour.

Definition 19 (Rules to Get Subgraph).
Suppose that we are given a 5-sided contour C = (a, b, c, d, e) ∈ Z5 as above. Call the

white vertex between edge c and edge d the special vertex.
Step 1: Superimpose the contour on the brane tiling T , where the unit length equals

the horizontal distance between two nearest white vertices with the same vertical coor-
dinates, such that the vertex between side a and e sits on any white vertex of degree
5.
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a=6
b=-4

c=2

d=2
e=-4

2

1

2 3

4

2

1

2 3

4
1

2 3

45

2

1

2 3

4
1

2

45

1

2 3

4
1

2 3

5

1 1 1

5

5

5

5

4

2

1

2 3

4

2

1

2 3

4
1

2 3

45

2

1

2 3

4
1

2

45

1

2 3

4
1

2 3

5

1 1 1

Figure 7: Example of a contour C = (6,−4, 2, 2,−4) and its subgraphs G(C) (shaded

region and darkened edges) and Ĝ(C) (shaded region).

Step 2: On each side of positive length, we keep the black points while removing the
white points; on each side of negative length, we keep the white points while removing
the black points; on each side of zero length, we remove the single white point if it is not
the special vertex.

Step 3: Each corner vertex is white. If the two adjacent sides of a corner vertex are
both non-positive, then we keep the vertex; otherwise, we remove it. If a is even, then we
keep the special vertex; if a is odd, then we remove the special vertex. We refer to the
graph that remains inside the contour as G(C).

Step 4: In the resulting graph, we connect any vertex of valence 1 to its adjacent
vertex. We call this edge a forced matching. Then delete these two vertices from the
graph. Repeat this step until every vertex in the subgraph has valence at least 2.

Step 5: We refer to the resulting graph as Ĝ(C) or the subgraph of contour C. Often

we may refer to Ĝ(C) as either Ĝ(a, b, c, d, e) or simply Ĝ.

Definition 20. For any graph G, let Ĝ denote the graph obtained by removing all forced
matchings.

Remark 21. Our notation refers to graphs and contours by G and Ĝ respectively which is
the opposite of the notation used in [10].

To fully recover the cluster variables, we define the covering monomial of a contour
and combine this with our definition of the weight of a graph obtained from a contour
(Definition 15). For a more general definition of the covering monomial, see [7] and [6].

Definition 22 (Covering Monomial). For this definition, we think of every block labeled
3 as two separate blocks labeled 3. Given a contour C, let aj be the number of blocks
labeled j enclosed in C. Let bj be the number of blocks labeled j adjacent to a forced
matching in C. The contour will pass through the middle of a 3-block near the special
vertex (see Figure 7 for an example). If the special vertex is kept (i.e. if a is even), let
c3 = 1. Otherwise, let c3 = 0. The covering monomial of graph G(C) is the product
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m(G(C)) := xa11 x
a2
2 x

a3+c3
3 xa44 x

a5
5 . The covering monomial of graph Ĝ(C) is the product

m(Ĝ(C)) := xa1−b11 xa2−b22 xa3−b3+c33 xa4−b44 xa5−b55 = m(G(C))

x
b1
1 x

b2
2 x

b3
3 x

b4
4 x

b5
5

.
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1 1 1
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1

2
3

45
1
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3

45
1

2

45 5

4
1
45

1
45

1
45 5

3

3 3

3 3 3

3 3 3
3

3

3

3

3

Figure 8: Example of a subgraph Ĝ(5,−4, 1, 1,−4) and its covering monomial

m(Ĝ(5,−4, 1, 1,−4)). The gray and purple blocks are included in the covering mono-
mial.

Remark 23. Our definitions of weight and covering monomial remain unchanged if we
think of each six sided 3-block as two four sided blocks without an edge between them.
Each 3-block will be drawn as two separate 3-blocks if they appear on the boundary of
our contour for the sake of visualizing weight and covering monomial.

For any graph G with an associated contour, denote the product of its weight and its
covering monomial by

c(G) := w(G)m(G).

6.2 Contours of Cluster Variables

By Corollary 4.5, all toric cluster variables are of the form An
2
Bn2−nx2k or An

2+nBn2
x2k−1

where n, k ∈ Z. Now we state Theorem 24, our main result which gives a formula for the
contours of these two families of cluster variables. Theorem 24 is proved in Section 7.

Theorem 24. For k > 2, we associate the following contours to the toric cluster variables
such that if C is the contour associated to a cluster variable, then c(Ĝ(C)) equals the
Laurent polynomial of that cluster variable.

An
2

Bn2−nx2k = c

(
Ĝ
(
k − 2 + n,−

⌈
k − 4 + 5n

2

⌉
, 2n− 1,

⌊
k − 3n

2

⌋
, 1 + n− k

))
,

An
2+nBn2

x2k−1 = c

(
Ĝ
(
k − 2 + n,−

⌈
k − 2 + 5n

2

⌉
, 2n,

⌊
k − 2− 3n

2

⌋
, 2 + n− k

))
.

Remark 25. Notice that when n 6 2, we can reflect the subgraph of ApBqx6−n where
p, q ∈ Z along x3 which interchanges x2 with x4 and x1 with x5 in the Laurent polynomial
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of ApBqx6−n since block 2 and block 4, and block 1 and block 5 are symmetric with respect
to block 3 in the brane tiling. By Definition 9, interchanging x2 with x4 and x1 with x5
in the Laurent polynomial (in variables (xi)

5
i=1) of x6−n gives xn but fixes A, B. Hence,

interchanging variables, or equivalently, reflecting the subgraph, of ApBqx6−n gives the
subgraph ApBqxn. Therefore, we only need to consider the situation where k > 2.

Figure 9 shows the six possible contour shapes depending on the relationship between
n and k.

k=-5n+4

k=-n+2

k=2

k=n+1

k=3n
n=1/2

(+,-,+,+,-)(+,-,+,+,-)
(+,+,-,+,-)

(+,-,-,+,-)

(+,-,+,-,+)

(+,-,+,-,-)

(-,+,-,+,-)

Figure 9: Possible shapes of 5-sided contour

7 Proof of Main Theorem (Theorem 24)

7.1 Overview of induction procedure

We use Kuo’s condensation to inductively prove that multiplying the weight and covering
monomial of the contours in Theorem 24 yields the Laurent polynomials of the toric
cluster variables. First we show that the weights satisfy the desired recurrence. Then we
show that for any recurrence of this form, multiplying the weight and covering monomial
will give the desired Laurent polynomial. We abuse notation by saying a graph G equals a
cluster variable when we mean that the weight w(G), when multiplied by an appropriate
covering monomial, will give us the cluster variable’s Laurent polynomial.

The base case is n = 0 which is proved in Section 7.3. Notice that when n = 0,
our formula for the contour in the main theorem contains two families: {x2k−1}k>2 and
{x2k}k>2.
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After proving the base case, we consider the families of variables with n > 0 and the
families of variables with n < 0 separately.

To prove the theorem for n > 1, we assume that the contours for the variables
Am

2
Bm(m−1)x2k and Am(m+1)Bm2

x2k−1 are correct for all k > 2 and 0 6 m 6 n − 1.
Then for each k > 2, we consider the following recurrence identity, which is obtained
via straightforward algebraic manipulation, as are all other recurrence identities in this
section:

(An
2

Bn(n−1)x2k)(A
(n−1)2B(n−1)(n−2)x2k+2)

=(A(n−1)nB(n−1)2x2k−1)(A
(n−1)nB(n−1)2x2k+3) + (A(n−1)nB(n−1)2x2k+1)

2.

Among all five terms above, An
2
Bn(n−1)x2k is the only term for which we have not proved

the theorem. We present a graph G and points p1, p2, p3, p4 and use a version of Kuo’s
condensation theorem to prove that the subgraph described in Theorem 24 corresponds
to this An

2
Bn(n−1)x2k.

Once we have the terms {An2
Bn(n−1)x2k−1} for k > 2, we consider the following

recurrence identity for each k > 3:

(An(n+1)Bn2

x2k−1)(A
(n−1)2+(n−1)B(n−1)2x2k+1)

=(An
2

Bn(n−1)x2k−2)(A
n2

Bn(n−1)x2k+2) + (An
2

Bn(n−1)x2k)
2.

Similarly, An(n+1)Bn2
x2k−1 is the only term for which we have not proved the theorem and

we will use a version of Kuo’s condensation theorem to do so. Note that the above recur-
rence cannot be applied to k = 2 since we do not associate a contour with An

2
Bn(n−1)x2.

To solve this problem and to prove the contour for An(n+1)Bn2
x3, we use the following

recurrence:

(An(n+1)Bn2

x3)(A
n2

Bn(n−1)x8)

=(An(n+1)Bn2

x5)(A
n2

Bn(n−1)x6) + (An(n+1)Bn2

x7)(A
n2

Bn(n−1)x4).

This completes the inductive step.
The prove the theorem for n 6 −1, the argument is very similar. We assume that we

have already proved the contours for variables Am
2
Bm(m−1)x2k and Am(m+1)Bm2

x2k−1 for
all n+ 1 6 m 6 0. The recurrence

(An
2

Bn(n−1)x2k)(A
(n+1)2Bn(n+1)x2k+2)

=(An(n+1)Bn2

x2k−1)(A
n(n+1)Bn2

x2k+3) + (An(n+1)Bn2

x2k+1)
2

allows us to prove the contours for An
2
Bn(n−1)x2k for all k > 2. Then the recurrence

(An(n+1)Bn2

x2k−1)(A
(n+1)2+(n+1)B(n+1)2x2k+1)

=(A(n+1)2B(n+1)nx2k−2)(A
(n+1)2B(n+1)nx2k+2) + (A(n+1)2B(n+1)nx2k)

2
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allows us to prove the contours for An(n+1)Bn2
x2k−1 for all k > 3. For variables of the

form An(n+1)Bn2
x3, we use the recurrence

(An(n+1)Bn2

x3)(A
(n+1)2Bn(n+1)x8)

=(An(n+1)Bn2

x5)(A
(n+1)2Bn(n+1)x6) + (An(n+1)Bn2

x7)(A
(n+1)2Bn(n+1)x4).

This completes the inductive step.
Section 7.3 proves the base case and Section 7.4 proves one case of the inductive step.

Notice that for the inductive step, we have 28 cases in total and will not present explicit
proofs for all cases. The cases are divided by whether side lengths of the contour are
greater or smaller than 0 and by some parity conditions on n and k. Section 7.2 gives a
summary of the techniques used to prove the remaining cases. The proofs of the remaining
cases are analogous to the proof in Section 7.4, and we provide the necessary data for
readers to verify the remaining cases in Appendix 9.

7.2 Overview of Proof Techniques

We divide our proof into cases depending on the relations between n and k which lead to
different contour shapes. In this section, we give an overview of the proof.

Step 1. Consider a contour C = (a, b, c, d, e) with the special vertex kept or removed and
4 points p1, p2, p3, p4 inside the contour. The version of Kuo’s condensation theorem that
we use depends on whether the graph G(C) is balanced or not, i.e. whether the graph
has the same number of black vertices as white vertices, and on the colors and positions
of p1, p2, p3, p4. Kuo’s condensation theorem is of the form

w (G(C)− S1)w(G(C)−S2) = w (G(C)− S3)w(G(C)−S4)+w (G(C)− S5)w(G(C)−S6),

where each Si is a subset of {p1, p2, p3, p4}. Notice that G(C) − Si may include many
forced matchings. We multiply both sides of the equation by m(G(C))2, the square of
the covering monomial of the graph G. Each term in the equation is then of the form
m(G(C))w(G(C)− Si).

Step 2. For each i = 1, . . . , 6, we describe a contour Ci inside C such that ̂G(C)− Si =

Ĝ(Ci). Recall that Ĝ is graph G with all forced matchings removed. We find Ci by first
describing points p1, p2, p3, p4 and how removing each point individually will change the
contour C. Then we can aggregate these changes to get the total effect of removing Si.
In general, the additivity of such effects is nontrivial, but it is straightforward to verify
for each of our cases.

This is the core step of our proof. The effects of removing each point pi from Ĝ(C)
will be stated and justified through diagrams.

Step 3. Now we want to relate m(G(C))w(G(C) − Si) to c(Ĝ(Ci)). By definition, we
know that G(Ci) and G(C)−Si only differ by a set of forced matchings of G(C)−Si inside
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contour C and outside contour Ci. Meanwhile, m(G(C)) and m(G(Ci)) differ by a factor
of the product of all the blocks (the product of variables corresponding to the blocks)
inside C but outside Ci. Each block can be in only one forced matching since otherwise
the matching would not be forced. Therefore, the quotient

m(G(C))w(G(C)− Si)
m(G(Ci))w(G(Ci))

is the product of all the blocks inside C and outside Ci that are not adjacent to any forced
matchings inside C and outside Ci. Let these blocks form set Ti. We will use T (Si) and
Ti interchangeably. For each case, we explicitly provide T1, . . . , T6 for a choice of points
p1, p2, p3, p4 and verify that(∏

j∈T1

xj

)(∏
j∈T2

xj

)
=

(∏
j∈T3

xj

)(∏
j∈T4

xj

)
=

(∏
j∈T5

xj

)(∏
j∈T6

xj

)
. (4)

Notice that

m(G(Ci))w(G(Ci)) = m(Ĝ(Ci))w(Ĝ(Ci)) =: c(Ĝ(Ci))

since by definition, both m(G(Ci))/m(Ĝ(Ci)) and w(Ĝ(Ci))/w(G(Ci)) equal the product
of blocks adjacent to the forced matchings of G(Ci). Combining these arguments, we
conclude that

c(G1)c(G2) = c(G3)c(G4) + c(G5)c(G6)

where Gi = G(Ci).
This step essentially verifies that the covering monomials match up with the weights

used in Kuo’s condensation theorems to give the desired Laurent polynomials.

Step 4. By the induction hypothesis, we can identify five of the expressions c(Gi) as
the Laurent polynomials of toric cluster variables. Therefore, the sixth expression is the
Laurent polynomial of the next cluster variable in the sequence.

We provide the details of these steps in Section 7.3 and Section 7.4.

Definition 26. We establish the following notation used in our proof.
Let (a, b, c, d, e) −K be the contour of side lengths a, b, c, d, e with the special vertex

kept and (a, b, c, d, e)−R be the contour of side lengths a, b, c, d, e with the special vertex
removed. We write G(a, b, c, d, e, )−K (resp. −R) to denote the subgraph obtained from

contour (a, b, c, d, e)−K (resp. −R). The notation is similar for Ĝ.
Point pi is a white (or black) point on edge a (or b, c, d, e) if it is one of the white

(or black) points on the boundary of Ĝ(C) facing edge a, where C is some contour. This
notation follows from [10] and it does not necessarily mean that pi is on edge a (or b, c, d, e)
of the contour.
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7.3 Base case (n = 0)

When n = 0, the cluster variables An
2
Bn2−nx2k and An

2+nBn2
x2k−1 where n ∈ Z, k ∈ Z>0

are the terms {xm}m∈Z of the Somos-5 sequence.
For 1 6 i 6 5, let Ci be the contour defined in Theorem 24 (and Remark 25) for the

initial cluster variable xi. As examples, the contour for x1 is C1 = (−1, 0, 0,−1, 1) and
the contour for x2 is C2 = (−1, 1,−1, 0, 0), as are shown in Figure 10. We verify the
weights and covering monomials of these contours. As shown in Figure 10, the subgraphs
for these cluster variables are empty so they have weight 1. Recall that by definition, the
covering monomials for C3 and C4 have an additional x3 term. Notice that c(Ĝ(Ci)) = xi
for 1 6 i 6 5.

3 2

1

3 2

1

3 3 2
3

1
4 5

3 3

4 5

Figure 10: For 1 6 i 6 5, we give contours Ci for terms xi of the Somos-5 sequence.
The purple blocks remain after multiplying the weights and covering monomials of these
graphs.

Now assume the contours for xi for all i 6 m− 1 give the correct Laurent polynomials
for the cluster variables. We show the contour defined in Theorem 24 for xm is correct.

Case 1: m = 2k − 1. Take the following contour

C = (a, b, c, d, e) =

(
k − 2,−

⌈
k − 2

2

⌉
, 0,

⌊
k − 2

2

⌋
, 2− k

)
.

Since k > 3, we have a > 0, b < 0, d > 0 and e < 0.
Let G = Ĝ(C). Then we follow the steps described in Section 7.2.

Step 1. By balanced Kuo’s condensation theorem (Lemma 16),

w(G(C))w(G(C)− {p1, p2, p3, p4}) =w(G(C)− {p1, p2})w(G(C)− {p3, p4})
+ w(G(C)− {p1, p4})w(G(C)− {p2, p3}).

where we let S1 = ∅, S2 = {p1, p2, p3, p4}, S3 = {p1, p2}, S4 = {p3, p4}, S5 = {p1, p4},
S6 = {p2, p3}. Then we multiply both sides by m(G(C))2.

Step 2. We define the black points p1, p3 and white points p2, p4 as follows.

• Let p1 be any black point on edge e.

• Let p2 be any white point on edge a.

• Let p3 be any black point on edge b.

the electronic journal of combinatorics 26(2) (2019), #P2.19 19



• Let p4 be a white point near edge c defined as follows:

– If k ≡ 0 (mod 2), then a ≡ 0 (mod 2) so the special vertex is kept. Let p4 be
the kept special white point between edges c and d.

– If k ≡ 1 (mod 2), then a 6≡ 0 (mod 2) so the special vertex is removed. Let
p4 be the other white point on the 5-block which contains the removed white
point between edges c and d.

We also give the effects of removing each point separately:

• The effect of removing p1 is (a, b, c, d, e)→ (a−1, b, c, d−1, e+1). We may also write
this succinctly as −{p1} = (−1, 0, 0,−1, 1). This effect is equivalent to deleting a
trapezoid along edge e of the original contour.

• The effect of removing p2 is (a, b, c, d, e)→ (a− 1, b+ 1, c, d, e+ 1). It is equivalent
to deleting a trapezoid along edge a.

• The effect of removing p3 is (a, b, c, d, e)→ (a− 1, b+ 1, c− 1, d, e).

• The effect of removing p4 is (a, b, c, d, e)−K → (a, b, c, d, e)−R and (a, b, c, d, e)−
R→ (a, b+ 1, c, d+ 1, e)−K depending on the parity of k.

The position of each point and the effect of removing each point can be seen in Fig-
ure 11 where the special point kept and in Figure 12 where special point removed. In the
figures, the enlarged red dots indicate point pi and the red edges indicate forced match-
ings. The shaded region indicates what is removed from the original contour after deleting
the corresponding point. The black letters K/R indicate whether the special point is kept
or removed in the original contour and the blue letters indicate this for the new contour.
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Figure 11: Effects of removing points for x2k−1, k even.
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Figure 12: Effects of removing points for x2k−1, k odd.

the electronic journal of combinatorics 26(2) (2019), #P2.19 20



Below, we explicitly write down the five contours Ci satisfying ̂G(C)− Si = Ĝ(Ci)
and their corresponding cluster variables. These equivalences follow from the induction
hypothesis.
Subcase 1: k is even, i.e. m ≡ 3 (mod 4). We have C = (a, b, c, d, e)−K.

̂G− {p1, p2, p3, p4} −K = Ĝ(a− 3, b+ 2, c− 1, d− 1, e+ 2)−R
= Ĝ(C2), graph of x2k−6

̂G− {p1, p2} −K = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−K
= Ĝ(C3), graph of x2k−5

̂G− {p3, p4} −K = Ĝ(a− 1, b+ 1, c− 1, d, e)−R
= Ĝ(C4), graph of x2k−2

̂G− {p2, p3} −K = Ĝ(a− 1, b, c, d− 1, e+ 1)−R
= Ĝ(C5), graph of x2k−3

̂G− {p1, p4} −K = Ĝ(a− 2, b+ 2, c− 1, d, e+ 1)−K
= Ĝ(C6), graph of x2k−4

Subcase 2: k is odd, i.e. m ≡ 1 (mod 4). We have C = (a, b, c, d, e)−R.

̂G− {p1, p2, p3, p4} −R = Ĝ(a− 3, b+ 3, c− 1, d, e+ 2)−K
= Ĝ(C2), graph of x2k−6

̂G− {p1, p2} −R = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−R
= Ĝ(C3), graph of x2k−5

̂G− {p3, p4} −R = Ĝ(a− 1, b+ 2, c− 1, d+ 1, e)−K
= Ĝ(C4), graph of x2k−2

̂G− {p2, p3} −R = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K
= Ĝ(C5), graph of x2k−3

̂G− {p1, p4} −R = Ĝ(a− 2, b+ 2, c− 1, d, e+ 1)−R
= Ĝ(C6), graph of x2k−4

Step 3. Now we specify the sets Ti (defined in Section 7.2) for a specific choice of
p1, p2, p3, p4. We specify the choices of pi’s to explicitly compute Ti.

G −K (Special vertex kept): let p1 be the rightmost black (denoted by B) point on
edge e (not in a forced matching), p2 be the topmost white (denoted by W) point on
edge a (not in a forced matching), p3 be the bottommost (B) point on edge b (in a forced
matching), p4 be the special vertex. See Figure 13.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x3x3x4, T ({p1, p2}) = x3x4,
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T ({p3, p4}) = x3x3, T ({p2, p3}) = x3x3, T ({p1, p4}) = x3x4.
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Figure 13: Covering monomial for x2k−1, k even. Left: T (∅) and T ({p1, p2, p3, p4}).
Middle: T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3}) and T ({p1, p4}).

G − R (Special vertex removed): let p1 be the rightmost (B) point on edge e (not in
a forced matching), p2 be the topmost (W) point on edge a (not in a forced matching),
p3 be the bottommost (B) point on edge b (in a forced matching), p4 be the other white
vertex on the 5-block below the special vertex. See Figure 14.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x3x3x4, T ({p1, p2}) = x3x4,

T ({p3, p4}) = x3x5, T ({p2, p3}) = x3x3, T ({p1, p4}) = x4x4.
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Figure 14: Covering monomial for x2k−1, k even. Left: T (∅) and T ({p1, p2, p3, p4}).
Middle: T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3}) and T ({p1, p4}).

We see that equation 4 is satisfied:(∏
j∈T1

xj

)(∏
j∈T2

xj

)
=

(∏
j∈T3

xj

)(∏
j∈T4

xj

)
=

(∏
j∈T5

xj

)(∏
j∈T6

xj

)
.

By the Somos-5 recurrence, x2k−1x2k−6 = x2k−5x2k−2 + x2k−3x2k−4. So we conclude
that c(Ĝ(C1)) is the Laurent polynomial of x2k−1, as desired.
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Case 2: m = 2k. Consider the following contour

C = (a, b, c, d, e) =

(
k − 2,−

⌈
k − 4

2

⌉
,−1,

⌊
k

2

⌋
, 1− k

)
.

Since k > 3, we have a > 0, b 6 0, d > 0 and e < 0. The proof is similar to the proof
for Case 1. In Step 1 we again use balanced Kuo’s condensation on G(C) with the same
notation for each Si. In Step 2 we define the four points as follows.

• Let p1 be any white point on edge a.

• Let p2 be any black point on edge e.

• Let p3 be any white point on edge d.

• Let p4 be a black point near edge c on edge d defined as follows:

– If k ≡ 0 (mod 2), then a ≡ 0 (mod 2) so the special point is kept. Let p4 be
the black point on the edge between the 4-block and 5-block above the special
point.

– If k ≡ 1 (mod 2), then a 6≡ 0 (mod 2) so the special point is removed. Let p4
be the lowest black point on edge d.

We give the effects of removing each point separately:

• The effect of removing p1 is (a, b, c, d, e)→ (a− 1, b+ 1, c, d, e+ 1).

• The effect of removing p2 is (a, b, c, d, e)→ (a− 1, b, c, d− 1, e+ 1).

• The effect of removing p3 is (a, b, c, d, e)−K → (a, b− 1, c+ 1, d− 1, e+ 1)−R and
(a, b, c, d, e)−R→ (a, b, c+ 1, d, e+ 1)−K depending on the parity of k.

• The effect of removing p4 is (a, b, c, d, e) − K → (a, b − 1, c, d − 1, e) − R and
(a, b, c, d, e)−R→ (a, b, c, d, e)−K depending on the parity of k.

The position of each point and the effect of removing each point is shown in Figure 15
(special point kept) and Figure 16 (special point removed).
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Figure 15: Effects of removing points for x2k, k even.
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Figure 16: Effects of removing points for x2k, k odd.

Below, we explicitly write down the five contours Ci satisfying ̂G(C)− Si = Ĝ(Ci)
and their corresponding cluster variables. These equivalences follow from the induction
hypothesis.
Subcase 1: k is even, i.e. m ≡ 0 (mod 4). We have C = (a, b, c, d, e)−K.

̂G− {p1, p2, p3, p4} −K = Ĝ(a− 2, b, c+ 1, d− 2, e+ 3)−K
= Ĝ(C2), graph of x2k−5

̂G− {p1, p2} −K = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−K
= Ĝ(C3), graph of x2k−4

̂G− {p3, p4} −K = Ĝ(a, b− 1, c+ 1, d− 1, e+ 1)−K
= Ĝ(C4), graph of x2k−1

̂G− {p2, p3} −K = Ĝ(a− 1, b− 1, c+ 1, d− 2, e+ 2)−R
= Ĝ(C5), graph of x2k−3

̂G− {p1, p4} −K = Ĝ(a− 1, b, c, d− 1, e+ 1)−R
= Ĝ(C6), graph of x2k−2

Subcase 2: k is odd, i.e. m ≡ 2 (mod 4). We have C = (a, b, c, d, e)−R.

̂G− {p1, p2, p3, p4} −R = Ĝ(a− 2, b, c+ 1, d− 2, e+ 3)−R
= Ĝ(C2), graph of x2k−5

̂G− {p1, p2} −R = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−R
= Ĝ(C3), graph of x2k−4

̂G− {p3, p4} −R = Ĝ(a, b− 1, c+ 1, d− 1, e+ 1)−R
= Ĝ(C4), graph of x2k−1

̂G− {p2, p3} −R = Ĝ(a− 1, b, c+ 1, d− 1, e+ 2)−K
= Ĝ(C5), graph of x2k−3

̂G− {p1, p4} −R = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K
= Ĝ(C6), graph of x2k−2
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In Step 3 we specify the sets Ti and verify equation 4.
G −K (Special vertex kept): let p1 be the bottommost (W) point on edge a (not in

a forced matching), p2 be the leftmost (B) point on edge e (not in a forced matching), p3
be the topmost (W) point on edge d, p4 be the (B) point on the edge between the 4-block
and 5-block above the special vertex. See Figure 17.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x4x4x5, T ({p1, p2}) = x3x5,

T ({p3, p4}) = x4x4, T ({p2, p3}) = x4x5, T ({p1, p4}) = x3x4.
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Figure 17: Covering monomial for x2k, k even. Left: T (∅) and T ({p1, p2, p3, p4}). Middle:
T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3}) and T ({p1, p4}).

G−R (Special vertex removed): let p1 be the bottommost (W) point on edge a (not
in a forced matching), p2 be the leftmost (B) point on edge e (not in a forced matching),
p3 be the topmost (W) point on edge d, p4 be the (B) point on the edge between the
2-block and 3-block above the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x2x3x4x5, T ({p1, p2}) = x3x5,

T ({p3, p4}) = x2x4, T ({p2, p3}) = x4x5, T ({p1, p4}) = x2x3.
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Figure 18: Covering monomial for x2k, k odd. Left: T (∅) and T ({p1, p2, p3, p4}). Middle:
T ({p1, p2}) and T ({p3, p4}). Right T ({p2, p3}) and T ({p1, p4}).

By the Somos-5 recurrence, x2k−1x2k−6 = x2k−5x2k−2 + x2k−3x2k−4. So we conclude
that c(Ĝ(C1)) is the Laurent polynomial of x2k−1, as desired.
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7.4 Inductive Step for An2
Bn(n−1)x2k, n > 1, k > 3n− 1

As explained in Section 7.1, we will only show the inductive step for toric cluster variables
of the form An

2
Bn(n−1)x2k. The proofs for the remaining cases are analogous and we

provide the data for their verification in Appendix 9.
Assume the contours of Am

2
Bm(m−1)x2k and Am(m+1)Bm2

x2k+1, as defined in Theo-
rem 24, give the correct cluster variables for any m 6 n−1 and k > 3n−1. Now we want
to show that the contour of Am

2
Bm(m−1)x2k is correct for any k > 3n− 1 and m = n.

For this case, we use the following recurrence:

(An
2

Bn(n−1)x2k)(A
(n−1)2B(n−1)(n−2)x2k+2) (5)

=(A(n−1)nB(n−1)2x2k−1)(A
(n−1)nB(n−1)2x2k+3) + (A(n−1)nB(n−1)2x2k+1)

2 (6)

By the induction hypothesis, we have the correctness of the contours for each of the
cluster variables A(n−1)2B(n−1)(n−2)x2k+2, A

(n−1)nB(n−1)2x2k−1, A
(n−1)nB(n−1)2x2k+1 and

A(n−1)nB(n−1)2x2k+3.
Let contour C be the following:

C = (a, b, c, d, e) =

(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
, 2n− 2,

⌊
k − 3n+ 3

2

⌋
, n− k − 1

)
.

Since k > 3n− 1, we have a > 0, b < 0, c > 0, d > 0, e < 0. Again, we follow the steps
described in Section 7.2. Let G = Ĝ(C).

Step 1: By non-alternating Kuo Condensation theorem (Lemma 18),

w(G− {p1, p2})w(G− {p3, p4}) =w(G)w(G− {p1, p2, p3, p4})
+ w(G− {p1, p3})w(G− {p2, p4}).

where we let S1 = {p1, p2}, S2 = {p3, p4}, S3 = ∅, S4 = {p1, p2, p3, p4}, S5 = {p1, p3},
S6 = {p2, p4}. Then we multiply both sides by m(G(C))2.

Step 2. We define the four points p1, p2, p3, p4 on edge d, e, b, c respectively, where p1 and
p4 are white while p2 and p3 are black.

−{p1} =

{
(0,−1, 1,−1, 1)−R, if G = (a, b, c, d, e)−K
(0, 0, 1, 0, 1)−K, if G = (a, b, c, d, e)−R

−{p2} = (−1, 0, 0,−1, 1)

−{p3} = (−1, 1,−1, 0, 0)

−{p4} =

{
(0, 0, 0, 0, 0)−R, if G = (a, b, c, d, e)−K
(0, 1, 0, 1, 0)−K, if G = (a, b, c, d, e)−R

The positions of these points and the effects of removing each point individually is
shown in Figure 19 (p1) and Figure 20 (p2, p3, p4) in the case where the special point is kept.
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As shown in Figure 19, after we remove p1, some blocks are removed (grey) while some
blocks are appended (pink). This transformation looks unusual but it actually follows
the same procedure as the previous ones. After the removal of p1, some matchings are no
longer forced and the forced matchings become different, which results in the addition of
pink blocks. Note that the matchings in the pink blocks are all forced, so the subgraph
still becomes smaller after the removal. Figure 21 shows the case where the special point
is removed.
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1
4 5

p1

K
3 2 3 2

4
1
45

1
45 5

R

Figure 19: The effect of removing p1 for An
2
Bn(n−1) with n > 1, k > 3n − 1 when the

special point is kept. Left: before removal. Right: after removal.
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Figure 20: The effects of removing p2, p3, p4 for An
2
Bn(n−1) with n > 1, k > 3n− 1 when

the special point is kept.
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Figure 21: The effects of removing pi’s for An
2
Bn(n−1) with n > 1, k > 3n − 1 when the

special point is removed.

Below, we explicitly write down the contours Ci satisfying ̂G(C)− Si = Ĝ(Ci). For
the five contours C2, . . . , C6, we specify their corresponding cluster variables, which are
A(n−1)2B(n−1)(n−2)x2k+2, A

n(n−1)B(n−1)2x2k+3, A
n2−nB(n−1)2x2k−1, A

n2−nB(n−1)2x2k+1
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and An
2−nB(n−1)2x2k+1. These equivalences follow from the induction hypothesis. By

recurrence 5, we conclude that Ĝ(C1) is the graph corresponding to An
2
Bn2−nx2k.

Case 1: n+ k is odd. The special vertex is kept and C = (a, b, c, d, e)−K.

̂G− {p1, p2} = Ĝ(a− 1, b− 1, c+ 1, d− 2, e+ 2)−R
= Ĝ(C1)

̂G− {p3, p4} = Ĝ(a− 1, b+ 1, c− 1, d, e)−R
= Ĝ(C2), graph of A(n−1)2B(n−1)(n−2)x2k+2

Ĝ = Ĝ(a, b, c, d, e)−K
= Ĝ(C3), graph of An(n−1)B(n−1)2x2k+3

̂G− {p1, p2, p3, p4} = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−K
= Ĝ(C4), graph of An

2−nB(n−1)2x2k−1

̂G− {p1, p3} = Ĝ(a− 1, b, c, d− 1, e+ 1)−R
= Ĝ(C5), graph of An

2−nB(n−1)2x2k+1

̂G− {p2, p4} = Ĝ(a− 1, b, c, d− 1, e+ 1)−R
= Ĝ(C6), graph of An

2−nB(n−1)2x2k+1

Case 2: n+ k is even. The special vertex is removed and C = (a, b, c, d, e)−R.

̂G− {p1, p2} = Ĝ(a− 1, b, c+ 1, d− 1, e+ 2)−K
= Ĝ(C1)

̂G− {p3, p4} = Ĝ(a− 1, b+ 2, c− 1, d+ 1, e)−K
= Ĝ(C2), graph of A(n−1)2B(n−1)(n−2)x2k+2

Ĝ = Ĝ(a, b, c, d, e)−R
= Ĝ(C3), graph of An(n−1)B(n−1)2x2k+3

̂G− {p1, p2, p3, p4} = Ĝ(a− 2, b+ 1, c, d− 1, e+ 2)−R
= Ĝ(C4), graph of An

2−nB(n−1)2x2k−1

̂G− {p1, p3} = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K
= Ĝ(C5), graph of An

2−nB(n−1)2x2k+1

̂G− {p2, p4} = Ĝ(a− 1, b+ 1, c, d, e+ 1)−K
= Ĝ(C6), graph of An

2−nB(n−1)2x2k+1

We now verify the correctness of the covering monomial.
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Step 3. We specify the sets Ti for a choice of p1, p2, p3, p4 and verify equation 4. In each
of the diagrams in Figures 22 and 23, p1, p2, p3, p4 are the red points. Each figure shows
the new contours Ci and Ci+1 in green and in blue. Note that the choices of pi’s are the
same as in Step 2.

There is a bijection between perfect matchings of G(Ci) and perfect matchings of
G(C)−Si. Let M be any perfect matching of G(Ci). Essentially, the weight of the blocks
in Ti is exactly what we need to multiply m(G(Ci))w(M) by so that it corresponds to a
term of m(G(C))w(G(C)− Si).

We explain how the leftmost diagram of Figure 22 shows that the weight of T1 is
x3x3x4x4. Let us start with the green contour C1. A perfect matching of G(C1) corre-
sponds to a perfect matching of G − {p1, p2} if we remove the red matchings and add
in the green matchings. Algebraically, this corresponds to multiplying by the weight of
these matchings. The covering monomial of G(C1) must be multiplied by the weight of all
blocks that are outside the green contour C1 and within the largest contour C. Note that
the weight of these blocks is divided out by many of the green matchings and only the
two 4-blocks (green) along edge e and the single 3-block (cyan) near the special vertex
(as is defined in Definition 19) remain.

In this particular case, the contour C1 is not completely contained in C, so we must
also divide by the weight of all blocks within C1 and outside C. Again, note that these
weight of these blocks divide out all but one of the red matchings. So overall, the weight of
T1 includes x3x4x4 from the covering monomial of C, part of the weight 1

x3x4x5
of two green

matchings (shaded), and the weight x4x5 of the single red matching within C1 (green). So
the weight of T1 is x4x4. Similarly, we find the weight of T2 is x3x3 since we simply need
to multiply by the weight of blocks outside C2 within C and the only blocks that are not
divided out by forced matchings are the 3-block near the special vertex (cyan) and the
3-block near p3 (blue).

Case 1: Special vertex kept. See Figure 22.
For this choice of p1, p2, p3, p4, we have∏

j∈T1

xj = x3x4x4
1

x3x4x5
x4x5 = x4x4,

∏
j∈T2

xj = x3x3,∏
j∈T3

xj = 1,
∏
j∈T4

xj = x3x3x4x4,

∏
j∈T5

xj = x3x3x4
1

x3x4x5
x4x5 = x3x4,

∏
j∈T6

xj = x3x4.

Case 2: Special vertex removed. See Figure 23.
For this choice of p1, p2, p3, p4, we have∏

j∈T1

xj = x4x4,
∏
j∈T2

xj = x1x3,
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Figure 22: Covering monomial for the case of An
2
Bn(n−1) with n > 1, k > 3n − 1 and

the special point kept. Left: T ({p1, p2}) and T ({p3, p4}). Middle: T ({p1, p2, p3, p4}) and
T (∅). Right: T ({p1, p3}) and T ({p2, p4}).
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Figure 23: Covering monomial for the case of An
2
Bn(n−1) with n > 1, k > 3n− 1 and the

special point removed. Left: T ({p1, p2}) and T ({p3, p4}). Middle: T ({p1, p2, p3, p4}) and
T (∅). Right: T ({p1, p3}) and T ({p2, p4}).

∏
j∈T3

xj = 1,
∏
j∈T4

xj = x3x3x4
x3 · x1x3x4x5
x3x3x4x5

= x1x3x3x4,∏
j∈T5

xj = x3x4,
∏
j∈T6

xj = x1x4.

As desired, equation 4 holds in both cases.

Remark 27. As long as we fix the side and the color of a point pi, the effect of removing pi
is the same regardless of the shape of the contour, i.e. regardless of the signs of the other
side lengths. For instance, as shown in Figure 24, the effects of removing p4 in shapes
(+,−,+,+,−) and (+,−,+,−,+) are the same.
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Figure 24: The effects of removing p4 in shapes (+,−,+,−,+) and (+,−,+,+,−).

8 Comparison with other results

Our paper provides a complete description of the cluster variables generated by toric mu-
tations of the dP2 quiver through an algebraic formula and a combinatorial interpretation.
In this section, we discuss the relation between our results for the dP2 quiver and two
other results: a similar result for the dP3 quiver and the octahedron recurrence.

8.1 The dP3 Quiver

The dP3 quiver and its brane tiling have been studied widely in [2], [16], [11], and [10]
using similar techniques.

Figure 25: dP3 quiver and brane tiling [10]

The dP3 quiver is shown in Figure 25. If we contract the edge between vertex 4 and
vertex 2 and remove 2-cycles, we form the dP2 quiver. Correspondingly, if we merge
block 4 and block 2 in the dP3 brane tiling, we obtain the dP2 brane tiling. However,
this observation does not transfer the association of contours with cluster variables in the
dP3 case to the dP2 case. In particular, the subgraphs we consider in dP2 brane tiling
significantly differ from those in dP3 brane tiling. For instance, when side c is long, then
there are many forced edges resulting in shapes which do not occur in the dP3 case. See
Figure 26.

the electronic journal of combinatorics 26(2) (2019), #P2.19 31



1

2 3

4

1

2 3

4

2

2

1

2 3

45

2

1

2 3

4
1

2 3

45

1

2 3

4
1

2 3

45

1

2 3

45

2

1

2 3

45
1

2 3

45

2

1

2 3

4
1

2 3

45
1

2 3

45

1

2 3

4
1

2 3

45
1

2 3

45

1

2 3

45
1

2 3

45

2

1

2 3

45
1

2 3

45
1

2

45

1

2 3

4
1

2 3

45
1

2 3

45
1

2 3

45

1 1 1 1

1

2

45

Figure 26: Graph for A6B4x17. A long edge c results in many forced edges.

8.2 The Octahedron Recurrence

In [15], David Speyer gives a combinatorial interpretation for the Laurent polynomials of
the Somos-5 sequence in terms of the weight of subgraphs of a different brane tiling. See
Figure 27 for this brane tiling and its corresponding quiver.
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12 345

1 34 25

12 45

1 34 5

3

2

1 3 2 45

Figure 27: The quiver and the brane tiling studied in [15].

Notice that by adding a 2-cycle between vertex 2 and vertex 4 in our dP2 quiver, we
obtain the quiver studied in Figure 27. However, the two resulting brane tilings are quite
different and it is hard to describe a transformation between these tilings in a simple way.
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Figure 28: The subgraphs corresponding to terms x6, x7, x8, x9 in the two different brane
tilings.

We provide a few terms of the Laurent polynomial of the Somos-5 sequence written as
subgraphs of these two different brane tilings in Figure 28 and Figure 29. The blocks in
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each pair of subgraphs are similar but not identical. Moreover, the subgraphs correspond-
ing to xn in the dP2 brane tiling grow in two different directions (upper right and lower
right) depending on the parity of n. On the other hand, the subgraphs considered by
Speyer grow in a way that appears to be unrelated to the parity of n. Therefore, we be-
lieve that the problem of finding contour families in these two brane tilings are inherently
different. There should exist some bijection between these subgraph families (and some
bijection between their perfect matchings) since we know how to generate them given xn.
We leave the proving such bijections as an open problem for future research.
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Figure 29: The subgraphs corresponding to terms x10, x11, x12 in the two different brane
tilings.
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9 Appendix

For the remaining cases of Theorem 24, we provide the data necessary to verify their
correctness when following the steps in Section 7.1 and Section 7.2. These cases are
grouped by the form of their cluster variable.
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9.1 An2
Bn(n−1)x2k, n > 1, k > 2

The recurrence we use:

(An
2

Bn(n−1)x2k)(A
(n−1)2B(n−1)(n−2)x2k+2)

=(A(n−1)nB(n−1)2x2k−1)(A
(n−1)nB(n−1)2x2k+3) + (A(n−1)nB(n−1)2x2k+1)

2

Kuo’s four points: p1, p2, p3, p4 are on edge d, e, b, c respectively.

9.1.1 Case 1

k > 3n− 1. Non-alternating Kuo. Shape (+,−,+,+,−).

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
, 2n− 2,

⌊
k − 3n+ 3

2

⌋
, n− k − 1

)
−{p1}(W ) :K → (0,−1,+1,−1,+1)−R

R→ (0, 0,+1, 0,+1)−K
−{p2}(B) :→ (−1, 0, 0,−1,+1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

G =A(n−1)nB(n−1)2x2k+3

G− {p1, p2, p3, p4} =A(n−1)nB(n−1)2x2k−1

G− {p1, p3} =A(n−1)nB(n−1)2x2k+1

G− {p2, p4} =A(n−1)nB(n−1)2x2k+1

G− {p1, p2} =An
2

Bn2−nx2k

G− {p3, p4} =A(n−1)2B(n−1)(n−2)x2k+2

G − K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the
leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the special
vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x3x3x4x4, T ({p1, p3}) = x3x4,

T ({p2, p4}) = x3x4, T ({p1, p2}) = x4x4, T ({p3, p4}) = x3x3.

G−R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the (W)
vertex bordering the 1-block below the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x1x3x4x4, T ({p1, p3}) = x3x4,

T ({p2, p4}) = x1x4, T ({p1, p2}) = x4x4, T ({p3, p4}) = x1x3.

the electronic journal of combinatorics 26(2) (2019), #P2.19 35



9.1.2 Case 2

n+ 1 6 k 6 3n− 2. Unbalanced Kuo. Shape (+,−,+,−,−).
When (k + 2) + (n− 1) is odd, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
, 2n− 2 + 1,

⌊
k − 3n+ 3

2

⌋
, n− k − 1 + 1

)
−K

When (k + 2) + (n− 1) is even, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 5

2

⌉
− 1, 2n− 2 + 1,

⌊
k − 3n + 3

2

⌋
− 1, n− k − 1 + 1

)
−R

−{p1}(B) :K → (0, 0,−1, 0,−1)−R
R→ (0,+1,−1,+1,−1)−K

−{p2}(B) :→ (−1, 0, 0,−1,+1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

G− {p1} =A(n−1)nB(n−1)2x2k+3

G− {p2, p3, p4} =A(n−1)nB(n−1)2x2k−1

G− {p3} =A(n−1)nB(n−1)2x2k+1

G− {p1, p2, p4} =A(n−1)nB(n−1)2x2k+1

G− {p2} =An
2

Bn2−nx2k

G− {p1, p3, p4} =A(n−1)2B(n−1)(n−2)x2k+2

G−K (Special vertex kept): let p1 be the bottommost (B) point on edge d, p2 be the
leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the special
vertex.

T ({p1}) = x3, T ({p2, p3, p4}) = x3x3x4, T ({p3}) = x3,

T ({p1, p2, p4}) = x3x3x4, T ({p2}) = x4, T ({p1, p3, p4}) = x3x3x3.

G−R (Special vertex removed): let p1 be the bottommost (B) point on edge d, p2 be
the leftmost (B) point on edge e, p3 be the bottommost (B) point on edge b, p4 be the
(W) vertex bordering the 1-block below the special vertex.

T ({p1}) = x4, T ({p2, p3, p4}) = x1x3x4, T ({p3}) = x3x3,

T ({p1, p2, p4}) = x3x3x3x4, T ({p2}) = x4, T ({p1, p3, p4}) = x1x3x3.
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9.1.3 Case 3

k 6 n. Balanced Kuo. Shape (+,−,+,−,+).
When (k + 2) + (n− 1) is odd, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 5

2

⌉
, 2n− 2 + 1,

⌊
k − 3n + 3

2

⌋
− 1, n− k − 1 + 2

)
−K

When (k + 2) + (n− 1) is even, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 5

2

⌉
− 1, 2n− 2 + 1,

⌊
k − 3n + 3

2

⌋
− 2, n− k − 1 + 2

)
−R

−{p1}(B) :K → (0, 0,−1, 0,−1)−R
R→ (0,+1,−1,+1,−1)−K

−{p2}(W ) :→ (+1, 0, 0,+1,−1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

G− {p1, p2} =A(n−1)nB(n−1)2x2k+3

G− {p3, p4} =A(n−1)nB(n−1)2x2k−1

G− {p2, p3} =A(n−1)nB(n−1)2x2k+1

G− {p1, p4} =A(n−1)nB(n−1)2x2k+1

G =An
2

Bn2−nx2k

G− {p1, p2, p3, p4} =A(n−1)2B(n−1)(n−2)x2k+2

G − K (Special vertex kept): let p1 be the second from top (B) point on edge d, p2
be the second from left (W) point on edge e, p3 be the second from bottom (B) point on
edge b, p4 be the special vertex.

T ({p1, p2}) = x1x3, T ({p3, p4}) = x3x5, T ({p2, p3}) = x3x5,

T ({p1, p4}) = x1x3, T (∅) = 1, T ({p1, p2, p3, p4}) = x1x3x3x5.

G−R (Special vertex removed): let p1 be the second from bottom (B) point on edge
d, p2 be the second from right (W) point on edge e, p3 be the second from bottom (B)
point on edge b, p4 be the (W) vertex bordering the 1-block below the special vertex.

T ({p1, p2}) = x1x3, T ({p3, p4}) = x1x5, T ({p2, p3}) = x3x5,

T ({p1, p4}) = x1x1, T (∅) = 1, T ({p1, p2, p3, p4}) = x1x1x3x5.
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9.2 An2+nBn2
x2k−1, n > 1, k > 3

The recurrence we use:

(An
2+nBn2

x2k−1)(A
(n−1)2+(n−1)B(n−1)2x2k+1)

=(An
2

Bn(n−1)x2k−2)(A
n2

Bn(n−1)x2k+2) + (An
2

Bn(n−1)x2k)
2

Kuo’s four points: p1, p2, p3, p4 are on edge d, e, b, c respectively.
The effect of removing p1, p2, p3, p4 and the sets used in the proof of covering monomial

are the same as in Section 9.1.

9.2.1 Case 1

k > 3n+ 1. Non-alternating Kuo. Shape (+,−,+,+,−).

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 3

2

⌉
, 2n− 1,

⌊
k − 3n+ 1

2

⌋
, n− k

)
.

G =An
2

Bn2−nx2k+2

G− {p1, p2, p3, p4} =An
2

Bn2−nx2k−2

G− {p1, p3} =An
2

Bn2−nx2k

G− {p2, p4} =An
2

Bn2−nx2k

G− {p1, p2} =An
2+nBn2

x2k−1

G− {p3, p4} =A(n−1)2+(n−1)B(n−1)2x2k+1

9.2.2 Case 2

n+ 2 6 k 6 3n. Unbalanced Kuo. Shape (+,−,+,−,−).
When (k + 1) + n is odd, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 3

2

⌉
, 2n− 1 + 1,

⌊
k − 3n+ 1

2

⌋
, n− k + 1

)
−K

When (k + 1) + n is even, let

G := Ĝ
(
k − 1 + n,−

⌈
k + 5n− 3

2

⌉
− 1, 2n− 1 + 1,

⌊
k − 3n + 1

2

⌋
− 1, n− k − 1 + 1

)
−R

G− {p1} =An
2

Bn2−nx2k+2

G− {p2, p3, p4} =An
2

Bn2−nx2k−2

G− {p3} =An
2

Bn2−nx2k
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G− {p1, p2, p4} =An
2

Bn2−nx2k

G− {p2} =An
2+nBn2

x2k−1

G− {p1, p3, p4} =A(n−1)2+(n−1)B(n−1)2x2k+1

9.2.3 Case 3

3 6 k 6 n+ 1. Balanced Kuo. Shape (+,−,+,−,+).
When (k + 1) + n is odd, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 3

2

⌉
, 2n− 1 + 1,

⌊
k − 3n+ 1

2

⌋
− 1, n− k + 2

)
−K

When (k + 1) + n is even, let

G := Ĝ
(
k − 1 + n− 1,−

⌈
k + 5n− 3

2

⌉
− 1, 2n− 1 + 1,

⌊
k − 3n + 1

2

⌋
− 2, n− k + 2

)
−R

G− {p1, p2} =An
2

Bn2−nx2k+2

G− {p3, p4} =An
2

Bn2−nx2k−2

G− {p2, p3} =An
2

Bn2−nx2k

G− {p1, p4} =An
2

Bn2−nx2k

G =An
2+nBn2

x2k−1

G− {p1, p2, p3, p4} =A(n−1)2+(n−1)B(n−1)2x2k+1

9.3 An2
Bn(n−1)x2k, n 6 −1, k > 2

The recurrence we use:

(An
2

Bn(n−1)x2k)(A
(n+1)2Bn(n+1)x2k+2)

=(An(n+1)Bn2

x2k−1)(A
n(n+1)Bn2

x2k+3) + (An(n+1)Bn2

x2k+1)
2

Kuo’s four points: p1, p2, p3, p4 are on edge d, a, b, c respectively.

9.3.1 Case 1

k > 1− 5n. Non-alternating Kuo. Shape (+,−,−,+,−).

G := Ĝ
(
k + n,−

⌈
k + 5n

2

⌉
, 2n,

⌊
k − 3n

2

⌋
, n− k

)

−{p1}(W ) :K → (0,−1,+1,−1,+1)−R

the electronic journal of combinatorics 26(2) (2019), #P2.19 39



R→ (0, 0,+1, 0,+1)−K
−{p2}(W ) :→ (−1,+1, 0, 0,+1)

−{p3}(B) :→ (−1,+1,−1, 0, 0)

−{p4}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

G =An
2+nBn2

x2k+3

G− {p1, p2, p3, p4} =An
2+nBn2

x2k−1

G− {p1, p3} =An
2+nBn2

x2k+1

G− {p2, p4} =An
2+nBn2

x2k+1

G− {p1, p4} =A(n+1)2B(n+1)2−(n+1)x2k+2

G− {p2, p3} =An
2

Bn2−nx2k

G − K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the
topmost (W) point on edge a (not in a forced matching), p3 be the bottommost (B) point
on edge b (not in a forced matching), p4 be the (B) point on the edge between the 4-block
and 5-block above the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x4x4x5x5, T ({p1, p3}) = x4x5,

T ({p2, p4}) = x4x5, T ({p1, p4}) = x4x4, T ({p2, p3}) = x5x5.

G−R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
topmost (W) point on edge a (not in a forced matching), p3 be the bottommost (B) point
on edge b (in a forced matching), p4 be the (B) point on the edge between the 2-block
and 3-block above the special vertex.

T (∅) = 1, T ({p1, p2, p3, p4}) = x2x3x4x5, T ({p1, p3}) = x3x4,

T ({p2, p4}) = x2x5, T ({p1, p4}) = x2x4, T ({p2, p3}) = x3x5.

9.3.2 Case 2

2− n 6 k 6 −5n. Unbalanced Kuo. Shape (+,+,−,+,−).

G := Ĝ
(
k + n− 1,−

⌈
k + 5n

2

⌉
+ 1, 2n− 1,

⌊
k − 3n

2

⌋
, n− k

)

−{p1}(W ) :K → (0,−1,+1,−1,+1)−R
R→ (0, 0,+1, 0,+1)−K

−{p2}(W ) :→ (−1,+1, 0, 0,+1)
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−{p3}(W ) :→ (+1,−1,+1, 0, 0)

−{p4}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

G− {p3} =An
2+nBn2

x2k+3

G− {p1, p2, p4} =An
2+nBn2

x2k−1

G− {p1} =An
2+nBn2

x2k+1

G− {p2, p3, p4} =An
2+nBn2

x2k+1

G− {p2} =An
2

Bn2−nx2k

G− {p1, p3, p4} =A(n+1)2B(n+1)2−(n+1)x2k+2

G − K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the
topmost (W) point on edge a, p3 be the bottommost (W) point on edge b, p4 be the (B)
point on the edge between the 4-block and 5-block above the special vertex.

T ({p3}) = 1, T ({p1, p2, p4}) = x4x4x5x5, T ({p1}) = x4x5,

T ({p2, p3, p4}) = x4x5, T ({p2}) = x4x4, T ({p1, p3, p4}) = x5x5.

G−R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be the
topmost (W) point on edge a, p3 be the bottommost (B) point on edge b, p4 be the (B)
point on the edge between the 2-block and 3-block above the special vertex.

T ({p3}) = x2, T ({p1, p2, p4}) = x4x4x5, T ({p1}) = x4,

T ({p2, p3, p4}) = x2x4x5, T ({p2}) = x5, T ({p1, p3, p4}) = x2x4x4.

9.3.3 Case 3

2 6 k 6 1− n. Balanced Kuo. Shape (−,+,−,+,−).

G := Ĝ
(
k + n− 2,−

⌈
k + 5n

2

⌉
+ 2, 2n− 1,

⌊
k − 3n

2

⌋
, n− k + 1

)

−{p1}(W ) :K → (0,−1,+1,−1,+1)−R
R→ (0, 0,+1, 0,+1)−K

−{p2}(B) :→ (+1,−1, 0, 0,−1)

−{p3}(W ) :→ (+1,−1,+1, 0, 0)

−{p4}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K
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G− {p2, p3} =An
2+nBn2

x2k+3

G− {p1, p4} =An
2+nBn2

x2k−1

G− {p1, p2} =An
2+nBn2

x2k+1

G− {p3, p4} =An
2+nBn2

x2k+1

G− {p1, p2, p3, p4} =A(n+1)2B(n+1)2−(n+1)x2k+2

G =An
2

Bn2−nx2k

G − K (Special vertex kept): let p1 be the topmost (W) point on edge d, p2 be the
bottommost (B) point on edge a, p3 be the topmost (W) point on edge b (not in a forced
matching), p4 be the (B) point on the edge between the 4-block and 5-block above the
special vertex.

T ({p2, p3}) = x2x2, T ({p1, p4}) = x4x4, T ({p1, p2}) = x2x4,

T ({p3, p4}) = x2x4, T ({p1, p2, p3, p4}) = x2x2x4x4, T (∅) = 1.

G − R (Special vertex removed): let p1 be the topmost (W) point on edge d, p2 be
the bottommost (B) point on edge a, p3 be the topmost (W) point on edge b (not in a
forced matching), p4 be the (B) point on the edge between the 2-block and 3-block above
the special vertex.

T ({p2, p3}) = x2x2, T ({p1, p4}) = x2x4, T ({p1, p2}) = x2x4,

T ({p3, p4}) = x2x2, T ({p1, p2, p3, p4}) = x2x2x2x4, T (∅) = 1.

9.4 An2+nBn2
x2k−1, n 6 −1, k > 3

The recurrence we use:

(An
2+nBn2

x2k−1)(A
(n+1)(n+2)B(n+1)2x2k+1)

=(A(n+1)2B(n+1)nx2k−2)(A
(n+1)2B(n+1)nx2k+2) + (A(n+1)2B(n+1)nx2k)

2

Kuo’s four points: p1, p2, p3, p4 are on edge d, a, b, c respectively.
The effect of removing p1, p2, p3, p4 and the sets used in the proof of covering monomial

are the same as in Section 9.3.

9.4.1 Case 1

k > −1− 5n. Non-alternating Kuo. Shape (+,−,−,+,−).

G := Ĝ
(
k + n,−

⌈
k + 5n+ 2

2

⌉
, 2(n+ 1)− 1,

⌊
k − 3n− 2

2

⌋
, 1 + n− k

)
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G =A(n+1)2B(n+1)nx2k+2

G− {p1, p2, p3, p4} =A(n+1)2B(n+1)nx2k−2

G− {p1, p3} =A(n+1)2B(n+1)nx2k

G− {p2, p4} =A(n+1)2B(n+1)nx2k

G− {p1, p4} =A(n+1)2+(n+1)B(n+1)2x2k+1

G− {p2, p3} =An
2+nBn2

x2k−1

9.4.2 Case 2

2− n 6 k 6 −2− 5n. Unbalanced Kuo. Shape (+,+,−,+,−).

G := Ĝ
(
k + n− 1,−

⌈
k + 5n+ 2

2

⌉
+ 1, 2(n+ 1)− 1− 1,

⌊
k − 3n− 2

2

⌋
, 1 + n− k

)

G− {p3} =A(n+1)2B(n+1)nx2k+2

G− {p1, p2, p4} =A(n+1)2B(n+1)nx2k−2

G− {p1} =A(n+1)2B(n+1)nx2k

G− {p2, p3, p4} =A(n+1)2B(n+1)nx2k

G− {p1, p3, p4} =A(n+1)2+(n+1)B(n+1)2x2k+1

G− {p2} =An
2+nBn2

x2k−1

9.4.3 Case 3

2 6 k 6 1− n. Balanced Kuo. Shape (−,+,−,+,−).

G := Ĝ
(
k + n,−

⌈
k + 5n+ 2

2

⌉
, 2(n+ 1)− 1,

⌊
k − 3n− 2

2

⌋
, 1 + n− k

)

G− {p2, p3} =A(n+1)2B(n+1)nx2k+2

G− {p1, p4} =A(n+1)2B(n+1)nx2k−2

G− {p1, p3} =A(n+1)2B(n+1)nx2k

G− {p2, p4} =A(n+1)2B(n+1)nx2k

G− {p1, p2, p3, p4} =A(n+1)2+(n+1)B(n+1)2x2k+1

G =An
2+nBn2

x2k−1
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9.5 An2+nBn2
x3, n > 1

The recurrence we use:

(An(n+1)Bn2

x3)(A
n2

Bn(n−1)x8)

=(An(n+1)Bn2

x5)(A
n2

Bn(n−1)x6) + (An(n+1)Bn2

x7)(A
n2

Bn(n−1)x4).

Kuo’s four points: p1, p2, p3, p4 are on edge e, a, c, d respectively.
When n = 1: can verify the contour match the graph using Balanced Kuo or just

directly verify the matching polynomial.
Let n > 2. Unbalanced Kuo. Shape (+,−,+,−,+).
When n+ 3 is odd, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
, 2n,

⌊
3− 3n− 2

2

⌋
, n− 3 + 2

)
−R

When n+ 3 is even, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
− 1, 2n,

⌊
3− 3n− 2

2

⌋
− 1, n− 3 + 2

)
−K

−{p1}(W ) :→ (+1, 0, 0,+1,−1)

−{p2}(W ) :→ (−1,+1, 0, 0,+1)

−{p3}(W ) :K → (0, 0, 0, 0, 0)−R
R→ (0,+1, 0,+1, 0)−K

−{p4}(B) :K → (0, 0,−1, 0,−1)−R
R→ (0,+1,−1,+1,−1)−K

G− {p1} =An
2+nBn2

x7

G− {p2, p3, p4} =An
2

Bn(n−1)x4

G− {p3} =An
2+nBn2

x5

G− {p1, p2, p4} =An
2

Bn(n−1)x6

G− {p2} =An
2+nBn2

x3

G− {p1, p3, p4} =An
2

Bn(n−1)x8

G − K (Special vertex kept): let p1 be the leftmost (W) point on edge e (the bot-
tommost point of edge d), p2 be the bottommost (W) point on edge a (not in a forced
matching), p3 be the special vertex, p4 be the (B) point on the edge between the 1-block
and 4-block below the special vertex.

T ({p1}) = x1, T ({p2, p3, p4}) = x1x3x5, T ({p3}) = x3,
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T ({p1, p2, p4}) = x1x1x5, T ({p2}) = x5, T ({p1, p3, p4}) = x1x1x3.

G − R (Special vertex removed): let p1 be the leftmost (W) point on edge e (the
bottommost point of edge d), p2 be the bottommost (W) point on edge a (not in a forced
matching), p3 be the (W) point below the special vertex, p4 be the (B) point below p3.

T ({p1}) = x1, T ({p2, p3, p4}) = x1x3x5, T ({p3}) = x1,

T ({p1, p2, p4}) = x1x3x5, T ({p2}) = x5, T ({p1, p3, p4}) = x1x1x3.

9.6 An2+nBn2
x3, n 6 −1

The recurrence we use:

(An(n+1)Bn2

x3)(A
(n+1)2Bn(n+1)x8)

=(An(n+1)Bn2

x5)(A
(n+1)2Bn(n+1)x6) + (An(n+1)Bn2

x7)(A
(n+1)2Bn(n+1)x4)

Kuo’s four points: p1, p2, p3, p4 are on edge a, e, c, b respectively.
When n = −1, can check directly to see contour for Bx3 is correct.
Let n 6 −2. Unbalanced Kuo. Shape (−,+,−,+,−).
When n+ 3 is odd, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
+ 1, 2n,

⌊
3− 3n− 2

2

⌋
+ 1, n− 3 + 2

)
−K

When n+ 3 is even, let

G := Ĝ
(

3− 2 + n,−
⌈

3− 2 + 5n

2

⌉
− 1, 2n,

⌊
3− 3n− 2

2

⌋
− 1, n− 3 + 2

)
−R

−{p1}(B) :→ (+1,−1, 0, 0,−1)

−{p2}(B) :→ (−1,+1, 0, 0,+1)

−{p3}(B) :K → (0,−1, 0,−1, 0)−R
R→ (0, 0, 0, 0, 0)−K

−{p4}(W ) :→ (+1,−1,+1, 0, 0)

G− {p1} =An
2+nBn2

x7

G− {p2, p3, p4} =An
2

Bn(n−1)x4

G− {p3} =An
2+nBn2

x5

G− {p1, p2, p4} =An
2

Bn(n−1)x6

G− {p2} =An
2+nBn2

x3
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G− {p1, p3, p4} =An
2

Bn(n−1)x8

G −K (Special vertex kept): let p1 be the topmost (B) point on edge a (in a forced
matching), p2 be the rightmost (B) point on edge e (in a forced matching), p3 be the (B)
point with 3 neighbors on the 3-block above the special vertex, p4 be the bottommost
(W) point on edge b.

T ({p1}) = x1, T ({p2, p3, p4}) = x2x3x5, T ({p3}) = x5,

T ({p1, p2, p4}) = x1x2x3, T ({p2}) = x3, T ({p1, p3, p4}) = x1x2x5.

G−R (Special vertex removed): let p1 be the topmost (B) point on edge a (in a forced
matching), p2 be the rightmost (B) point on edge e (in a forced matching), p3 be the (B)
point on the edge between the 2-block and 3-block above the special vertex, p4 be the
bottommost (W) point on edge b.

T ({p1}) = x1, T ({p2, p3, p4}) = x2x2x5, T ({p3}) = x2,

T ({p1, p2, p4}) = x1x2x5, T ({p2}) = x5, T ({p1, p3, p4}) = x1x2x2.
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