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Abstract

Extensions of a set partition obtained by imposing bounds on the size of the
parts is examined. Arithmetical and combinatorial properties of these sequences
are established.

Mathematics Subject Classifications: Primary 11B83; Secondary 11B73, 05A15,
05A19.

1 Introduction

A partition of a set [n] := {1, 2, . . . , n} is a collection of nonempty disjoint subsets, called
blocks, whose union is [n]. The Stirling numbers of the second kind

{
n
k

}
count the number

of partitions of [n] into k non-empty blocks. The total number of partitions of [n] is given
by the Bell number

Bn =
n∑
`=0

{
n

`

}
for n > 0 and B0 = 1, (1)

starting with 1, 1, 2, 5, 15, 52, 203. In this count, the order of the blocks is not relevant.
On the other hand, if the order of the blocks is important, then the total number of
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partitions of [n] is known as the Fubini number Fn. The expression

Fn =
n∑
`=0

`!

{
n

`

}
for n > 0 and F0 = 1, (2)

is the analogue of (1), starting at 1, 1, 3, 13, 75, 541, 4683. Additional information about
set partitions may be found in [34].

Similar sequences of numbers are obtained by enumerating permutations on n elements
with k cycles. For example, the (unsigned) Stirling numbers of the first kind, denoted by[
n
k

]
. The Stirling numbers of both kinds are related by the relation

n∑
`=k

(−1)`−k
{
n

`

}[
`

k

]
= δn,k, (3)

where δn,k is the Kronecker delta symbol.
The literature contains (at least) two generalizations of these combinatorial sequences.

As an example, for r ∈ N, an r-partition of n is one in which the first r elements are in
distinct blocks. The r-Stirling numbers, denoted by

{
n
k

}
r
, count the r-partitions of [n+ r]

into k + r blocks and satisfy the recurrence{
n

k

}
r

=

{
n

k

}
r−1

− (r − 1)

{
n− 1

k

}
r−1

, for n ∈ N, 0 6 k 6 n and 1 6 r 6 k, (4){
n

k

}
0

=

{
n

k

}
.

These numbers were introduced by Broder [7]. The r-Stirling numbers may be expressed
in terms of the classical Stirling numbers by{

n

k

}
r

=
n−r∑
i=0

(
n− r
i

){
i

k − r

}
rn−r−i. (5)

Mező [37] introduced the r-Bell numbers by

Bn,r =
n∑
k=0

{
n+ r

k + r

}
r

, (6)

with Bn,0 = Bn, the Bell numbers in (1). These numbers satisfy the recurrence

Bn,r = Bn+1,r−1 − (r − 1)Bn,r−1, (7)

Bn,0 = Bn.

Similarly, an r-permutation, is one in which the first r elements are in distinct cycles.
The number of all r-permutations of [n+ r] into k+ r cycles are counted by the r-Stirling
numbers of the first kind, denoted by

[
n
k

]
r
. Other combinatorial objects introduced in
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this manner include the r-derangement numbers [60, 59], the r-Bell numbers [37], the
r-Whitney numbers and their q-analogues [8, 35, 36, 40, 42, 51], the r-Lah and r-Lah-
Whitney numbers [46, 52, 54], the r-Fubini and r-Whitney-Fubini numbers [14] and
the r-Whitney-Eulerian numbers [50, 53]. The extension of the results presented here for
these other classes is the subject of current work.

These generalizations are known as incomplete combinatorial structures. They come
from imposing a restriction on the size of the blocks and cycles. If the size of the sub-
structure (block, cycles, etc.) is required to be bounded from above, then one speaks of a
restricted combinatorial structure; the case of a lower bound is named an associated com-
binatorial structure. In the situation where the notion of special elements are included,
the letter r is added to the name.

For the convenience of the reader, this section contains the list of the numbers discussed
in the present work.

1. The symbol [n] denotes the set {1, 2, . . . , n}.

2. A partition of [n] is a collection of non-empty subsets, called blocks, whose union is
[n].

3. An r-partition of n is a partition of [n] in which the first r elements are placed in
distinct blocks. The numbers 1, 2, . . . , r are called special. A special block is one
containing a special element.

4. The Stirling number of the second kind
{
n
k

}
counts the number of partitions of [n]

into k non-empty subsets (or blocks).

5. The Bell number Bn counts the total number of partitions of [n] into non-empty
subsets.

6. The Fubini number Fn counts the total number of partitions of [n] into non-empty
blocks, where the order in which the blocks appear is taken into consideration.

7. The r-Stirling numbers of the second kind
{
n
k

}
r

count the number of r-partitions of
[n+ r] into k + r blocks.

8. The r-Bell numbers Bn,r count the total number of r-partitions of [n+ r].

9. The r-Fubini numbers Fn,r count the total number of ordered r-partitions of [n+ r].

10. The restricted Stirling numbers
{
n
k

}
6m

count the number of partitions of [n] into k
subsets with blocks of size at most m.

11. The associated Stirling numbers
{
n
k

}
>m

count the number of partitions of [n] into k
subsets with blocks of size at least m.

12. The restricted r-Stirling numbers
{
n
k

}
6m,r

count the number of r-partitions of [n+r]

into k + r subsets with blocks of size at most m.
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13. The associated r-Stirling numbers
{
n
k

}
>m,r

count the number of r-partitions of [n+r]

into k + r subsets with blocks of size at least m.

14. The restricted Bell numbers Bn,6m count the total number of partitions of [n] into
non-empty subsets with blocks of size at most m.

15. The restricted Fubini numbers Fn,6m count the total number of ordered partitions
of [n] into blocks of length at most m.

16. The associated Fubini numbers Fn,>m count the total number of ordered partitions
of [n] into blocks of length at least m.

17. The restricted r-Bell number Bn,6m,r is the number of r-partitions of n, with block
size at most m.

18. The associated r-Bell number Bn,>m,r is the number of r-partitions of n, with block
size at least m.

The work presented here contains combinatorial and arithmetical information on these
sequences of numbers. The arithmetical part includes congruences as well as valuations.
Recall that, for a prime p and n ∈ N, the p-adic valuation of n is the highest power of p
that divides n. An important tool in the analysis of valuations is Legendre’s formula [30]
for the valuation of factorials:

νp(n!) =
n− sp(n)

p− 1
, (8)

where sp(n) is the sum of digits of n in its base p representation.

Remark 1. It is often the case that an analytic expression for νp(an) is hard to find. In
many situations one finds that the valuations are given by a valuation tree. This concept
is illustrated with ν2(n). The vertices of the tree have associated to them a subset of
indices, some of these vertices have descendants one level down. The rules are these:
start with a root vertex and associate to it the set N. Since the valuation {ν2(n) : n ∈ N}
is not constant, this vertex is split onto two new vertices (one per residue class modulo 2),
which form the next level. To the first vertex one associates the indices {n ∈ N : n ≡ 0
(mod 2)} and to the second one {n ∈ N : n ≡ 1 (mod 2)}. Since the valuation ν2(n) of
indices associated to the second vertex is constant (≡ 1), this vertex is declared terminal.
The constant value 0 is then attached to this vertex. The first vertex has non-constant
valuation, so its indices are split according to its residues modulo 4, into {n ≡ 2 (mod 4)}
and {n ≡ 0 (mod 4)}. The process continues: the first vertex has constant valuation 1
and the second is then split modulo 23 to continue the process. In the situation where
this process does not terminate in a finite number of steps, one says that the valuation
admits a tree structure.

Another question of interest in the current work is to examine the periodicity of
sequences modulo a number m ∈ N.
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Definition 2. An integer sequence A = (an)n>0 is a periodic sequence modulo m, with
period t, if there exists s > 0 such that an+t ≡ an (mod m), for n > s. The smallest t is
called the minimum period of A.

Remark 3. Let p be a prime and {an} an integer sequence of period p. If aj 6≡ 0 (mod p)
for 1 6 j 6 p, then νp(an) ≡ 0.

Example 4. A direct application of the pigeon-hole principle shows that the Fibonacci
numbers, defined by the recurrence fn = fn−1 + fn−2 and initial conditions f1 = f2 = 1,
is a periodic sequence modulo m, for any m ∈ N. The minimal period for m = 5 is 20.

Among the other questions considered here is the distribution of the last digit of a
sequence. The periodicity of the last digit has been studied for several combinatorial
sequences. For example, the last digit of the Fibonacci numbers is a periodic sequence of
period 60; see [58, 61] for more information.

The plan of the paper is as follows: Section 2 presents properties of the Bell numbers
Bn which will be extended to other families of numbers. Section 3 considers the restricted
Bell numbers Bn,6m which count the number of partition of [n] with blocks of size at
most m. Section 4 extends the results of the previous section to r-partitions of [n + r]
with blocks of length at most m. Recurrences, congruences and divisibility issues are
discussed. The distribution of the last digit of Bn,62,r and Bn,63,r is settled in Section
5. The general problem for r > 4 remains to be determined. The valuations ν2(Bn,6m,r)
are completely determined for m = 2, 3 in Section 6. The general case remains open.
Similar results for the associated Bell numbers Bn,>m,r are presented in Section 7. The
question of divisibility of these numbers remains an open question. An extension of these
numbers to polynomials is discussed in Section 10. Exponential generating functions for
these polynomials are established. Section 8 discusses the restricted Stirling numbers of
the second kind and Section 9 presents a combinatorial proof of an identity involving these
numbers. The Fubini numbers, counting partitions of [n] taking into account the order
of the participating blocks are discussed in Section 11. Recursions are established as well
as the periodicity of the last digit. The divisibility question is presented in detail for the
primes 2 and 3. For primes p > 5 experimental results are discussed. The restricted and
associated Fubini numbers Fn,6m and Fn,>m are discussed in Section 12. Their arithmetic
properties appear in Section 13. These results are extended to the r-Fubini numbers in
Section 14. Finally a generalization of factorials is discussed in Section 15.

2 The Bell numbers

The Bell numbers Bn, defined in (1), satisfy the well-known recurrence

Bn =
n−1∑
k=0

(
n− 1

k

)
Bk, for n > 1, (9)
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with initial condition B0 = 1; see [62]. Spivey [55] combined (1) and (9) into

Bn+m =
n∑
k=0

m∑
j=0

{
m

j

}(
n

k

)
jn−kBk, (10)

taking 00 to be 1.
Congruences for the Bell numbers Bn include one by Touchard [56]:

Bn+p ≡ Bn+1 +Bn (mod p).

A stronger form of Touchard’s congruence is given by Junod [27]:

Bn+spm ≡
s∑

k=0

(
s

k

)
ms−kBn+k (mod p). (11)

for all positive integer m. The congruence Bnp ≡ Bn+1 (mod p) appears in Comtet [12].
This has been generalized in [19] to Bnp ≡ Bn+1 (mod pν+1), where ν = νp(n).

Hall [23] showed that {Bn (mod p)} has period Np = pp−1
p−1

. This result was redis-

covered by Williams [63], who showed this is the minimum period when p = 2, 3 and 5.
Radoux [49] conjectured that Np is always the minimum period. Several authors have
established special cases. For example, Montgomery et al. [45] proved it for most primes
p < 180.

The valuation of Bn are discussed in Amdeberhan et al. [1]. For the prime p = 2, it
is shown that

ν2(Bn) =


0 if j ≡ 0, 1, 3, 4, 6, 7, 9, 10 (mod 12),

1 if j ≡ 2, 11 (mod 12),

2 if j ≡ 5, 8 (mod 12).

(12)

In the case p = 3, experimental data shows that ν3(Bn) = 0 unless

n ≡ {4, 8, 9, 11, 17, 21, 22, 24} (mod 26).

Also ν3(Bn) = 1 if n ≡ 9, 11, 22, 24 (mod 26) and that ν3(Bn) has a valuation tree
structure for n ≡ 4, 8, 17, 21 (mod 26). This concept is described in Remark 1.

Remark 5. The last digit is the value Bn (mod 10). Since {Bn (mod p)} is a periodic
sequence of period Np = (pp − 1)/(p− 1), the sequence of last digits is periodic of period
lcm{N2, N5} = lcm{3, 781} = 2343.

3 Restricted Bell Numbers

The Bell numbers Bn considered in Section 2 were extended by Miksa et al. [43] to
the family {Bn,6m}, counting the number of partitions of [n] with blocks of size at most
m. These are named the restricted Bell numbers (denoted by Gn,m in [43]). The value
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Bn,61 = 1 is clear: there is a single way to partition [n] into non-empty blocks with at most
one element. On the other hand, if m > n, then Bn,6m = Bn. Miksa et al. established
(as Theorem 2) the recurrence

Bn,6m =
m−1∑
j=0

(
n− 1

j

)
Bn−1−j,6m, (13)

with initial condition B0,6m = 1 in analogy to (9).
Some congruences appear in [43]. For p prime and 0 6 m < p,

Bn+p,6m ≡ Bn,6m (mod p). (14)

This shows that Bn,6p (mod p) is a periodic sequence. The particular value Bp,6m ≡ 1
(mod p) follows from B0,6m = 1. The explicit expression presented in [43] shows that

Bn,6m =
∑

c1+2c2+···+mcm=n

n!

c1!c2! · · · cm!1!c12!c2 · · ·m!cm
,

which leads to
Bps,6m ≡ 1 (mod ps) for m < p and s > 1, (15)

generalizing (14).

Remark 6. The periodicity of Bn,6m (mod p) shows that the last digit of Bn,6m is also a
periodic sequence. For example, for m = 5, the sequence Bn,65 (mod 2) has period 8 and
Bn,65 (mod 5) has period 20. Therefore the last digit of Bn,65 has period lcm{8, 20} = 40.

Some analysis of the p-adic valuation of the restricted Bell numbers appears in the
literature. Amdeberhan et al. [4] established an expression for the 2-adic valuation of the
restricted Bell numbers Bn,62:

ν2(Bn,62) =
⌊n

2

⌋
− 2

⌊n
4

⌋
+

⌊
n+ 1

4

⌋
=


k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

k + 2, if n = 4k + 3.

The sequence Bn,62 coincides with the number of involutions of n elements, denoted in
[4] by Inv1(n). This sequence is also called Bessel numbers of the second kind, see [10] for
further information.

The valuation for the prime p = 3 is easy to determine using Remark 3.

Proposition 7. For n > 2, the prime 3 does not divide Bn,62. Therefore ν3(Bn,62) = 0.

Proof. Formula (14) shows that Bn,62 is periodic modulo 3. The result follows from the
values B2,62 = 1, B3,62 = 1, and B4,62 = 4 6= 0 (mod 3).
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Remark 8. The discussion of ν5(Bn,62) is used now to introduce the concept of a valuation
tree. This notion has been mentioned in the context of the valuation ν3(Bn) for n ≡
4, 8, 17, 21 (mod 26), in Section 2. The statements made here are based on computer
experiments. The reader is encouraged to use congruences above to provide rigorous
proofs.

Start with a root node representing all positive integers. Then observe that ν5(Bn,62) =
0 if n 6≡ 4 (mod 5). Construct a new level, called the first level, with 5 nodes connected
to the root and label them by the residues classes modulo 5. Each node corresponds to a
collection of indices. It is denoted by V1,j and it corresponds to the indices

V1,j = {5n+ j : n ∈ N}, 0 6 j 6 4.

The vertex is called terminal if the valuation ν5(Bm,62) for everym ∈ V1,j is independent of
m. For example, since ν5(B5n,62) = 0, the vertex V1,0 is terminal. The constant valuation
of a terminal vertex V is called the valuation of the vertex and is denoted by νp(V ), or
νp(V ;Bn,62), to mention the sequence under study. For example, ν5(V1,0;Bn,62) = 0. In
this example, there are four terminal vertices V1,j : j = 0, 1, 2, 3. Each of them has
valuation 0. Now construct the second level by splitting the indices in V1,4 modulo 52.
This gives the vertices

V2,j = {5(5n+ j) + 4 = 52n+ 5j + 4 : n ∈ N}, 0 6 j 6 4.

On this level, there are four terminal vertices, with valuation

ν5(V2,0;Bn,62) = ν5(V2,1;Bn,62) = ν5(V2,2;Bn,62) = ν5(V2,3;Bn,62) = 1. (16)

This represents the fact that ν5(B5n+4,62) = 1 for n 6≡ 4 (mod 5). Repeating this process
and now forming the third level gives

ν5(V3,0;Bn,62) = ν5(V3,1;Bn,62) = ν5(V3,2;Bn,62) = ν5(V3,4;Bn,62) = 2. (17)

It is conjectured that this process can be continued indefinitely. The resulting tree is
called the valuation tree for the prime 5 and the sequence Bn,62; or simply, that ν5(Bn,62)
has a valuation tree structure.

4 Restricted r-Bell Numbers

This section introduces a new extension of the restricted Bell numbers Bn,6m studied
in Section 3. Some basic properties of arithmetical and combinatorial properties are
presented. The definition employs the notion of r-partition given in (6) of Section 1.

Definition 9. For n, m, r ∈ N, the numbers Bn,6m,r count all r-partitions of [n+ r] such
that each block has size at most m. These numbers are called the restricted r-numbers.
The elements 1, 2, . . . , r will be called special elements and a block of a partition is called
special if it contains a special element.
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Remark 10. The case r = 0 yields the restricted Bell numbers

Bn,6m,0 = Bn,6m, (18)

of Section 3 and the limiting case

Bn,6∞,r = Bn,r, (19)

gives the r-Bell numbers in (6). A second special case is Bn,61,r = Bn,61 = 1, since the
size of each block must be exactly 1 and then the condition on special block is vacuous.

Example 11. B2,62,2 = 8, with the corresponding partitions being

{{1}, {2}, {3}, {4}}, {{1}, {2}, {3, 4}}, {{1, 3}, {2}, {4}}, {{1, 4}, {2}, {3}},
{{1}, {2, 3}, {4}}, {{1}, {2, 4}, {3}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}.

The special elements are overlined.

The first result gives a recurrence similar to (13). Observe that in (20), the index r on
the left-hand side is reduced by 1 on the right. Iteration of this recurrence takes Bn,6m,r

to Bn,6m,0 = Bn,6m. This is computable using (13).

Theorem 12. The restricted r-Bell numbers, Bn,6m,r, satisfy the recurrence

Bn,6m,r =
m−1∑
`=0

(
n

`

)
Bn−`,6m,r−1, (20)

for n > 1, r > 1 and m > 1. The initial values are Bn,6m,0 = Bn,6m from (13) and
B0,6m,r = 1 and Bn,6m,r = 0 for r < 0 or n < 0.

Proof. Suppose the first special block is of size `, where 1 6 ` 6 m. This block contains
the minimal element 1, and the rest of the block is formed by choosing ` − 1 elements,
with 0 6 ` − 1 6 m − 1. Therefore, the number of r-partitions of [n + r] with exactly `
elements in the first block is

(
n
`

)
Bn−`,6m,r−1 for 0 6 ` 6 m−1. Summing over ` completes

the proof.

A second recurrence is presented next.

Theorem 13. The restricted r-Bell numbers, Bn,6m,r, satisfy the recurrence

Bn,6m,r = r

m−2∑
`=0

(
n− 1

`

)
Bn−1−`,6m,r−1 +

m−1∑
`=0

(
n− 1

`

)
Bn−1−`,6m,r, (21)

for n > 1, r > 0 and m > 1. The initial values are the same as in Theorem 12.
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Proof. Let i be the size of the block containing the last element, namely n + r. Then
1 6 i 6 m. If this block is special, there are r ways to choose the special element in
this block. The remaining ` non-special elements, with 0 6 ` 6 m− 2, can be chosen in(
n−1
`

)
ways. This corresponds to the first sum in (21). The second sum appears for the

non-special elements.

The recurrence relations are now used to establish some congruences of restricted
r-Bell numbers. The proof uses an elementary congruence established below.

Lemma 14. Let n, k, p, s be non-negative integers and p a prime with 0 6 k < p. Then,
for each s ∈ N, (

n+ ps

k

)
≡
(
n

k

)
(mod ps).

Proof. The binomial theorem gives (1 + x)n+ps =

n+ps∑
k=0

(
n+ ps

k

)
xk. On the other hand, if

p - ` then

(
ps

`

)
≡ 0 (mod ps), so (1 + x)p

s ≡
ps∑
`=0
p|`

(
ps

`

)
x` (mod ps). Therefore

(1 + x)n+ps = (1 + x)n(1 + x)p
s ≡ (1 + x)n

ps∑
`=0
p|`

(
ps

`

)
x` (mod ps)

=
n∑
k=0

(
n

k

)
xk + (1 + x)n

ps∑
`=1
p|`

(
ps

`

)
x` (mod ps).

The congruence now comes by matching the corresponding coefficients.

The next result is preliminary for a further generalization of (14) stated in Theorem
16.

Lemma 15. Let p be a prime, s ∈ N and m < p. Then Bps,6m,r ≡ 1 (mod ps).

Proof. Theorem 12 gives

Bps,6m,r =
m−1∑
`=0

(
ps

`

)
Bps−`,6m,r−1 ≡ Bps,6m,r−1 (mod ps).

Iteration and (15) produce the result.

The next statement establishes the periodicity of the restricted Bell numbers modulo
a power of a prime.
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Theorem 16. Let n, r, s ∈ N, p a prime and 1 6 m < p. As a function of n ∈ N, the
restricted r-Bell numbers, Bn,6m,r, is a periodic sequence modulo ps, with period ps. That
is

Bn+ps,6m,r ≡ Bn,6m,r (mod ps).

Proof. Proceed by induction on n. Lemma 15 gives n = 0. Theorem 13 and Lemma 14
give

Bn+1+ps,6m,r = r

m−2∑
`=0

(
n+ ps

`

)
Bn+ps−`,6m,r−1 +

m−1∑
`=0

(
n+ ps

`

)
Bn+ps−`,6m,r

≡ r

m−2∑
`=0

(
n

`

)
Bn−`,6m,r−1 +

m−1∑
`=0

(
n

`

)
Bn−`,6m,r (mod ps)

= Bn+1,6m,r.

The proof is complete.

Remark 17. The sequence {Bn,6m,r} (mod p) is periodic modulo p. The result of Hall
[23] for the periods of the Bell numbers modulo p cited in Section 2 has been extended
by Mező and Ramı́rez [41] to the r-Bell numbers.

5 The last digit of the restricted r-Bell numbers.

Given x ∈ N, the value x (mod 10) is the last digit of x. This section discusses properties
of the last digit of the restricted r-Bell numbers, Bn,6r,m. The proofs use the congruence
in Theorem 16.

The discussion starts with {Bn,62,r} for r = 1, 2, 3. Figure 1 shows the first 100 values
of the last digit in {Bn,62,1}. The data suggests that this is a periodic sequence of period
5.

20 40 60 80 100

1

2

3

4

5

6

Figure 1: The last digit of the sequences {Bn,62,r}, for r = 1.
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Theorem 18. Fix r ∈ N. The last digit of the sequence {Bn,62,r} is a periodic sequence
of period 5; that is, for any n ∈ N

Bn+5,62,r ≡ Bn,62,r (mod 10) for n > 2.

The same statement holds for {Bn,63,r}, for n > 4.

Proof. Theorem 16 with p = 5 gives Bn+5,62,r ≡ Bn,62,r (mod 5). Theorem 13 and the cor-
responding initial values, show that Bn,62,r is an even number. Therefore the congruence
extends from modulo 5 to modulo 10. The proof for Bn,63,r is similar.

Table 1 shows the fundamental period for the last digit of the sequences {Bn,6m,r} for
m = 2, 3 and r = 0, 1, . . . , 7.

r Bn,62,r Bn,63,r

0 2, 4, 0, 6, 6 4, 6, 6, 2, 0
1 2, 4, 0, 6, 6 4, 6, 6, 2, 0
2 8, 2, 6, 6, 8 2, 6, 8, 0, 0
3 4, 4, 6, 4, 6 4, 2, 6, 4, 2
4 2, 8, 8, 6, 0 0, 6, 0, 6, 2
5 6, 2, 4, 0, 6 0, 4, 6, 6, 2
6 4, 0, 6, 6, 2 6, 6, 2, 0, 4
7 8, 8, 2, 6, 6 0, 2, 6, 8, 0

Table 1: The fundamental period for the last digit.

The congruences for Bn+`,62,r for 0 6 ` 6 4 are presented next.

Corollary 19. Let r > 0. Then

Bn+`,62,r ≡ Bn,62,r + a2(n, `) (mod 10) for n > 2,

Bn+`,63,r ≡ Bn,63,r + a3(n, `) (mod 10) for n > 4,

where as(5n+ i, `) ≡ Bi+`,6s,r −Bi,6s,r (mod 10), for i ∈ {0, 1, 2, 3, 4} and s = 2, 3.

For example, if r = 0 and ` = 1, 3, the congruences modulo 10 are

Bn+1,62 ≡ Bn,62 +



0, n ≡ 0 (mod 10);

6, n ≡ 1 (mod 10);

2, n ≡ 2 (mod 10);

6, n ≡ 3 (mod 10);

6, n ≡ 4 (mod 10).

Bn+3,62 ≡ Bn,62 +



8, n ≡ 0 (mod 10);

4, n ≡ 1 (mod 10);

4, n ≡ 2 (mod 10);

2, n ≡ 3 (mod 10);

2, n ≡ 4 (mod 10).

Experimental evidence leads to the next conjectures.
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Conjecture 20. For any r > 0

Bn+20,64,r ≡ Bn,64,r (mod 10) (n > 0);

Bn+40,65,r ≡ Bn,65,r (mod 10) (n > 0);

Bn+200,66,r ≡ Bn,66,r (mod 10) (n > 0).

Figure 2 shows the first 200 values of the last digit of the sequences {Bn,64,0} =
{Bn,64}. The data suggests that this sequence has period 20.

50 100 150 200

1

2

3

4

5

6

7

Figure 2: The last digit of the sequences {Bn,64}.

Conjecture 21. The sequence of the last digit of the restricted r-Bell numbers is a
periodic sequence.

6 p-adic valuations of restricted r-Bell numbers

Given a sequence {an} of positive integers and a prime p, the sequence {νp(an)} of p-adic
valuations offers interesting challenges. Interesting examples include the 2-adic valuation
of Stirling numbers of the second kind [3, 15, 24, 31], the 2-adic valuation of a sequence of
integers appearing in the evaluation of a definite integral [33] and also the 2-adic valuation
of domino tilings [11].

Amdeberhan et al. [4] established an expression for the 2-adic valuation of the re-
stricted Bell numbers Bn,62:

ν2(Bn,62) =
⌊n

2

⌋
− 2

⌊n
4

⌋
+

⌊
n+ 1

4

⌋
=


k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

k + 2, if n = 4k + 3.
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The sequence Bn,62 coincides with the number of involutions of n elements, denoted in
[4] by Inv1(n). This sequence is also called Bessel numbers of the second kind, see [10] for
further information.

The 2-adic valuation of the restricted r-Bell numbers Bn,62,r follows a similar pattern.
Figure 3 shows the first few values of ν2(Bn,62,6). Jung et al. [26] described ν2(Bn,62,r).
The general formula is divided into many cases. For example, if r ≡ 0 (mod 4), then

ν2(Bn,62,r) =


k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

α, if n = 4k + 3;

where α > k + 2.

20 40 60 80 100

5

10

15

20

25

Figure 3: The 2-adic valuation of Bn,62,r.

The reader is invited to verify that, in the case n ≡ 3 (mod 4), the valuation ν2(Bn,62,r)
admits a simple formula for r ≡ 0 (mod 8) and it is more complicated if r ≡ 4 (mod 8).

The next goal is to discuss the 3-adic valuation ν3(Bn,62,r). The first results give some
congruences for the restricted r-Bell numbers modulo 3.

Lemma 22. The sequence of residues Bn,62,r modulo 3, as a function of n, is a periodic
sequence of period 3. The fundamental period is {1, 1, 2}, {1, 2, 1} and {1, 0, 2} for r ≡
0, 1, 2 (mod 3), respectively.

Proof. Assume n ≡ 0 (mod 3) and r ≡ 1 (mod 3). Write n = 3k and r = 3t+1. Theorem
13 gives

Bn,62,r = B3k,62,3t+1 = (3t+ 1)B3k−1,62,3t +B3k−1,62,3t+1 + (3k − 1)B3k−2,62,3t+1

≡ 2 + 1− 2 = 1 (mod 3).

The other cases are similar.
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Corollary 23. The 3-adic valuation ν3(Bn,62,r) is zero unless r ≡ 2 (mod 3) and n ≡ 1
(mod 3).

The next lemma extends the analysis of Lemma 22 and its corollary to indices modulo
9. The proof is left to the reader.

Lemma 24. The 3-adic valuation ν3(Bn,62,r) is 1 if r ≡ 2, 5 (mod 9).

It remains to analyze the sequence ν3(Bn,62,r) for n ≡ 8 (mod 9). The description
below, for r = 8, describes the valuation tree, as introduced in Remark 1.

Remark 25. The description of the valuation ν3(Bn,62,8) is given by a valuation tree. The
root of the tree corresponds to all indices n ∈ N. A sequence of nodes is constructed
as follow: each node has attached a collection of indices. In this construction, one asks
the following question: is the valuation ν3(Bn,62,8) independent of n. If the answer is
positive, then the vertex is declared terminal and the constant value is assigned to it. If
the answer is negative, the index set is split according to the residue modulo a power of
the prime p = 3.

In the present case, since ν3(Bn,62,8) is not constant (it starts as {0, 2, 0}). Then
the vertex is split into three vertices, corresponding to the residue of n modulo 3. The
sequence ν3(B3n,62,8) has constant value 0 and ν3(B3n+2,62,8) also has constant value 0.
The third class does not have constant value; it starts as {2, 3, 2, 2, 4}. This class of
indices ≡ 1 (mod 3) is now split into n ≡ 1, 4, 7 (mod 9). Then ν3(B9n+2,62,8) ≡ 2 and
ν3(B9n+7,62,8) ≡ 2 and the sequence ≡ 4 (mod 9) is split modulo 27. It is conjectured
that this process extends indefinitely.

Remark 26. Using this type of analysis, it is possible to establish similar experimental
results. For example,

• The sequence of residues Bn,62,r modulo 5 is a periodic sequence of period 5. In
particular, if r ≡ 2 (mod 5), the fundamental period is {1, 3, 3, 2, 1}. The sequence
Bn,62,r modulo 5 contains 0 precisely when r ≡ 0, 1, 4 (mod 5). Therefore

ν5(Bn,62,r) = 0 for r ≡ 2, 3 (mod 5).

In the cases r ≡ 2, 3 (mod 5), the sequence ν5(Bn,62,r) has a valuation tree struc-
ture.

• The sequence of residues Bn,65,r modulo 13 is a periodic sequence of period 13. For
example, if r ≡ 2 (mod 13), the fundamental period is

{1, 3, 10, 11, 8, 9, 12, 1, 8, 2, 11, 6, 6}.

The data shows that if r 6≡ 3, 4, 6, 7 (mod 13), then ν13(Bn,65,r) = 0 and in the
remaining cases there is a valuation tree structure.

The complete analysis of the valuations νp(Bn,6m,r) cannot (up to now) be derived
from this type of arguments.
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7 Associated r-Bell Numbers

This section discusses some properties for the associated r-Bell numbers Bn,>m,r which
count the number of r-partitions of [n + r] with blocks of length at least m. The results
are similar to those presented in the previous sections for the restricted r-Bell numbers
Bn,6m,r. The first statement is the analog of Theorems 12 and 13. The proofs are similar,
so they are not presented here.

Theorem 27. For n > 1, r > 0 and m > 1 the associated r-Bell numbers Bn,>m,r satisfy
the recurrences

Bn,>m,r = r

n−1∑
`=m−2

(
n− 1

`

)
Bn−1−`,>m,r−1 +

n−1∑
`=m−1

(
n− 1

`

)
Bn−1−`,>m,r,

with the initial values B0,>m,0 = 1 and Bn,>m,0 = 0 for 0 < n 6 m− 1, and for r > 0 and
0 6 n < (m− 1)r the values are B0,>m,0 = 0. Additionally, for r > 1,

Bn,>m,r =
n∑

`=m−1

(
n

`

)
Bn−`,>m,r−1.

The next statement offers a relation between the restricted r-Bell numbers Bn,6m,r

and the associated r-Bell numbers Bn,>m,r.

Theorem 28. The associated r-Bell numbers Bn,>m,r can be calculated from the r-Bell
numbers Bn,r and the restricted r-Bell numbers Bn,6m,r, via

Bn,>m,r = Bn,r −
∑
i+j>0

06i6n, 06j6r

(
n

i

)(
r

j

)
Bi,6m−1,jBn−i,>m,r−j. (22)

Proof. Let Bn,r denote the set of all r-partitions of [n+ r], with cardinality Bn,r. Suppose
π ∈ Bn,r is represented as π = π1/π2/ · · · /π`. Given a partition π ∈ Bn,r, consider the set

Aπ = {i ∈ [n+ r] \ [r] : if i ∈ πj then |πj| < m}.

This is the set of all non-special elements appearing in blocks of length less than m. Let
Bπ the complement of Aπ, i.e., Bπ = {i ∈ [n+r]\ [r] : if i ∈ πj then |πj| > m}. Construct

the partition Si = {π ∈ Bn,r : |Aπ| = i}. Then Bn,r =
n⋃
i=0

Si and

|Si| =
(
n

i

) r∑
j=max{0,1−i}

(
r

j

)
Bi,6m−1,j Bn−i,>m,r−j.

Summing over i yields the desired result.
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The previous result is now considered modulo a prime p.

Corollary 29. Let p be a prime. Then

r∑
j=0

(
r

j

)
Bp,>m,r−j ≡ r + 2−Bp,6m−1,r (mod p).

If 2 6 m 6 p then
r∑
j=0

(
r

j

)
Bp,>m,r−j ≡ r + 1 (mod p).

Moreover,
Bp,>m ≡ 1 (mod p).

Proof. Theorem 28 gives

Bp,>m,r ≡ Bp,r −Bp,6m−1,r −
r∑
j=1

(
r

j

)
Bp,>m,r−j (mod p).

Theorem 3 of [41] gives Bp,r ≡ r+ 2 (mod p). This implies the first equality. The second
identity follows from Theorem 16. The last congruence is the special case r = 0.

Remark 30. The congruence in Corollary 29 may be written as

Bp,>m,r ≡ r + 2−Bp,6m−1,r −
r−1∑
j=0

(
r

j

)
Bp,>m,j (mod p). (23)

This form is useful in an inductive argument (in r) of modular properties of Bp,>m,r. For
example, r = 1 yields

Bp,>m,1 ≡ 3−Bp,6m−1,1 −Bp,>m,0 (mod p). (24)

Remark 31. Unlike the restricted r-Bell numbers, the associated r-Bell numbers do not
have a predictable behavior for their last digit. This unpredictability extends to their
valuations. Moll et al. [44] studied the function ν2(Bn,>2), proving that

ν2(Bn,>2) = 0 if n ≡ 0, 2 (mod 3).

For n ≡ 1 (mod 3), the valuation satisfies ν2(Bn,>2) > 1. A more detailed study of this
function is in progress.
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8 A combinatorial identity

The Stirling numbers
{
n
k

}
count the number of partitions of [n] into k non-empty blocks.

It is natural to consider the extensions
{
n
k

}
r

of r-partitions of [n+ r] into k+ r non-empty

blocks as well as
{
n
k

}
6m,r

, the number of r-partitions of [n+r] into k+r non-empty blocks

of size at most m. There are also families of corresponding associated numbers. These
sequences are discussed in [44]. Further information about these numbers may be found
in [6, 9, 28].

The goal of this section is to present a combinatorial proof of an interesting identity
for

{
n
k

}
62,r

given in [26]. This sequence was studied by Cheon et al. [9] by means of

Riordan arrays.

Theorem 32. The restricted r-Stirling numbers and the associated r-Stirling numbers
satisfy the following recurrences

(a) {
n+ 1

k

}
6m,r

= r
m−2∑
i=0

(
n

i

){
n− i
k

}
6m,r−1

+
m−1∑
i=0

(
n

i

){
n− i
k − 1

}
6m,r

,

with initial conditions
{
n
k

}
6m,0

=
{
n
k

}
6m

,
{

0
0

}
6m,r

= 1,
{
n
0

}
6m,r

= r!
{
n
r

}
6m−1

,{
0
k

}
6m,r

= 0.

(b) {
n+ 1

k

}
>m,r

= r
n∑

i=m−2

(
n

i

){
n− i
k

}
>m,r−1

+
n∑

i=m−1

(
n

i

){
n− i
k − 1

}
>m,r

,

with initial conditions
{
n
k

}
>m,0

=
{
n
k

}
>m
,
{

0
k

}
>m,r

= 0,
{
n
0

}
>m,r

= r!
{
n
r

}
>m−1

.

The notation
{

[n]
k

}
is used for the set of partitions of [n] into k non-empty blocks with

cardinality
∣∣∣{[n]

k

}∣∣∣ =
{
n
k

}
.

Theorem 33. For n, r > 0, the identity

n∑
j=0

{
n

j

}{
j

k

}
62,r

=
n∑
j=0

(
n

j

)
2j−krn−j

{
j

k

}
holds.

Proof. Consider the partition π = π1/ · · · /πr/πr+1/ · · · /πr+k defined by

• πi ⊆ [±(n+ r)] = {±1,±2, · · · ,±(n+ r)} for every i ∈ [k + r].

• i ∈ πi for i ∈ [r], i.e., πi is a signed special block containing their indices.

• |π| = {|π1|, . . . , |πk+r|}, where |πi| = {|`| : ` ∈ πi} is a partition of [n+ r].
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• For every i ∈ [k + r], the minimal element of each block is positive.

• For i 6 r, the blocks contain only positive numbers.

The set of these signed r−partitions with the property that the minimal element of
each block is positive is denoted by An,k,r. For example,

λ = {{1, 8, 9}, {2}, {3, 5}︸ ︷︷ ︸
Signed blocks

, {4,−6, 10}, {7,−11,−12}} ∈ A9,2,3.

Now consider Sn,k,ri = {π ∈ An,k,r : |Rπ| = i}, where

Rπ = {i ∈ [n+ r] \ [r] : if i ∈ B ∈ π, then |B ∩ [r]| = 1},

i.e., the elements on the signed blocks, giving the disjoint union

An,k,r =
n⋃
i=0

Sn,k,ri .

In the set Rπ we have put the elements for the first r blocks, and so counting elements
in the k remaining blocks is equivalent to partition [n− i] into k blocks and attaching a
sign to them, except for the minimal ones. This yields

|Sn,k,ri | =
(
n

i

)
ri︸ ︷︷ ︸

defines Rπ

{
n− i
k

}
2n−i−k.

The right-hand side of the required identity appears as the cardinality of An,k,r.

In order to complete the proof, consider the map

ϕ :
n⋃
j=0

{
[n]

j

}
×
{

[j]

k

}
62,r

−→ An,k,r,

given by
ϕ(π, λ) = γ1/ · · · /γr/γr+1/ · · · /γr+k ∈ An,k,r,

where π = π1/ · · · /πj, λ = λ1/ · · · /λk/ · · · /λk+r with λi = {λi,1, λi,2} or λi = {λi,1} and

γi =


{i}, i 6 r, |λi| = 1,

{i} ∪ {s+ r : s ∈ πλi,2−r}, i 6 r, |λi| = 2.

{s+ r : s ∈ πλi,1−r}, i > r, |λi| = 1,

{s+ r : s ∈ πλi,1−r} ∪ {−(s+ r) : s ∈ πλi,2−r}, i > r, |λi| = 2.

For example, take n = 10, j = 6, r = 2, k = 2 and

π = {1, 3}︸ ︷︷ ︸
π1

/ {2, 6, 8}︸ ︷︷ ︸
π2

/ {4}︸︷︷︸
π3

/ {5, 10}︸ ︷︷ ︸
π4

/ {7}︸︷︷︸
π5

/ {9}︸︷︷︸
π6

and λ = {1, 6}/{2, 8}︸ ︷︷ ︸
signed blocks

/{3, 4}/{5, 7}.
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Then

ϕ(π, λ) = {1, 5 + r, 10 + r︸ ︷︷ ︸
π4

}/{2, 9 + r︸ ︷︷ ︸
π6

}

︸ ︷︷ ︸
i6r

/{1 + r, 3 + r︸ ︷︷ ︸
π1

,−(2 + r),−(6 + r),−(8 + r)︸ ︷︷ ︸
π2

}/{4 + r︸ ︷︷ ︸
π3

,−(7 + r)︸ ︷︷ ︸
π5

}

= {1, 7, 12}/{2, 11}︸ ︷︷ ︸
i6r

/{3, 5,−4,−8,−10}/{6,−9}

This map is a bijection and the identity follows. Details are left to the reader.

Remark 34. In the case r = 0, the statement above gives a relation for the Bessel numbers
of the second kind (see [64]):

n∑
j=0

{
n

j

}{
j

k

}
62

= 2n−k
{
n

k

}
.

Remark 35. Cheon et al. [9] studied a related sequence br(n, k) orthogonal to
{
n
k

}
62,r

, i.e.,

n∑
i=k

{
n

i

}
62,r

br(i, k) =
n∑
i=k

br(n, i)

{
i

k

}
62,r

= δk,n.

The numbers b̂r(n, k) := (−1)n−kbr(n, k) are called the unsigned r-Bessel numbers of
the first kind, with exponential generating function

2k+r∑
n=k

b̂r(n, k)
xn

n!
=

1

k!

(1−
√

1− 2x)k

(1− 2x)r/2
.

An interesting combinatorial interpretation of this sequence, using the concept of G-
partitions, is given in [9].

9 Generalized Howard’s Identities

The restricted Stirling numbers of the second kind,
{
n
k

}
6m

and associated Stirling numbers

of the second kind,
{
n
k

}
>m

were introduced in Section 8. The goal here is to present a

combinatorial proof of some identities given by Howard in [25]. The symbol
(

[n]
k

)
denotes

the set of n-combinations of k-elements, with cardinality
(
n
k

)
.

Theorem 36. Let n ∈ N and 0 6 k 6 n. Then{
n

n− k

}
=

k∑
j=0

(
n

2k − j

){
2k − j
k − j

}
>2

.

the electronic journal of combinatorics 26(2) (2019), #P2.20 20



Proof. Elementary manipulations transform the desired identity to{
n

k

}
=

n−k∑
j=0

(
n

2(n− k)− j

){
2(n− k)− j
n− k − j

}
>2

=
n−k∑
j=0

(
n

k − j

){
n− (k − j)

j

}
>2

.

Define the function

ϕ :

{
[n]

k

}
−→

n−k⋃
j=0

(
[n]

k − j

)
×
{

[n− (k − j)]
j

}
>2

,

by ϕ(π) = (Fix(π), π \Fix(π)), where Fix(π) = {B ∈ π : |B| = 1} are the singletons of π.
The map

ψ(X, π) = π ∪ {{x} : x ∈ X}
is the inverse of ϕ. It follows that ϕ is a bijection, establishing the result.

A similar argument gives the next generalization.

Theorem 37. Let n, m, k ∈ N with 0 6 k 6 n. Then{
n

k

}
>m

=
n∑
j=0

(
n

mj

)
(mj)!

m!jj!

{
n−mj
k − j

}
>m+1

.

10 Restricted and associated r-Bell Polynomials

The classical Bell polynomials Bn(x) are defined by

Bn(x) :=
n∑
k=0

{
n

k

}
xk.

These polynomials extend the Bell numbers Bn, since Bn(1) = Bn. Mező [37] introduced
the r-Bell polynomials by

Bn,r(x) :=
n∑
k=0

{
n

k

}
r

xk,

where
{
n
k

}
r

are the r-Stirling numbers of the second kind. Further generalizations of these
polynomials appear in Corcino et al. [14]. The restricted (associated) r-Bell numbers
appear as

Bn,6m,r =
n∑
k=0

{
n

k

}
6m,r

and Bn,>m,r =
n∑
k=0

{
n

k

}
>m,r

. (25)

The objects of interest in this section are two families of polynomials: the restricted
r-Bell polynomials Bn,6m,r(x) and the associated r-Bell polynomials Bn,>m,r(x) defined by

Bn,6m,r(x) =
n∑
k=0

{
n

k

}
6m,r

xk and Bn,>m,r(x) =
n∑
k=0

{
n

k

}
>m,r

xk.

The exponential generating function of these families appeared in [6, 9].
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Theorem 38. The exponential generating function of the restricted/associated r-Bell
polynomials are given by

∞∑
n=0

Bn,6m,r(x)
zn

n!
=

(
1 + z +

z2

2!
+ · · ·+ zm−1

(m− 1)!

)r
e
x
(
z+ z2

2!
+···+ zm

m!

)
and

∞∑
n=0

Bn,>m,r(x)
zn

n!
=

(
zm−1

(m− 1)!
+
zm

m!
+ · · ·

)r
e
x
(
zm

m!
+ zm+1

(m+1)!
+···

)
.

The classical Stirling numbers of the second kind satisfy the identity

xn =
n∑
k=0

{
n

k

}
xk,

where xk is the falling factorial defined by xk := x(x− 1) · · · (x− (k − 1)) for k > 1 and
x0 = 1. A generalization for the incomplete r-Stirling numbers is presented next, the
relation to r-Bell polynomials is stated in Theorem 40. The proof is a direct application
of Theorem 8 of [42].

Theorem 39. For t, r ∈ N, define

ft,r(x) =

(
1 + x+

x2

2!
+ · · ·+ xm

m!

)t(
1 + x+

x2

2!
+ · · ·+ xm−1

(m− 1)!

)r
.

Then

dn

dxn
ft,r(x)

∣∣∣∣
x=0

= f
(n)
t,r (0) =

n∑
k=0

{
n

k

}
6m,r

tk. (26)

Similarly, for t, r ∈ N define gt,r(x) by

gt,r(x) =

(
1 +

xm

m!
+

xm+1

(m+ 1)!
+ · · ·

)t(
xm−1

(m− 1)!
+
xm

m!
+ · · ·

)r
.

Then

dn

dxn
gt,r(x)

∣∣∣∣
x=0

= g
(n)
t,r (0) =

n∑
k=0

{
n

k

}
>m,r

tk. (27)

The next statements are analogues of Dobinski’s formula (cf. [17, 47]) for Bell numbers

Bn =
1

e

∞∑
`=0

`n

`!
.
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Theorem 40. The restricted r-Bell polynomials satisfy the identity

Bn,6m,r(x) =
1

ex

∞∑
`=0

f
(n)
`,r (0)

x`

`!
.

In particular,

Bn,6m,r =
1

e

∞∑
`=0

1

`!
f

(n)
`,r (0).

Proof. Theorem 39 implies

∞∑
`=0

f
(n)
`,r (0)

x`

`!
=
∞∑
`=0

n∑
k=0

{
n

k

}
6m,r

`k
x`

`!
=
∞∑
`=0

n∑
k=0

{
n

k

}
6m,r

(
`

k

)
k!

`!
x`

=
∞∑
s=0

n∑
k=0

{
n

k

}
6m,r

(
s+ k

k

)
k!

(s+ k)!
xs+k =

∞∑
s=0

xs

s!

n∑
k=0

{
n

k

}
6m,r

xk

= exBn,6m,r(x).

The proof is complete.

Example 41. The identity {
n

k

}
62

=
k!

2n−k(2k − n)!

(
n

k

)
,

produces the expression

Bn,62 =
1

e

∞∑
`=0

n∑
k=0

nk

2n−k(`− k)!(2k − n)!
.

The analogous result the associated type is stated next.

Theorem 42. The associated r-Bell polynomials satisfy the identity

Bn,>m,r(x) =
1

ex

∞∑
`=0

g
(n)
`,r (0)

x`

`!
.

In particular,

Bn,>m,r =
1

e

∞∑
`=0

1

`!
g

(n)
`,r (0).
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11 Fubini Numbers

The Stirling numbers of the second kind
{
n
k

}
count the number of partitions of [n] into

k non-empty blocks. The total number of partitions is given by the Bell number Bn in
(1). The corresponding counting situation, where now the k blocks are ordered, is given
by the Fubini numbers Fn, also called the ordered Bell numbers. They are given by

Fn =
n∑
`=0

`!

{
n

`

}
for n > 0 and F0 = 1, (28)

as stated in (2). This section discusses some of their properties.

Remark 43. The explicit formula for the Stirling number of the second kind{
n

k

}
=

1

k!

k∑
`=0

(−1)`
(
k

`

)
(k − `)n,

gives

Fn =
n∑
k=0

k∑
`=0

(−1)`
(
k

`

)
(k − `)n. (29)

Remark 44. The Fubini numbers satisfy the recurrence

Fn =
n∑
`=1

(
n

`

)
Fn−`, (30)

with initial condition F0 = 1. A proof is given in Corollary 72.

Remark 45. The exponential generating function for {Fn} is given by

∞∑
n=0

Fn
xn

n!
=

1

2− ex
. (31)

The next statements deal with modular properties of the Fubini numbers.

Theorem 46. Let p be a prime. Then {Fn (mod p)} is a periodic sequence of period
p− 1.

Proof. Fermat’s little theorem gives ap ≡ a (mod p) and the identity

∑̀
i=0

(−1)i
(
`

i

)
(`− i)n = 0 (` > n)
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imply that

Fn+p−1 =

n+p−1∑
k=0

k∑
`=0

(−1)`
(
k

`

)
(k − `)n+p−1

=
n∑
k=0

k∑
`=0

(−1)`
(
k

`

)
(k − `)n+p−1 +

n+p−1∑
k=n+1

k∑
`=0

(−1)`
(
k

`

)
(k − `)n+p−1

≡
n∑
k=0

k∑
`=0

(−1)`
(
k

`

)
(k − `)n (mod p)

= Fn.

A similar argument shows that {Fn} is periodic modulo ps, with period ps−1(p − 1),
i.e.,

Fn+ps−1(p−1) ≡ Fn (mod ps), (32)

see Barsky [5]. Diagana and Mäıga [16] established the generalization

Fn+tps ≡ Fn+tps−1 (mod ps) (33)

with gcd(t, p) = 1. For p prime, Good [20] conjectured that p−1 is the minimal period of
the Fubini numbers modulo p. This conjecture was verified in [20], for 2 6 p 6 73. The
general case was established in Poonen [48].

Theorem 47. Let p be a prime and s ∈ N. Then {Fn} modulo ps is a periodic sequence,
with minimal period ps−1(p− 1).

The expression (29) yields the following result.

Corollary 48. Let p be a prime. Then

Fp−1 ≡ 0 (mod p) and Fp ≡ 1 (mod p).

The next result establishes the structure of the last digit of Fn. The proof uses the
periodicity of the Fn for p = 2, 5, first established by Gross [22].

Corollary 49. For n > 1 the congruence Fn+4 ≡ Fn (mod 10) holds. The fundamental
period for the last digit is {1, 3, 3, 5}.

The recurrences stated below were proven first by Poonen [48] using induction. Di-
agana and Mäıga [16] used the Laplace transform of a p-adic measure to present a new
proof. Two different proofs are presented below: one using combinatorial identities and
then a bijective proof.
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Theorem 50. Let n, q ∈ N. Then

(2q − 1)Fn =
n−1∑
`=0

qn−`
(
n

`

)
F` +

q−1∑
`=1

2q−`−1`n.

(2q − 1)Fn = −2q
n−1∑
`=0

(−q)n−`
(
n

`

)
F` + (−1)n

q∑
`=1

2`−1`n.

Proof. The identity (see [13, pp. 228])

Fn =
1

2

∞∑
k=0

kn

2k
, (34)

produces

Fn =
1

2

q−1∑
`=0

`n

2`
+

1

2q+1

∞∑
`=0

(`+ q)n

2`+q
=

1

2

q−1∑
`=0

`n

2`
+

1

2q+1

∞∑
`=0

1

2`

n∑
k=0

(
n

k

)
qn−k`k

=
1

2

q−1∑
`=0

`n

2`
+

1

2q

n∑
k=0

(
n

k

)
qn−k

1

2

∞∑
`=0

1

2`
`k =

1

2

q−1∑
`=0

`n

2`
+

1

2q

n∑
k=0

(
n

k

)
qn−kFk.

Multiplying by 2q to obtain the result. The second identity is proven in a similar manner.

Combinatorial proof. Let Lq,n := 2[q] × Fn, where 2[q] is the power set of [q] and

Fn := {(π1, . . . , πk) :
k⋃
i=1

πi = [n] and πi ∩ πj = ∅ if i 6= j}

the set of ordered partitions of [n]. Then |Lq,n| = 2qFn.

Denote by ‖π‖ the number of blocks of the set partition π. Partition the set Lq,n in
the form: Lq,n = L+

q,n ∪ L−q,n, where L+
q,n = {(X, π) : ‖π‖ > |X|} and L−q,n = {(X, π) :

‖π‖ < |X|}. Let [q][n] be the set of functions from [n] to [q] and define

ϕ : L+
q,n −→

n⋃
`=0

(
[q][n−`] ×

(
[n]

`

)
× F`

)
,

by

ϕ(X, π) =

fX,π, ‖π‖−|X|⋃
i=1

πi , (π1, . . . , π‖π‖−|X|)

 ,

where

fX,π :

‖π‖⋃
i=‖π‖−|X|+1

πi −→ X,
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is a function mapping the tail of the partition to X = {X1, . . . , Xs} with X1 < · · · < Xs

by fX,π(a) = Xi−‖π‖−|X| for a ∈ πi.

The index ` on the partition of the range is given by

` =

‖π‖−|X|∑
i=1

|πi| =

∣∣∣∣∣∣
‖π‖−|X|⋃
i=1

πi

∣∣∣∣∣∣ .
For example, if X = {2, 4, 5} and π = ({4, 6, 9}, {1, 3}, {5, 7}, {2}, {8, 10}), then

fX,π :
5⋃
i=3

πi −→ X,

with fX,π(5) = 2, fX,π(7) = 2, fX,π(2) = 4, fX,π(8) = 5 and fX,π(10) = 5. Therefore,

ϕ({2, 4, 5}, ({4, 6, 9}, {1, 3}, {5, 7}, {2}, {8, 10})) = (fX,π, {4, 6, 9, 1, 3}, ({4, 6, 9}, {1, 3})).

Claim: ϕ is a bijection. To show this, define

ψ :
n⋃
`=0

(
[q][n−`] ×

(
[n]

`

)
× F`

)
−→ L+

q,n,

by
ψ(g, Y, λ) = (g([n] \ Y ), (λ1, λ2, . . . , λ|λ|, g−1(1), . . . , g−1(q)︸ ︷︷ ︸

discard j ∈ [q] such that g−1(j) = ∅

).

It is shown that ϕ and ψ are inverses of each other. Note that, applying this definition
to the example and calling λ = ({4, 6, 9}, {1, 3}, {5, 7}, {2}, {8, 10}), we get that

ψ(ϕ({2, 4, 5}, λ) = ψ(fX,π, {4, 6, 9, 1, 3}, ({4, 6, 9}, {1, 3}))
= (fX,π({2, 5, 7, 8, 10}), ({4, 6, 9}, {1, 3}, f−1

X,π(1), · · · , f−1
X,π(10)))

= ({4, 2, 5}, ({4, 6, 9}, {1, 3},∅, {5, 7},∅, {2}, {8, 10},∅, · · · ,∅))

= ({4, 2, 5}, ({4, 6, 9}, {1, 3}, {5, 7}, {2}, {8, 10}))
= ({4, 2, 5}, λ).

Step 1. ψ ◦ ϕ = Id. Indeed, the composition is

ψ(ϕ(X, π)) = ψ(fX,π,

‖π‖−|X|⋃
i=1

πi, (π1, . . . , π|X|))

= (fX,π([n] \
‖π‖−|X|⋃
i=1

πi), (π1, . . . , πX , f
−1
X,π(1), . . . , f−1

X,π(q))).
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The definition of fX,π implies

fX,π([n] \
‖π‖−|X|⋃
i=1

πi) = fX,π(

‖π‖⋃
i=‖π‖−|X|+1

πi) = X

and π = (π1, . . . , π|X|, π|X|+1, . . . , π‖π‖).

Step 2. ϕ ◦ ψ = Id. This time, the composition is

ϕ(ψ(g, Y, λ)) = ϕ(g([n] \ Y ), (λ1, . . . , λ|λ|, g
−1(1), . . . , g−1(q))),

fg([n]\Y ),(λ1,...,g−1(q)) = g by definition of fX,π. Also, Y =
⋃|λ|
i=1 λi by definition of partition

and the projection sends λ to λ.

This shows that ϕ is a bijection.

It follows that

|L+
q,n| =

∣∣∣∣∣
n⋃
`=0

(
[q][n−`] ×

(
[n]

`

)
× F`

)∣∣∣∣∣ (35)

=
n∑
`=0

qn−`
(
n

`

)
F`.

For the second part of the identity, consider the function

ϕ :

q−1⋃
`=1

(
2[q−`−1] × [`][n]

)
−→ L−q,n,

given by ϕ(X, f) = (X ∪ {i ∈ [`] : f−1(i) 6= ∅}, (f−1(1), . . . , f−1(`))). The set L−q,n
contains the range of the function, defined as the number of parts of the resulting partition.
The map ϕ is a bijection and its inverse is given by

ψ : L−q,n −→
q−1⋃
`=1

(
2[q−`−1] × [`][n]

)
.

Let X = {X1, . . . , Xs} ⊆ [q], such that X1 < · · · < Xs, then

ψ(X,λ) = ({X|λ|+1, X|λ|+2, . . . , Xs}, fX,λ),

where fX,λ : [n] −→ [`] is defined by fX,λ(a) = Xi if a ∈ λi.
As an example, consider X = {2, 4, 5, 7, 8, 9, 11} ⊆ [20] and

λ = ({4, 6, 9}, {1, 3}, {5, 7}, {2}, {8, 10}).

Then,
ψ(X,λ) = ({X6, X7}, fX,λ) = ({9, 11}, fX,λ),
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and fX,λ({4, 6, 9}) = 2, fX,λ({1, 3}) = 4, fX,λ({5, 7}) = 5, fX,λ({2}) = 7, fX,λ({8, 10}) = 8.
Now, computing ϕ of the resulting pair

ϕ(ψ(X,λ)) = ϕ(({9, 11}, fX,λ))
= ({9, 11} ∪ {i ∈ [`] : f−1

X,λ(i) 6= ∅}, (f−1
X,λ(1), . . . , f−1

X,λ(`)))

= ({9, 11} ∪ {2, 4, 5, 7, 8}, ({4, 6, 9}, {1, 3}, {5, 7}, {2}, {8, 10}))
= (X,λ)

It follows that

|L−q,n| = |
q−1⋃
`=1

[2][q−`−1] × [`][n]| =
q−1∑
`=1

2q−`−1`n. (36)

Combining (35) and (36), gives the stated identity.

Diagana and Mäıga [16] used Theorem 50 to establish some interesting congruences
for the Fubini numbers.

Corollary 51. Let q, n ∈ N. Then

(2q − 1)Fn ≡ nqFn−1 +

q−1∑
j=1

2q−1−jjn (mod q2).

In particular, if n = q = p is a prime number, then

(2p − 1)Fp ≡
p−1∑
j=1

2p−1−jjp (mod p2).

Corollary 52. Let q ∈ N. Then

(2q − 1)Fn ≡
q−1∑
j=1

2q−1−jjn (mod q).

Velleman and Call [57] gave a combinatorial identity for Fn, similar to (29). An
alternative proof is presented next.

Theorem 53. For all n > 1,

Fn =
n∑
k=1

k−1∑
i=0

(−1)i
(
n+ 1

i

)
(k − i)n2n−k.

Proof. The Eulerian numbers An,k, given by

An,k =
k−1∑
i=0

(−1)i
(
n+ 1

i

)
(k − i)n, (37)
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count the number of permutations containing exactly k runs. Let An,k be the set of these
permutations. Information about these permutation appear in [21].

The identity (37) and

Fn =
n∑
k=1

An,k2
n−k, (38)

prove the result. The proof of (38) is presented next.
In an ordered partition π = (π1, . . . , π`), each block πi can be written as πi,1πi,2 · · · πi,|πi|

so that πi,1 < πi,2 < · · · < πi,|πi|. Define the function

ϕ : Fn −→
n⋃
k=1

An,k × 2[n−k],

by
ϕ(π) := ( π1π2 · · · π`︸ ︷︷ ︸

Concatenation

, {i ∈ [`− 1] : πi,|πi| < πi+1,1}).

For example,

ϕ({3, 6}, {1, 4}, {2}, {5, 7, 8}) = (36142578, {3}).

Therefore the partition is being encoded as a permutation where the blocks start with a
descent in the permutation or where we indicate with the resulting set which has index of
ascents in the permutation. This function has the natural inverse: given a permutation
with k−1 descents and given a subset of the ascents, we can generate the partition in the
following way, consider π = 243581769 ∈ A9,4 where the descents are underlined. As the
first element of the permutation does not count as ascent, then we have 5 = |{2, 4, 5, 7, 9}|,
where the set is the indices of the ascents in π, places to choose for creating a new block. If
we choose X = {4} then we can construct the partition ({2, 4}, {3}, {5, 8}, {1, 7}, {6, 9}).

12 Restricted and associated Fubini Numbers

The Fubini numbers Fn count the number of ordered set partitions. It is natural to
generalize them by restricting the size of the blocks used in the partitions. This gives the
restricted Fubini numbers, Fn,6m, where the blocks are of size at most m and the associated
Fubini numbers Fn,>m, with blocks of size at least m. In terms of the restricted/associated
Stirling numbers, the identities

Fn,6m =
n∑
k=0

k!

{
n

k

}
6m

and Fn,>m =
n∑
k=0

k!

{
n

k

}
>m

,

are clear.
Theorem 39 provides the following relations:
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dn

dxn
ft(x)

∣∣∣∣
x=0

= f
(n)
t (0) =

n∑
k=0

{
n

k

}
6m

tk, (39)

dn

dxn
gt(x)

∣∣∣∣
x=0

= g
(n)
t (0) =

n∑
k=0

{
n

k

}
>m

tk, (40)

where ft(x) =
(

1 + x+ x2

2!
+ · · ·+ xm

m!

)t
and gt(x) =

(
1 + xm

m!
+ xm+1

(m+1)!
+ · · ·

)t
. In the

case m > n, this identity yields the classical formula

tn =
n∑
k=0

{
n

k

}
tk =

n∑
k=0

{
n

k

}(
t

k

)
k!.

An elementary argument shows that this counts the total number of functions from [n]
to the set [t]. The equations (39) and (40) admit the following combinatorial interpreta-

tion: the expression f
(n)
t (0) counts the functions w from [n] to [t], such that |w−1(i)| 6 m

for every i ∈ [t]. A similar interpretation exists for g
(n)
t (0).

Remark 54. Komatsu and Ramı́rez [29] found the exponential generating functions for
the restricted/associated Fubini numbers:

∞∑
n=0

Fn,6m
xn

n!
=

1

1− x− x2

2!
− · · · − xm

m!

, (41)

∞∑
n=0

Fn,>m
xn

n!
=

1

1− xm

m!
− xm+1

(m+1)!
− · · ·

. (42)

The next statement is analogous to the identity (34).

Theorem 55. For n > 0 we have

Fn,6m =
1

2

∞∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` and Fn,>m =
1

2

∞∑
k=0

1

2k

n∑
`=0

{
n

`

}
>m

k`.

Proof. The expressions in (39) and (41) give

∞∑
n=0

Fn,6m
xn

n!
=

1

1− x− x2

2!
− · · · − xm

m!

=
1

2
(
1− 1

2

(
1 + x+ x2

2!
+ · · ·+ xm

m!

))
=

1

2

∞∑
k=0

1

2k

(
1 + x+

x2

2!
+ · · ·+ xm

m!

)k
=

1

2

∞∑
k=0

1

2k

∞∑
n=0

(
n∑
`=0

{
n

`

}
6m

k`

)
xn

n!
.

The result follows by comparing coefficients. The proof of the second identity is similar.
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A recurrence for the restricted/associated Fubini numbers is presented next.

Theorem 56. Let n, q ∈ N. Then

2qFn,6m =
n∑
`=0

(
n

`

)
F`,6m

(
n−∑̀
i=0

{
n− `
i

}
6m

qi

)
+

q−1∑
`=1

2q−`−1

(
n∑
i=0

{
n

i

}
6m

`i

)
,

2qFn,>m =
n∑
`=0

(
n

`

)
F`,>m

(
n−∑̀
i=0

{
n− `
i

}
>m

qi

)
+

q−1∑
`=1

2q−`−1

(
n∑
i=0

{
n

i

}
>m

`i

)
.

Proof. Theorem 55 and (39) imply

Fn,6m =
1

2

q−1∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` +
1

2

∞∑
k=q

1

2k

n∑
`=0

{
n

`

}
6m

k`

=
1

2

q−1∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` +
1

2q+1

∞∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

(k + q)`

=
1

2

q−1∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` +
1

2q+1

∞∑
k=0

1

2k
f

(n)
k+q(0)

=
1

2

q−1∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` +
1

2q+1

∞∑
k=0

1

2k

n∑
j=0

(
n

j

)
f

(j)
k (0)f (n−j)

q (0)

=
1

2

q−1∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` +
1

2q

n∑
j=0

(
n

j

)(
1

2

∞∑
k=0

1

2k
f

(j)
k (0)

)
f (n−j)
q (0)

=
1

2

q−1∑
k=0

1

2k

n∑
`=0

{
n

`

}
6m

k` +
1

2q

n∑
j=0

(
n

j

)
Fj,6m

(
n∑
i=0

{
n− j
i

}
6m

qi

)
.

The second identity follows in a similar manner.

The previous theorem is now used to generate some congruences.

Corollary 57. Let q, n ∈ N. Then

(2q − 1)Fn,6m ≡
q−1∑
`=1

2q−`−1

(
n∑
i=0

{
n

i

}
6m

`i

)
(mod q),

(2q − 1)Fn,>m ≡
q−1∑
`=1

2q−`−1

(
n∑
i=0

{
n

i

}
>m

`i

)
(mod q).

The next statement is a generalization of Theorem 53.

the electronic journal of combinatorics 26(2) (2019), #P2.20 32



Theorem 58. The restricted/associated Fubini numbers satisfy the identities

Fn,6m =
n∑
k=1

k∑
i=0

(−1)i
(
n+ 1

i

)
2n−k

(
n∑
j=0

{
n

j

}
6m

(k − i)j
)
,

Fn,>m =
n∑
k=1

k∑
i=0

(−1)i
(
n+ 1

i

)
2n−k

(
n∑
j=0

{
n

j

}
>m

(k − i)j
)
.

Proof. The proof is analogous to the one given for Theorem 53. Simply use the combina-
torial observation (39).

The final result in this section is an identity relating the associated Fubini numbers
Fn,>k with the Fubini numbers Fn and the incomplete Stirling numbers

{
i
j

}
6k

and
{
i
j

}
>k

.

Theorem 59. Let n ∈ N. Then

Fn,>k = Fn −
n∑
i=1

i∑
k1=0

n−i∑
k2=0

(
n

i

)
(k1 + k2)!

{
i

k1

}
6k−1

{
n− i
k2

}
>k

. (43)

Proof. Let π = (π1, . . . , π`) ∈ Fn be an ordered partition. Write [n] = Aπ ∪ Bπ where
Aπ := {i ∈ [n] : if i ∈ πj then |πj| < k} and Bπ := {i ∈ [n] : if i ∈ πj then |πj| > k}.

The sets Si := {π ∈ Fn : |Aπ| = i} provide the disjoint decomposition Fn =
n⋃
i=0

Si and it

follows that

|Si| =
(
n

i

) i∑
k1=0

n−i∑
k2=0

(
k1 + k2

k1

)
k1!

{
i

k1

}
6k−1︸ ︷︷ ︸

Blocks of Aπ

k2!

{
n− i
k2

}
>k︸ ︷︷ ︸

Blocks of Bπ

.

The identity follows from here.

13 Arithmetical properties of the restricted/associated Fubini
numbers

This section discusses some arithmetical properties of the Fubini numbers Fn and their
generalizations. Particular emphasis is placed on congruences and p-adic valuations.

Proposition 60. The Fubini numbers Fn are odd; that is, ν2(Fn) = 0.

Proof. Proceed by induction and use the recurrence stated in Remark 45, to obtain

Fn ≡
n−1∑
k=0

(
n

k

)
= 2n − 1 ≡ 1 (mod 2).
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The next results deal with congruences and valuations with respect to the prime p = 3.

Proposition 61. The Fubini numbers satisfy

Fn ≡

{
1 if n is odd

0 if n is even

}
(mod 3). (44)

Proof. Take q = 3 in Corollary 51 to obtain

7Fn ≡ 3nFn−1 +
2∑
j=1

22−jjn ≡ 2 + 2n (mod 3). (45)

This simplifies to Fn ≡ 2n − 1 (mod 3) and the result follows.

The next result gives the 3-adic valuation of Fn.

Theorem 62. The 3-adic valuation of the Fubini number is given by

ν3(Fn) =

{
0 if n is odd

1 if n is even

}
. (46)

Proof. Proposition 61 shows that Fn ≡ 1 (mod 3) for n odd. Therefore, ν3(Fn) = 0 for n
odd. Now assume n is even. Corollary 51 with q = 3 gives

Fn ≡ 3nFn−1 + 2n+2 − 1 (mod 9). (47)

A symbolic calculation shows that, starting at n = 2, the numbers Fn modulo 9 are
periodic with repeating pattern {3, 4, 3, 1, 3, 7}. This is proved by induction, using (47).
To reduce the calculation, write n = 6t+ a, with t ∈ N and a ∈ {0, 2, 4}, since n is even.
Then

2n+2 = 26t+a+2 = (26 = 64)t × 2a+2 ≡ 2a+2 (mod 9). (48)

Consider first the case n ≡ 2 (mod 6). Then, by induction, Fn−1 ≡ 7 (mod 9). It is
required to show that Fn ≡ 3 (mod 9). Then (47) gives

Fn ≡ 3(6t+ 2)Fn−1 + 22+1 − 1 ≡ 6Fn−1 + 7− 1 ≡ 6× 7 + 6 = 48 ≡ 3 (mod 9), (49)

as required. The other two choices for a are dealt with in a similar manner.
Proposition 61 shows that Fn ≡ 0 (mod 3) and by the argument above Fn 6≡ 0

(mod 9). Therefore ν3(Fn) = 1. The proof is complete.

Remark 63. The structure of the p-adic valuation for p > 5 prime is described by a
valuation tree, as introduced in Remark 1. These valuation trees also appeared in [2] in
the context of the 2-adic valuation of the Stirling numbers

[
n
k

]
. The results given next are

all experimental.
Divide N into four classes according to the residue of n modulo 4. The numbers Fn

corresponding to indices in three of these classes have 5-adic valuation independent of n.
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For example, if n ≡ 1 (mod 4), it turns out that ν5(Fn) = 0; that is, ν5(F4n+1) = 0 for
all n ∈ N. Similarly, ν5(F4n+2) = 0 and ν5(F4n+3) = 0 for all n ∈ N. (It is a coincidence
that each of the classes has the same value, namely 0. The important point is that
this value is the same for each index in the class). In the case n ≡ 0 (mod 4), the
value ν5(F4n) does depend on the index n. Therefore, based on experience acquired with
other sequences, these numbers are split modulo 5 to produce five classes of indices:
20n, 20n + 4, 20n + 8, 20n + 12, and 20n + 16. Now there are four classes for which the
valuation of the Fubini number with index in the class, has a valuation independent of
the index. For example, ν5(F20n) = 1 for all n ∈ N. Similarly

ν5(F20n+8) = 1, ν5(F20n+12) = 1 and ν5(F20n+16) = 1 for all n ∈ N. (50)

As before, in the remaining case n ≡ 4 (mod 20), the value ν5(F20n+4) does depend on
the index n. The process is continued by splitting the set of indices of the form 20n + 4
into five classes modulo 100.

100n+ 4, 100n+ 24, 100n+ 44, 100n+ 64, 100n+ 84. (51)

Conjecture 64. The process described above continues ad infinitum. At each step, there
is a single class where the valuation is not constant. Moreover, this phenomena happens
for every prime p > 5.

Definition 65. The restricted Fubini numbers Fn,6m count all the partitions of [n] into
blocks of length at most m, where the order in which the blocks appear is taken into
consideration. The corresponding associated Fubini numbers Fn,>m are defined in a similar
form, now with blocks of length at least m.

Remark 66. Mező [38] established the recurrence

Fn,6m =
m∑
`=1

(
n

`

)
Fn−`,6m, (52)

Fn,6m = Fn, n 6 m. (53)

Similarly, there is a recurrence for the associated Fubini numbers as

Fn,>m =
n∑

`=m

(
n

`

)
Fn−`,>m,

Fn,>m = 0, n < m.

This section discusses some elementary arithmetic properties of the numbers Fn,6m and
Fn,>m. Lengyel [32] establish some additional arithmetical properties for this sequence.
The first result states that, in the case p = 2, these numbers are related to the restricted
and associated Stirling numbers.

the electronic journal of combinatorics 26(2) (2019), #P2.20 35



10 20 30 40 50

5

10

15

20

Figure 4: The 2-adic valuation of Fn,62.

Lemma 67. Let n, m ∈ N. Then

Fn,6m ≡
{
n

1

}
6m

(mod 2) and Fn,>m ≡
{
n

1

}
>m

(mod 2).

Proof. Use Corollary 57 with q = 2 and observe that, since
{
n
1

}
6m

= 1 for 1 6 n 6 m
and 0 otherwise, then Fn,6m is odd for 1 6 n 6 m and even for all n > m.

The 2-adic behavior of the restricted Fubini numbers is discusses next. Figure 4 shows
the first few values of the sequence ν2 ({Fn,62}).

An analytic expression explaining this figure is presented in the next theorem.

Theorem 68. The 2-adic valuation for the restricted Fubini numbers Fn,62 is

ν2(Fn,62) =


n
2
− s2

(
n
2

)
, if n ≡ 0 (mod 4),

n−1
2
− s2

(
n−1

2

)
, if n ≡ 1 (mod 4),

n−2
2
− s2

(
n−2

2

)
, if n ≡ 2 (mod 4),

n−3
2
− s2

(
n+1

2

)
+ 3, if n ≡ 3 (mod 4);

where s2(n) is the sum of the digits of n in its binary expansion.

Proof. The proof is by induction, and is divided into four cases according to the residue
of n modulo 4. The symbols Oi denote an odd number. If n = 4k then (52) with m = 2
and the induction hypothesis yields

F4k,62 = 4kF4k−1,62 +
(4k − 1)(4k)

2
F4k−2,62

= 4k
(
22k−2−s2(2k)+3O1

)
+ 2k(4k − 1)

(
22k−2−s2(2k−2)O2

)
= 22k−s2(2k)+3kO1 + 22k−1−s2(2k−2)kO3

= 22k−s2(2k−2)−1k
(
24−s2(2k)+s2(2k−2)O1 +O3

)
= 22k−s2(2k−2)−1kO4.
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If k is odd, then F4k,62 = 22k−1−s2(2k−2)O5, and it follows that

ν2(F4k,62) = 2k − s2(2k − 2)− 1 = 2k − s2(2k),

using s2(x)− s2(x− 1) = −ν2(x). This is a direct consequence of Legendre’s formula for

the p-adic valuation of factorials: νp(x!) =
x− sp(x)

p− 1
. On the other hand, if k is even,

then
ν2(F4k,62) = 2k − (s2(2k − 2)− ν2(k) + 1) = 2k − s2(2k).

The remaining cases are analyzed in a similar manner.

Symbolic computations produce the next statement. The reader is invited to produce
a proof in the style presented for the previous theorem.

Theorem 69. The 3-adic valuation of Fn,62 has a 3-block structure; that is, for n ∈ N:

ν3(F3n−1,62) = ν3(F3n,62) = ν3(F3n+1,62). (54)

The common value is given by

ν3(F3n,62) = n+ ν3(n!) =
3n− s3(n)

2
, (55)

where s3(n) is the sum of the digits in the expansion of n in base 3.

Problem 70. Describe the valuations ν5(Fn,62).

14 r-Fubini Numbers

The r-Fubini numbers, Fn,r, have appeared in [39]. They are defined as the number of
ordered r-partitions of [n+ r]. Thus,

Fn,r =
n∑
k=0

(k + r)!

{
n

k

}
r

.

The first statement gives a recurrence for Fn,r. The initial condition F0,r = r! is clear
from the definition.

Theorem 71. Let n ∈ N. Then the r-Fubini numbers satisfy the recurrence

Fn,r =
n−1∑
k=0

(
n

k

)
Fk,r + r

n∑
k=0

(
n

k

)
Fk,r−1

with initial condition Fn,0 = Fn.
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Proof. Assume the last block in an ordered r-partition of [n+ r] is non-special and has k
elements, with 1 6 k 6 n. There are

(
n
k

)
ways to choose these elements and the remaining

n− k elements can be ordered in Fn−k,r ways. If the last block is special then the number
of choices is r

(
n
k−1

)
Fn−(k−1),r−1. Summing over k gives

Fn,r =
n∑
k=1

(
n

k

)
Fn−k,r + r

n+1∑
k=1

n

(
n

k − 1

)
Fn−(k−1),r−1

=
n−1∑
k=0

(
n

k

)
Fk,r + r

n∑
k=0

(
n

k

)
Fk,r−1.

The special case r = 0 gives the next result, stated in Remark 44.

Corollary 72. The Fubini numbers satisfy the recurrence

Fn =
n−1∑
k=0

(
n

k

)
Fk, n > 1. (56)

Proposition 73. Let p be a prime. Then

Fp,r ≡ 2r! + rFp,r−1 (mod p).

In particular, since Fp ≡ 1 (mod p), then

Fp,r ≡ r!(2r − 1) (mod p).

The next result gives an exponential generating function.

Theorem 74. The exponential generating function for Fn,r is

Fr(x) :=
∞∑
n=0

Fn,r
xn

n!
=

r!erx

(2− ex)r+1
.

Proof. Theorem 71 gives

2Fr(x) = 2
∞∑
n=0

Fn,r
xn

n!

=
∞∑
n=0

∞∑
k=0

(
n

k

)
Fk,r

xn

n!
+ r

∞∑
n=0

∞∑
k=0

(
n

k

)
Fk,r−1

xn

n!

=
∞∑
k=0

Fk,r
xk

k!

∞∑
n=0

xn

n!
+ r

∞∑
k=0

Fk,r−1
xk

k!

∞∑
n=0

xn

n!

= exFr(x) + rexFr−1(x).

Then

Fr(x) =
rex

2− ex
Fr−1(x) = · · · = r!erx

(2− ex)r
F0(x).

The value F0(x) = 1/(2− ex), given in Remark 45, yields the desired result.
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Theorem 75 below generalizes the identity (34).

Theorem 75. Let n, r ∈ N. Then

Fn,r =
r!

2r+1

∞∑
`=0

1

2`

(
r + `

`

)
(r + `)n,

=
1

2r+1

∞∑
`=0

1

2`
(r + `)r(r + `)n.

Proof. Theorem 74 yields

∞∑
n=0

Fn,r
xn

n!
=

r!erx

2r+1
(
1− 1

2
ex
)r+1 =

r!erx

2r+1

∞∑
`=0

(
r + `

`

)(
1

2
ex
)`

=
r!

2r+1

∞∑
n=0

∞∑
`=0

1

2`

(
r + `

`

)
(`+ r)n

xn

n!
.

Comparing the n-th coefficient gives the desired result.

The next statement is based on an experimental observation:

Problem 76. The 2-adic valuation of Fn,r is independent of the index n. Moreover

ν2(Fn,2r) = ν2(Fn,2r+1). (57)

with common expression

ν2(Fn,2r) = ν2(Fn,2r+1) = 2r + 1− s2(r + 1)− ν2(r + 1), (58)

for every r ∈ N.

Problem 77. Develop similar results for the associated r-Fubini numbers Fn,r. The
pattern for ν3(Fn,r) is relatively simple. Conduct a similar study for the corresponding
restricted and associated families.

15 Generalized Factorial Numbers

Given a permutation π on n symbols, it can be written, uniquely up to order, as a product
of disjoint cycles. The Stirling number of the first kind, denoted by

[
n
k

]
, counts the number

of permutations of n elements containing k cycles. Since

n∑
k=0

[
n

k

]
= n!, (59)

the sum of the left is also called factorial numbers. In this section similar numbers,
counting permutations on n elements with restrictions on the size of cycles are introduced.
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In the case where the restriction is that none of the cycles of a permutation of n contain
more than m items, one obtains the restricted Stirling numbers of the first kind, denoted
by
[
n
k

]
6m

(cf. [18, 38, 44]). The associated Stirling numbers of the first kind
[
n
k

]
>m

counts
the case where the size of the cycles are at least m.

The corresponding r-generalizations, those where the first r elements are in distinct cy-
cles (cf. [6, 9, 28]), produce the restricted r-Stirling numbers of the first kind

[
n
k

]
6m,r

. The

associated Stirling numbers of the first kind
[
n
k

]
>m

and the associated r-Stirling numbers

of the first kind
[
n
k

]
>m,r

are defined similarly.

The first statement is a combinatorial proof of an identity of Howard [25].

Theorem 78. For k, n ∈ N, the identity[
n

n− k

]
=

k∑
`=0

(
n

2k − `

)[
2k − `
k − `

]
>2

holds.

Proof. The change of indices j = n− k − `, converts the desired identity into[
n

k

]
=

n−k∑
`=0

(
n

k − `

)[
n− (k − `)

`

]
>2

.

The right-hand side corresponds to the decomposition of the permutation of n with k
cycles into its fixed points and the cycles of length > 2.

The next identity admits a proof similar to the one presented for Theorem 36.

Theorem 79. Let n, k, m ∈ N. Then[
n

k

]
>m

=
n∑
`=0

(
n

m`

)
(ml)!

m``!

[
n−m`
k − `

]
>m+1

.

A new sequence of numbers is introduced next.

Definition 80. Let An,6m,r the total number of r-permutations of [n + r] with the con-
dition that each cycle has size at most m. This sequence is called restricted r-factorial
numbers. The associated r-factorial numbers An,>m,r are defined in a similar manner.

The following identities are immediate:

An,6m,r =
n∑
k=0

[
n

k

]
6m,r

and An,>m,r =
n∑
k=0

[
n

k

]
>m,r

.

Remark 81. In the special case m = 2 one has An,62,r = Bn62,r. The numbers An,>2,r are
the r-derangements numbers, discussed in [60, 59].
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The next statements are analogous to results discussed in the previous sections. The
details of the proofs are left to the reader.

Theorem 82. For n > 1, r > 0 and m > 2 the restricted r-factorial numbers satisfy the
recurrence relation

An,6m,r = r

m−2∑
`=0

(`+ 1)(n− 1)`An−1−`,6m,r−1 +
m−1∑
`=0

(n− 1)`An−1−`,6m,r.

Moreover,

An,6m,r =
m−1∑
`=0

n`An−`,6m,r−1.

Theorem 83. For n > 1, r > 0 and m > 1 the associated r-factorial numbers satisfy the
recurrence relation

An,>m,r = r

n−1∑
`=m−2

(`+ 1)(n− 1)`An−1−`,>m,r−1 +
n−1∑

`=m−1

(n− 1)`An−1−`,>m,r.

Moreover,

An,>m,r =
n∑

`=m−1

n`An−`,>m,r−1.

As before, some polynomials are constructed with these families of numbers.

Definition 84. The restricted r-factorial polynomials, An,6m,r(x), and the associated r-
factorial polynomials, An,>m,r(x) are defined by the expressions

An,6m,r(x) =
n∑
k=0

[
n

k

]
6m,r

xk and An,>m,r(x) =
n∑
k=0

[
n

k

]
>m,r

xk.

The exponential generating functions of these polynomials are stated next.

Theorem 85. The exponential generating function of the restricted/associated r-factorial
polynomials are

∞∑
n=0

An,6m,r(x)
zn

n!
=
(
1 + z + z2 + · · ·+ zm−1

)r
e
x
(
z+ z2

2
+···+ zm

m

)
,

∞∑
n=0

An,>m,r(x)
zn

n!
=
(
zm−1 + zm + · · ·

)r
e
x
(
zm

m
+ zm+1

m+1
+···

)
.

The next statement is the analogous to the Theorem 39.
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Theorem 86. For t, r ∈ N, define

ht,r(x) =

(
1 + x+

x

2
+ · · ·+ xm

m

)t (
1 + x+ x2 + · · ·+ xm−1

)r
.

Then

dn

dxn
ht,r(x)

∣∣∣∣
x=0

= h
(n)
t,r (0) =

n∑
k=0

[
n

k

]
6m,r

tk. (60)

Similarly, for t, r ∈ N define wt,r(x) by

wt,r(x) =

(
1 +

xm

m
+

xm+1

m+ 1
+ · · ·

)t (
xm−1 + xm + · · ·

)r
.

Then

dn

dxn
wt,r(x)

∣∣∣∣
x=0

= w
(n)
t,r (0) =

n∑
k=0

[
n

k

]
>m,r

tk. (61)

16 Conclusions

A variety of numbers of combinatorial origin are discussed. These sequences are ob-
tained by restricting sizes of substructures in set partitions, either from above or below.
Arithmetic properties include congruences and structures of their p-adic valuations were
discussed.
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