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Abstract

For ordered graphs G and H, the ordered Ramsey number r-(G, H) is the small-
est n such that every red/blue edge coloring of the complete ordered graph on
vertices {1,...,n} contains either a blue copy of G or a red copy of H, where
the embedding must preserve the relative order of vertices. One number of inter-
est, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered
Ramsey number r-(M, K3), where M is an ordered matching on n vertices. In
particular, Conlon et al. asked what asymptotic bounds (in n) can be obtained for
max (M, K3), where the maximum is over all ordered matchings M on n vertices.
The best-known upper bound is O(n?/logn), whereas the best-known lower bound
is Q((n/logn)*?3), and Conlon et al. hypothesize that there is some fixed ¢ > 0
such that r— (M, K3) = O(n®7¢) for every ordered matching M. We resolve two
special cases of this conjecture. We show that the off-diagonal ordered Ramsey
numbers for ordered matchings in which edges do not cross are nearly linear. We
also prove a truly sub-quadratic upper bound for random ordered matchings with
interval chromatic number 2.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

A classical area of extremal combinatorics is Ramsey theory. Introduced by Ramsey [6]
and popularized by Erdés and Szekeres [4], the Ramsey number of a graph G, commonly
denoted by 7(G), is the smallest n so that every bicoloring of the complete graph K,
contains a monochromatic copy of G. Here, we define a bicoloring of a graph to be
a red/blue-coloring of the edges of the graph. Shrinking the sizable gap between the
asymptotic upper/lower bounds on r(K,,) has been a major open problem for decades,
spurring extensive work on a plethora of related questions in Ramsey theory.

One variant of Ramsey numbers which has recently received attention is the analogue
for ordered graphs. An ordered graph on [n] is a graph on n vertices which are given
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distinct labels in {1,...,n}. Given an ordered graph G, the ordered Ramsey number of
G, denoted by r-(G), is the smallest n so that every bicoloring of the ordered complete
graph on n vertices contains a monochromatic copy of G which preserves the relative
vertex ordering of G. As with the unordered case, one can define the off-diagonal ordered
Ramsey number of two ordered graphs G and H, denoted by r-(G, H), as the smallest
n so that every bicoloring of the ordered complete graph on n vertices contains either an
order preserving red copy of G or an order preserving blue copy of H.

The first systematic studies of ordered Ramsey numbers were conducted by Conlon,
Fox, Lee, and Sudakov [3] and by Balko, Cibulka, Kral, and Kyn¢l [2]. However, as pointed
out by the authors of [3], a number of classic results in extremal combinatorics can be
reinterpreted as statements about ordered Ramsey numbers. For instance, Erdos and
Szekeres proved [4] that every sequence of at least (n — 1) + 1 distinct numbers contains
either an increasing subsequence of length n or a decreasing subsequence of length n.
This result is implied by the bound r-(P,, K,) < (n — 1)? + 1, where P, is the n-vertex
path imbued with the natural monotonic ordering: for any sequence of n distinct numbers
T, ..., Ty, forall 4,7 € {1,...,n} with ¢ < j, color edge {i,;j} red if z; < z; and blue
otherwise.

Perhaps the simplest nontrivial family of ordered graphs from the perspective of or-
dered Ramsey theory is ordered matchings, in which every vertex has degree 1. Conlon,
Fox, Lee, and Sudakov provide a number of bounds for general ordered matchings, for
ordered matchings satisfying certain properties, and for off-diagonal ordered Ramsey num-
bers involving ordered matchings. Relevant to this paper is their work on bounding the
largest possible value of r— (M, K3), where M is an ordered matching. They have the
following result:

Theorem 1 (Conlon, Fox, Lee, and Sudakov [3]). There are positive constants ¢y and co
such that for all even positive integers n,

2

n 4/3 n
< M, Ky) <
o <1ogn) g (0, ) < exp

where the maximum is taken over all ordered matchings M on n vertices.

The upper bound in this theorem is in some sense trivial. Since every ordered
graph on n vertices embeds in the complete ordered graph K,, and the ordered Ram-
sey number r-(K,, K3) is equal to the Ramsey number r(n, 3), which has been asymp-
totically determined [1, 5] to be ©(n?/logn), it follows (as pointed out in [3]) that
r-(M, K3) = O(n?/logn) for an ordered matching M on n vertices. However, this bound
does not make use of any properties of ordered matchings, only making use of the fact
that every ordered graph on n vertices can be embedded in K,,. Perhaps for this reason,
Conlon, Fox, Lee, and Sudakov hypothesize [3] that the upper bound can be improved to
r<(M, K3) < n?¢ for some ¢ > 0.

We contribute two results in the direction of this conjecture. We first look at the
special case of ordered matchings where the edges do not cross. That is, for any two
edges {i,j} and {k,l} with i < j and k < [, the intervals [i, j] and [k, [] are either disjoint
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or nested one inside the other. We call the ordered matchings which satisfy this condition
parenthesis matchings, due to the useful fact that these ordered matchings correspond
with balanced parenthesis sequences. Indeed, it is this correspondence which partially
motivates our proof of the following theorem.

Theorem 9. For any € > 0 there is a constant ¢ such that every parenthesis matching M
on n vertices has
ro(M, K3) < cen'te

To state our second result, we must define the interval chromatic number of an ordered
graph. Analogous to the chromatic number of an unordered graph, the interval chromatic
number x(G) of an ordered graph G is the minimum number of contiguous intervals into
which the vertex set must be split so that each interval is an independent set in G.

Conlon, Fox, Lee, and Sudakov present a number of general results accompanied by
much stronger specific results for ordered matchings with small interval chromatic number
[3]. In a similar spirit, we prove a sub-quadratic bound on r. (M, K3) for random ordered
matchings with interval chromatic number 2.

Theorem 17. There is a constant ¢ such that for every even n, if an ordered matching
M on n vertices with interval chromatic number 2 is picked uniformly at random, then

r<(M, K3) < enis
with high probability.

Observe that the statement is not probabilistic over bicolorings; rather, it is a true
Ramsey-type result which applies to almost all ordered matchings with interval chromatic
number 2.

1.1 Roadmap

We outline the remainder of this paper. In Section 2, we achieve a nearly linear bound
for ordered matchings whose edges do not cross. In Section 3, we obtain a slightly sub-
quadratic bound for random ordered matchings with interval chromatic number 2. Finally,
in Section 4 we outline possible directions for future research, describing a few of the many
interesting questions about ordered Ramsey numbers which remain open.

Throughout the paper, we make no serious attempts to optimize constants.

2 Parenthesis Matchings

Earlier we defined parenthesis matchings as ordered matchings for which the edges do
not cross. We claim without proof that every parenthesis matching corresponds uniquely
with a balanced parenthesis sequence—that is, a sequence of correctly matched open and
close parentheses. The bijection is straightforward; each matched pair of parentheses
corresponds with an edge in the ordered matching. See Figure 1 for an example.
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Figure 1: The parenthesis matching corresponding to the parenthesis sequence (()())().

We start with perhaps the simplest nontrivial parenthesis matching, and work our way
up to general parenthesis matchings. Define the nested matching graph N My, of size k to
be the ordered graph on [2k] where {i,j} is an edge if and only if i + j = 2k + 1. We
establish the off-diagonal ordered Ramsey number of N M}, up to constant factors:

Proposition 2. For any positive integer k,
4k — 2 < r-(N My, K3) < 6k.

Proof. The lower bound follows from a simple construction: color the ordered complete
graph on [4k — 2] such that {1,...,2k—1} and {2k, ..., 4k — 2} form two red cliques, and
all remaining edges are blue. Then there are no blue triangles, and no red edge {i, j} has
li — j| > 2k — 2, so there cannot be a red ordered matching on 2k vertices.

For the upper bound, pick an arbitrary bicoloring of the ordered complete graph on
[6k]. Suppose the graph contains no blue copies of K3. If any vertex has blue degree at
least 2k, then there is a red clique of size 2k, which must contain N Mj. Otherwise, the
number of blue edges is at most 6k*. Hence, the number of red edges is at least 12k? — 3k.
Let Er be the set of red edges, and define a strict partial order on Er as follows: for any
{i,j},{l,m} € Eg withi < jand [ <m,let {i,5} <{l,m}ifl <i < j<m. We wish to
show that there is a chain of edges eq,...,ep with e; < -+ < e;.

For the sake of contradiction, suppose the contrary, so every chain has length at most
k—1. Define a function L: Fr — {1,...,k—1} where L(e) is the longest chain ending at e.
Observe that L™!(n) is an anti-chain for each n € [k—1]. That is, for any e;,es € L™!(n),
we cannot have e; < es nor ey < e;.

Applying the pigeonhole principle, fix some n such that [L7!(n)| > 12k. Let S be the
set of indices i € [6k] such that {i,j} € L™'(n) for some j > i. Then for each i € S, let a;
be the minimum index j > 4 such that {i,j} € L™'(n), and let b; be the maximum such
index. Then »_, ¢(b; +1—a;) > [L7'(n)| > 12k, so Y, ¢(b; — a;) > 6k. Equivalently,

bsm — Qo T Z(bsl—l - asz) > 6k
=1

where s, ..., S, are the elements of S in increasing order. Since b,,, —as, < 6k, it follows
from the inequality that b,,_, > a,, for some [. But then s;_; < s5; < a5, < bs,_,, so edges
{s1_1,bs,_,} and {s;,a,} are comparable. This contradicts our claim that L~!(n) is an
anti-chain, so there must be a chain of length at least k. The edges in the chain comprise
the red embedding of N M}, into the graph. O]
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We believe that the upper bound is far from optimal. In particular, we make the
following conjecture, based on checking by casework that the above lower bound is tight
for k € {1,2,3}.

Conjecture 3. For any positive integer k,
r<(NMy, K3) =4k — 1.

The nested matching can be used to bound the corresponding ordered Ramsey num-
bers for a more general class of ordered matchings. As we will build up more complex
parenthesis matchings from simpler ones, we need a way to keep track of the growth of
r<(M, K3). One approach is the following lemma:

Lemma 4. Let Ay, ..., Ag,_1 be (possibly empty) balanced parenthesis sequences inducing
ordered matchings My, ..., Ms,_1. Then

(A1 (A2(- - (Ap-1(Ag) Agt1) - -+ ) Azg—2) Agg—1)
1s a balanced parenthesis sequence which induces some ordered matching M, with
r<(M, K3) < ro(NMyy, K3),
where t = Ele max (7o (M;, K3),r<(May_;, K3)).

Proof. Pick an arbitrary bicoloring of the ordered complete graph on [ro(N My, K3)].
Assume that there is no blue copy of K3. Then there is a red copy of NMj,. Starting
with the innermost edge of this red copy of N M., and working outwards, delete as many
matched pairs as necessary until there is space for a red copy of M. Every deletion
increases the number of inner vertices by at least one, so there will be space after at most
r<(My, K3) steps. Save the current innermost matched pair (which will correspond to the
parentheses around Ay), and continue deleting subsequent matches until there is space for
a red copy of My_; (to the left of the saved match) and a red copy of M1 (to the right of
the saved match). The number of deletions is at most max(r-(Mjy_1, K3),r< (M1, K3));
save the new innermost match.

Repeating the above process k — 2 more times yields a complete red copy of M. Note
that the process does not run out of matches, since only £ matches are saved, and at most
t matches are deleted. O]

In the above lemma, the ordered Ramsey number of each ordered matching M; is
multiplied by a constant factor arising from the ordered Ramsey number of a nested
matching N M,,. It is possible to decrease the dependence on the central ordered matching
M, in exchange for larger constants on the remaining ordered matchings and on the length
of the ordered matching.

Lemma 5. Let Aq, ..., Aox_1 be balanced parenthesis sequences inducing ordered match-
mgs My, ..., Msp_1. Let M be the parenthesis matching induced by the expression

(A1 (A2 (Ap-1(Ag) Apgr) - -+ ) Ag—2) A1)
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Ifl = Z#k r<(M;, K3) and t = r(My, K3), then
re(M, K3) < t+20(k + 1+ | My|).

Proof. Pick an arbitrary bicoloring of the ordered complete graph on [t +20(k+ 14 | My])].
Assume that there is no blue copy of K3. Let X denote the first 10(k + 1+ |My|) vertices;
let Y denote the next ¢ vertices; and let Z denote the remaining 10(k + [ + | My|) vertices.
Observe that Y contains a red copy of M.

Suppose that there is a red copy of N My, in X U Z, where the first k + [ vertices are
in X and the remaining k£ + [ vertices are in Z. Then, just as in Lemma 4, we can start
with the innermost edge and work outwards, deleting edges to make space for red copies
of My,...,My_1 and Mgy, ..., Ms,_1. Only [ edges need be deleted, and by the end, the
ordered graph X UY U Z contains a red copy of M.

Now suppose the converse, so the maximum number of edges in a nested matching
between X and Z is less than k + [. As in Proposition 2, define the natural strict partial
order on the red edges between X and Z. A set of nested edges forms a chain, and the
largest anti-chain contains no more than | X |+ |Z| = 20(k + 1+ | M|) red edges. We know
that the red edges can be partitioned into less than k£ + [ anti-chains, so the number of
red edges between X and Z is at most 20(k + [ + |M}|)(k + 1), which we upper bound by
20(k + 1+ | Mg|)2.

Thus, the number of blue edges between X and Z is at least 80(k + [ + | My|)?. Hence
there must be a vertex v € X with at least 8(k + [ + |My|) blue edges into Z. Since
the graph was assumed to be blue Kj-free, it follows that the set of blue neighbors of v
forms a red clique of size 8(k + 1+ |My|). As |[M| < 8(k + 1+ |Myl|), we conclude that the
bicoloring contains a red copy of M. O]

Every parenthesis matching is in a bijection with an ordered, rooted tree. In particular,
for any rooted tree on s vertices, in which the children of each vertex are ordered, there
is a unique Euler tour of the tree which starts and ends at the root, and respects the
orderings. The tour is a list of edges, each with an orientation: either away from the
root, or towards the root. Replacing each edge oriented away from the root with an open
parenthesis, and each edge oriented towards the root with a close parenthesis, yields a
balanced parenthesis sequence of length 2n — 2. Conversely, every balanced parenthesis
sequence can be treated as an Euler tour, and in this way defines a tree. It can be
seen that the described correspondence is a bijection. We've already shown that balanced
parenthesis sequences correspond to parenthesis matchings, so we get the desired bijection
between parenthesis matchings and ordered, rooted trees.

Reinterpreting Lemma 5 in light of this bijection, it allows us to bound the off-diagonal
ordered Ramsey number of an ordered, rooted tree by the ordered Ramsey numbers of
all the branches off any path. Intuitively (and we will formalize the intuition later), this
bound is strong on unbalanced trees and weak on well-balanced trees. For the latter
case, we have the following simple lemma. While it is a special case of the above lemma
aside from unimportant constant factors, we will use it for a different purpose (namely,
well-balanced trees), so we state it separately for clarity.
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Lemma 6. Let A be a balanced parenthesis sequence inducing the ordered matching M.
Then (A) is a balanced parenthesis sequence inducing some ordered matching M’, and

T’<(A]\4,7 K3) < T<(M, Kg) + |M/| + ].

Proof. Let t = r-(M, K3) and let n be the number of vertices in M’. Pick an arbitrary
bicoloring of the ordered complete graph on [t4+n+1]. Suppose there are no blue triangles.
Then there is a red copy of M in {2,...,t+ 1}. So if there is a red edge from 1 to any of
{t+2,...,t+n+ 1}, we have found a red copy of M’. Otherwise, every edge from 1 to
{t+2,...,t+n+ 1} is blue, so {t +2,...,t +n+ 1} forms a red clique of size n, which
must contain M’. |

With the above lemmas, we can prove a subquadratic bound on the ordered Ramsey
numbers of all parenthesis matchings. Two convexity results are needed; we postpone
their proofs to Appendix A.

Lemma 7. Let ag,ai,as,...,a = 0 and 6 > 1 and m > 0 be real numbers. Let r =
m~YON Ifs = Zf:o a; > 1 and a; < rs for all 1 <i <k, then

m(ag + cal + -+ +cal) < cs°
for any ¢ > m.

Lemma 8. Let ay,...a; = 0 and 6 > 1 be real numbers. Let r € (0,1). If s = Zle a;

and a; < rs for all 1 < i< k, then

al 4+ ay <r'lsd

In the following proof we will use the bijection between parenthesis matchings on n
vertices and ordered rooted trees of size s = n/2 + 1. The basic idea is to induct on tree
size and decompose the tree into smaller trees by one of two methods, depending on the
relative weights of the root’s child subtrees.

For a real number r € (0,1), call an edge r-heavy if Sehiia = 7+ Sparent; Where Sepiq is
the size of the child subtree and Sparent is the size of the parent subtree. If the inequality
does not hold, call the edge r-light. Similarly call a vertex r-heavy or r-light if its parent
edge is r-heavy or r-light, respectively.

If all children of the root are r-light for an appropriate choice of r (slightly less than
1), we apply the inductive hypothesis to each child separately, and use Lemma 6 to obtain
a bound for the entire tree. Since every child subtree is a constant factor smaller than
the entire tree, the lemma intuitively yields a sufficiently good recurrence.

If however the root has an r-heavy child, Lemma 6 does not suffice. Instead we trace a
path of heavy edges from the root down, decomposing the tree into a number of branches,
as well as possibly some subtrees at the tail end of the path. Here we use Lemma 5.
We know that every branch is (1 — r)-light, so can afford to multiply the sum of ordered
Ramsey numbers of the branches by 20 in the lemma. We only know the tail subtrees to
be r-light, which is why they are treated differently in the lemma.

Formalizing the above proof sketch requires some manipulation of inequalities and
applications of Lemma 7 and Lemma 8. We work through these below.
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Theorem 9. For any € > 0 there is a constant ¢ such that every parenthesis matching M
on n vertices has r-(M, K3) < en'*.

Proof. Let € > 0. Set r = 1 — 2372/¢_ and set ¢ = 23/(1 — 7). A parenthesis matching
on n vertices uniquely corresponds with an ordered rooted tree of size s = n/2 + 1. We
induct on the tree size s. If s = 1, the corresponding ordered matching is the empty
matching on 0 vertices, for which the claim is trivially true. Fix an ordered rooted tree of
size s > 1, corresponding to an ordered matching M. There are two cases which we will
treat separately; either the tree root has an r-heavy child, or not.

Suppose that the tree root does not have an r-heavy child. Let sy, ..., s, be the sizes
of the child subtrees of the root. Let My, ..., M} be the ordered matchings corresponding
to the respective subtrees, and let t; = r-(M;, K3) for each i € [k]. With a slight abuse
of notation, identifying the ordered matchings with their parenthesis sequences, we have

M = (My)(Ms) . .. (My).

Lemma 6 provides the bound r-((M;), K3) < t; + 2s; + 1. Since the ordered Ramsey
number of a union of ordered graphs on disjoint intervals of vertices is subadditive, it
follows that

k k k
(M E3) <> (ti+25i+1) <3s+ > <35+ > _csi',
=1 =1 =1

where the second inequality follows from grouping like terms, and the third inequality
follows from the inductive hypothesis. By the assumption that every subtree is r-light,
we have s; < rs for 1 < ¢ < k. Hence, Lemma 8 applies to sy,...,s, with parameters
0 =1+ € and r, and yields

k
r<(M,K3) < 3s+ chiHE < 3s + erfstte L estt

The last step follows since ¢ was chosen to be sufficiently large.

The remaining case to consider is if the tree root has a heavy child. Then there is
some path which starts at the root and consists entirely of heavy edges (possibly only
one edge, or possibly more). Let s,...,s% be the sizes of all subtrees which branch off
the heavy path, and let s" be the (vertex) size of the heavy path. Let M?,... M} be the
corresponding ordered matchings, and let t? = r_(M?, K3) for each i € [k]. For ease of
notation, suppose that the deepest vertex in the heavy path has &’ children, and its child
subtrees are indexed 1,...,k". The whole ordered matching M can be decomposed into a
nested matching along with embedded ordered matchings (M?}), ..., (M}P). For instance,
if k=3 and k¥’ = 1 then one possibility is M = ((M2)(()(M}))(M?)). By Lemma 6, the
following bound holds for every embedded ordered matching M?:

re((M7), K3) < t] + 357,
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So by Lemma 5, we have

k' K
r<(M,K3)<Z(tb+3s)+20<s + Z (£ + 3s?) —|—Zs>.

i=1 =k/+1 i=1
By the inductive hypothesis, it follows that

k_/

(MK < ST () 4+ 350)
i=1
k/
+20 (s + Z ( 1+6 38?)—1—28?).
i=k'+1 i=1

s? into the outer constant factor

Reordering terms and absorbing the term 3 Zf K1 Si

through the bound ¢ > 20, we get
K K
r<(M,K3) < CZ (sf)H€ + 23232’
i=1 i=1
k
+23 (sh +c Z (s?)HE) . (1)

i=k'+1

To bound the first two terms of Equation 1, we observe that for each i < &/, subtree
i is r-light, and therefore s® < rs. An apphcatmn of Lemma 8, along with the bound
cre + 23 < ¢, gives

K K K Ire K
cz (sf)He—i—QBZsi7 <oere <Z sf) +2323§’
i=1 i=1

i=1 i=1
& 1+€
<c (Z sf) : (2)
i=1

For the remaining terms of Equation 1, observe that for any i > k', subtree i has an

r-heavy sibling, so s? is at most 1 — r times the parent’s subtree size, and therefore at

most (1 — r)s. We will use one of two approaches (below, A and B) depending on the
cumulative weight of these subtrees.

A. If sh —1—2] w1 S0 = 2371, then we can bound s? < 23Y¢(1 —r) (3 +Z] W S ) for
all i > k’. We know that ¢ > 23 and 23'/¢(1—r) < 237Y/¢, so an application of Lemma 7

yields
k k 14€
23 <3h +c Z (s?) HE) <c (Sh + Z 5f> . (3)

i=k/+1 i=k"+1
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Figure 2: An ordered matching M with interval chromatic number 2, and corresponding
permutation 7(M) = (2,4, 1, 3).

Summing together the bounds from Equation 2 and Equation 3 and applying the most
basic convexity bound, we get the desired bound

k,/ 1+4€ k 1+E
T<(M,K3)<C<ZSS> —|—c<sh—i— Z sf)

i=1 i=k'+1
<L cs
B. If s" + Z?Zk,ﬂ st < 2371/¢s, then we are unable to bound s? against s" + Z? b

=k’+1 Sjv
but we know that the latter quantity is much smaller than s. So we instead use the

weak bound
k k 1+e€
23 (sh +e Yy (sf)l+€> < 23c <8h + ) sf) : (4)

i=k'+1 i=k'+1

Now we combine Equation 2 with Equation 4, using the simple inequality (1 — z)**¢ +
23z < 1 for 2 € (0,237/¢), and obtain

k/ 1+4e€ k 1+e
r<(M,K3) <c (Z sf) + 23c (sh + Z sf)

i=1 i=k/+1
1+€
L cs e

This completes the induction. O

3 Random Ordered Matchings with x(M) = 2

Recall that the interval chromatic number x-(G) of an ordered graph G is the minimum
number of contiguous intervals into which the vertex set must be split so that each interval
is an independent set in G.

In this section, we show that for almost every ordered matching M with interval chro-
matic number 2, the bound of O(n?/logn) on r-(M, K3) can be beaten. More specifi-
cally, we exhibit a condition on M which is sufficient to guarantee an improved bound
on r-(M, K3), and then prove that a random ordered matching with interval chromatic
number 2 satisfies this condition with high probability.

The set of ordered matchings on 2n vertices with interval chromatic number 2 is
in bijection with the set of permutations S,, and it is often notationally convenient to
examine the permutation corresponding to a given ordered matching. See Figure 2 for an
example.
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Definition 10. Let M be an ordered matching on [2n] with interval chromatic number
2. Then its corresponding permutation w(M) is the permutation on [n] which maps i to
j —n for every edge {i,j} € M where i < j.

More generally, we will examine shifted permutations:

Definition 11. Given a permutation = € S, and an integer h > 0, let m + h be the
sequence of length n defined by (7 + h); = w(i) + h. Call 7 + h a shifted permutation.

We are interested in measuring the overlap between a permutation and its shifted
permutations, which necessitates two more definitions.

Definition 12. We say that an integer sequence (a4, ..., a,) contains an ezact pattern p
if p is an integer sequence of length k, and there are indices 1 < 73 < --+ < 4 < n such
that a;; = p; for all j.

For instance, the sequence (and permutation) (3,5, 6, 1,2,4) contains the exact pattern
(6,1,4) but does not contain the exact pattern (1,2, 3).

Definition 13. Let a,b € Z" be integer sequences. Define the ordered intersection of a
and b, denoted Int(a, b), to be the largest integer k such that both a and b share an exact
pattern of length k.

In the theorem below, we do something slightly stronger than bounding the ordered
Ramsey number r_ (M, K3) for certain ordered matchings M. Rather, we show that in
a blue K3-free ordered graph on [2n], there is a tradeoff between finding a red copy of
the ordered matching M in the bipartite subgraph [1,n] U [n + 1, 2n] and finding a large
red clique (which of course contains every ordered matching of that size) in [1,n] or
symmetrically in [n + 1, 2n].

Observe that a trivial claim, following immediately from unordered Ramsey theory,
is “every bicoloring of the ordered complete graph on [2n] contains either a blue triangle
of a red clique of size ©((nlogn)/?).” This is of course the best possible claim, in that
r(n,3) = ©(n?/logn). The following theorem shows that the claim can be improved—
that is, there is a red clique of size w((nlogn)/?)—under an added assumption about
the absence of a red ordered matching satisfying certain conditions. Using the above
definitions, the condition is that the ordered matching’s corresponding permutation (M)
has sufficiently low ordered intersection with each shifted permutation 7w (M) + h.

Theorem 14. Fize € (0,1) and o, B > 0 with a+ < €/4. Let M be an ordered matching
on 2n/?t wertices with interval chromatic number 2, such that the corresponding per-
mutation ™ = ©(M) satisfies Int(7 (M), 7(M) + h) < n0=91/2+2) for every h € [n'/?+2].
Then every bicoloring of the ordered complete graph on [2n] contains either:

e a blue copy of K3,

=
+
sy

n2
4 27

e a red copy of K,,, where p =
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nl/2+a +ne/4 -

v(0) v(0) v3(0)

Figure 3: One possibility for the set of segments F'(0) in the blue adjacency matrix, if
(M) =(2,4,1,3).

e a red copy of M within the bipartite subgraph [1,n]U [n + 1,2n].

Proof. Fix a bicoloring C' of the ordered complete graph on [2n]. We use C(i, j) to denote
the color of edge {i,j}. Suppose that the coloring contains none of the hypothesized blue
or red structures. Then in particular, for 0 < i < n — n'/?** we know that there are no
red copies of M between [1,n] and [n + i+ 1,n + i + n'/2+e],

Fix some nonnegative integer i < n*. Let v,(4) be the first vertex in [n] such that
C(v1(i),n +i+7(1)) is red (or vy(i) = oo if no such vertex exists). Let vqy(i) be the first
vertex in [n] after vy () such that C'(ve(i), n+i+m(2)) is red (or, again, v(i) = oo if no such
vertex exists). Iteratively define v3(7),. .., v,1/24a(7) in the same way. Also let f(i) be the
first index at which vy(;(7) = co. By our assumption that [1,n]U[n+i+41,n+i+n'/2]
is red M-free, this index exists.

The vertices vy (i), ..., vf@s)-1(4) demarcate f(i) blue segments in the adjacency matrix
of [1,n)U[n+1, n+n'/?**4n4]). That is, for 1 < j < f(i) we have that C(k,n+i+m(j)) is
blue for all v;_1 (i) < k < v;(i) (where for convenience we set vy(i) = 0 and vy(;)(i) = n+1).
Treating C' as an (n'/?*® 4 n/*) x n matrix, each segment is in a distinct row, and the
segments occupy distinct intervals of columns, covering a total of at least n — n!/?+®
columns. If any segment had length at least n'/?*#, then some vertex would have n'/?+#
blue edges, so the coloring would contain either a blue triangle or a red K,i/215. So
henceforth we assume that every segment has length at most n'/2+5.

For each nonnegative integer i < n%, let F(i) be the set of f(i) blue segments as
defined above (see Figure 3 for an example). We seek to lower bound the number of blue
edges in F(i) which are not contained in any F(i') for i’ < i. So fix i’ < i < n“/*. Suppose
that there are k segments in F'(i) which intersect with segments in F'(7').

Since each segment in F'(i) is in a different row, as is each segment of F'(i'), each of
the k intersecting segments in F'(i) intersects with a unique segment in F'(i'). Suppose
that s1,s2 € F(i) and t1,ts € F(i') where s; intersects ¢; and s, intersects to. Then
row(s;) = row(t1), and row(sy) = row(tz). And since the segments F(i) hit disjoint
intervals of columns, as do the segments F'(i'), we have that columns(s;) is “left” of
columns(ss) in the adjacency matrix if and only if columns(?;) is “left” of columns(t).
So the k intersecting segments define an exact pattern in both 7 + ¢’, which describes
the row indices of the segments F'(i'), and 7 + ¢, which describes the row indices of the
segments F(i). It follows that k is at most Int(m, 7 + ¢ — ¢’), which is by assumption
at most n(!=91/2+%) " Summing over all i’ < 4, at most in(!~91/2¥®) seoments in F (i)
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intersect with previous segments.
Every segment has length at most n'/>*# by assumption. Thus, for each i < n“/*, the
blue segments in F'(i) contribute at least

n — pl/2te _ pa(=(/24a) 1248 _ ) p1/24a o 1-¢/24B+(1-€)a

new blue edges. When i = 0 the contribution is n —n'/?T®: when i = n/4, the contribution
is at least —n'/?*®. The contributions decrease linearly, so in total there are at least
nite/t /2 — pl/2+ate/4 hlue edges in the bipartite graph [1,n] U [n 4+ 1,n + n®t1/2 4 ne/4],
The number of vertices in the second part of the bipartite graph is n®t%/2 4+ n</4, which
is at most 2n®*/2. So dividing the number of blue edges by 2n®*t1/2 and applying the
bound o + 3 < €/4, it follows that some vertex has blue degree at least n'/?*5 /4 —n/*/2,
implying that there is either a blue triangle or a red clique of size n'/?*# /4 —n/4/2. O

We seek to show that for random permutations 7 and for any integer h, the ordered
intersection of m with the shifted permutation 7 + h is sublinear in the length of 7 with
high probability.

The general outline of the proof is as follows. We bound the expected number of long
exact patterns contained in both 7 and 7 + h. To do so, we of course sum over all long
exact patterns, splitting into two cases. If the exact pattern p has small intersection with
p + h, we can straightforwardly obtain a good bound on the probability that p embeds
into both permutations. However, if p has large intersection with p 4+ h, we cannot do so.
Instead we show that the number of such exact patterns is extremely small.

The following lemma formalizes the last step of the above outline. Note that any exact
pattern contained in a permutation = € S, is an ordered subset of [n]. Hence, to show
that there are very few exact patterns p contained in both 7 and 7 + h and satisfying the
condition that p has large intersection with p + h, we can show that if an ordered subset
of [n] is picked uniformly at random, then those conditions occur with low probability.

Lemma 15. Fiz positive integers n, k < n, and h. Let p be an ordered subset of [n]
of length k, picked uniformly at random. Then the probability that the set intersection
pN(p+ h) has size at least t, and there exists some permutation ™ € S,, such that p and
p+ h are both exact patterns in w, does not exceed

22k—tkk—t
k!

Proof. Observe that it is possible to pick a size-k ordered subset of [n] uniformly at
random by two independent choices: first, pick an unordered subset of [n] with size k.
Second, pick some ordering for the subset. We will show that for any unordered subset
U C [n] with size k such that |[U N (U + h)| > t, if we pick an ordering on U uniformly at
random and thereby induce an ordered subset p, then the probability that there exists a
permutation 7 in which p and p+ h are both exact patterns does not exceed 2% ~'kF=t /k!.
This will prove the lemma.
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Fix any U C [n] with |U| = k and |U N (U + h)| > t. The number of elements a € U
such that a — h € U does not exceed k — t, so U can be partitioned into at most k — ¢
arithmetic progressions, each with common difference h.

Pick some permutation o € Sj. This yields an ordering of U, in which the smallest
element of U is placed in position o(1), and so forth. Hence, an ordered subset p is
induced. Suppose that the ordering is compatible: that is, p and p 4+ h are both exact
patterns in some permutation 7. Since p and p+h fix the order in 7 of the sets of elements
U and U + h respectively, it must hold that U N (U + h) has the same order in p and p+ h.
Pick any arithmetic progression {a+ih}", C U. We have that a+ih precedes a+ (i+1)h
in p if and only if a+ih precedes a+ (i+1)h in p+ h, or equivalently a+ (i — 1)h precedes
a + th in p. So the arithmetic progression must either have a monotone increasing order
or a monotone decreasing order in p.

The key observation was that for any a,b € U where neither a nor b is the first term
in its arithmetic progression, a precedes b in p if and only if a — h precedes b — h. We
use this observation to bound the total number of compatible orderings. There are 2F~*
ways to assign a direction to each progression, either monotone increasing or monotone
decreasing. Fix one such assignment, and suppose that my,. progressions are monotone
increasing. There are at most 2* ways to pick the subset of locations Li,. C [k] to which
the increasing-ordered progressions are assigned. It remains to pick an embedding of
the increasing-ordered progressions in Lj,., and an embedding of the decreasing-ordered
progressions in [k] \ Li,.. The two cases are symmetric, so we consider the increasing-
ordered progressions.

For notational convenience, arbitrarily index the increasing-ordered progressions as

A, ..., Ap,,.. Now define a map ® : Sz, | — Lin» from embeddings of the increasing-
ordered progressions into Li,. (which are in bijection with the permutations S|, |) to
tuples (vq,...,Vm,.), where v; is the index assigned to the first element of progression A;.

We claim that the restriction of ® to compatible embeddings is injective. Pick two
different compatible orderings of U, inducing exact patterns p; and py, and assume for
the sake of contradiction that ®(p;) = ®(p,). Suppose that j is the first index at which p;
and po differ. By assumption, the first term of each arithmetic progression has the same
index in p; and py. Therefore neither p;(j) nor pa(7) is a first term in its progression. Now
observe that p;(j) precedes po(j) in p1, but po(j) precedes pi(j) in pa. Hence, p1(j) — h
precedes po(j) — h in p1, and in py the opposite holds. However, pi(j) — h and pa(j) — h
are both in the first j — 1 terms of p;, which are equal to the first j — 1 terms of py. So one
of the relative orderings is impossible! Contradiction, so the restriction of ® is injective.

Thus, there are at most |Li,|™" ways to compatibly embed the increasing-ordered
progressions into Liy., and similarly there are at most (k — | Line|)* " ™nc ways to embed
the decreasing-ordered progressions into [k] \ Lin. So the total number of compatible
orderings is at most 2¥7*2¥k*~*  Since the total number of orderings is k!, the result
follows. [

Now we can prove our desired result on random permutations.
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Lemma 16. Fix some a > 0 and some positive integers n and h. If m € S, is a
permutation chosen uniformly at random, then

n2/3+a

Pr [Int(ﬂ',w +h) = n2/3+a} < (€5n73a/2)

Proof. The event Int(7, 7 +h) > n?/3+ occurs if and only if the number of exact patterns
of length n?/3+® contained in = and = + h is at least 1. By Markov’s inequality, the
probability of this event is at most the expected number of such exact patterns. Every
such exact pattern is a size-n?3+ ordered subset of [n], so to bound the expected number
of exact patterns, we sum over such ordered subsets.

Let k = n?/3t®. Pick any ordered subset p C [n] of size k. Then p is contained in both
7w and 7+ h, for any permutation = € S, if and only if p and p — h are both contained in
7. If the smallest element of p is less than h + 1, then p — h cannot be contained in any
permutation, so assume the contrary.

The probability that p and p — h are both exact patterns in a random permutation
7 € S, is at most the probability that p N (p — h) and p\ (p — h) and (p — h) \ p are all
exact patterns in 7. Here, the intersection/difference of two ordered subsets is taken to
be the set-theoretic intersection/difference, ordered according to whichever exact pattern
contains the set (and picking either pattern if both contain the set). But these three
ordered subsets are disjoint, so the corresponding events are independent. Suppose that
m(p) = |pN (p— h)|. Since a fixed size-r ordered subset of [n] is contained in a random
permutation with probability 1/r!, we have that p N (p — h) is contained in a random
m € S, with probability 1/m(p)!. Similarly, each of p\ (p — h) and (p — h) \ p has size
k —m(p), and therefore is contained in a random 7 € S,, with probability 1/(k —m(p))!.
By independence, the probability that all three ordered subsets are contained in a random

T €S, 1s at most
1 1

m(p)! (k—m(p)*

This is an upper bound on the probability that p and p — h are both contained in a
random permutation 7w € S,,. Observe that as a function of m, the above fraction is largest
when m(p) ~ k—+/k, and is increasing on [1, k—+v/k] and decreasing on [k—+/k, k]. Hence,
the bound is strong for m(p) small. Summing over all exact patterns p with m(p) < k/2,
and using the trivial bound that the number of exact patterns is n!/(n —k)!, we have that

n!
(n—k)(k/2)13

E [# contained patterns p with m(p) < k/2] <

The expectation is taken over permutations m € S,,, and a “contained pattern” is an exact
pattern p such that p and p — h are contained in 7.

To bound the expectation for patterns p with m(p) > k/2, we first discard the patterns
p for which there is no permutation 7 containing both p and p — h. Now Lemma 15 gives
that the number of remaining patterns is only

okEk/2 _(n
k! (n—k;)!_ k

>2kkk/2.
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Using this result and assuming the worst case that m(p) = k — Vk, we get

n ok k2
E [# contained patterns p with m(p) > k/2| < )
# patterns  with mi) > 1/2) < () o7

Putting everything together, simplifying, and substituting k = n?/3+e,

! 2kkk/2
E [# contained patterns] < n + (n) :

(n—k)K/2)  \k) (k- VE)(VE!)?

nk(26)3k/2 nkok o2k+Vk
= kk/2(k — /k)k—VEEVE
nk(26)3k/2 nkoko2k+2vEk

= L:3k/2 Je3k/2

n2/3+a

< (€5n73a/2) . O

The above lemma and Theorem 14 imply the main result of this section—a sub-
quadratic bound on r-(M, K3) for random ordered matchings with interval chromatic
number 2—as a corollary.

Theorem 17. Let M be an ordered matching on 2m wertices with interval chromatic
number 2, picked uniformly at random. Then there is a constant ¢ such that

re(M, K3) < em®/13
with high probability.

Proof. Setting a = 4/Inm the statement of Lemma 16 becomes

Pr [Int(m, 7+ h) > e'm*?] < etml?

7T€Sm

Picking an ordered matching M on 2m vertices with interval chromatic number 2 uni-
formly at random, we have Int(m(M), 7(M) + h) < m?/3+4/m for all h € [m] with high
probability. Thus we can apply Theorem 14 with parameters ¢ = 1/3 — 4/Inm and
a=f=1/24—1/(2Inm) and n = ecm?/13, where c is chosen sufficiently large so that

n13/24—1/(21nm)/4 o nl/lZ—l/lnm/Q > 2m

and
o 13/24-1/(2Inm) > om.

So with high probability, every bicoloring of the ordered complete graph on [2n] contains
either a blue triangle or a red copy of M or a red clique of size at least 2m. O]
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4 Future Work

Many open questions about the ordered Ramsey numbers of ordered matchings remain.
Most significant, perhaps, is the original question posed by Conlon, Fox, Lee, and Sudakov:
does there exist some € > 0 such that r-(M, K3) < n®¢ for every ordered matching M
on n vertices? Based on our Theorem 17, a number of natural intermediate questions
arise. In particular, a reasonably modest step beyond random ordered matchings with
X<(M) = 2 would be the following:

Conjecture 18. For every x, there is a constant €(y) > 0 such that
re(M, K3) < O(n*~ W)

for almost every ordered matching M on n vertices with interval chromatic number
X<(M) = x.

Conversely, we are curious how far from the truth the exponent % in our Theorem
17 is. It seems plausible that our argument can be optimized to produce a significantly
better bound, and we do not know of any lower bounds for this class of ordered matchings
that come anywhere near this bound.

Regarding parenthesis matchings, we were unable to find a family for which - (M, K3)
is superlinear, leaving a slight gap beneath our upper bound. Such a construction would
be quite interesting to us.
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A Convexity Inequalities

We provide here proofs of Lemma 7 and Lemma 8.

Lemma 7. Let ag,a1,as,...,a; = 0 and 6 > 1 and m > 0 be real numbers. Let r =
m~Y/0-1), If s = Z?:o a; =1 and a; < rs for all 1 <i <k, then

m(ag + cal + - - -+ cal) < cs°
for any ¢ = m.

Proof. Suppose that 0 < a; < a; < rs for some distinct indices 1 < 4,7 < k. Since
f(z) = 2° is a convex function, if we decrease a; and increase a; by a common amount
min(a;, rs — a;), the left-hand side of the inequality increases, while the right-hand side
remains constant. Furthermore, the number of values a; which are equal to neither 0 nor
rs decreases. Hence, it suffices to prove the inequality in the case where no two such values
exist. Without loss of generality, we have a; = --- =a,,_1 =rsand a,4; = - - = a; = 0.
Observe that n — 1 = (s —ag — a,)/(rs).
Now we have
5

m(ag + cal + - -+ + cal) = mag + me(n — 1)(rs)’ + mead

6

= mag + mc(s — ag — a,)(rs)’ " + mea’,

< mag +me(s — ag)(rs)’
< cag + c(s — ag)s® !
< cs’

where the first inequality holds since a, < 7s, so mca® < mca,(rs)°"!; the second in-
equality holds by the assumptions ¢ > m and r = m~Y©®=D: and the third inequality
holds since s~ > 1. O

Lemma 8. Let ay,...,a; = 0 and § > 1 be real numbers. Let r € (0,1). If s = Zle a;

and a; < rs for all 1 <1< k, then

a‘f+---+ai < rdtsl,

Proof. Asin the previous lemma, we only need to prove the case where a; = - - -+a,_1 = rs
and a,y1 = --- = a; = 0, since all other cases can be sharpened into this one. As before
but dropping the agp-term, n — 1 = (s — a,,)/(rs). The bound is now simple:

A+t a = (n=1)(rs) +a

= (s a)(rs)"" + ]
ro1g0, L]

N
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