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Abstract

We classify surjective lattice homomorphisms W → W ′ between the weak or-
ders on finite Coxeter groups. Equivalently, we classify lattice congruences Θ on
W such that the quotient W/Θ is isomorphic to W ′. Surprisingly, surjective ho-
momorphisms exist quite generally: They exist if and only if the diagram of W ′ is
obtained from the diagram of W by deleting vertices, deleting edges, and/or de-
creasing edge labels. A surjective homomorphism W → W ′ is determined by its
restrictions to rank-two standard parabolic subgroups of W . Despite seeming nat-
ural in the setting of Coxeter groups, this determination in rank two is nontrivial.
Indeed, from the combinatorial lattice theory point of view, all of these classifica-
tion results should appear unlikely a priori. As an application of the classification
of surjective homomorphisms between weak orders, we also obtain a classification
of surjective homomorphisms between Cambrian lattices and a general construction
of refinement relations between Cambrian fans.
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1 Introduction

The weak order on a finite Coxeter group W is a partial order (in fact, lattice [2]) structure
on W that encodes both the geometric structure of the reflection representation of W and
the combinatorial group theory of the defining presentation of W . Recent papers have
elucidated the structure of lattice congruences on the weak order [21] and applied this
understanding to construct fans coarsening the normal fan of the W -permutohedron [22],
combinatorial models of cluster algebras of finite type [23, 25, 30], polytopal realizations
of generalized associahedra [9, 10], and sub Hopf algebras of the Malvenuto-Reutenauer
Hopf algebra of permutations [14, 15, 17, 22]. A thorough discussion of lattice congruences
of the weak order (and more generally of certain posets of regions) is available in [27, 28].

The purpose of this paper is to classify surjective lattice homomorphisms between
the weak orders on two finite Coxeter groups W and W ′. Equivalently, we classify the
lattice congruences Θ on a finite Coxeter group W such that the quotient lattice W/Θ is
isomorphic to the weak order on a finite Coxeter group W ′.

From the point of view of combinatorial lattice theory, the classification results are
quite surprising a priori. As an illustration of the almost miraculous nature of the sit-
uation, we begin this introduction with a representative example (Example 1.1), after
giving just enough lattice-theoretic details to make the example understandable. (More
lattice-theoretic details are in Section 4.)

A homomorphism from a lattice L to a lattice L′ is a map η : L → L′ such that
η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y). A congruence on a lattice L is an
equivalence relation such that

(x1 ≡ y1 and x2 ≡ y2) implies [(x1 ∧ x2) ≡ (y1 ∧ y2) and (x1 ∨ x2) ≡ (y1 ∨ y2)] .

Given a congruence Θ on L, the quotient lattice L/Θ is a lattice structure on the
set of equivalence classes where the meet C1 ∧ C2 of two classes is the equivalence class
containing x ∧ y for any x ∈ C1 and y ∈ C2 and the join is described similarly. When
L is a finite lattice, the congruence classes of any congruence Θ on L are intervals. The
quotient L/Θ is isomorphic to the subposet of L induced by the set of elements x such
that x is the bottom element of its congruence class.

We use the symbol l for cover relations in L and often call a pair x l y an edge
(because it forms an edge in the Hasse diagram of L). If x l y and x ≡ y, then we say
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Figure 1: The forcing rule for edge contractions in the weak order

(a) (b)

Figure 2: a: The defining presentation of W , encoded in an order ideal in the weak order.
b: Contracting two edges in the order ideal.

that the congruence contracts the edge xly. Since congruence classes on a finite lattice
are intervals, to specify a congruence it is enough to specify which edges the congruence
contracts. Edges cannot be contracted independently; rather, contracting some edge
typically forces the contraction of other edges to ensure that the result is a congruence.
Forcing among edge contractions on the weak order is governed entirely1 by a local forcing
rule in polygons . A polygon is an interval such that the underlying graph of the Hasse
diagram of the interval is a cycle. There are two top edges in a polygon, the two that
are incident to the maximum, and two bottom edges , incident to the minimum. The
remaining edges in the interval, if there are any, are side edges. The forcing rule for
polygons is the following: if a top (respectively bottom) edge is contracted, then the
opposite bottom (respectively top) edge must also be contracted, and all side edges (if
there are any) must be contracted. One case of the rule is illustrated in Figure 1, where
shading indicates contracted edges. (The other case of the rule is dual to the illustration.)

Example 1.1. Consider a Coxeter group W of type B3. Figure 2.a is a close-up of a
certain order ideal in the weak order on W . This ideal contains all of the information
about the Coxeter diagram of W . Namely, the presence of an octagon indicates an edge
with label 4, the hexagon indicates an edge with label 3, and the square indicates a pair
of vertices not connected by an edge.

The Coxeter diagram of a Coxeter group of type A3 has the same diagram, except
that the label 4 is replaced by 3. Informally, we can turn the picture in Figure 2.a into
the analogous picture for A3, by contracting two side edges of the octagon to form a
hexagon, as indicated by shading in Figure 2.b. If we take the same two edges in the
whole weak order on W , we can use the polygonal forcing rules to find the finest lattice
congruence that contracts the two edges. This congruence is illustrated in Figure 3.a.

1In a general lattice, forcing might be less local. (See [8].) The weak order is special because it is a
polygonal lattice . See [27, Definition 9-6.1], [27, Theorem 9-6.5], and [28, Theorem 10-3.7].
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Figure 3: a: The smallest congruence on W contracting the edges shaded in Figure 2.b.
b: The quotient modulo this congruence.

A priori, we shouldn’t expect this congruence to have any significance, but, surprisingly,
the quotient, shown in Figure 3.b, of the weak order modulo this congruence is isomorphic
to the weak order on a Coxeter group of type A3. (Recall from above that the lattice
quotient is isomorphic to the subposet consisting of elements that are at the bottom of
their congruence class.)

To recap: We start with the weak order on B3, look at some polygons at the bottom
of the weak order that encode the Coxeter diagram for B3, and näıvely contract edges of
these polygons to make one of the polygons smaller so that the polygons instead encode
the Coxeter diagram for A3. Miraculously, the contracted edges generate a congruence
such that the quotient is the weak order on A3.

In general, a diagram homomorphism starts with the Coxeter diagram of a Coxeter
system (W,S), deletes vertices, decreases labels on edges, and/or erases edges, and relabels
the vertices to obtain the Coxeter diagram of some Coxeter system (W ′, S ′). (When no
vertices are deleted, no labels are decreased, and no edges are erased, this is a diagram
isomorphism and when (W ′, S ′) = (W,S) it is a diagram automorphism .) For
brevity in what follows, we will say “a diagram homomorphism from (W,S) to (W ′, S ′)”
to mean “a diagram homomorphism from the Coxeter diagram of (W,S) to the Coxeter
diagram of (W ′, S ′).”

The first main results of the paper are the following theorem and several more detailed
versions of it.

Theorem 1.2. Given finite Coxeter systems (W,S) and (W ′, S ′), there exists a surjective
lattice homomorphism from the weak order on W to the weak order on W ′ if and only if
there exists a diagram homomorphism from (W,S) to (W ′, S ′)

Remark 1.3. A restriction of Theorem 1.2 to isomorphisms is well-known and extends to
a characterization of meet-semilattice isomorphisms of the weak order on many infinite
Coxeter groups. See [3, Corollary 3.2.6].
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Remark 1.4. The existence of surjective homomorphisms between weak orders is not
difficult to prove, a posteriori : We give explicit maps. However, the other results in the
classification need more machinery, specifically the machinery of shards, as explained in
Section 4. Furthermore, without the machinery of shards, we would not be able to find
the explicit homomorphisms that prove existence.

In order to make more detailed classification statements, we first give a factorization
result for any surjective lattice homomorphism between weak orders. Given a finite Cox-
eter group W and a standard parabolic subgroup WJ , the parabolic homomorphism
ηJ is the map taking w ∈ W to wJ ∈ WJ , where wJ is the parabolic factor in the usual
factorization of w as an element of the parabolic subgroup times an element of the quo-
tient. A parabolic homomorphism corresponds to a diagram homomorphism that only
deletes vertices from the diagram of W .

An atom in a finite lattice is an element that covers the minimal element 0̂. We will
call a homomorphism of finite lattices compressive if it is surjective and restricts to a
bijection between the sets of atoms of the two lattices. (The term is an analogy to the
physical process of compression where atoms are not created or destroyed but are brought
closer together. If η : L→ L′ is compressive, then η moves two atoms a1, a2 of L weakly
closer in the sense that the interval below η(a1)∨η(a2) has weakly fewer elements than the
interval below a1 ∨ a2.) In particular, a compressive homomorphism between weak orders
on Coxeter systems (W,S) and (W ′, S ′) is a surjective homomorphism W → W ′ that
restricts to a bijection between S and S ′. In Section 2, we prove the following theorem.

Theorem 1.5. Let η : W → W ′ be a surjective lattice homomorphism and let J =
{s ∈ S : η(s) 6= 1′}. Then η factors as η|WJ

◦ ηJ . The map η|WJ
(the restriction of η to

WJ) is a compressive homomorphism.

Parabolic homomorphisms and their associated congruences are well understood. (See
[21, Section 6].) The task, therefore, becomes to understand compressive homomorphisms
between Coxeter groups. To study compressive homomorphisms from (W,S) to (W ′, S ′),
we may as well take S ′ = S and require η to restrict to the identity on S. For each
r, s ∈ S, let m(r, s) be the order of rs in W , and let m′(r, s) be the order of rs in W ′.
Elementary considerations show that if η : W → W ′ is compressive, then m′(r, s) 6
m(r, s) for each pair r, s ∈ S. (See Proposition 2.6.) Thus a compressive homomorphism
corresponds to a diagram homomorphism that only erases edges from and/or reduces edge
labels on the diagram of W . More surprising, this property is sufficient to guarantee the
existence of a compressive homomorphism. The following theorem shows that Example 1.1
is typical, rather than unusual. Together with Theorem 1.5, it implies Theorem 1.2 and
adds additional detail.

Theorem 1.6. Suppose (W,S) and (W ′, S) are finite Coxeter systems. Then there exists
a compressive homomorphism from W to W ′, fixing S, if and only if m′(r, s) 6 m(r, s)
for each pair r, s ∈ S. If so, then the homomorphism can be chosen so that the associated
congruence on W is homogeneous of degree 2.
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We will review the definition of homogeneous congruences in Section 4. Informally, a
homogeneous congruence of degree 2 is a congruence that is determined by contracting
edges located in the order ideal of the weak order that describes the diagram of W ,
as in Figure 2. The situation is perhaps best appreciated by analogy: Showing that
W ′ is isomorphic to the quotient of W modulo a homogeneous congruence of degree 2
is analogous to finding that a graded ring R is isomorphic to another graded ring R′

modulo an ideal generated by homogeneous elements of degree 2. It should be noted,
however, that lattice congruences are in general more complicated than ring congruences
because the classes of a lattice congruence are not in general defined by an ideal. See
[1, Sections II.3–4].

Given (W,S) and (W ′, S) with m′(r, s) 6 m(r, s) for each pair r, s ∈ S, there may be
several homomorphisms from W to W ′ whose associated congruence is homogeneous of de-
gree 2. There may also be several homomorphisms whose congruence is not homogeneous.
(In these non-homogeneous cases, the degree of the congruence is always 3.) These several
possibilities are well-characterized, as we now explain. Elementary considerations show
that the restriction of a compressive homomorphism to any standard parabolic subgroup
is still compressive. (See Proposition 2.6.) It turns out that compressive homomorphisms
of Coxeter groups are determined by their restrictions to rank-two standard parabolic
subgroups.

Theorem 1.7. Let (W,S) and (W ′, S) be finite Coxeter systems with m′(r, s) 6 m(r, s)
for each pair r, s ∈ S. For each {r, s} ⊆ S, fix a surjective homomorphism η{r,s} from
W{r,s} to W ′

{r,s} with η{r,s}(r) = r and η{r,s}(s) = s. Then there is at most one homo-
morphism η : W → W ′ such that the restriction of η to W{r,s} equals η{r,s} for each pair
r, s ∈ S.

As will be apparent in Section 5, for each pair {r, s} ⊆ S with r 6= s, there are exactly(
a
b

)2
choices of η{r,s}, where a = m(r, s) − 2 and b = m(r, s) −m′(r, s). In Example 1.1,

there are four ways to choose all of the maps η{r,s}: For both pairs r, s with m(r, s) 6 3,
we must choose the identity map. For the pair r, s with m(r, s) = 4 and m′(r, s) = 3, there
are four choices, corresponding to the four ways to contract one “left” side edge and one
“right” side edge in the octagonal interval of Figure 2.a. Theorem 1.7 says, in particular,
that in the example there are at most four homomorphisms that fix S pointwise.

Combining Theorem 1.7 with Theorem 1.5 leads immediately to the following more
general statement.

Corollary 1.8. Let W and W ′ be finite Coxeter groups. A surjective homomorphism
from the weak order on W to the weak order on W ′ is determined by its restrictions to
rank-two standard parabolic subgroups.

The statement of Theorem 1.7 on the uniqueness of compressive homomorphisms,
given their restrictions to rank-two standard parabolic subgroups, is remarkably close to
being an existence and uniqueness theorem, in the sense that the phrase “at most one” can
almost be replaced with “exactly one.” The only exceptions arise when W has a standard
parabolic subgroup of type H3 such that the corresponding standard parabolic subgroup of

the electronic journal of combinatorics 26(2) (2019), #P2.23 6



W ′ is of type B3. In particular, adding the hypothesis that W and W ′ are crystallographic
turns Theorem 1.7 into an existence and uniqueness theorem (stated as Theorem 7.2).
Less generally, when W and W ′ are simply laced meaning that all edges in their diagrams
are unlabeled), the existence and uniqueness theorem holds, and in fact this simply laced
version of the theorem (Corollary 3.3) has a uniform proof, given in Sections 3–4. The
remainder of the classification is proved, type-by-type in the classification of finite Coxeter
groups, in Sections 5, 6, and 7.

Remark 1.9. It is disappointing that some of these proofs are not uniform. However, as
described above, the classification of surjective homomorphisms between weak orders on
finite Coxeter groups is itself not uniform. While nice things happen quite generally, the
exceptions in some types suggest that uniform arguments probably don’t exist outside of
the simply-laced case (Corollary 3.3). In particular, although Theorem 7.2 is a uniform
statement about the crystallographic case, there is no indication that the combinatorial
lattice theory of the weak order detects the crystallographic case, so a uniform proof would
be surprising indeed.

In Section 8, we use the classification of surjective lattice homomorphisms between
weak orders to classify surjective lattice homomorphisms between Cambrian lattices.
Cambrian lattices are quotients of the weak order modulo certain congruences called Cam-
brian congruences. A Cambrian lattice can also be realized as a sublattice of the weak
order consisting of sortable elements [24, 25, 30]. The significance of the Cambrian lattices
begins with a collection of results, conjectured in [23] and proved in [10, 24, 25, 30], which
say that the Cambrian lattices and the related Cambrian fans encode the combinatorics
and geometry of generalized associahedra of [6], which in turn provide a combinatorial
model [6, 7, 30, 31] for cluster algebras of finite type.

The classification of surjective lattice homomorphisms between Cambrian lattices,
given in Theorems 8.8, 8.10, and 8.11, parallels the classification of surjective lattice
homomorphisms between weak orders. The main difference is that the Cambrian lat-
tice results have uniform statements in terms of oriented diagram homomorphisms.
(However, our proofs rely on the non-uniform proofs given earlier for the weak order.) An
example of a compressive homomorphism between Cambrian lattices appears as Exam-
ple 8.2, which continues Example 1.1.

Interesting geometric consequences are obtained by combining the results of this paper
with [22, Theorem 1.1]. The latter theorem states that every lattice congruence Θ on the
weak order on W defines a polyhedral fan FΘ that coarsens the fan F(W ) defined by
the reflecting hyperplanes of W . The theorem also describes the interaction between the
combinatorics/geometry of the fan FΘ and the combinatorics of the quotient lattice. (In
type A, the fan FΘ is known to be polytopal [19] for any Θ, but no general polytopality
result is known in other types.) The fact that a surjective lattice homomorphism η : W →
W ′ exists whenever m′(r, s) 6 m(r, s) for each pair r, s ∈ S leads to explicit constructions
of a fan FΘ coarsening F(W ) such that FΘ is combinatorially isomorphic to the fan F(W ′)
defined by the reflecting hyperplanes of W ′. An example of this geometric point of view
(corresponding to Example 1.1) appears as Example 4.5.

Working along the same lines for surjective congruences between Cambrian lattices,
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we obtain refinement relationships between Cambrian fans (fans associated to Cambrian
congruences). We conclude the introduction by describing these refinement relationships
in terms of dominance relationships between Cartan matrices.

A Cartan matrix A = [aij] dominates a Cartan matrix A′ = [a′ij] if |aij| > |a′ij| for
all i and j. The dominance relation on Cartan matrices implies that m(r, s) > m′(r, s)
for all r, s ∈ S in the corresponding Weyl groups. In the following proposition, Φ(A)
is the full root system for A, including any imaginary roots. In this paper, we only
use the proposition in finite type, where there are no imaginary roots. The proposition
follows from known facts about Kac-Moody Lie algebras (see Section 9), and has also
been pointed out as [16, Lemma 3.5].

Proposition 1.10. Suppose A and A′ are symmetrizable Cartan matrices such that A
dominates A′. If Φ(A) and Φ(A′) are both defined with respect to the same simple roots
αi, then Φ(A) ⊇ Φ(A′) and Φ+(A) ⊇ Φ+(A′).

Proposition 1.10 may appear to be obviously false to someone who is familiar with
root systems. To clarify, we emphasize that defining both Φ(A) and Φ(A′) with respect
to the same simple roots means identifying the root space of Φ(A) with the root space of
Φ(A′) by identifying the bases {αi}. Thus we may restate the proposition as follows: The
set of simple root coordinate vectors of roots in Φ(A′) is a subset of the set of simple root
coordinate vectors of roots in Φ(A).

The refinement result on Cambrian lattices is best expressed in terms of co-roots, so
we rephrase Proposition 1.10 as Proposition 9.1, which asserts a containment relation
among dual root systems Φ∨(A) and Φ∨(A′) when we identify the simple co-roots instead
of the simple roots. The following result is proved by constructing (in Theorem 9.2) the
appropriate homomorphism from W to W ′ and using it to construct a homomorphism of
Cambrian lattices.

Theorem 1.11. Suppose A and A′ are Cartan matrices such that A dominates A′ and
suppose W and W ′ are the associated groups, both generated by the same set S. Suppose c
and c′ are Coxeter elements of W and W ′ respectively that can be written as a product of
the elements of S in the same order. Choose a root system Φ(A) and a root system Φ(A′)
so that the simple co-roots are the same for the two root systems. Construct the Cambrian
fan for (A, c) by coarsening the fan determined by the Coxeter arrangement for Φ(A) and
construct the Cambrian fan for (A′, c′) by coarsening the fan determined by the Coxeter
arrangement for Φ(A′). Then the Cambrian fan for (A, c) refines the Cambrian fan for
(A′, c′). Whereas the codimension-1 faces of the Cambrian fan for (A, c) are orthogonal
to co-roots (i.e. elements of Φ∨(A)), the Cambrian fan for (A′, c′) is obtained by removing
all codimension-1 faces orthogonal to elements of Φ∨(A) \ Φ∨(A′).

As mentioned above and as explained in [31, Section 5], Cambrian fans provide a
combinatorial model for cluster algebras of finite type. The cluster-algebraic consequences
of Theorem 1.11 are considered in [29]. Indeed, inspired by Theorem 1.11, the paper [29]
studies much more general cluster-algebraic phenomena related to dominance relations
among matrices.

the electronic journal of combinatorics 26(2) (2019), #P2.23 8



Remark 1.12. To the author’s knowledge, the first appearance in the literature of a non-
trivial surjective lattice homomorphism between finite Coxeter groups is a map found in
Rodica Simion’s paper [32]. (See Section 6.1.) Simion’s motivations were not lattice-
theoretic, so she did not show that the map is a surjective lattice homomorphism. How-
ever, she did prove several results that hint at lattice theory, including the fact that fibers
of the map are intervals and that the order-theoretic quotient of Bn modulo the fibers of
the map is isomorphic to Sn+1. It was Simion’s map that first alerted the author to the
fact that interesting homomorphisms exist.

2 Deleting vertices

In this section, we develop the most basic theory of surjective lattice homomorphisms
between weak orders, leading to the proof of Theorem 1.5, which factors a surjective
homomorphism into a parabolic homomorphism and a compressive homomorphism.

We assume the standard background about Coxeter groups and the weak order, which
is found, for example, in [3]. (For an exposition tailored to the point of view of this paper,
see [28].) As we go, we introduce background on the combinatorics of homomorphisms
and congruences of finite lattices. Proofs of assertions not proved here are found in [27,
Section 9-5].

Let (W,S) be a Coxeter system with identity element 1. The usual length function on
W is written `. The pairwise orders of elements r, s ∈ S are written m(r, s).

The symbol W will denote not only the group W but also a partial order, the (right)
weak order on the Coxeter group W . This is the partial order on W whose cover relations
are of the form w l ws for all w ∈ W and s ∈ S with `(w) < `(ws). The set T of
reflections of W is {wsw−1 : w ∈ W, s ∈ S}. The inversion set of and element w ∈ W is
inv(w) = {t ∈ T : `(tw) < `(w)}. An element is uniquely determined by its inversion set.
The weak order on W corresponds to containment order on inversion sets. The minimal
element of W is 1 and the maximal element is w0. We have w0 =

∨
S.

Given J ⊆ S, the standard parabolic subgroup generated by J is written WJ . This is,
in particular, a lower interval in W . The maximal element of WJ is w0(J), which equals∨
J . We need a second Coxeter system (W ′, S ′), and we use the same notation for W ′

as for W , with primes added to distinguish the groups. As a first step, we prove the
following basic facts:

Proposition 2.1. Let η : W → W ′ be a surjective lattice homomorphism. Then

1. η(1) = 1′ and η(w0) = w′0.

2. S ′ ⊆ η(S) ⊆ (S ′ ∪ {1′}).

3. If r and s are distinct elements of S with η(r) = η(s), then η(r) = η(s) = 1′.

4. If J ⊆ S, then η restricts to a surjective homomorphism WJ → W ′
η(J)\{1′}.

5. m′(η(r), η(s)) 6 m(r, s) for each pair r, s ∈ S with η(r) 6= 1′ and η(s) 6= 1′.
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Proof. A surjective homomorphism of finite lattices takes the minimal element to the
minimal element and the maximal element to the maximal element, so (1) holds.

Suppose s ∈ S has η(s) 6∈ S ′ ∪ {1′}. Then there exists s′ ∈ S ′ such that η(s) > s′.
Since η is surjective, there exists w ∈ W such that η(w) = s′. But η is order-preserving
and s 6 (s ∨ w), so η(s) 6 η(s ∨ w) = η(s) ∨ s′ = s′, and this contradiction shows that
η(S) ⊆ S ′ ∪ {1′}. We have

∨
η(S) = η(w0) = w′0. But

∨
J ′ < w′0 for any proper subset

J ′ of S ′, so S ′ ⊆ η(S), and we have proved (2).
To prove (3), let r and s be distinct elements of S with η(r) = η(s). Then 1′ = η(1) =

η(r ∧ s) = η(r) ∧ η(s) = η(r).
Applying η to w0(J) yields η(

∨
J), which equals

∨
s∈J η(s) = w′0(η(J) \ {1′}). Since

WJ is the interval [1, w0(J)] and η is order-preserving, η(WJ) ⊆ [1, w′0(η(J) \ {1′})] =
W ′
η(J)\{1′}. If w′ ∈ W ′

η(J)\{1′}, then since η is surjective, there exists w ∈ W such that

η(w) = w′. Then w0(J) ∧ w is in WJ , and η(w0(J) ∧ w) = w′0(η(J) \ {1′}) ∧ w′ = w′. We
have proved (4).

If η(r) 6= 1′ and η(s) 6= 1′, then (3) says that η(r) 6= η(s) and (4) says that η restricts
to a surjective homomorphism from the rank-two standard parabolic subgroup W{r,s} to
the rank-two standard parabolic subgroup W ′

{η(r),η(s)}. Thus |W{r,s}| > |W ′
{η(r),η(s)}|. This

is equivalent to (5).

Given J ⊆ S, for any w ∈ W , there is a unique factorization w = wJ · Jw that
maximizes `(wJ) subject to the constraints `(wJ) + `(Jw) = `(w) and wJ ∈ WJ . The
element wJ is also the unique element of W (and the unique element of WJ) whose
inversion set is inv(w) ∩WJ . Let ηJ : W → WJ be the map sending w to wJ . We call ηJ
a parabolic homomorphism . We now illustrate parabolic homomorphisms in terms of
the usual combinatorial representations for types An and Bn and in terms of the usual
geometric representation for type H3.

Example 2.2. We realize a Coxeter group of type An in the usual way as the symmetric
group Sn+1 of permutations of {1, . . . , n+ 1}, with simple reflections S = {si : i = 1, . . . n},
where each si is the adjacent transposition (i i+1). We write permutations π in one-line
notation π = π1π2 · · · πn+1 with each πi standing for π(i). Choose some k ∈ {1, . . . , n} and
let J = {s1, . . . , sk−1} ∪ {sk+1, . . . , sn}. The map ηJ corresponds to deleting the vertex sk
from the Coxeter diagram for An, thus splitting it into components, one of type Ak−1 and
one of type An−k. The map ηJ takes π to (σ, τ) ∈ Sk×Sn+1−k, where σ is the permutation
of {1, 2, . . . , k} given by deleting from the sequence π1π2 · · · πn+1 all values greater than k
and τ is the permutation of {1, 2, . . . , n+ 1− k} given by deleting from π1π2 · · · πn+1 all
values less than k+1 and subtracting k from each value. For example, if n = 7 and k = 3,
then ηJ(58371426) = (312, 25413). The map ηJ is similarly described for more general J .

Example 2.3. As usual, we realize a Coxeter group of type Bn as the group of signed
permutations . These are permutations π of {±1,±2, . . . ,±n} with π(−i) = −π(i) for
all i. The simple generators are the permutations s0 = (1 −1) and si = (−i−1 −
i)(i i+1) for i = 1, . . . , n − 1. A signed permutation π is determined by its one-line
notation π = π1π2 · · · πn, where each πi again stands for π(i). For J = {s0, . . . , sk−1} ∪
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Figure 4: a: Reflecting planes for W of type H3. b: Reflecting planes for W{s,t}. c:
Reflecting planes for W{r,t}. d: Reflecting planes for W{r,s}.

{sk+1, . . . , sn−1}, the map ηJ corresponds to deleting the vertex sk, splitting the diagram
of Bn into components, of types Bk and An−k−1. The map ηJ takes π to (σ, τ), where
σ is the signed permutation whose one-line notation is the restriction of the sequence
π1π2 · · · πn to values with absolute value less than k + 1 and τ is the permutation given
by restricting the sequence (−πn)(−πn−1) · · · (−π1)π1 · · · πn−1πn to positive values greater
than k, and then subtracting k from each value. For example, if n = 8, k = 4, and
π = (−4)(−2)71(−8)(−6)5(−3), then ηJ(π) = ((−4)(−2)1(−3), 2431).

Example 2.4. For W of type H3, we give a geometric, rather than combinatorial, descrip-
tion of parabolic homomorphisms. Figure 4.a shows the reflecting planes of a reflection
representation of W . Each plane is represented by its intersection with a unit sphere
about the origin. The sphere is considered to be opaque, so that we only see the side of
the sphere that is closest to us. The spherical triangles traced out on the sphere (including
those on the back of the sphere that we can’t see) are in bijection with the elements of
W . Specifically, the triangle corresponding to 1 is marked, and each w ∈ W corresponds
to the image of the triangle marked 1 under the action of w. Taking S = {r, s, t} with
m(r, s) = 5, m(s, t) = 3 and m(r, t) = 2, the reflecting planes of the reflections S are the
three planes that bound the triangle marked 1. The plane corresponding to s is nearly
horizontal in the picture and the plane for r intersects the plane for s at the left of the
triangle marked 1.

The parabolic congruence that deletes the vertex r can be seen geometrically in Fig-
ure 4.b, which shows the reflecting planes for the standard parabolic subgroup W{s,t}. The
sectors cut out by these planes correspond to the elements of W{s,t}, as shown in the pic-
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ture. The parabolic congruence maps an element w ∈ W , corresponding to a triangle T ,
to the element of W{s,t} labeling the sector containing T . Similar pictures, Figures 4.c–d,
describe the parabolic congruences deleting the vertices s and t respectively. (Some labels
are left out of the representation of W{r,s} in Figure 4.d.)

The following theorem is a concatenation of [21, Proposition 6.3] and [21, Corol-
lary 6.10]. The fact that ηJ is a lattice homomorphism was also established in [11].

Theorem 2.5. If J ⊆ S, then ηJ is a surjective homomorphism. Its fibers constitute the
finest lattice congruence on W with 1 ≡ s for all s ∈ S \ J .

Proposition 2.1 and Theorem 2.5 lead to the proof of Theorem 1.5. To give the
proof, we need the following basic observation about a congruence Θ on a finite lattice L:
Congruence classes are intervals, and the quotient L/Θ is isomorphic to the subposet of
L induced by the elements of L that are the bottom elements of congruence classes. Let
ΘJ be the congruence whose classes are the fibers of ηJ . An element w ∈ W is at the
bottom of its ΘJ -class if and only if w ∈ WJ . Thus W/ΘJ is isomorphic to WJ .

Proof of Theorem 1.5. If Θ is the lattice congruence on W whose congruence classes are
the fibers of η, then Proposition 2.1(1) says that 1 ≡ s for all s ∈ S \ J . Theorem 2.5
says that the congruence ΘJ , determined by the fibers of the homomorphism ηJ , is a
refinement of the congruence Θ. Thus η factors as η = η′ ◦ ν, where ν : W → W/ΘJ is
the natural map. The map η′ maps a ΘJ -class to η(w) where w is any element of the
ΘJ -class. However, each ΘJ -class contains a unique element of WJ , so we can replace ν
with the map ηJ and replace η′ with the restriction of η to WJ . By Proposition 2.1(2–3),
η|WJ

restricts to a bijection from J to S ′.

Theorem 1.5 reduces the problem of classifying surjective homomorphisms η between
weak orders to the special case of classifying compressive homomorphisms between weak
orders. As in the introduction, we may as well restrict to the case where S = S ′ and
η restricts to the identity on S. For convenience, we rewrite some of the assertions of
Proposition 2.1 in the case where η is compressive:

Proposition 2.6. Let (W,S) and (W ′, S) be finite Coxeter systems. If η : W → W ′ is a
compressive homomorphism fixing S pointwise, then

1. If J ⊆ S, then η restricts to a surjective homomorphism WJ → W ′
J .

2. m′(r, s) 6 m(r, s) for each pair r, s ∈ S.

Theorem 1.5 shows that surjective homomorphisms correspond to deleting vertices of
the diagram and then applying a compressive homomorphism, and the second assertion of
Proposition 2.6 is an additional step towards Theorem 1.2: It shows that the compressive
homomorphism decreases edge labels and/or erases edges. The remainder of the paper is
devoted to classifying compressive homomorphisms between finite Coxeter groups.
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3 Erasing edges

In this section, we begin the classification of compressive homomorphisms by considering
the simplest case, the case of compressive homomorphisms that erase edges but otherwise
do not decrease edge labels. That is, we consider the case where, for each r, s ∈ S, either
m′(r, s) = m(r, s) or m′(r, s) = 2.

Recall that the diagram of a finite Coxeter group is a forest (a graph without cycles), so
removing any edge breaks a connected component of the diagram into two pieces. Given
a set E of edges of the diagram for W , write S as a disjoint union of sets J1, J2, . . . , Jk
such that each set Ji is the vertex set of a connected component of the graph obtained
by deleting the edges E from the diagram. Define ηE to be the map from W to WJ1 ×
WJ2 × · · · ×WJk that sends w ∈ W to (wJ1 , wJ2 , . . . , wJk). We call ηE an edge-erasing
homomorphism . Beginning in this section and finishing in Section 4, we prove the
following theorem.

Theorem 3.1. Let η : W → W ′ be a compressive homomorphism fixing S pointwise. Let
E be any set of edges in the diagram of W such that each edge r—s in E has m′(r, s) = 2.
Let J1, J2, . . . , Jk be the vertex sets of the connected components of the graph obtained by
deleting the edges E from the diagram for W . In particular, W ′ ∼= W ′

J1
×W ′

J2
×· · ·×W ′

Jk
.

Then η factors as η′ ◦ ηE, where η′ : WJ1 ×WJ2 × · · · ×WJk → W ′ is the compressive
homomorphism with η′(w1, . . . , wk) = (η(w1), . . . , η(wk)).

The proof of Theorem 3.1 is similar to the proof of Theorem 1.5. We characterize the
congruence associated to ηE as the finest congruence containing certain equivalences and
conclude that any homomorphism that erases the edges E factors through ηE.

Let r and s be distinct elements of S and let m = m(r, s). Suppose r and s form an
edge in E, or in other words suppose m > 3. Then the standard parabolic subgroup W{r,s}
is the lower interval [1, w0({r, s})], consisting of two chains: 1lrlrslrsrl· · ·lw0({r, s})
and 1l sl srl srsl · · ·lw0({r, s}). We define altk(r, s) to be the word with k letters,
starting with r and then alternating s, r, s, etc. Thus the two elements covered by
w0({r, s}) are altm−1(r, s) and altm−1(s, r). The key to the proof of Theorem 3.1 is the
following theorem.

Theorem 3.2. If E is a set of edges of the diagram of W , then ηE is a compressive
homomorphism. Its fibers constitute the finest congruence with r ≡ altm(r,s)−1(r, s) and
s ≡ altm(r,s)−1(s, r) for all edges r—s in E.

Each map ηJi is a lattice homomorphism by Theorem 2.5, and we easily conclude that
ηE is a homomorphism as well. To see that ηE is surjective, consider (w1, . . . , wk) ∈ WJ1×
WJ2×· · ·×WJk . Then each wi is also an element of W . Furthermore, ηJi(wj) = 1 if j 6= i.

Thus the fact that ηE is a lattice homomorphism implies that ηE(
∨k
i=1 wi) = (w1, . . . , wk).

We have established the first assertion of Theorem 3.2. The second assertion requires more
background on lattice congruences of the weak order. This background and the proof of
the second assertion is given in Section 4. For now, we show how Theorem 3.2 is used to
prove Theorem 3.1.
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Proof of Theorem 3.1, given Theorem 3.2. Let r—s be an edge in E. In the Coxeter
group W ′, r∨s = rs. By Proposition 2.6, the restriction of η to the interval [1, w0({r, s})]
in W is a surjective lattice homomorphism to the interval [1′, rs] in W ′. By hypothesis,
η fixes r and s. Since η is order-preserving, η(altm(r,s)−1(r, s)) is either r or rs. But if
η(altm(r,s)−1(r)) = rs, then η(s ∧ altm(r,s)−1(r)) = rs ∧ s = s. But s ∧ altm(r,s)−1(r) = 1,
and η(1) = 1′, so we conclude that η(altm(r,s)−1(r)) = r. Similarly, η(altm(r,s)−1(s)) = s.
Thus if Θ is the lattice congruence on W whose congruence classes are the fibers of
η, then r ≡ altm(r,s)−1(r, s) and s ≡ altm(r,s)−1(s, r) modulo Θ. Let ΘE be the lattice
congruence whose classes are the fibers of ηE. Theorem 3.2 says that the congruence ΘE

is a refinement of the congruence Θ.
Thus η factors through the natural map ν : W → W/ΘE. Equivalently, we can factor

η as η′◦ηE, where η′ maps (w1, . . . , wk) ∈ WJ1×· · ·×WJk to η(w), where w is any element

in the η-fiber of (w1, . . . , wk). Specifically, we can take η′(w1, . . . , wk) = η(
∨k
i=1wi). Since

η is a homomorphism, the latter is
∨k
i=1 η(wi), which equals (η(w1), . . . , η(wk)) because

W ′ ∼= W ′
J1
×W ′

J2
× · · · ×W ′

Jk
. It now follows from Proposition 2.6 that η′ is a surjective

homomorphism.

Theorem 3.1 has the following immediate corollary.

Corollary 3.3. Let (W,S) and (W ′, S) be finite, simply laced finite Coxeter systems such
that the diagram of W ′ is obtained from the diagram of W by erasing a set E of edges.
Then ηE is the unique compressive homomorphism from W to W ′ fixing S pointwise.

We conclude this section with some examples of edge-erasing homomorphisms.

Example 3.4. We describe edge-erasing homomorphisms from W of type An in terms
of the combinatorial realization described in Example 2.2. If E = {sk—sk+1}, the edge-
erasing homomorphism ηE maps π ∈ Sn+1 to (σ, τ) ∈ Sk+1 × Sn−k+1, where σ is the
restriction of the sequence π1π2 · · · πn+1 to values 6 k+ 1 and τ is obtained by restricting
π1π2 · · · πn+1 to values > k + 1 and then subtracting k from each value. For example, if
n = 7 and k = 3, then ηE(58371426) = (3142, 25413).

Example 3.5. The description for type Bn is similar. If E = {sk−1—sk}, the edge-erasing
homomorphism ηE maps a signed permutation π to (σ, τ) ∈ Bk × Sn−k+1, where σ is the
restriction of the sequence π1π2 · · · πn+1 to entries πi with |πi| 6 k and τ is obtained by
restricting (−πn)(−πn−1) · · · (−π1)π1 · · · πn−1πn to values > k and then subtracting k − 1
from each value. For example, if n = 8, k = 4, and π = (−4)(−2)71(−8)(−6)5(−3), then
η(π) = ((−4)(−2)1(−3), 35142).

Example 3.6. We describe edge-erasing homomorphisms from W of type H3 in the
geometric context introduced in Example 2.4. Figure 5.a–b represent the two edge-erasing
homomorphisms. Thus the homomorphism erasing r—s maps each element w ∈ W ,
corresponding to a triangle T , to the element of W{r} × W{s,t} labeling the region in
Figure 5.a containing T . Figure 5.b represents the homomorphism erasing s—t similarly.
In each picture, some labels are omitted or belong on the invisible side of the sphere.
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Figure 5: a: The homomorphism that erases the edge r—s in type H3. b: The homo-
morphism that erases the edge s—t in type H3.

4 Lattice congruences of the weak order

In this section, we quote results that give us the tools to prove Theorem 3.2 and to
complete the classification of compressive homomorphisms between finite Coxeter groups.
We prove Theorem 3.2 at the end of this section and complete the classification in later
sections. For any results that are stated here without proof or citation, proofs can be
found in [21] and/or [27, Section 9-5].

We begin with more details on congruences on a finite lattice L. Recall from Section 1
that a congruence Θ on L is uniquely determined by the set of edges contracted by Θ
(the set of edges x l y such that x ≡ y modulo Θ). In fact, Θ is uniquely determined
by a smaller amount of information. An element j of L is join-irreducible if it covers
exactly one element j∗. We say that Θ contracts the join-irreducible element j if j ≡ j∗
modulo Θ. The congruence Θ is determined by the set of join-irreducible elements that
Θ contracts.

The set Con(L) of all congruences on L is a sublattice of the lattice of set partitions
of L. In fact, Con(L) is a distributive lattice. We write Irr(Con(L)) for the set of join-
irreducible congruences on Con(L). By the Fundamental Theorem of Finite Distributive
Lattices (see e.g. [33, Theorem 3.4.1]), Con(L) is isomorphic to inclusion order on the set
of order ideals in Irr(Con(L)).

The weak order on a finite Coxeter group W has a special property called congruence
uniformity , or sometimes called boundedness . (This was first proved in [4, Theorem 6].
See also [20, Theorem 27].) The definition of congruence uniformity is not necessary here,
but congruence uniformity means in particular that the join-irreducible congruences on
W (i.e. the join-irreducible elements of Con(L)) are in bijection with the join-irreducible
elements of W itself. The join-irreducible elements of W are the elements j such that there
exists a unique s ∈ S with `(js) < `(j). For each join-irreducible element j of W , the
corresponding join-irreducible element Cg(j) of Con(W ) is the unique finest congruence
that contracts j. Thus Irr(Con(W )) can be thought of as a partial order on the join-
irreducible elements of W . Congruences on W correspond to order ideals in Irr(Con(W )).
Given a congruence Θ with corresponding order ideal I, the poset Irr(Con(W/Θ)) is
isomorphic to the induced subposet of Irr(Con(W )) obtained by deleting the elements of I.
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The support of an element w of W is the unique smallest subset J of S such that
w is in the standard parabolic subgroup WJ . Given a join-irreducible element j ∈ W ,
the degree of j is the size of the support of j. Given a set {j1, . . . , jk} of join-irreducible
elements of W , there exists a unique finest congruence contracting all join-irreducible
elements in the set. This congruence is the join Cg(j1) ∨ · · · ∨ Cg(jk) in the congruence
lattice Con(W ), or equivalently, the congruence that contracts a join-irreducible element
j if and only if j is in the ideal in Irr(Con(W )) generated by {j1, . . . , jk}. We call this
the congruence generated by {j1, . . . , jk}. A congruence on W is homogeneous of
degree d if it is generated by a set of join-irreducible elements of degree d. Abusing
terminology slightly, we call a surjective homomorphism homogeneous of degree d if
its corresponding congruence is.

We restate Theorems 2.5 and 3.2 with this new terminology. (Recall that Theorem 2.5
was proven in [21]. We will prove Theorem 3.2 below.)

Theorem 4.1. If J ⊆ S, then ηJ is a surjective homogeneous homomorphism of degree
1. Its fibers constitute the congruence generated by {s : s ∈ S \ J}.

Theorem 4.2. If E is a set of edges of the diagram of W , then ηE is a compressive
homogeneous homomorphism of degree 2. Its fibers constitute the congruence generated
by {altk(r, s) : {r, s} ∈ E and k = 2, . . . ,m(r, s)− 1}.

We emphasize that for each set {r, s} in E and each k ∈ {2, . . . ,m(r, s)− 1}, both
altk(r, s) and altk(s, r) are in the generating set described in Theorem 4.2.

Lattice congruences on the weak order on a finite Coxeter group W are closely tied to
the geometry of the reflection representation of W . Let Φ be a root system associated to
W with simple roots Π. For each simple reflection s ∈ S, let αs be the associated simple
root. For each reflection t ∈ T , let βt be the positive root associated to t and let Ht be
the reflecting hyperplane for t. A point x is below Ht if the inner product of x with βt
is nonnegative. A set of points is below Ht if each of the points is. Points and sets are
above Ht if the inner products are nonpositive.

The set A = {Ht : t ∈ T} is the Coxeter arrangement associated to W . The ar-
rangement A cuts space into regions , which are in bijection with the elements of W .
Specifically, the identity element of W corresponds to the region D that is below every
hyperplane of A, and an element w corresponds to the region wD.

A subset A′ of A is called a rank-two subarrangement if |A′| > 1 and if there is
some codimension-2 subspace U such that A′ = {H ∈ A : H ⊃ U}. The subarrangement
A′ cuts space into 2|A′| regions. Exactly one of these regions, D′ is below all of the
hyperplanes in A′, and two hyperplanes in A′ are facet-defining hyperplanes of D′. These
two hyperplanes are called the basic hyperplanes of A′.

We define a cutting relation on the hyperplanes of A as follows: Given distinct
hyperplanes H,H ′ ∈ A, let A′ be the rank-two subarrangement containing H and H ′.
Then H cuts H ′ if H is a basic hyperplane of A′ and H ′ is not a basic hyperplane of A′.
For each H ∈ A, remove from H all points contained in hyperplanes of A that cut H. The
remaining set of points may be disconnected; the closures of the connected components
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Figure 6: (a): A Coxeter group of type I2(5). (b): The associated shards

are called the shards in H. The set of shards of A is the union, over hyperplanes H ∈ A,
of the set of shards in H. For each shard Σ, we write H(Σ) for the hyperplane containing
Σ.

Example 4.3. When W is a dihedral Coxeter group, the only rank-two subarrangement
of A is A itself. Figure 6.a shows the reflection representation of a Coxeter group of type
I2(5) with S = {r, s}. Figure 6.b shows the associated shards. Each of the shards contains
the origin, but to make the picture legible, those shards that don’t continue through the
origin are drawn with an offset from the origin.

Example 4.4. Figure 7 depicts the shards in the Coxeter arrangement of type B3. Here,
the arrangement A is a collection of nine planes in R3. The shards are two-dimensional
cones contained in these planes. To capture the picture in the plane, we consider the
intersection of A with a sphere at the origin. This intersection is an arrangement on
nine great circles of the sphere. Each shard, intersected with the sphere, is either an
entire great circle or an arc of a great circle. The figure shows these intersections under a
stereographic projection from the sphere to the plane. The region D is the small triangle
that is inside all of the circles. As in Figure 6, where shards intersect, those shards that
do not continue through the intersection are shown with an offset from the intersection.
Two of the shards are distinguished by arrows. The significance of these two shards will
be explained in Example 4.5.

The shards of A are in one-to-one correspondence with the join-irreducible elements of
W . For each shard Σ, an upper element of Σ is an element w ∈ W such that the region
wD is above H(Σ) and intersects Σ in codimension 1. The set U(Σ) of upper elements of
Σ contains exactly one element j(Σ) that is join-irreducible in W . The element j(Σ) is
the unique minimal element of U(Σ) in the weak order. This is a bijection from shards
to join-irreducible elements. The inverse map sends a join-irreducible element j to Σ(j),
the shard that contains jD ∩ (j∗D).

Shards in A correspond to certain collections of edges in the Hasse diagram of the
weak order on W . Specifically, a shard Σ corresponds to the set of all edges x l y such
that (xD∩yD) ⊆ Σ. For each shard Σ, a congruence Θ either contracts none of the edges
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Figure 7: The shards in a Coxeter group of type B3

associated to Σ or contracts all of the edges associated to Σ. (See [26, Proposition 6.6].)
If Θ contracts all of the edges associated to Σ, then we say that Θ removes Σ. In
particular, Θ removes a shard Σ if and only if it contracts the join-irreducible element
j(Σ). For any congruence Θ, the set of shards not removed by Θ decomposes space into
a fan [22, Theorem 5.1] that is a coarsening of the fan defined by the hyperplanes A.

We now define a directed graph on shards, called the shard digraph . Given two
shards Σ and Σ′, say Σ→ Σ′ if H(Σ) cuts H(Σ′) and Σ ∩ Σ′ has codimension 2. The di-
graph thus defined on shards is called the shard digraph . This digraph is acyclic2 and we
call its transitive closure the shard poset . The bijection Σ 7→ j(Σ) from shards to join-
irreducible elements is an isomorphism from the shard poset to the poset Irr(Con(W )),
thought of as a partial order on join-irreducible elements of W . Thus, given any congru-
ence Θ, the set of shards removed by Θ is an order ideal in the shard poset. Conversely,
for any set of shards forming an order ideal in the shard poset, there is a congruence
removing exactly that set of shards.

We use this correspondence to reuse shard terminology for join-irreducible elements
and vice versa. So, for example, we talk about the degree of a shard (meaning the degree
of the corresponding join-irreducible element), etc.

Example 4.5. Recall that Example 1.1 started by choosing a pair of edges in the weak
order on a Coxeter group of type B3. The finest congruence contracting the two edges was

2Shards are often considered in a more general context of simplicial hyperplane arrangements. In this
broader setting, the shard digraph need not be acyclic. See [20, Figure 5].
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Figure 8: Removing shards from a Coxeter group of type B3

calculated, and the quotient modulo this congruence was found to be isomorphic to the
weak order on a Coxeter group of type A3. The characterization of congruences in terms
of shards allows us to revisit this example from a geometric point of view. Contracting the
two chosen edges corresponds to removing the two shards indicated with arrows in Fig-
ure 7. Removing these two shards forces the removal of all shards below them in the shard
poset. Figure 8 depicts the shards whose removal is not forced. (Gaps between intersect-
ing shards have been closed in this illustration.) The resulting fan is piecewise-linearly
(but not linearly) equivalent to the fan defined by a Coxeter arrangement of type A3.

Let α denote the involution w 7→ ww0 on W. This is an anti-automorphism of the
weak order. For each congruence Θ on W, let α(Θ) be the antipodal congruence to
Θ, defined by x ≡ y mod α(Θ) if and only if α(x) ≡ α(y) mod Θ. The involution α
induces an anti-isomorphism from W/Θ to W/(α(Θ)).

The following is a restatement of part of [21, Proposition 6.13].

Proposition 4.6. Let Θ be a lattice congruence on W , let r, s ∈ S, and suppose k ∈
{2, 3, . . . ,m(r, s)− 1}. Then altk(r, s) is contracted by Θ if and only if altk′(s, r) is con-
tracted by α(Θ), where k′ = m(r, s)− k + 1.

The following lemma is part of [26, Lemma 3.11], rephrased in the special case of the
weak order. (Cf. [21, Lemma 3.9].)

Lemma 4.7. A shard Σ is an entire hyperplane if and only if it is Hs for some s ∈ S.
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The following lemma is a rephrasing of [26, Lemma 3.12] in the special case of the
weak order. (Cf. [25, Lemma 4.6].) It implies in particular that a shard of degree 2 is
only arrowed by shards of degree 1.

Lemma 4.8. Let Σ be a shard contained in a reflecting hyperplane Ht. The Σ has exactly
one facet if and only if t 6∈ S but t ∈ W{r,s} for some distinct r, s ∈ S. In that case, the
unique facet of Σ is Hr ∩Hs.

We now use the machinery of shards to prove Theorem 3.2.

Proof of Theorem 3.2. Recall that the first assertion of the theorem has already been
established. As before, let ΘE be the lattice congruence whose classes are the fibers of ηE.
It remains only to prove that ΘE is generated by the join-irreducible elements altk(r, s)
and altk(s, r) for all {r, s} ∈ E and k = 2, 3, . . . ,m(r, s)− 1.

Let s ∈ S and w ∈ W have ws l w and let t ∈ T be the reflection wsw−1, so that
ws = tw. The inversion set of wJi is inv(w) ∩WJi and the inversion set of an element
determines the element, so (ws)Ji = wJi if and only if t 6∈ WJi . Thus the edge ws l w
is contracted by ΘE if and only if wsw−1 6∈ WJi for all i ∈ {1, . . . , k}. Equivalently, a
shard is removed by ΘE if and only if the reflecting hyperplane containing it is Ht for
some reflection t with t 6∈ WJi for all i ∈ {1, . . . , k}.

Let Σk(r, s) be the shard associated to the join-irreducible element altk(r, s) for each
k ∈ {2, . . . ,m(r, s)− 1}. To prove the theorem, we will show that every shard removed
by ΘE is forced by the removal of all shards of the form Σk(r, s) and Σk(s, r) for each
edge r—s in E. Specifically, let Σ be a shard removed by ΘE. We complete the proof by
establishing the following claim: If Σ is not Σk(r, s) or Σk(s, r) for some edge r—s in E
and some k ∈ {2, . . . ,m(r, s)− 1}, then there exists another shard Σ′, also removed by
ΘE, such that Σ′ → Σ in the shard digraph. Since the shard digraph is acyclic, the claim
will imply that, for every shard Σ removed by ΘE, there is a directed path from a shard
Σk(r, s) or Σk(s, r) to Σ.

We now prove the claim. Since Σ is removed by ΘE, it is contained in a reflecting
hyperplane Ht with t 6∈ WJi for all i ∈ {1, . . . , k}. Consider a reflecting hyperplane Ht′

that cuts Ht to define a facet of Σ. Then Ht′ is basic in the rank-two subarrangement A′
containing Ht′ and Ht, while Ht is not basic in A′. The other basic hyperplane, Ht′′ , of
A′ also cuts Ht to define the same facet of Σ. Thus there exists a shard Σ′ contained in
Ht′ such that Σ′ → Σ, and there exists a shard Σ′′ contained in Ht′′ such that Σ′′ → Σ.

If t′ 6∈ WJi for all i ∈ {1, . . . , k} then Σ′ is removed by Θ. Similarly, if t′′ 6∈ WJi

for all i ∈ {1, . . . , k} then Σ′′ is removed by Θ. Otherwise, there exists i ∈ {1, . . . , k}
with t′ ∈ WJi and j ∈ {1, . . . , k} with t′′ ∈ WJj . A reflection is in a standard parabolic
subgroup WJ if and only if its reflecting hyperplane contains the intersection

⋂
s∈J Hs.

In particular, t is in WJi∪Jj . Furthermore i 6= j, because if i = j, then t is in WJi ,
contradicting the fact that Σ is removed by ΘE.

The positive root βt is in the positive linear span of βt′ and βt′′ . But the simple root
coordinates (coordinates with respect to the basis Π) of βt′ and βt′′ are supported on the
disjoint subsets {αs : s ∈ Ji} and {αs : s ∈ Jj}. Thus the simple root coordinates of βt′
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Figure 9: Irr(Con(S4)).

are determined, up to scaling, by the simple root coordinates of βt, by restricting the
coordinates of βt to simple roots in {αs : s ∈ Ji}. The simple root coordinates of βt′′ are
determined similarly, up to scaling, by the simple root coordinates of βt.

We conclude that there is at most one facet of Σ defined by hyperplanes Ht′ and Ht′′

such that there exists i ∈ {1, . . . , k} with t′ ∈ WJi and j ∈ {1, . . . , k} with t′′ ∈ WJj . Thus
if Σ has more than one facet, then we can use one of these facets to find, as above, a shard
Σ′, removed by ΘE, with Σ′ → Σ. If Σ has only one facet, then Lemma 4.8 says that the
facet of Σ is defined by Hr and Hs for some r, s ∈ S. In this case, the join-irreducible
element j(Σ) associated to Σ is in W{r,s} but not in {r, s}. Thus j(Σ) is altk(r, s) and
altk(s, r) for some k ∈ {2, 3, . . . ,m(r, s)− 1}. Equivalently Σ = Σk(r, s) or Σ = Σk(s, r)
for some k ∈ {2, 3, . . . ,m(r, s)− 1}. Since Σ is removed by ΘE, the edge r—s is in E.
Since j(Σ) 6∈ {r, s}, in particular t 6∈ S, so Lemma 4.7 rules out the possibility that Σ has
no facets. We have proved the claim, and thus completed the proof of the theorem.

We conclude the section by describing the shard digraph for types An and Bn, quoting
results of [21, Sections 7–8]. The descriptions use the combinatorial realizations explained
in Examples 2.2 and 2.3.

For any subset A of {1, . . . , n+ 1}, let Ac = [n + 1] \ A, let m be the minimum
element of A and let M be the maximum element of Ac. Join-irreducible elements of
Sn+1 correspond to nonempty subsets of [n + 1] such that M > m. Given such a subset,
the corresponding join-irreducible permutation γ is constructed by listing the elements
of Ac in ascending order followed by the elements of A in ascending order. The poset
Irr(Con(Sn+1)) can be described combinatorially, as a partial order on join-irreducible
elements, in terms of these subsets. (See [21, Theorem 8.1].) In this paper, we do not
need the details, except for the case n = 3, which is shown in Figure 9.

We do, however, need details of the description of Irr(Con(Bn)). A signed subset A
is a subset of {±1,±2, . . . ,±n} such that A contains no pairs {−i, i}. Given a nonempty
signed subset A, let m be the minimum element of A. If |A| = n, let M be −m and oth-
erwise, let M be the maximum element of {1, . . . , n} \ {|a| : a ∈ A}. The join-irreducible
elements of a Coxeter group of typeBn are in bijection with the nonempty signed subsets of
{1, . . . , n} with M > m. Given such a signed subset A, the corresponding join-irreducible
permutation γ has one-line notation given by the elements of {1, . . . , n} \ {|a| : a ∈ A}
in ascending order, followed by the elements of A in ascending order. The reflection t
associated to the unique cover relation down from γ is (M m)(−m −M) if m 6= −M or
(m M) if m = −M . The associated shard is in the hyperplane Ht.
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Figure 10: Irr(Con(B3)).

Figure 10 shows the poset Irr(Con(B3)). To describe this poset for general n, we quote
the combinatorial description of the shard digraph in type Bn. Arrows between shards
depend on certain combinations of conditions. The meaning of the letters q, f and r in
the labels for the conditions is explained in [21, Section 7]. We begin with conditions (q1)
through (q6).

(q1) −m1 = M1 < M2 = −m2.
(q2) −m2 = M2 = M1 > m1 > 0.
(q3) M2 = M1 > m1 > m2 6= −M2.
(q4) M2 > M1 > m1 = m2 6= −M2.
(q5) −m2 = M1 > m1 > −M2 6= m2.
(q6) −m2 > M1 > m1 = −M2 6= m2.

Next we define condition (f), which depends on a parameter in {±1, . . . ,±n}. In the
following conditions, the superscript “c” means complementation in {±1,±2, . . . ,±n}
and the notation (x, y) means the open interval between x and y. For a ∈ {±1, . . . ,±n},
say A2 satisfies condition (f : a) if one of the following holds:

(f1 : a) a ∈ A2.
(f2 : a) a ∈ Ac2 \ {−M2,−m2} and −a 6∈ A2 ∩ (m2,M2).
(f3 : a) a ∈ {−M2,−m2} and (A2 ∪ −A2)c ∩ (m2,M2) ∩ (−M2,−m2) = ∅.

Every a ∈ {±1, . . . ,±n} satisfies exactly one of the conditions a ∈ A2, a ∈ Ac2 \
{−M2,−m2} and a ∈ {−M2,−m2} appearing in condition (f).

Finally, conditions (r1) and (r2):

(r1) A1 ∩ (m1,M1) = A2 ∩ (m1,M1).
(r2) A1 ∩ (m1,M1) = −Ac2 ∩ (m1,M1).
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Theorem 4.9. Σ1 → Σ2 if and only if one of the following combinations of conditions
holds:

1. (q1) and (r1).

2. (q2) and (r1).

3. (q3), (f :m1) and (r1).

4. (q4), (f :M1) and (r1).

5. (q5), (f :−m1) and (r2).

6. (q6), (f :−M1) and (r2).

5 Decreasing edge labels

Theorem 3.1 reduces the problem of classifying compressive homomorphisms η between
weak orders to the special case of compressive homomorphisms that do not erase any
edges. Equivalently, these are the compressive homomorphisms between finite Coxeter
groups that restrict to (unlabeled) graph isomorphisms of diagrams. As a byproduct,
Theorem 3.1 allows us to further reduce the problem to the case where the diagrams are
connected (or equivalently, where the Coxeter groups are irreducible). We continue to
take S to be the set of simple generators of W and of W ′ and assume that η : W → W ′

is such a homomorphism that fixes S pointwise, so that the diagrams of W and W ′ are
identical as unlabeled graphs. Recall that Proposition 2.6 says that for each edge in the
diagram of W , the corresponding edge in the diagram of W ′ has weakly smaller label.

Up to now, the classification of surjective lattice homomorphisms between weak orders
has proceeded by uniform arguments, rather than arguments that are specific to particular
families in the classification of finite Coxeter groups. To complete the classification of
homomorphisms, we now turn to the classification of finite Coxeter groups, which tells
us in particular that there are very few cases remaining to consider. We need to study
the cases where (W,W ′) are (I2(m), I2(m′)) for m′ < m or (Bn, An), (F4, A4), (H3, A3),
(H3, B3), (H4, A4), or (H4, B4).

The cases where (W,W ′) are (I2(m), I2(m′)) for m′ < m are easily understood by
considering Example 4.3, where W is I2(5). It is apparent from Figure 6 that a congruence
Θ has the property that W/Θ is isomorphic to the weak order on I2(4) if and only if Θ
contracts exactly one of the join-irreducible elements rs, rsr, and rsrs and exactly one
of the join-irreducible elements sr, srs, srsr.

More generally, let W be a Coxeter group of type I2(m) with S = {r, s}. A congruence
Θ on W has the property that W/Θ is isomorphic to the weak order on I2(m′) if and
only if Θ contracts exactly m − m′ join-irreducible elements of the form altk(r, s) for
k ∈ {2, . . . ,m− 1} and exactly m−m′ join-irreducible elements of the form altk(s, r) for
k ∈ {2, . . . ,m− 1}. This result for dihedral groups is simple, but its importance for the
general case is underscored by Theorem 1.7.
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In Sections 6 and 7, we consider the remaining possibilities for the pair (W,W ′) and,
in particular, complete the proofs of Theorems 1.6 and 1.7. As mentioned earlier, Theo-
rem 1.2 follows from Theorems 1.5 and 1.6.

6 Homomorphisms from Bn to Sn+1

We realize the groups Sn+1 and Bn as in Examples 2.2 and 2.3. A surjective homomor-
phism η from Bn to Sn+1 restricts, by Proposition 2.6, to a surjective homomorphism from
(Bn){s0,s1}

∼= B2 to (Sn+1){s1,s2}
∼= S3. Thus, as discussed in Section 5, the congruence

associated to η contracts exactly one of the join-irreducible elements s0s1, s0s1s0, and
exactly one of the join-irreducible elements s1s0, s1s0s1. We will see that each of the four
choices leads to a unique surjective homomorphism and that three of the four choices are
associated to homogeneous congruences of degree 2.

6.1 Simion’s homomorphism

We consider first the case where s0s1 and s1s0s1 are contracted, but we start not by
contracting join-irreducibles, but by giving a map from Bn to Sn+1. This map was first
defined by Simion [32] in connection with a construction of the type-B associahedron (also
known as the cyclohedron).

Let ησ : Bn → Sn+1 map π ∈ Bn to the permutation constructed as follows: Con-
struct the sequence (−πn)(−πn−1) · · · (−π1) 0π1 · · · πn−1πn, extract the subsequence con-
sisting of nonnegative entries and add 1 to each entry. Thus for example, for π =
3(−4)65(−7)(−1)2 ∈ B7, we construct the sequence

(−2)17(−5)(−6)4(−3)03(−4)65(−7)(−1)2

and extract the subsequence 17403652, so that ησ(π) is 28514763 ∈ S8. We will prove the
following theorem:

Theorem 6.1. The map ησ is a surjective lattice homomorphism from Bn to Sn+1. Its
fibers constitute the congruence generated by s0s1 and s1s0s1. Furthermore, ησ is the
unique surjective lattice homomorphism from Bn to Sn+1 whose restriction to (Bn){s0,s1}
agrees with ησ.

Suppose πl τ in the weak order on Bn. Then the one-line notations for π and τ differ
in one of two ways: Either they agree except in the sign of the first entry or they agree
except that two adjacent entries of π are transposed in τ . If they agree except in the sign
of the first entry, then ησ(π) 6= ησ(τ). If they agree except that two adjacent entries of
π are transposed in τ , then ησ(π) = ησ(τ) if and only if the two adjacent entries have
opposite signs. We have proved the following:

Proposition 6.2. If π l τ in the weak order on Bn, then ησ(π) = ησ(τ) if and only if
the reflection t associated to the cover π l τ is (i − j)(j − i) for some i and j with
1 6 i < j 6 n.
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We give a similar characterization of the congruence generated by s0s1 and s1s0s1:

Proposition 6.3. The congruence generated by s0s1 and s1s0s1 removes a shard Σ if and
only if Σ is contained in a hyperplane Ht such that t = (i − j)(j − i) for some i and j
with 1 6 i < j 6 n.

Proof. Let C be the set of signed subsets corresponding to shards contained in hyperplanes
Ht such that t = (i − j)(j − i) for some i and j with 1 6 i < j 6 n. Thus C
is the set of all nonempty signed subsets A with m < 0 and m 6= −M . (Equivalently,
A 6⊆ {1, . . . , n} and |A| < n.) The assertion of the proposition is that C is the set of signed
subsets representing shards removed by the congruence generated by s0s1 and s1s0s1. The
join-irreducible element s0s1 has one-line notation 2(−1)34 · · ·n, and the join-irreducible
element s1s0s1 is 1(−2)34 · · ·n. The corresponding signed subsets are {−1, 3, 4, . . . , n}
and {−2, 3, 4, . . . , n}, both of which are in C.

To establish the “only if” assertion of the proposition, we show that no set A1 ∈ C
arrows a set A2 6∈ C. Indeed, if A1 ∈ C and A2 6∈ C, then m1 < 0 and m1 6= −M1 and
either m2 > 0 or m2 = −M2. The fact that m1 < 0 and m1 6= −M1 rules out conditions
(q1) and (q2). Whether m2 > 0 or m2 = −M2, conditions (q3)–(q6) are easily ruled out
as well.

To establish the “if” assertion, we show that every set A2 ∈ C, except the sets
{−1, 3, 4, . . . , n} and {−2, 3, 4, . . . , n}, is arrowed to by another set A1 ∈ C. Since the
shard digraph is acyclic, this implies that {−1, 3, 4, . . . , n} and {−2, 3, 4, . . . , n} are the
unique sources in the restriction of the digraph to C. Let A2 ∈ C, so that m2 < 0 and
m2 6= −M2, with A2 not equal to {−1, 3, 4, . . . , n} or {−2, 3, 4, . . . , n}. We will produce
a signed subset A1 ∈ C with A1 → A2 by considering several cases.
Case 1: |A2| < n − 1. Then let A1 = A2 ∪ {M2}. Then M2 > M1 > 0 > m1 = m2 6=
−M2, so (q4) holds. Furthermore, |A1| < n, so m1 6= M1, and thus A1 ∈ C. We have
M1 ∈ Ac2 \ {−M2,−m2}. By definition of M1, the element −M1 is not in A1, and since
A2 ⊂ A1, we conclude that −M1 6∈ A2. Thus (f2 :M1) holds. Also, (r1) holds, so A1 → A2

in the shard digraph.
Case 2: |A2| = n−1. Since A2 ∈ C, this is the only alternative to Case 1. By hypothesis,
we have ruled out the possibilities (m,M) = (−1, 2) and (m,M) = (−2, 1).
Subcase 2a: A2 ∩ [1,M2 − 1] 6= ∅. (The notation [a, b] stands for the closed interval
between a and b.) Define M1 to be the maximum element of A2 ∩ [1,M2 − 1] and define
A1 to be (A2 ∪ {M2}) \ {M1}. Thus M1 is indeed the maximum element of {1, . . . , n} \
{|a| : a ∈ A1}. Conditions (q4), (f1 :M1), and (r1) hold. We have m1 = m2 < 0 and
|A1| = |A2| < n, to A1 is in C.
Subcase 2b: A2 ∩ [1,M2 − 1] = ∅ and m2 > −M2. By definition of M2, neither M2 nor
−M2 is in A2. Thus since |A2| = n − 1, every other element i of {1, . . . , n} has either i
or −i in A2. Since A2 ∩ [1,M2 − 1] = ∅, we conclude that the interval [−M2 + 1,−1] is
contained in A2. Now the fact that m2 > −M2 implies that m2 = −M2 + 1. If m2 = −1
then A2 = {−1, 3, 4, . . . , n}, a possibility that is ruled out by hypothesis. Define A1 to
be A2 \ {m2}. Then m1 = m2 + 1 < 0 and M1 = M2. Also |A1| = n − 2, so A1 is in C.
Conditions (q3), (f1 :m1) and (r1) hold.
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Subcase 2c: A2 ∩ [1,M2 − 1] = ∅, m2 < −M2, and A2 ∩ [m2 + 1,−1] 6= ∅. Let
A1 = (A2 ∪ {−m2}) \ {m2}. Since A2 ∩ [m2 + 1,−1] 6= ∅, the minimum element m1 of
A1 is negative, and since in addition |A1| = |A2| < n, the set A1 is in C. Conditions (q3),
(f1 :m1), and (r1) hold, with condition (r1) using the fact that −m2 > M1.
Subcase 2d: A2∩ [1,M2−1] = ∅, m2 < −M2, and A2∩ [m2 +1,−1] = ∅. As in Subcase
2b, besides M2, every element i of {1, . . . , n} has either i or −i in A2. Thus the fact that
A2∩ [1,M2−1] = ∅ and A2∩ [m2 +1,−1] = ∅ implies that [1,−m2−1]∩ [1,M2−1] = ∅.
In other words, either m2 = −1 or M2 = 1, but the fact that m2 < −M2 rules out the
possibility that m2 = −1. Thus M2 = 1. Since A2 ∩ [m2 + 1,−1] = ∅, the set A2 equals
{m2} ∪ ({1, . . . , n} \ {1,−m2}). If m2 = −2, then A2 = {−2, 3, 4, . . . , n}, which was also
ruled out by hypothesis. The set A1 = (A2 \ {m2,−m2 − 1}) ∪ {−m2,m2 + 1} is in C.
We have m1 = m2 + 1 < −1 and M1 = M2 = 1, so conditions (q3), (f2 :m1), and (r1)
hold.

So far, we know nothing about how ησ relates to the weak order on Sn+1. But Propo-
sitions 6.2 and 6.3 constitute a proof of the second assertion of Theorem 6.1: that the
congruence Θσ defined by the fibers of ησ is generated by s0s1 and s1s0s1.

Proposition 6.2 implies that the bottom elements of Θσ are exactly those signed per-
mutations whose one-line notation consists of a (possibly empty) sequence of negative
entries followed by a (possibly empty) sequence of positive entries. The restriction of
ησ to bottom elements is a bijection to Sn+1, with inverse map described as follows: If
τ ∈ Sn+1 and τi = 1, then the inverse map takes τ to the signed permutation whose
one-line notation is

(−τi−1 + 1)(−τi−2 + 1) · · · (−τ1 + 1)(τi+1 − 1)(τi+2 − 1) · · · (τn+1 − 1).

This inverse map is easily seen to be order-preserving. The map ησ is also easily seen to
be order-preserving, so its restriction is as well. We have shown that the restriction of ησ
to bottom elements of Θσ is an isomorphism to the weak order on Sn+1.

The natural map from Bn to Bn/Θσ is a surjective homomorphism, and Bn/Θσ is
isomorphic to the subposet of Bn induced by bottom elements of Θσ. Since ησ equals
the composition of the natural map, followed by the isomorphism to the poset of bottom
elements, followed by the isomorphism to Sn+1, it is a surjective homomorphism. Now, if η
is any surjective homomorphism agreeing with ησ on (Bn){s0,s1}, the associated congruence
Θ contracts s0s1 and s1s0s1. Thus Θ is a coarsening of the congruence Θσ associated to
ησ. But then since both Bn/Θ and Bn/(Θσ) are isomorphic to Sn+1, they must coincide.
We have completed the proof of Theorem 6.1.

6.2 A non-homogeneous homomorphism

In this section, we consider surjective homomorphisms whose congruence contracts s0s1s0

and s1s0. We begin by defining a homomorphism ην that is combinatorially similar to
Simion’s homomorphism. We will see that, whereas ησ is homogeneous of degree 2, ην
is non-homogeneous. However, ην is still of low degree: it is generated by contracting
join-irreducible elements of degrees 2 and 3.
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Let ην : Bn → Sn+1 map π ∈ Bn to the permutation by extracting the subse-
quence of (−πn)(−πn−1) · · · (−π1)π1 · · · πn−1πn consisting of values greater than or equal
to −1, changing −1 to 0, then adding 1 to each entry. Thus for example, for π =
3(−4)65(−7)(−1)2 ∈ B7, we extract the subsequence 174365(−1)2, so that ην(π) is
28547612. We will prove the following theorem:

Theorem 6.4. The map ην is a surjective lattice homomorphism from Bn to Sn+1. Its
fibers constitute the congruence generated by s0s1s0, s1s0, s1s0s1s2, and s2s1s0s1s2. Fur-
thermore, ην is the unique surjective lattice homomorphism from Bn to Sn+1 whose re-
striction to (Bn){s0,s1} agrees with ην.

The outline of the proof of Theorem 6.4 is the same as the proof of Theorem 6.1. We
first determine when signed permutations π l τ in Bn map to the same element of Sn+1.
If π and τ agree except in the sign of the first entry (with π1 necessarily positive), then
ην(π) = ην(τ) if and only if π1 > 1. If they agree except that two adjacent entries of π
are transposed in τ , then ην(π) = ην(τ) if and only if the two transposed entries have
opposite signs and neither is ±1. Thus:

Proposition 6.5. If πl τ in the weak order on Bn, then ην(π) = ην(τ) if and only if the
reflection t associated to the cover πl τ is either (i − i) for some i > 1 or (i − j)(j − i)
for some i and j with 2 6 i < j 6 n.

We now show that the congruence generated by s0s1s0, s1s0, s1s0s1s2, and s2s1s0s1s2

agrees with the fibers of ην , as described in Proposition 6.5.

Proposition 6.6. In the congruence generated by s0s1s0, s1s0, s1s0s1s2, and s2s1s0s1s2

a shard is removed if and only if it is contained in a hyperplane Ht with t = (i − i) and
i > 1 or t = (i − j)(j − i) and 2 6 i < j 6 n.

Proof. Let C be the set of signed subsets corresponding to shards contained in hyperplanes
Ht such that t is either (i − i) for some i > 1 or (i − j)(j − i) for some i and j with 2 6
i < j 6 n. Thus C is the set of all nonempty signed subsets A with m < −1 and M > 1.
The elements s0s1s0, s1s0, s1s0s1s2, and s2s1s0s1s2 correspond respectively to the signed
sets {−2,−1, 3, 4, . . . , n}, {−2, 1, 3, 4, . . . , n}, {−2, 4, 5, . . . , n}, and {−3, 4, 5, . . . , n}.

We first show that no set A1 ∈ C arrows a set A2 6∈ C. Let A1 ∈ C and A2 6∈ C. Then
m1 < −1 and M1 > 1, while either m2 > −1 or M2 = 1. The fact that m1 < −1 rules
out condition (q2). If M2 = 1, then the fact that M1 > 1 rules out conditions (q1), (q3)
and (q4), and the fact that m1 < −1 rules out (q5) and (q6). Suppose m2 > −1. Then
the equality M2 = −m2 in (q1) fails unless m2 = −1, but in that case M2 = 1, so (q1) is
ruled out. The fact that m1 < −1 rules out (q3) and (q4). Since −m2 6 1 and M1 > 1,
conditions (q5) and (q6) fail as well.

Next, let A2 ∈ C, so that m2 < −1 and M2 > 1, with A2 not being one of the sets
{−2,−1, 3, 4, . . . , n}, {−2, 1, 3, 4, . . . , n}, {−2, 4, 5, . . . , n}, or {−3, 4, 5, . . . , n}. We will
produce a signed subset A1 ∈ C with A1 → A2.
Case 1: m2 = −M2. Then |A2| = n. If m2 = −2, then A2 = {−2,−1, 3, 4, . . . , n}
or A2 = {−2, 1, 3, 4, . . . , n}, but these are ruled out, so m2 < −2. Let A1 = (A2 ∪
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{−m2,m2 + 1})\{m2,−m2 − 1}. Thenm1 = m2+1 andM1 = M2−1 = −m1. Conditions
(q1) and (r1) hold, so A1 → A2. Also −m1 = M1 > 1, so A1 ∈ C.
Case 2: m2 6= −M2. Then |A2| < n.
Subcase 2a: (A2 ∪ −A2)c ∩ [2,M2 − 1] 6= ∅. Let A1 = A2 ∪ {M2}. Then m1 = m2

and M1 is the maximal element of (A2 ∪ −A2)c ∩ [2,M2 − 1], so A2 ∈ C. Furthermore,
M2 > M1 > m1 = m2 6= −M2, so (q4) holds. Also (f2 :M1) and (r1) hold.
Subcase 2b: (A2∪−A2)c∩ [2,M2−1] = ∅ and A2∩ [2,M2−1] 6= ∅. Let b be the largest
element of A2 ∩ [2,M2 − 1] 6= ∅ and define A1 = (A2 ∪ {M2}) \ {b}. Then m1 = m2 and
M1 = b, so A1 ∈ C. Also (q4), (f1 :M1) and (r1) hold.
Subcase 2c: (A2 ∪ −A2)c ∩ [2,M2 − 1] = ∅ and A2 ∩ [2,M2 − 1] = ∅. In this case, A2

contains {−M2 + 1,−M2 + 2, . . . ,−2}. If m2 < −2 and M2 > 2 then let A1 = A2 \ {m2}.
This is in C, since M1 = M2 > 1 and m1 6 −2. Also, (q3), (f1 :m1) and (r1) hold.

If M2 = 2 then m2 < −2. If also m2 = −3 then there are two possibilities, be-
cause A2 = {−3, 4, 5, . . . , n} is ruled out. If A2 = {−3, 1, 4, 5, . . . , n} then let A1 =
{−2, 1, 3, 4, . . . , n} ∈ C. IfA2 = {−3,−1, 4, 5, . . . , n} then letA1 = {−2,−1, 3, 4, . . . , n} ∈
C. In either case, (q6), (f3 :−M1) and (r2) hold. If m2 < −3 then let A1 = (A2 ∪
{m2 + 1,−m2}) \ {−m2 − 1,m2}. Then m1 = m2 + 1 < −2 and M1 = 2, so A1 ∈ C.
Conditions (q3) and (r1) hold, along with either (f1 :m1) or (f2 :m1).

Ifm2 = −2 thenM2 > 2. SinceA2 contains {−M2 + 1,−M2 + 2, . . . ,−2}, we conclude
that M2 = 3. Since A2 = {−2, 4, 5, . . . , n} is ruled out, there are two possibilities. If
A2 = {−2, 1, 4, 5, . . . , n} then let A1 = −2, 1, 3, 4, 5, . . . , n. If A2 = {−2,−1, 4, 5, . . . , n}
then let A1 = −2,−1, 3, 4, 5, . . . , n. In either case, (q4), (f3 :M1), and (r1) hold.

We have showed that the fibers of ην are a lattice congruence on Bn satisfying the
second assertion of Theorem 6.4. Let Θν be this congruence. The map ην is obviously
order-preserving, so just as in the proof of Theorem 6.1, we will show that ην restricts
to a bijection from bottom elements of Θν-classes to permutations in Sn+1 and that the
inverse of the restriction is order-preserving.

Proposition 6.5 implies that the bottom elements of Θν are exactly those signed per-
mutations whose one-line notation consists of a sequence of positive elements, followed
by ±1, then a sequence of negative elements, and finally a sequence of positive elements.
(Any of these three sequences may be empty.) Such a signed permutation π1 · · · πn with
πi = 1 and negative entries πi+1 · · · πj, maps to the permutation

(−πj)(−πj−1) · · · (−πi+1) 1π1π2 · · · πi−1 2 πj+1πj+2 · · · πn.

If πi = −1 instead, then the bottom element maps to the same permutation, except with
the entries 1 and 2 swapped. This restriction of ην is a bijection whose inverse takes a
permutation τ1 · · · τn+1 with τi = 1 and τj = 2, with i < j, to the signed permutation

(τi+1 − 1) · · · (τj−1 − 1) 1 (−τi−1 + 1) · · · (−τ1 + 1)(τj+1 − 1) · · · (τn+1 − 1).

If τi = 2 and τj = 1, with i < j, then the inverse map takes τ to the same signed
permutation, except with −1 in place of 1. This inverse in order-preserving, and we have
proved the first two assertions of Theorem 6.4.
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Figure 11: The complement of an order ideal in Irr(Con(W )) for W of type B3.

To prove the third assertion, we temporarily introduce the bulky notation η
(n)
ν : Bn →

Sn+1. (Until now, we had suppressed the explicit dependence of the map ην on n, and we
will continue to do so after this explanation.) Arguing as in the proof of Theorem 6.1,

we easily see that, for each n > 3, the map η
(n)
ν is the unique surjective homomorphism

from Bn to Sn+1 whose restriction to (Bn){s0,s1,s2} is η
(3)
ν . Now let η be any surjective

homomorphism from Bn to Sn+1 whose restriction to (Bn){s0,s1} is η
(2)
ν . Let Θ be the

associated congruence on Bn. Then in particular, the congruence defined by the restriction
of η to (Bn){s0,s1,s2}

∼= B3 contracts s0s1s0 and s1s0, corresponding to signed subsets
{−2,−1, 3} and {−2, 1, 3}. Figure 11 shows the poset of signed subsets corresponding
to join-irreducible elements in (Bn){s0,s1,s2}

∼= B3 not forced to be contracted by the
contraction of s0s1s0 and s1s0. (This is the complement of an order ideal in the poset of
Figure 10.)

By Proposition 2.6, the restriction of η to (Bn){s0,s1,s2} is a surjective homomorphism
to S4. In particular, the restriction of Irr(Con((Bn){s0,s1,s2})) to join-irreducibles not
contracted by Θ is isomorphic to Irr(Con(S4)). Comparing Figure 11 to Figure 9, we
see that Θ must contract two additional join-irreducible elements, beyond those forced
by s0s1s0 and s1s0. We see, furthermore, that the only two join-irreducible elements
that can be contracted, to leave a poset isomorphic to Irr(Con(S4)), are those whose
signed subsets are −2 and −3. We conclude that Θ contracts s1s0s1s2 and s2s1s0s1s2.
Theorem 6.4 says that Θ is weakly coarser than Θν . But since η and ην are both surjective
lattice homomorphisms to Sn+1, the congruences Θ and Θν have the same number of
congruence classes, so Θ = Θν . Thus η and ην agree up to automorphisms of Sn+1, but
the only nontrivial automorphism of Sn+1 is the diagram automorphism. Since both maps
take (Bn){s0,s1} to (Sn+1){s1,s2}, we rule out the diagram automorphism and conclude that
η = ην . Thus completes the proof of Theorem 6.4.

6.3 Two more homogeneous homomorphisms

In this section, we consider the case where s0s1 and s1s0 are contracted and the case where
s0s1s0 and s1s0s1 are contracted. The congruences associated to these cases are dual to
each other by Proposition 4.6.

Let ηδ : Bn → Sn+1 send π ∈ Bn to the permutation obtained as follows: If the one-line
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notation for π contains the entry 1, then construct a sequence

(−πn)(−πn−1) · · · (−π1) 0π1 · · · πn−1πn,

extract the subsequence consisting of nonnegative entries, and add 1 to each entry.
If the one-line notation for π contains the entry −1, then extract the subsequence of
(−πn)(−πn−1) · · · (−π1)π1 · · · πn−1πn consisting of values greater than or equal to −1,
change −1 to 0, then add 1 to each entry. Notice that ηδ is a hybrid of ησ and ην ,
in the sense that ηδ(π) = ησ(π) if the one-line notation of π contains 1 and ηδ(π) = ην(π)
if the one-line notation of π contains −1.

We will prove the following theorem:

Theorem 6.7. The map ηδ is a surjective lattice homomorphism from Bn to Sn+1. Its
fibers constitute the congruence generated by s0s1s0 and s1s0s1. Furthermore, ηδ is the
unique surjective lattice homomorphism from Bn to Sn+1 whose restriction to (Bn){s0,s1}
agrees with ηδ.

Theorem 6.7 implies in particular that the lattice homomorphism associated to the
congruence of Example 1.1 is the n = 3 case of ηδ.

Suppose πl τ in Bn. First, suppose that 1 is an entry in the one-line notation of both
π and τ . If π and τ agree except in the sign of the first entry, then ηδ(π) 6= ηδ(τ). If
they agree except that two adjacent entries of π are transposed in τ , then ηδ(π) = ηδ(τ)
if and only if the two adjacent entries have opposite signs. Next, suppose that −1 is an
entry in the one-line notation of both π and τ . If π and τ agree except in the sign of the
first entry, then since −1 is an entry in the one-line notation of both π and τ , we must
have π1 > 1, and therefore ηδ(π) = ηδ(τ). If they agree except that two adjacent entries
of π are transposed in τ , then ην(π) = ην(τ) if and only if the two transposed entries
have opposite signs and neither is −1. Finally, suppose π has the entry 1 in its one-line
notation, but τ has −1. Then π1 = 1 and τ1 = −1, and ηδ(π) 6= ηδ(τ). Thus:

Proposition 6.8. Suppose π l τ in the weak order on Bn, and let t be the reflection
associated to the cover π l τ . Then ηδ(π) = ηδ(τ) if and only if one of the following
conditions holds:

(i) t is (i − j)(j − i) for some i and j with 2 6 i < j 6 n.

(ii) π has the entry 1 in its one-line notation and t is (1 − j)(j − 1) for some j with
1 < j 6 n.

(iii) π has the entry −1 in its one-line notation and t is (i − i) for some i > 1.

As in the previous cases, we now show that the congruence generated by s0s1s0 and
s1s0s1 has a description compatible with Proposition 6.8.

Proposition 6.9. The congruence generated by s0s1s0 and s1s0s1 removes a shard Σ if
and only if one of the following conditions holds:
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(i) Σ is contained in a hyperplane Ht such that t is (i − j)(j − i) for some i and j
with 2 6 i < j 6 n.

(ii) Σ is below the hyperplane H(1 −1) and Σ is contained in a hyperplane Ht such that
t is (1 − j)(j − 1) for some j with 1 < j 6 n.

(iii) Σ is above the hyperplane H(1 −1) and Σ is contained in a hyperplane H(i −i) for
some i > 1.

Before proving Proposition 6.9, we verify that conditions (ii) and (iii) make sense.
Specifically, in both conditions, we rule out the possibility that Σ is neither above nor
below H(1 −1). Note that if 1 < j 6 n and t = (1 − j)(j − 1), then the rank-two
subarrangement containing H(1 −1) and Ht has basic hyperplanes H(1 −1) and Ht′ , where
t′ = (1 j)(−j − 1). Thus every hyperplane Ht, for t as in condition (ii), is cut at H(1 −1),
and thus every shard in Ht is either above or below H(1 −1). Similarly, every shard in Ht,
for t as in condition (iii), is either above or below H(1 −1).

Proof. Suppose Σ is a shard in a hyperplane that is cut by H(1 −1), so that Σ is either
above or below H(1 −1). Then Σ is above H(1 −1) if and only if its associated join-irreducible
element γ has −1 in its one-line notation. This occurs if and only if −1 is contained in the
signed subset representing γ. The shards specified by conditions (i)–(iii) in Proposition 6.9
correspond, via join-irreducible elements, to signed subsets A described respectively by
the following conditions:

(i) A has m < −1, M > 1 and m 6= −M .

(ii) M = 1 and m < −1.

(iii) −1 ∈ A and −M = m < −1.

For condition (ii), the condition is (m,M) ∈ {(−1, j), (−j, 1)} for some 1 < j 6 n, and
−1 6∈ A. However, the requirement that −1 6∈ A implies that m 6= −1, so (m,M) =
(−j, 1), as indicated above.

Let C be the set of signed subsets satisfying (i), (ii) or (iii). We can describe C more
succinctly as the set of signed subsets satisfying both of the following conditions:

(a) m < −1, and

(b) If m = −M then −1 ∈ A.

We now show that no set A1 ∈ C arrows a set A2 6∈ C. Let A1 ∈ C and A2 6∈ C.
Suppose m2 > −1. Then (q1) and (q6) fail, because each would include the impossible
assertion that M1 < −m2. Also, (q2)–(q4) fail because m1 < −1. Since M1 > 0, if
(q5) holds, then m2 = −1 and M1 = 1. If in addition (r2) holds, then the fact that
m2 = −1 ∈ A2 ∩ (m1,M1) implies that −1 ∈ −Ac2 ∩ (m1,M1) = A1 ∩ (m1,M1). But
having −1 ∈ A1 contradicts the fact that M1 = 1, and this contradiction rules out the
possibility that (q5) and (r2) both hold.
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We have ruled out all six possibilities in Theorem 4.9 in the case where m2 > −1. If
m2 < −1, then since A2 6∈ C, we must have m2 = −M2 and −1 6∈ A2. In particular,
(q3)–(q6) fail. As above, (q2) fails because m1 < −1. If (q1) holds, then m1 = −M1, so
since A1 ∈ C, we have −1 ∈ A1. In particular, M1 > 1, so (r1) fails because −1 ∈ A1 but
−1 6∈ A2.

Next, we show that any set in C, except {−2,−1, 3, 4, . . . , n} and {−2, 3, 4, . . . , n}, is
arrowed to by another set in C. Let A2 ∈ C.
Case 1: m2 = −M2. Then −1 ∈ A2 because A2 ∈ C. We can rule out the possibility that
m2 = −2, because in this case, A2 = {−2,−1, 3, 4, . . . , n}. Let A1 be {−2,−1, 3, 4, . . . , n},
which is in C. Then (q1) and (r1) hold, so A1 → A2.
Case 2: m2 < −M2. Since A2 ∈ C, m2 < −1. If m2 = −2, then M2 = −1 and
A2 = {−2, 3, 4, . . . , n}, which is ruled out by hypothesis. Thus m2 < −2.
Subcase 2a: [m2 + 1,−2] ∩A2 6= ∅. Let A1 = (A2 ∪ {−m2}) \ {m2}. Then A1 ∈ C and
(q3), (f1 :m1), and (r1) hold, so A1 → A2.
Subcase 2b: [m2 +1,−2]∩A2 = ∅ and m2 < −M2−1. Let A1 = (A2∪{m2 + 1,−m2})\
{m2,−m2 − 1}. Then A1 ∈ C and (q3), (f2 :m1), and (r1) hold.
Subcase 2c: [m2 + 1,−2] ∩ A2 = ∅ and m2 = −M2 − 1. Since m2 < −2, M2 > 1. If
|A2| < n− 1, then let A1 = A2 ∪ {M2}. Then A1 ∈ C and (q4), (f2 :M1), and (r1) hold.
If |A2| = n − 1 and −1 ∈ A2, then let A1 = (A2 ∪ {−M2,−m2}) \ {m2}. Then m1 =
−M2 < −1, and M1 = M2. Since −1 ∈ A1, A1 ∈ C. Also, (q3), (f3 :m1), and (r1) hold, so
A1 → A2. If |A2| = n−1 and−1 6∈ A2, then A2 = ({1, 2, . . . , n}∪{m2})\{−m2 − 1,−m2},
recalling that M2 = −m2− 1. Let A1 = (A2 ∪ {M2}) \ {M2 − 1}. Then A1 ∈ C and (q4),
(f1 :M1), and (r1) hold.
Case 3: m2 > −M2.
Subcase 3a: m2 > −M2 +1. Let A1 = (A2∪{M2})\{M2 − 1}. The element M2−1 may
or may not be an element of A2, but since −M2 + 1 < m2, we know that −M2 + 1 6∈ A2.
Thus M1 = M2− 1, and m1 = m2. In particular, A1 ∈ C and, furthermore, (q4) and (r1)
hold. Also, either (f1 :M1) or (f2 :M1) holds.
Subcase 3b: m2 = −M2 + 1. If either |A2| < n − 1 or −1 ∈ A2, then let A2 =
A1 ∪ {M2}. Then A2 ∈ C and (q4) and (r1) hold. If |A2| < n − 1, then (f2 :M1)
holds, and otherwise (f3 :M1) holds. Finally, if |A2| = n − 1 and −1 6∈ A2, then let
A1 = (−Ac2 ∩ (m2,−m2)) ∪ {m2} ∪ {M2,M2 + 1, . . . , n}. Then |A1| = n, m1 = m2, and
M1 = −m2. Conditions (q5), (f3 :−m1) and (r2) hold and A1 ∈ C.

Combining Propositions 6.8 and 6.9, the fibers of ηδ are a lattice congruence Θδ on Bn

satisfying the second assertion of Theorem 6.7. We now show that ηδ is order-preserving,
that ηδ restricts to a bijection from bottom elements of Θδ-classes to permutations in Sn+1

and that the inverse of the restriction is order-preserving.
To see that ηδ is order-preserving, suppose πl τ in Bn. If 1 is an entry in the one-line

notation of both π and τ , then ηδ coincides with ησ on π and τ , so ηδ preserves the order
relation π 6 τ . Similarly, if −1 is an entry in the one-line notation of both π and τ ,
then ηδ preserves the order relation π 6 τ because ην is order-preserving. Finally, if 1
is an entry in the one-line notation of π and −1 is an entry in the one-line notation of
τ , then ηδ(π) and ηδ(τ) both have 1 and 2 adjacent but in different orders. Otherwise,
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the two permutations agree, and we see that ηδ(π) l ηδ(τ). We have verified that ηδ is
order-preserving.

Proposition 6.8 leads to a characterization of the bottom elements of Θδ-classes. A
signed permutation π whose one-line notation contains 1 is a bottom element if and only
if its one-line notation consists of a (possibly empty) sequence of negative entries followed
by a sequence of positive entries (including 1). A signed permutation with −1 in its one-
line notation is a bottom element if and only if it consists of a (possibly empty) sequence
of positive entries, followed by a sequence of negative elements beginning with −1, and
finally a (possibly empty) sequence of positive elements. Notice that the bottom elements
of Θδ that have 1 in their one-line notation map to permutations with 1 preceding 2, and
the bottom elements of Θδ that have −1 in their one-line notation map to permutations
with 2 preceding 1.

The inverse of the restriction of ηδ to bottom elements sends a permutation τ with
τi = 1 and τj = 2, for i < j, to the signed permutation

(−τi−1 + 1)(−τi−2 + 1) · · · (−τ1 + 1)(τi+1 − 1)(τi+2 − 1) · · · (τn+1 − 1).

The inverse of the restriction sends a permutation τ1 · · · τn+1 with τi = 2 and τj = 1, for
i < j, to the signed permutation

(τi+1 − 1) · · · (τj−1 − 1) (−1) (−τi−1 + 1) · · · (−τ1 + 1)(τj+1 − 1) · · · (τn+1 − 1).

It is now easily verified that the inverse is order-preserving. The third assertion of The-
orem 6.7 follows as in the case of Theorem 6.1, and we have completed the proof of
Theorem 6.7.

Now let ηε : Bn → Sn+1 send π ∈ Bn to the permutation obtained as follows:
If the one-line notation for π contains the entry 1, then extract the subsequence of
(−πn)(−πn−1) · · · (−π1)π1 · · · πn−1πn consisting of values greater than or equal to −1,
change −1 to 0, then add 1 to each entry. If the one-line notation for π contains the
entry −1, then construct a sequence

(−πn)(−πn−1) · · · (−π1) 0π1 · · · πn−1πn,

extract the subsequence consisting of nonnegative entries, and add 1 to each entry. Thus
ηε is a hybrid of ησ and ην in exactly the opposite way that ηδ is a hybrid: ηε(π) = ην(π)
if the one-line notation of π contains 1 and ηε(π) = ησ(π) if the one-line notation of π
contains −1.

Theorem 6.10. The map ηε is a surjective lattice homomorphism from Bn to Sn+1. Its
fibers constitute the congruence generated by s0s1 and s1s0. Furthermore, ηε is the unique
surjective lattice homomorphism from Bn to Sn+1 whose restriction to (Bn){s0,s1} agrees
with ηε.

Fortunately, to prove Theorem 6.10, we can appeal to Theorem 6.7 and Proposition 4.6,
to avoid any more tedious arguments about shard arrows for type Bn. Let neg : Bn → Bn

be the map that sends a signed permutation π1 · · · πn to (−π1) · · · (−πn). Let rev : Sn+1 →
Sn+1 be the map sending a permutation τ1 · · · τn+1 to τn+1 · · · τ1. The following proposition
is easily verified.
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Figure 12: The Coxeter diagram of F4 encoded as an order ideal

Proposition 6.11. The map ηε sends a signed permutation π to rev(ηδ(neg(π))).

The maps rev and neg both send a group element w to ww0, where w0 is the longest
element of the corresponding Coxeter group (the element (n + 1)n · · · 1 in Sn+1 or the
element (−1) · · · (−n) in Bn). The map w 7→ ww0 is an anti-automorphism of the weak
order on any finite Coxeter group. Thus the first assertion of Theorem 6.10 follows from
the first assertion of Theorem 6.7. Furthermore, by Proposition 4.6, the second assertion
of Theorem 6.10 follows from the second assertion of Theorem 6.7, and the third assertion
follows as usual.

7 Homomorphisms from exceptional types

In this section, we treat the remaining cases, where (W,W ′) is (F4, A4), (H3, A3), (H3, B3),
(H4, A4), or (H4, B4). In each case, the stated theorem proves the first assertion of The-
orem 1.6, while inspection of the proof establishes the second assertion of Theorem 1.6
and completes the proof of Theorem 1.7.

Homomorphisms from type F4

Let W be a Coxeter group of type F4 and with S = {p, q, r, s}, m(p, q) = 3, m(q, r) = 4
and m(r, s) = 3. Figure 12 shows the order ideal in the weak order on W that encodes
these values of m. This is comparable to Figure 2.a, except that the square intervals that
indicate where m is 2 (e.g. m(p, r) = 2) are omitted. For W ′ of type A4 (i.e. W ′ = S5),
we identify p, q, r, s with s1, s2, s3, s4 (in that order) to discuss homomorphisms fixing S
pointwise.

Theorem 7.1. There are exactly four surjective lattice homomorphisms from F4 to A4

that fix S pointwise: For each choice of γ1 ∈ {qr, qrq} and γ2 ∈ {rq, rqr}, there exists a
unique such homomorphism whose associated congruence contracts γ1 and γ2.

Proof. Suppose η : F4 → A4 be a surjective homomorphism fixing S pointwise. By
Proposition 2.6 and the discussion in Section 5, the congruence Θ on F4 defined by the
fibers of η contracts exactly one of qr and qrq and exactly one of rq and rqr. In each of
the four cases, we verify that there is a unique choice of η.
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Case 1: Θ contracts qr and rq. Computer calculations show that the quotient of W
modulo the congruence generated by qr and rq is isomorphic to the weak order on A4.
Thus a unique η exists in this case.
Case 2: Θ contracts qrq and rqr. Computer calculations as in Case 1 (or combining
Case 1 with Proposition 4.6) show that a unique η exists.
Case 3: Θ contracts qrq and rq. Proposition 2.6 implies that the restriction to W{q,r,s} is
a surjective lattice homomorphism. Thus Theorem 6.4 implies that the restriction of η to
W{q,r,s} agrees with ην . In particular, in addition to the join-irreducible elements of W{q,r,s}
contracted by the congruence generated by qrq and rq, the congruence Θ contracts rqrs
and srqrs. Computer calculations show that the quotient of W modulo the congruence
generated by qrq, rq, rqrs, and srqrs is isomorphic to the weak order on A4. Thus a
unique η exists.
Case 4: Θ contracts qr and rqr. By an argument/calculation analogous to Case 3 (or
by Case 3 and the diagram automorphism of F4), a unique η exists. The congruence Θ is
generated by qr, rqr, qrqp, and pqrqp.

We have dealt with the final crystallographic case, and thus proved the following
existence and uniqueness theorem.

Theorem 7.2. Let (W,S) and (W ′, S) be finite crystallographic Coxeter systems with
m′(r, s) 6 m(r, s) for each pair r, s ∈ S. For each r, s ∈ S, fix a surjective homomorphism
η{r,s} from W{r,s} to W ′

{r,s} with η{r,s}(r) = r and η{r,s}(s) = s. Then there is exactly one
compressive homomorphism η : W → W ′ such that the restriction of η to W{r,s} equals
η{r,s} for each pair r, s ∈ S.

Homomorphisms from type H3

Now, let W be a Coxeter group of type H3 and with S = {q, r, s}, m(q, r) = 5 and
m(r, s) = 3. Identify q, r, s with the generators s1, s2, s3 of A3 = S4.

Theorem 7.3. There are exactly nine surjective lattice homomorphisms from H3 to A3

that fix S pointwise: For each choice of distinct γ1, γ2 ∈ {qr, qrq, qrqr} and distinct
γ3, γ4 ∈ {rq, rqr, rqrq}, there exists a unique such homomorphism whose associated con-
gruence contracts γ1, γ2, γ3 and γ4.

Proof. Suppose η : H3 → A3 is a surjective homomorphism, fixing S pointwise, whose
fibers define a congruence Θ. As in the proof of Theorem 7.1, we consider the nine cases
separately.

In each of Cases 1–6 below, computer calculations show that the quotient of H3 modulo
the congruence generated by the given join-irreducible elements is isomorphic to the weak
order on A3. Thus in each of these cases, a unique η exists.
Case 1: Θ contracts qr, qrq, rq, and rqr.
Case 2: Θ contracts qr, qrq, rq, and rqrq.
Case 3: Θ contracts qr, qrq, rqr, and rqrq.
Case 4: Θ contracts qr, qrqr, rq, and rqrq.
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Case 5: Θ contracts qr, qrqr, rqr, and rqrq.
Case 6: Θ contracts qrq, qrqr, rqr, and rqrq.
Case 7: Θ contracts qrq, qrqr, rq, and rqr. In this case, the quotient of H3 modulo the
congruence Θ′ generated by the given join-irreducible elements is a poset with 28 elements.
Inspection of Irr(Con(H3/Θ

′)) reveals a unique way to contract additional join-irreducible
elements so as to obtain Irr(Con(A3)). (Cf. Figure 11 and the surrounding discussion in
Section 6.2.) The additional join-irreducible elements to be contracted are rqrqsrq and
srqrqsrq. Computer calculations confirm that the quotient of H3 modulo the congruence
generated by qrq, qrqr, rq, rqr, rqrqsrq, and srqrqsrq is indeed isomorphic to A3, so
there exists a unique η in this case.
Case 8: Θ contracts qr, qrqr, rq, and rqr. Computer calculations show that the quotient
of H3 modulo the congruence generated by qr, qrqr, rq, rqr, rqrqsrqr, and srqrqsrqr is
isomorphic to A3. As in Case 7, inspection of the poset of irreducibles of the congruence
lattice of the quotient reveals that no other possibilities exist. Thus η exists and is unique
in this case.
Case 9: Θ contracts qrq, qrqr, rq, and rqrq. The existence and uniqueness of η follows
from Case 7 and Proposition 4.6. Alternately, the calculation can be made directly as
in Cases 7–8, realizing Θ as the congruence generated by qrq, qrqr, rq, rqrq, rqrs, and
srqrs.

Theorem 7.4. There are exactly eight surjective lattice homomorphisms from H3 to B3:
There is no surjective lattice homomorphism η : H3 → B3 whose associated congru-
ence contracts qr and rqrq. For every other choice of γ1 ∈ {qr, qrq, qrqr} and γ2 ∈
{rq, rqr, rqrq}, there exists a unique such homomorphism whose associated congruence
contracts γ1 and γ2.

Proof. Suppose η : H3 → B3 is a surjective homomorphism whose fibers define a congru-
ence Θ. We again proceed by cases.
Case 1: Θ contracts qrq and rqr. Computer calculations show that the quotient of H3

modulo the congruence generated by qrq and rqr is isomorphic to the weak order on B3.
Thus a unique η exists.
Case 1 is the only case in which Θ is homogeneous of degree 2. Cases 2–8 proceed just like
Cases 7–9 in the proof of Theorem 7.3, except that “inspection of the poset of irreducibles
of the congruence lattice of the quotient” is automated. In each case, there exists a unique
set of additional join-irreducibles required to generate Θ, and these generators are given in
parentheses. Some of these cases can also be obtained from each other by Proposition 4.6.
Case 2: Θ contracts qr and rq (qr, rq, and qrqsrqrs).
Case 3: Θ contracts qr and rqr (qr, rqr, qrqsrqrs, rqrqsrqrs, and srqrqsrqrs).
Case 4: Θ contracts qrq and rq (qrq, rq, qsrqrs, rqrqsr, srqrqsr, rqrs, qrqrs, and
srqrs).
Case 5: Θ contracts qrq and rqrq (qrq, rqrq, qsrqrs, qrqrs and rqsrqrs).
Case 6: Θ contracts qrqr and rq (qrqr, rq, qsrqrqsrqr, rqrqsrqr, qrqrqsrqr, srqrqsrqr,
rqrqsr, srqrqsr, rqrs, and srqrs).
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Case 7: Θ contracts qrqr and rqr (qrqr, rqr, srqrqsrqrs, qsrqrqsrqr, rqrqsrqr, qrqrqsrqr,
srqrqsrqr, and rqrqsrqrs).
Case 8: Θ contracts qrqr and rqrq (qrqr, rqrq, and rqsrqrs).
Case 9: Θ contracts qr and rqrq. A computation shows that the quotient of H3 modulo
the congruence generated by qr and rqrq is not isomorphic to B3. Furthermore, this
quotient has 48 elements, the same number as B3. Thus it is impossible to obtain B3 by
contracting additional join-irreducible elements.

Homomorphisms from type H4

Finally, let W be a Coxeter group of type H4 and with S = {q, r, s, t}, m(q, r) = 5,
m(r, s) = 3 and m(s, t) = 3. The classification of surjective homomorphisms from H4 to
A4 and from H4 to B4 exactly follows the classification of surjective homomorphisms from
H3 to A3 and from H3 to B3, as we now explain.

Let η be any surjective homomorphism η from H4 to A4 or B4 with associated con-
gruence Θ. By Proposition 2.6, the restriction η′ of η to the standard parabolic subgroup
W{q,r,s} (of type H3) is a homomorphism from H3 to A3 or B3. Thus η′ is described by
Theorem 7.3 or 7.4. The congruence Θ′ associated to η′ is the restriction of Θ to W{q,r,s}.
The proofs of Theorems 7.3 and 7.4, determine, for each surjective homomorphism, a set
Γ of join-irreducibles that generate the associated congruence. Since Θ′ agrees with Θ
on W{q,r,s}, the congruence associated to η must also contract the join-irreducibles in Γ.
In each case, computer calculations show that the quotient of H4 modulo the congruence
generated by Γ is isomorphic to A4 or B4. This shows that for each surjective homo-
morphisms from H3, there is a unique surjective homomorphisms from H4. Furthermore,
Theorem 7.4 and Proposition 2.6 imply that there is no surjective lattice homomorphism
from H4 to B4 whose associated congruence contracts qr and rqrq. Thus we have the
following theorems:

Theorem 7.5. There are exactly nine surjective lattice homomorphisms from H4 to A4

that fix S pointwise: For each choice of distinct γ1, γ2 ∈ {qr, qrq, qrqr} and distinct
γ3, γ4 ∈ {rq, rqr, rqrq}, there exists a unique such homomorphism whose associated con-
gruence contracts γ1, γ2, γ3 and γ4.

Theorem 7.6. There are exactly eight surjective lattice homomorphisms from H4 to B4:
There is no surjective lattice homomorphism η : H4 → B4 whose associated congru-
ence contracts qr and rqrq. For every other choice of γ1 ∈ {qr, qrq, qrqr} and γ2 ∈
{rq, rqr, rqrq}, there exists a unique such homomorphism whose associated congruence
contracts γ1 and γ2.

8 Lattice homomorphisms between Cambrian lattices

In this section, we show how the results of this paper on lattice homomorphisms between
weak orders imply similar results on lattice homomorphisms between Cambrian lattices.
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A Coxeter element of a Coxeter group W is an element c that can be written in
the form s1s2 · · · sn, where s1, s2, . . . , sn are the elements of S. There may be several
total orders s1, s2, . . . , sn on S whose product is c. These differ only by commutations of
commuting elements of S. In particular, for every edge r—s in the Coxeter diagram for
W (i.e. for every pair r, s with m(r, s) > 2), either r precedes s in every reduced word for
c or s precedes r in every reduced word for c. We use the shorthand “r precedes s in c”
or “s precedes r in c” for these possibilities.

The initial data defining a Cambrian lattice are a finite Coxeter group W and a Coxeter
element c. The Cambrian congruence is the homogeneous degree-2 congruence Θc on
W generated by the join-irreducible elements altk(s, r) for every pair r, s ∈ S such that
r precedes s in c and every k from 2 to m(r, s) − 1. Here, as in Section 3, the notation
altk(s, r) stands for the word with k letters, starting with s and then alternating r, s,
r, etc. Equivalently, Θc is the finest congruence with s ≡ altm(r,s)−1(s, r) for every pair
r, s ∈ S such that r precedes s in c. The quotient W/Θc is the Cambrian lattice . The
Cambrian lattice is isomorphic to the subposet of W induced by the bottom elements
of Θc-classes. To distinguish between the two objects, we write W/Θc for the Cambrian
lattice constructed as a quotient of W and write Camb(W, c) for the Cambrian lattice
constructed as the subposet of c induced by bottom elements of Θc-classes.

The key result of this section is the following theorem, which will allow us to completely
classify surjective homomorphisms between Cambrian lattices, using the classification
results on surjective homomorphisms between weak orders. (These classification results
are Theorems 8.8, 8.10, and 8.11.)

Theorem 8.1. Let η : W → W ′ be a surjective lattice homomorphism whose associated
congruence Ψ is generated by a set Γ of join-irreducible elements. Let c = s1s2 · · · sn be
a Coxeter element of W and let c′ = η(s1)η(s2) · · · η(sn) ∈ W ′. Then the restriction of η
is a surjective lattice homomorphism from Camb(W, c) to Camb(W ′, c′). The associated
congruence is generated by Γ ∩ Camb(W, c).

To understand Theorem 8.1 correctly, one should keep in mind that η is a lattice
homomorphism, not a group homomorphism, so that c′ need not be equal to η(c). (For
example, in the case n = 2 of Theorem 6.1, the lattice homomorphism ησ sends the Coxeter
element s0s1 to s1.) The element c′ is a Coxeter element of W ′ in light of Proposition 2.1
and Theorem 1.5.

Before assembling the tools necessary to prove Theorem 8.1, we illustrate the theorem
by extending Example 1.1.

Example 8.2. Recall that Figure 3 indicates a congruence Ψ on B3 such that the quotient
B3/Ψ is isomorphic to S4. As mentioned just after Theorem 6.7, the corresponding
surjective homomorphism is ηδ : B3 → S4. The congruence Ψ is generated by Γ =
{s0s1s0, s1s0s1}.

Let c be the Coxeter element s0s1s2 of B3. The congruence Θc on B3 is generated
by {s1s0, s1s0s1, s2s1}, as illustrated in Figure 13.a. Let c′ be the Coxeter element s1s2s3

of S4. The Cambrian congruence Θc′ on S4 is generated by the set {s2s1, s3s2}, as illus-
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(a) (b)

Figure 13: a: Edge contractions that generate the s0s1s2-Cambrian congruence on B3. b:
Edge contractions that generate the s1s2s3-Cambrian congruence on S4.

(a) (b)

Figure 14: a: The Cambrian congruence Θc on B3. b: The Cambrian congruence Θc′ on
Sn.

trated in Figure 13.b. The set {s2s1, s3s2} is obtained by applying ηδ to each element of
{s1s0, s1s0s1, s2s1} that is not contracted by Ψ.

Figure 14 shows the Cambrian congruence Θc on B3 and the Cambrian congruence
Θc′ on Sn. Here, S4 is represented, as in Figure 3.b, as the subposet of B3 induced by
bottom elements of the congruence Ψ. Figure 15 shows the Cambrian lattice Camb(B3, c)
and the Cambrian lattice Camb(S4, c

′). The shaded edges of Camb(B3, c) indicate the
congruence on Camb(B3, c) whose quotient is Camb(S4, c

′). This congruence is generated
by the join-irreducible element s1s0s1, because Γ ∩ Camb(W, c) = {s0s1s0}.

The proof of Theorem 8.1 depends on general lattice-theoretic results, but also on
special properties of the subposet Camb(W, c) of W . To explain these properties, we
recall from [25] the characterization of bottom elements of Θc-classes as the c-sortable
elements of W .

To define c-sortable elements, we fix a reduced word s1 · · · sn for c and construct, for
any element w ∈ W , a canonical reduced word for w. Write a half-infinite word c∞ =
s1 · · · sn|s1 · · · sn|s1 · · · sn| . . ., where the symbols “ | ” are dividers that mark the locations
where the sequence s1 · · · sn begins again. Out of all subwords of c∞ that are reduced
words for w, the (s1 · · · sn)-sorting word for w is the one that is lexicographically
leftmost, as a sequence of positions in c∞. For convenience, when we write (s1 · · · sn)-
sorting words, we include the dividers that occur between letters in the lexicographically
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(a) (b)

Figure 15: a: The Cambrian lattice Camb(B3, c) ∼= B3/Θc. b: The Cambrian lattice
Camb(S4, c

′) ∼= S4/Θc′ .

leftmost reduced subword. Thus for example, if W = S4, the (s1s2s3)-sorting word for the
longest element is s1s2s3|s1s2|s1, and the (s2s1s3)-sorting word for the longest element is
s2s1s3|s2s1s3. Each (s1 · · · sn)-sorting word defines a sequence of subsets of S, by taking
the elements between successive dividers, and this sequence depends only on c, not on
s1 · · · sn. An element w is c-sortable if this sequence of subsets is weakly decreasing.

The following is a combination of [25, Theorems 1.1, 1.2, 1.4].

Theorem 8.3. An element of W is the bottom element of its Θc-class if and only if it is
c-sortable. The c-sortable elements constitute a sublattice of the weak order.

In general, the set of bottom elements of a congruence is a join-sublattice but need
not be a sublattice.

As a special case of a general lattice-theoretic result (found, for example, in [27,
Proposition 9-5.11]), a c-sortable element v represents a join-irreducible element of the
Cambrian lattice W/Θc if and only if v is join-irreducible as an element of W . The
following simple lemma will be used in the proof of Theorem 8.1.

Lemma 8.4. If j is a c-sortable join-irreducible element and j∗ is the unique element
covered by j, then j∗ is c-sortable.

Proof. If c = s1 · · · sn and a1a2 · · · ak is the (s1 · · · sn)-sorting word for j, then a1a2 · · · ak−1

is the (s1 · · · sn)-sorting word for a c-sortable element x covered by j. But j∗ is the unique
element covered by j, so j∗ = x, which is c-sortable.

We need one of the standard Isomorphism Theorems for lattices. (See, for example,
[27, Theorem 9-5.22].) This is easily proved directly, or follows as a special case of the
same Isomorphism Theorem in universal algebra. The notation [x]Θ stands for the Θ-class
of x.

Theorem 8.5. Let L be a finite lattice and let Θ and Ψ be congruences on L such that Ψ
refines Θ. Define a relation Θ/Ψ on L/Ψ by setting [x]Ψ ≡ [y]Ψ modulo Θ/Ψ if and only
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if x ≡ y modulo Θ. Then Θ/Ψ is a congruence and the map β : L/Θ → (L/Ψ)/(Θ/Ψ)
sending [x]Θ to the set of Ψ-classes contained in [x]Θ is an isomorphism. The inverse
isomorphism sends a Θ/Ψ-class C in (L/Ψ)/(Θ/Ψ) to the union of the Ψ-classes in C.

The following lemma will also be useful.

Lemma 8.6. Let L be a finite lattice and let Γ and Γ̃ be sets of join-irreducible elements
in L. Let Ψ be the congruence on L generated by Γ and let I be the set of join-irreducible
elements contracted by Ψ. Define Ψ̃ and Ĩ similarly. Then the congruence (Ψ∨ Ψ̃)/Ψ on
L/Ψ is generated by the set {[j]Ψ : j ∈ Γ̃ \ I} of join-irreducible elements of L/Ψ.

Proof. Identifying join-irreducible elements of L with join-irreducible congruences as be-
fore, the sets I and Ĩ are the ideals that Γ and Γ̃ generate in Irr(Con(L)). The join-
irreducible elements in the quotient L/Ψ are exactly the elements [j]Ψ where j ∈ (Irr(L)\
I). Since the set of join-irreducible elements contracted by Ψ ∨ Ψ̃ is I ∪ Ĩ, each [j]Ψ is
contracted by the congruence (Ψ ∨ Ψ̃)/Ψ if and only if j is in Ĩ. Furthermore, a join-
irreducible element j ∈ (Irr(L)\I) is in Ĩ if and only if it is below some element of Γ̃\I. We
see that (Ψ∨ Ψ̃)/Ψ is the congruence on L/Ψ generated by the set {[j]Ψ : j ∈ Γ̃ \ I}.

We now prove our key theorem.

Proof of Theorem 8.1. The quotient W/Ψ is isomorphic to W ′. Let I be the set of join-
irreducible elements contracted by Ψ. Let Γ̃ be the generating set that was used to define
the Cambrian congruence Θc. By Lemma 8.6, the set {[j]Ψ : j ∈ Γ̃ \ I} generates the
congruence (Ψ ∨ Θc)/Ψ on W/Ψ ∼= W ′. This congruence corresponds to the Cambrian
congruence Θc′ on W ′, so Camb(W ′, c′) is isomorphic to (W/Ψ)/[(Ψ ∨Θc)/Ψ], which, by
Theorem 8.5, is isomorphic to W/(Φ ∨Θc).

Also by Theorem 8.5, W/(Φ ∨ Θc) is isomorphic to (W/Θc)/[(Φ ∨ Θc)/Θc], and
Lemma 8.6 says that (Φ∨Θc)/Θc is generated by {[j]Θc : j ∈ (Γ ∩ Camb(W, c))}. In par-
ticular, there is a surjective homomorphism from W/Θc to W/(Ψ ∨Θc) whose associated
congruence is generated by {[j]Θc : j ∈ (Γ ∩ Camb(W, c))}. Since x 7→ [x]Θc is an isomor-
phism from Camb(W, c) to W/Θc, and since W/(Ψ ∨ Θc) is isomorphic to Camb(W ′, c′),
we conclude that there is a surjective homomorphism from Camb(W, c) to Camb(W ′, c′)
whose associated congruence is generated by Γ ∩ Camb(W, c). We will show that this
homomorphism is the restriction of η.

If x ∈ Camb(W ′, c′), then x is the bottom element of [x]Θc′
. Thus η−1(x) is a Ψ-class

in W containing the bottom element y of a (Ψ∨Θc)-class. In particular, y is the bottom
element of [y]Θc , or in other words y ∈ Camb(W, c). Since η(y) = x, we have shown that
Camb(W ′, c′) ⊆ η(Camb(W, c)).

Since Camb(W, c) is a sublattice of W and η is a homomorphism, η(Camb(W, c)) is a
sublattice of W ′, and the restriction of η to Camb(W, c) is a lattice homomorphism from
Camb(W, c) to η(Camb(W, c)). Let j ∈ Γ∩Camb(W, c). Then because j ∈ Γ, η contracts
j, or in other words η(j) = η(j∗), where j∗ is the unique element of W covered by j.
By Lemma 8.4, the element j∗ is also in Camb(W, c), so j∗ is also the unique element
of Camb(W, c) covered by j. Thus the restriction of η to Camb(W, c) also contracts j
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in Camb(W, c). Since there exists a surjective lattice homomorphism from Camb(W, c)
to Camb(W ′, c′) whose associated congruence is generated by Γ ∩ Camb(W, c), the im-
age of the restriction of η can be no larger than Camb(W ′, c′), and we conclude that
η(Camb(W, c)) = Camb(W, c). We have shown that the restriction of η is a surjective ho-
momorphism from Camb(W, c) to Camb(W ′, c′) whose associated congruence is generated
by Γ ∩ Camb(W, c).

With Theorem 8.1 in hand, we prove several facts that together constitute a detailed
classification of surjective homomorphisms between Cambrian lattices.

An oriented Coxeter diagram is a directed graph (with labels on some edges)
defined by choosing an orientation of each edge in a Coxeter diagram. Orientations of
the Coxeter diagram of a finite Coxeter group W are in bijection with Coxeter elements
of W . There is disagreement in the literature about the convention for this bijection.
The definition of Cambrian lattices given here agrees with the definition in [23] if we take
the following convention, which also agrees with the convention of [24, 25]: To obtain a
Coxeter element from an oriented diagram, we require, for each directed edge s→ t, that
s precedes t in every expression for c. However, the opposite convention is also common.

An oriented diagram homomorphism starts with the oriented Coxeter diagram
encoding a Coxeter system (W,S) and a choice of Coxeter element c, then deletes vertices,
decreases labels on directed edges, and/or erases directed edges, and relabels the vertices
to obtain the oriented Coxeter diagram of some Coxeter system (W ′, S ′) and choice c′ of
Coxeter element. We prove the following result and several more detailed results.

Theorem 8.7. Given a finite Coxeter system (W,S) with a choice c of Coxeter element
and another Coxeter system (W ′, S ′) with a choice c′ of Coxeter element, there exists a
surjective lattice homomorphism from Camb(W, c) to Camb(W ′, c′) if and only if there
exists an oriented diagram homomorphism from the oriented diagram for (W,S) and c to
the oriented diagram for (W ′, S ′) and c′.

The proof of Theorem 8.7 begins with a factorization result analogous to Theorem 1.5.
Given J ⊆ S and a Coxeter element c of W , the restriction of c to WJ is the Coxeter
element c̃ of WJ obtained by deleting the letters in S \ J from a reduced word for c.
(Typically, the restriction is not equal to cJ .) Recall from Section 2 the definition of the
parabolic homomorphism ηJ . Recall from Section 1 that a compressive homomorphism
is a surjective homomorphism that restricts to a bijection between sets of atoms. For
Cambrian lattices, this is a surjective lattice homomorphism Camb(W, c)→ Camb(W ′, c′)
that restricts to a bijection between S and S ′.

Theorem 8.8. Suppose (W,S) and (W ′, S ′) are finite Coxeter systems and c and c′

are Coxeter elements of W and W ′. Suppose η : Camb(W, c) → Camb(W ′, c′) is a
surjective lattice homomorphism and let J ⊆ S be {s ∈ S : η(s) 6= 1′}. Then η factors as
η|Camb(WJ ,c̃) ◦ (ηJ)|Camb(W,c), where c̃ is the restriction of c to WJ . The map η|Camb(WJ ,c̃) is
a compressive homomorphism.

As was the case for the weak order, the task is to understand compressive homomor-
phisms between Cambrian lattices. The following proposition is proved below as a special
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case of part of Proposition 8.12. Together with Theorem 8.8, it implies that every sur-
jective lattice homomorphism between Cambrian lattices determines an oriented diagram
homomorphism.

Proposition 8.9. Suppose η : Camb(W, c) → Camb(W ′, c′) is a compressive homomor-
phism. Then m′(η(r), η(s)) 6 m(r, s) for each pair r, s ∈ S. Also, if s1 · · · sn is a reduced
word for c, then c′ = η(s1) · · · η(sn).

As we did for the weak order, in studying compressive homomorphisms between Cam-
brian lattices, we may as well take S ′ = S and let η fix each element of S. We will prove
the following characterization of compressive homomorphisms.

Theorem 8.10. Suppose (W,S) and (W ′, S) are finite Coxeter systems and suppose that
m′(r, s) 6 m(r, s) for each pair r, s ∈ S. Given a Coxeter element c of W with re-
duced word s1 · · · sn, let c′ be the element of W ′ with reduced word s1 · · · sn. Let Γ̃ be a
set of join-irreducible elements obtained by choosing, for each r, s ∈ S with m′(r, s) <
m(r, s) such that r precedes s in c, exactly m(r, s) −m(r, s) join-irreducible elements in
{altk(r, s) : k = 2, 3, . . . ,m(r, s)− 1}.

1. There exists a unique homomorphism η : Camb(W, c)→ Camb(W ′, c′) that is com-
pressive and fixes S pointwise and whose associated congruence Θ contracts all of
elements of Γ̃.

2. Θ is generated by Γ̃.

3. Every compressive homomorphism from Camb(W, c) to Camb(W ′, c′) that fixes S
pointwise arises in this manner, for some choice of Γ̃.

Theorem 8.1 implies that, given any compressive homomorphism η̃ : W → W ′, there is
a choice of Γ̃ in Theorem 8.10 such that every element of Γ̃ is contracted by the congruence
associated to η̃. The homomorphism η thus arising from Theorem 8.10 is the restriction
of η̃. The following theorem is a form of converse to these statements.

Theorem 8.11. Suppose (W,S) and (W ′, S) are finite Coxeter systems and suppose that
η : Camb(W, c)→ Camb(W ′, c′) is an compressive homomorphism.

1. There exists a compressive homomorphism from W to W ′ whose restriction to
Camb(W, c) is η.

2. Let Γ̃ be the set of join-irreducible elements that generates the congruence associated
to η. Given a compressive homomorphism η̃ : W → W ′ such that all elements of Γ̃
are contracted by the congruence associated to η̃, the restriction of η̃ to Camb(W, c)
is η.

We begin our proof of these classification results by pointing out some basic facts on
surjective homomorphisms between Cambrian lattices, in analogy with Proposition 2.1.
Proposition 8.9 is a special case of (5) and (6) in the following proposition.
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Proposition 8.12. Let η : Camb(W, c)→ Camb(W ′, c′) be a surjective lattice homomor-
phism. Then

1. η(1) = 1′.

2. S ′ ⊆ η(S) ⊆ (S ′ ∪ {1′}).

3. If r and s are distinct elements of S with η(r) = η(s), then η(r) = η(s) = 1′.

4. If J ⊆ S, then η restricts to a surjective homomorphism from Camb(WJ , c̃) to
Camb(W ′

η(J)\{1′}, c̃
′), where c̃ is the restriction of c to WJ and c̃′ is the restriction of

c′ to W ′
η(J)\{1′}.

5. m′(η(r), η(s)) 6 m(r, s) for each pair r, s ∈ S with η(r) 6= 1′ and η(s) 6= 1′.

6. If s1s2 · · · sn is a reduced word for c, then c′ = η(s1)η(s2) · · · η(sn).

Proof. The proof of Proposition 2.1 can be repeated verbatim to prove all of the assertions
except (6). The latter is equivalent to the statement that η(r) precedes η(s) if and only
if r precedes s, whenever r, s ∈ S have η(r) 6= 1′ and η(s) 6= 1′. This statement follows
immediately from (4) with J = {r, s}.

Taking η = ηJ and Γ = S \ J in Theorem 8.1, we have the following analog of
Theorem 2.5 for Cambrian lattices:

Theorem 8.13. Let c be a Coxeter element of W, let J ⊆ S and let c̃ be the Coxeter ele-
ment of WJ obtained by restriction. Then ηJ restricts to a surjective lattice homomorphism
from Camb(W, c) to Camb(WJ , c̃). The associated lattice congruence on Camb(W, c) is
generated by the set S \ J of join-irreducible elements.

To prove Theorem 8.8, the proof of Theorem 1.5 can be repeated verbatim, with
Proposition 8.12 replacing Proposition 2.1 and Theorem 8.13 replacing Theorem 2.5. We
prove Theorems 8.10 and 8.11 together.

Proof of Theorems 8.10 and 8.11. We first claim that there is a compressive homomor-
phism η̃ : W → W ′ fixing S and a generating set Γ for the associated congruence such
that Γ̃ = Γ ∩ Camb(W, c). Arguing as in previous sections, Theorems 3.1 and 4.2 reduce
the proof of the claim to the case where W and W ′ are irreducible and their diagrams
coincide except for edge labels. Looking through the type-by-type results of Sections 5–7,
we see that in almost every case, the claim is true for a simple reason: For each choice
of Γ̃, there is a surjective homomorphism from W to W ′ whose associated congruence
is homogeneous of degree 2, with a generating set that includes Γ̃. The only exceptions
come when (W,W ′) is (H3, B3) or (H4, B4) and one of the following cases applies:
Case 1: q precedes r and Γ̃ = {qr}. In this case, in light of Case 2 of the proof of
Theorem 7.4, we need to verify that qrqsrqrs ∈ H3 is not qrs-sortable and not qsr-
sortable. But qrqsrqrs has only one other reduced word, qrsqrqrs, so its qrs-sorting
word is qrs|qr|qrs, and thus it is not qrs-sortable. Similarly, the qsr-sorting word for
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qrqsrqrs is qr|qsr|qr|s, so it is not qsr-sortable. The claim is proved in this case for
(W,W ′) = (H3, B3). We easily conclude that qrqsrqrs is not qrst-sortable, qrts-sortable,
qstr-sortable or qtsr-sortable as an element of H4 (cf. [25, Lemma 2.3]), so the claim is
proved in this case for (W,W ′) = (H4, B4) as well.
Case 2: r precedes q and Γ̃ = {rq}. Arguing similarly to Case 1, it is enough to show
that qrqsrqrs is not rqs-sortable and not srq-sortable as an element of H3. This is true
because its rqs-sorting word is q|rqs|rq|rs and its srq-sorting word is q|rq|srq|r|s.
Case 3: q precedes r and Γ̃ = {qrqr}. In light of Case 8 of the proof of Theorem 7.4,
we need to verify that rqsrqrs ∈ H3 is not qrs-sortable and not qsr-sortable. This is true
because its qrs-sorting word is rs|qr|qrs and its sqr-sorting word is r|sqr|qr|s.
Case 4: r precedes q and Γ̃ = {rqrq}. The sqr-sorting word for rqsrqrs is r|sqr|qr|s,
and the srq-sorting word for rqsrqrs is rq|srq|r|s, so rqsrqrs is neither rqs-sortable nor
srq-sortable. As in Case 3, this is enough.

This completes the proof of the claim. Now Theorem 8.1 says that the restriction η of η̃
is a compressive homomorphism from Camb(W, c) to Camb(W ′, c′), whose associated con-
gruence Θ is generated by Γ̃. But then η is the unique homomorphism from Camb(W, c)
to Camb(W ′, c′) whose congruence contracts Γ̃: Any other congruence contracting Γ̃ is
associated to a strictly coarser congruence, and thus the number of congruence classes
is strictly less than |Camb(W ′, c′)|. We have proved Theorem 8.10(1), Theorem 8.10(2),
and Theorem 8.11(1).

Now let η : Camb(W, c) → Camb(W ′, c′) be any surjective lattice homomorphism.
Theorem 8.12(4) and Theorem 8.12(6) imply that, for each r, s ∈ S with m′(r, s) <
m(r, s) such that r precedes s in c, the congruence associated to η contracts exactly
m(r, s)−m′(r, s) join-irreducible elements of the form altk(r, s) with k = 2, . . . ,m(r, s)−1.
Theorem 8.10(3) follows by the uniqueness in Theorem 8.10(1).

Finally, we prove Theorem 8.11(2). Given any η̃, let Γ be a minimal generating set for
the associated congruence. Theorem 8.1 says that the restriction of η to Camb(W, c) is a
surjective homomorphism to Camb(W ′, c′), and the associated congruence is generated by
the Γ∩Camb(W, c). But by the uniqueness in Theorem 8.10(1) and by Theorem 8.10(2),
the restriction of η̃ to Camb(W, c) is η.

9 Refinement relations among Cambrian fans

Given a finite crystallographic Coxeter group W with Coxeter arrangement A, an associ-
ated Cartan matrix A, and a Coxeter element c of W , the Cambrian fan for (A, c) is
the fan defined by the shards of A not removed by the Cambrian congruence Θc. In this
section, we prove Theorem 1.11, which gives explicit refinement relations among Cam-
brian fans. We assume the most basic background about Cartan matrices of finite type
and the associated finite root systems.

Recall from the introduction that a Cartan matrix A = [aij] dominates a Cartan
matrix A′ = [a′ij] if |aij| > |a′ij| for all i and j. Recall also that Proposition 1.10 says
that when A dominates A′, Φ(A) ⊇ Φ(A′) and Φ+(A) ⊇ Φ+(A′), assuming that Φ(A) and
Φ(A′) are both defined with respect to the same simple roots αi. We again emphasize
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that Φ(A) includes any imaginary roots. The proposition appears as [16, Lemma 3.5],
but for completeness, we give a proof here.

Proof of Proposition 1.10. To construct a Kac-Moody Lie algebra from a symmetrizable
Cartan matrix A, as explained in [13, Chapter 1], one first defines an auxiliary Lie algebra
g̃(A) using generators and relations. The Lie algebra g̃(A) decomposes as a direct sum
n− ⊕ h ⊕ n+ of complex vector spaces. We won’t need details on h here, but its dual
contains linearly independent vectors α1, . . . , αn called the simple roots. The summand
n+ decomposes further as a (vector space) direct sum with infinitely many summands g̃α,
indexed by nonzero vectors α in the nonnegative integer span Q+ of the simple roots.
Similarly, n− decomposes into summands indexed by nonzero vectors in the nonpositive
integer span of the simple roots. Furthermore, n+ is freely generated by elements e1, . . . , en
and thus is independent of the choice of A (as long as A is n× n). Similarly, n− is freely
generated by elements f1, . . . , fn and is independent of the choice of A.

There is a unique largest ideal r of g̃(A) whose intersection with h is trivial, and this
is a direct sum r− ⊕ r+ of ideals with r± = r ∩ n±. The Kac-Moody Lie algebra
g(A) is defined to by g̃(A)/r. The Lie algebra g(A) inherits a direct sum decomposition
n− ⊕ h⊕ n+, and the summands n± decompose further as

n− =
⊕

06=α∈Q+

g−α and n+ =
⊕

06=α∈Q+

gα.

A root is a nonzero vector α in Q+∪ (−Q+) such that gα 6= 0. The (Kac-Moody) root
system associated to A is the set of all roots.

While n− and n+ are independent of the choice of A, the ideal r depends on A (in a
way that is not apparent here because we have not given the presentation of g̃(A)). Thus,
writing r(A) for the ideal associated to A, Proposition 1.10 follows immediately from this
claim: If A and A′ are Cartan matrices such that A dominates A′, then r(A) ⊆ r(A′).

This claim follows immediately from a description of the ideal r in terms of the Serre
relations . Recall that for x in a Lie algebra g, the linear map adx : g→ g is y 7→ [x, y].
In [13, Theorem 9.11], it is proved that the ideal r+ is generated by {(adei)

1−aij(ej) : i 6= j}
and that r+ is generated by {(adfi)

1−aij(fj) : i 6= j}.

Although we have proved Proposition 1.10 in full generality, we pause to record the
following proof due to Hugh Thomas (personal communication, 2018) in the case where
A is symmetric.

Quiver-theoretic proof of Proposition 1.10 (for A symmetric). Suppose Q is a quiver Q
with n vertices, having no loops (i.e. 1-cycles), suppose v ∈ Zn, and fix an algebraically
closed field. We associate a symmetric Cartan matrix A to Q by ignoring the direction of
edges and taking aij to be the total number of edges connecting vertex i to vertex j.

Kac [12, Theorem 3] (generalizing Gabriel’s Theorem) proved that v is the dimen-
sion vector of an indecomposable representation of Q if and only if v is the simple-root
coordinate of a positive root in the root system Φ(A).
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Given symmetric Cartan matrices A and A′ with A dominating A′, we can construct a
quiver Q′ associated to A′ and add arrows to it to obtain a quiver Q associated to A. If v
is the simple root coordinates of a root in Φ(A′), then if we start with an indecomposable
representation of Q′ with dimension vector v and assign arbitrary maps to the arrows in
Q that are not in Q′, the result is still indecomposable, so v is the simple root coordinates
of a root in Φ(A).

The dual root system Φ∨(A) consists of all co-roots associated to the roots in Φ(A).
This is a root system in its own right, associated to AT . Since A dominates A′ if and only
if AT dominates (A′)T , the following proposition is immediate from Proposition 1.10.

Proposition 9.1. Suppose A and A′ are symmetrizable Cartan matrices such that A
dominates A′. If Φ∨(A) and Φ∨(A′) are both defined with respect to the same simple
co-roots α∨i , then Φ∨(A) ⊇ Φ∨(A′) and Φ∨+(A) ⊇ Φ∨+(A′).

Suppose A dominates A′ and suppose (W,S) and (W ′, S) are the associated Coxeter
systems. Let A and A′ be the associated Coxeter arrangements, realized so that the
simple co-roots are the same for the two arrangements. (This requires that two different
Euclidean inner products be imposed on Rn.) Proposition 9.1 implies that A′ ⊆ A, so
that in particular, each region of A is contained in some region of A′. Since the regions
of A are in bijection with the elements of W and the regions of A′ are in bijection with
the elements of W ′, this containment relation defines a surjective map η : W → W ′.

Theorem 9.2. The map η, defined above, is a surjective lattice homomorphism from the
weak order on W to the weak order on W ′.

Proof. As in the proof of Proposition 1.10, we may restrict our attention to the case where
A is irreducible and barely dominates A′. We first consider the case where A′ is obtained
by erasing a single edge e in the Dynkin diagram of A. Let E = {e}. Recall from Section 3
that the map ηE maps w ∈ W to (wI , wJ) ∈ WI×WJ = W ′, where I and J are the vertex
sets of the two components of the diagram of A′. The set of reflections in W ′ equals the
set of reflections in WI union the set of reflections in WJ . Since inv(wI) = inv(w) ∩WI

and inv(wJ) = inv(w)∩WJ , two elements of W map to the same element of W ′ if and only
if the symmetric difference of their inversion sets does not intersect WI ∪WJ . Comparing
with the edge-erasing case in the proof of Proposition 1.10, and noting that both maps
fix W ′, we see that η = ηE. Theorem 3.2 now says that η is a surjective homomorphism.

The case where A is of type G2 is easy and we omit the details.
Now suppose A is of type Cn, so that the dual root system Φ∨(A) is of type Bn. Using

a standard realization of the type-B root system, reflections in W correspond to positive
co-roots as follows: A co-root ei corresponds to (−i i), a co-root ej − ei corresponds to
(−j − i)(i j), and a co-root ej + ei corresponds to (i − j)(j − i). The positive co-roots
for A′ are the roots α1 +α2 + · · ·+αj = ej for 1 6 j 6 n and αi+αi+1 + · · ·+αj = ej−ei−1

for 2 6 i 6 j 6 n. Two adjacent A-regions are contained in the same A′-region if and
only if the hyperplane separating them is in A \A′. Thus, in light of Proposition 6.2, we
see that η has the same fibers as the map ησ of Section 6.1, which is a surjective lattice
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homomorphism by Theorem 6.1. Writing, as before, τ for the inverse map τ to ησ, the
inversions of a permutation π correspond to the inversions t of τ(π) such that Ht ∈ A′.
It follows that η = ησ.

When A is of type Bn, so that Φ∨(A) is of type Cn, the argument is the same, using
Proposition 6.5 instead of Proposition 6.2.

When A is of type F4, the dual root system Φ∨(A) is also of type F4, and we choose
an explicit realization of Φ∨(A) with

α∨p =
1

2
(−e1 − e2 − e3 + e4) , α∨q = e1 , α∨r = e2 − e1 , α∨s = e3 − e2.

Here p, q, r, and s are as defined in connection with Theorem 7.1. The positive co-roots
are {1

2
(±e1 ± e2 ± e3 + e4)} ∪ {ei : i = 1, 2, 3, 4} ∪ {ej ± ei : 1 6 i < j 6 4}. The positive

co-roots for the A′, as a subset of these co-roots, are

{e1, e2, e3} ∪ {e2 − e1, e3 − e2, e3 − e1} ∪
{ 4∑

i=1

biei : bi ∈
{
± 1

2

}
, b4 =

1

2

∑
bi 6 0

}
Computer calculations show that the surjective homomorphism η found in Case 4 of the
proof of Theorem 7.1 has the property that two elements of W , related by a cover in the
weak order, map to the same element of W ′ if and only if the reflection that relates them
corresponds to a co-root not contained in the subset Φ∨(A′). The two maps coincide by
the same argument given in previous cases.

Theorems 8.10 and 9.2 immediately imply Theorem 1.11.

Remark 9.3. We mention two alternative proofs of Theorem 9.2 that are almost uniform,
but not quite. Both use the following fact: For A and A′ as in Proposition 1.10, if Φ(A)
is finite, then Φ(A′) is not only a subset of Φ(A), but also an order ideal in the root poset
of Φ(A) (the positive roots ordered with α 6 β if and only if β − α is in the nonnegative
span of the simple roots). This fact is easily proved type-by-type, but we are unaware
of a uniform proof. Indeed, the fact fails for infinite root systems, so perhaps a uniform
proof shouldn’t be expected. Using the fact, it is easy to prove Theorem 9.2 using the
polygonality of the weak order ([28, Theorem 10-3.7] and [27, Theorem 9-6.5]) or using
the characterization of inversion sets as rank-two biconvex (AKA biclosed) sets of positive
roots ([5, Lemma 4.1] or [28, Theorem 10-3.24]).
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