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ETH Zürich
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ETH Zürich
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Abstract

In this note we establish a resilience version of the classical hitting time result of
Bollobás and Thomason regarding connectivity. A graph G is said to be α-resilient
with respect to a monotone increasing graph property P if for every spanning sub-
graph H ⊆ G satisfying degH(v) 6 α degG(v) for all v ∈ V (G), the graph G − H
still possesses P. Let {Gi} be the random graph process, that is a process where,
starting with an empty graph on n vertices G0, in each step i > 1 an edge e is
chosen uniformly at random among the missing ones and added to the graph Gi−1.
We show that the random graph process is almost surely such that starting from
m > (16 +o(1))n log n, the largest connected component of Gm is (12 −o(1))-resilient
with respect to connectivity. The result is optimal in the sense that the constants
1/6 in the number of edges and 1/2 in the resilience cannot be improved upon. We
obtain similar results for k-connectivity.

Mathematics Subject Classifications: 05C40, 05C80

1 Introduction

Random graph theory dates back to 1959 and two seminal papers of Erdős and Rényi [12]
and Gilbert [15]. By now it is a well-studied research area with applications in different
fields. A more recent trend, started with a paper of Sudakov and Vu [29], is to study the
resilience of certain properties in random graphs, which has since attracted considerable
attention (e.g. [1, 2, 3, 9, 21, 27] and recent surveys [8, 28]). In other words, knowing
that a random graph behaves in a certain way, the question then becomes how robust

∗author was supported by grant no. 200021 169242 of the Swiss National Science Foundation.
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that behaviour is with respect to modifications (e.g. deletion of the edges). Two of the
most prominent examples of robustness of graphs can be seen in the results of Turán [30]
and Dirac [11]. Turán’s theorem determines how many edges one has to remove from a
complete graph on n vertices Kn before it becomes Kr-free (global resilience), while Dirac’s
theorem measures how many edges touching each vertex one is allowed to remove before
the graph ceases to be Hamiltonian (local resilience). The removal of all the edges incident
to a vertex with minimum degree prevents the containment of any spanning structure (e.g.
connectivity, Hamiltonicity, perfect matchings, etc.) giving a trivial upper bound on the
global resilience in these cases. In order to study robustness of such properties it is natural
to turn our attention to the local resilience.

In a more formal setting, local resilience of a graph G with respect to a monotone
increasing graph property P is defined as follows:

Definition 1 (α-resilience). Let G = (V,E) be a graph, P a monotone increasing graph
property, and α ∈ [0, 1] a constant. We say that G is α-resilient with respect to P if for
every spanning subgraph H ⊆ G satisfying degH(v) 6 α degG(v) for all v ∈ V , we have
G−H ∈ P .

Generally, being α-resilient means that an adversary cannot destroy property P by re-
moving an arbitrary α-fraction of the edges incident to every vertex. In light of this,
Dirac’s theorem states that the complete graph Kn is (1/2)-resilient with respect to
Hamiltonicity. On the other hand, allowing the adversary to remove a bit more than
a (1/2)-fraction of the edges incident to each vertex proves to be enough in order to
destroy all Hamilton cycles, and even disconnect the graph. There is a vast number of
important results in extremal combinatorics which study ‘resilience’ of the complete graph
and we refer the interested reader to e.g. [10, 16, 17, 18, 19].

In this paper we show that one of the first results in random graph theory holds
in a resilient fashion. A fundamental result of Erdős and Rényi [12] shows that if m =
n
2
(log n+cn), then with high probability1 Gn,m, a graph drawn uniformly at random among

all graphs with n vertices and m edges, is connected if cn → ∞. Its strongest ‘hitting
time’ version was shown much later by Bollobás and Thomason [6] and is the one which we
consider here (see also Bollobás [5, Chapter 7]). For an integer n ∈ N we let {Gi} define
the random graph process as follows. Let G0 be an empty graph on n vertices; at every
step i ∈ {1, . . . ,

(
n
2

)
} let Gi be obtained from Gi−1 by choosing an edge e /∈ Gi−1 uniformly

at random and adding it to Gi. This defines a sequence of nested graphs {Gi}Ni=0, where
N =

(
n
2

)
, G0 is an empty graph, and GN a complete graph on n vertices.

A trivial necessary condition for a graph to be connected is that it has minimum degree
at least one. It turns out that in the random graph process this is also sufficient. In other
words, the edge ei that makes the last isolated vertex disappear w.h.p. also makes the
graph Gi connected. Put into a more formal setting, for a monotone increasing graph
property P and a random graph process {Gi}, we define the hitting time with respect to

1We say that an event holds with high probability, w.h.p. for short, if the probability of it to hold
tends to 1 as n→∞.
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P , and write τP , as:
τP = min {m > 0: Gm ∈ P}.

One of the results of Bollobás and Thomason [6] proves that w.h.p. τ1 = τconn, where
τ1 denotes the hitting times of ‘having minimum degree at least one’ and τconn that of
‘connectivity’.

The hitting time statements about the random graph processes are in some sense the
most precise results concerning random graphs one could hope for. Unsurprisingly, they
are also the most difficult to analyse and only a handful of statements are known regarding
some basic graph properties (such as connectivity, perfect matchings, Hamiltonicity, etc.).

Our contribution is to show that almost surely not only the graph is connected at the
point τ1, but it is resiliently connected, that is it stays connected even after the adversary
removes at most a (1/2− o(1))-fraction of the edges touching each vertex. This continues
the line of research recently initiated by Nenadov, Steger, and the second author [26],
and independently Montgomery [25], of studying resilience of properties in random graph
processes. We further obtain similar results with respect to k-connectivity.

1.1 Our results

Our primary objective is to show the resilience of connectivity in the random graph
process. Instead of dealing with the random graph process {Gi} directly, one may find it
more convenient to think about the Erdős-Rényi random graph Gn,m. It is a well-known
fact that for every m ∈ {1, . . . ,

(
n
2

)
} the graph Gm has the same distribution as Gn,m.

Moreover, as long as m is above a certain value (which is the case for us), standard
connections between the model Gn,m and the binomial random graph model Gn,p

2 lead to
direct consequences for this model as well.

Our first result shows that as long as m is not too small, the largest connected com-
ponent of Gn,m, which we refer to as the giant, is resilient with respect to connectivity.

Theorem 2. Let ε > 0 be a constant and consider the random graph process {Gi}. Then
w.h.p. for every m > 1+ε

6
n log n we have that the giant of Gm is (1/2 − ε)-resilient with

respect to connectivity.

The value of m is asymptotically optimal. Indeed, having m = 1−ε
6
n log n is enough

for the existence of cherries ‘attached’ to the giant, i.e. two vertices of degree one with a
common neighbour of degree three, which the adversary can easily disconnect by removing
the edge from the degree three vertex which is not incident to a degree one vertex (see [24]).
Additionally, the constant 1/2 is optimal as we show in Proposition 16 at the end of
Section 3.

The previous theorem immediately implies a hitting time result for the resilience of
connectivity.

2For an integer n and a function 0 < p = p(n) < 1 we denote by Gn,p the probability space of graphs
on n vertices where each edge is present with probability p independently of other edges.
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Theorem 3. Let ε > 0 be a constant. Consider the random graph process {Gi} and let
τ1 = min {m : δ(Gm) > 1} denote the step in which the last isolated vertex disappears.
Then w.h.p. we have that Gτ1 is (1/2− ε)-resilient with respect to connectivity.

We now turn our attention to k-connectivity. Recall, a graph is said to be k-connected
if the removal of at most k − 1 vertices does not disconnect it. For the random graph
process {Gi}, let us define

τk = min {m : δ(Gm) > k} and τk−conn = min {m : Gm is k-connected},

denoting the point at which δ(Gm) > k and at which Gm becomes k-connected, respect-
ively. Erdős and Rényi [13] were the first to show that for m = n

2
(log n+(k−1) log log n+

cn) w.h.p. Gn,m is k-connected if cn → ∞, which also coincides with the threshold for
Gn,m to have minimum degree k. This result was later strengthened by Bollobás and
Thomason [6] who proved the hitting time statement, that is w.h.p. τk = τk−conn. There-
fore, the trivial necessary condition for k-connectivity—having minimum degree at least
k—turns out to be sufficient as well.

In order to state our second result regarding k-connectivity, we need a slightly dif-
ferent notion of resilience. In the case of 1-connectivity (or simply connectivity) and
2-connectivity, (1/2 − o(1))-resilience is not enough for the adversary to make the min-
imum degree of the graph drop below one and two, respectively. However, as soon as
k > 3, the adversary would be allowed to remove an edge incident to a degree three ver-
tex, and could easily prevent 3-connectivity. We go around this fact by slightly restricting
the power of the adversary with the following definition.

Definition 4 ((α, k)-resilience). Let G = (V,E) be a graph, P a monotone increasing
graph property, α ∈ [0, 1] a constant, and k > 1 an integer. We say that G is (α, k)-
resilient with respect to P if for every spanning subgraph H ⊆ G such that degH(v) 6
α degG(v) and degG−H(v) > k for all v ∈ V , we have G−H ∈ P .

As observed above, the main obstruction for not having k-connectivity in the beginning
of the process is the existence of vertices with degree smaller than k. However, something
can still be said for such sparse(r) graphs. For an integer k > 2 and a graph G we define the
k-core of G to be the (possibly empty) graph obtained by successively removing vertices
of degree less than k from G. With this in mind we are ready to state our second result.

Theorem 5. Let k > 2 be an integer, ε > 0 a constant, and consider the random graph
process {Gi}. Then w.h.p. for every m > 1+ε

6
n log n we have that the k-core of Gm is

(1/2− ε, k)-resilient with respect to k-connectivity.

Even though the value m > n log n/6 is optimal for connectivity, it is conceivable that
the k-core is resilient with respect to k-connectivity much earlier in the process, that is
as soon as it is k-connected, which happens roughly for m = cn, for some constant c
depending on k, as shown by Bollobás [4]. From a recent result of Montgomery [25] one
deduces that the k-core is (1/2 − o(1))-resilient with respect to 2-connectivity, but only
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if the constant k is much larger than two, and furthermore, no conclusions can be drawn
for k-connectivity. We leave this as a question for further research.

Similarly as before we immediately obtain a hitting time version of the result.

Theorem 6. Let k > 2 be an integer and ε > 0 a constant. Consider the random graph
process {Gi} and let τk = min {m : δ(Gm) > k} denote the step in which the last vertex
of degree at most k − 1 disappears. Then w.h.p. we have that Gτk is (1/2− ε, k)-resilient
with respect to k-connectivity.

As a direct corollary we also get a statement about the classic notion of (1/2− o(1))-
resilience for k-connectivity.

Corollary 7. Let k > 2 be an integer and ε > 0 a constant. Consider the random
graph process {Gi} and let τ2k−2 = min {m : δ(Gm) > 2k − 2} denote the step in which
the last vertex of degree at most 2k − 3 disappears. Then w.h.p. we have that Gτ2k−2

is
(1/2− ε)-resilient with respect to k-connectivity.

2 Preliminaries

Our graph theoretic notation follows standard textbooks (see, e.g. [7]). In particular, given
a graph G we denote by V (G) and E(G) the set of its vertices and edges, respectively,
and by v(G) and e(G) their sizes. For subsets of vertices X, Y ⊆ V (G), G[X] stands
for the subgraph of G induced by X, G[X, Y ] for the bipartite subgraph with bipartition
(X, Y ), and EG(X, Y ) denotes the set of edges between X and Y in G, i.e. EG(X, Y ) :=
{{v, w} : v ∈ X,w ∈ Y, and {v, w} ∈ E(G)} and eG(X, Y ) denotes its size. For short,
we write EG(X) := EG(X,X) and eG(X) for its size. Furthermore, we write NG(X) :=
{v ∈ V (G) : ∃u ∈ X such that {u, v} ∈ E(G)} for the neighbourhood of X in G. Given
a vertex v ∈ V (G) we abbreviate NG({v}) to NG(v) and let degG(v) be the size of its
neighbourhood, that is the degree of v in G. We use δ(G) for the minimum degree of G.
For ` ∈ N and a vertex v ∈ V (G), we define the `-neighbourhood of v as the set of all
vertices which lie at distance at most ` from v, and write N `

G(v), excluding v itself. We
omit the subscript G whenever it is clear from the context which graph we refer to.

For x, y, ε ∈ R, we write x ∈ (1± ε)y to denote (1− ε)y 6 x 6 (1 + ε)y. Throughout,
we use the natural logarithm log x = loge x. Ceilings and floors are omitted whenever
they are not essential. We make use of the standard asymptotic notation o, ω,O, and Ω.
Lastly, we use subscripts with constants such as C13 to indicate that C13 is a constant
with the properties as in the statement of Claim/Lemma/Proposition/Theorem 13.

We make use of the standard estimate for deviation of a binomially distributed random
variable Bin(n, p) with parameters n and p from its mean (see, e.g. [14]).

Lemma 8 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let µ := E[X]. Then for all
δ ∈ (0, 1):

Pr[X > (1 + δ)µ] 6 e−
δ2µ
3 , and Pr[X 6 (1− δ)µ] 6 e−

δ2µ
2 .

Although our main results concern the random graph process, in the proof we heavily
rely on the properties of the binomial random graph Gn,p. Next is a bound on the
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maximum number of edges certain subsets can have in a random graph Gn,p (see [20,
Corollary 2.3]).

Lemma 9. Let p = p(n) 6 0.99. Then w.h.p. G ∼ Gn,p is such that every set X ⊆ V
satisfies (

|X|
2

)
p− c|X|√np 6 e(X) 6

(
|X|
2

)
p+ c|X|√np,

for some absolute constant c > 0.

The biggest obstacle in working with (very) sparse random graphs, that is for values of
p close to the threshold of connectivity, is that one cannot guarantee that w.h.p. even the
degree of every vertex is concentrated around its expectation. Hence, the vertices whose
degrees deviate significantly from the average require some special care. We introduce
two classes of such vertices in the following definition.

Definition 10. For δ, p ∈ [0, 1] and a graph G with n vertices, we define

TINYp,δ(G) = {v ∈ V (G) : degG(v) < δnp},
ATYPp,δ(G) = {v ∈ V (G) : degG(v) /∈ (1± δ)np}.

We refer to the vertices in TINYp,δ(G) as tiny and to the vertices in ATYPp,δ(G) as
atypical.

Note that if p in the above definition is roughly such that np is the average degree of a
vertex in G, then one can think of TINY as a set of vertices whose degree is much smaller
than the average, and ATYP as a set of vertices whose degree is even slightly away from
the average. Let us point out that if p > (1 + ε) log n/n and δ is small enough (depending
on ε), then w.h.p. G ∼ Gn,p contains no tiny vertices, and similarly if p > C log n/n for
large enough C (depending on δ), then w.h.p. G ∼ Gn,p contains no atypical vertices.

As their name indicates, the atypical vertices are ‘rare’ and do not occupy a significant
fraction of the graph.

Lemma 11. For every δ > 0, if p > log n/(3n), then G ∼ Gn,p w.h.p. satisfies:

|ATYPp,δ(G)| 6 n/ log n.

Proof. For a fixed vertex v ∈ V (G) by Chernoff’s inequality we have

Pr[degG(v) /∈ (1± δ)np] 6 2e−δ
2np/3 6 n−γ,

for some γ > 0. Therefore, the expected size of the set ATYPp,δ(G) is n1−γ and Markov’s
inequality shows that w.h.p. |ATYPp,δ(G)| 6 n/ log n.

We briefly discuss the fact that with the previous definition at hand we could use a
variant of [26, Definition 2.4] in order to show marginally stronger statements than the
ones from Theorem 3 and Theorem 6.
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Definition 12. [26, Definition 2.4] Given a graph G = (V,E), a graph property P ,
constants α, δt, δa ∈ [0, 1], and integers Kt, Ka ∈ N, we say that G is (α, δt, Kt, δa, Ka)-
resilient with respect to P if for every spanning subgraph H ⊆ G such that

degH(v) 6


degG(v)−Kt, if v ∈ TINYp,δt(G),

degG(v)−Ka, if v ∈ ATYPp,δa(G) r TINYp,δt(G),

α degG(v), otherwise,

for every v ∈ V , where p = |E|/
(|V |

2

)
, we have G−H ∈ P .

However, just using (1/2−o(1), δt, 1, δa, Ka)-resilience for connectivity would not suffice
for the following reason: for m 6 (1/4− ε)n log n w.h.p. there exists a path of length two
‘attached’ to the giant of Gm, which then an adversary could disconnect by removing the
edge that ‘attaches’ it to the giant. Note that the removal of such an edge is not possible
under the definition of (1/2−o(1))-resilience and hence we would need a slight modification
in the definition above. Lastly, (1/2 − o(1), δt, k, δa, Ka)-resilience would suffice for k-
connectivity for every k > 2. In conclusion, we believe that such a ‘complication’ would
greatly reduce the readability of our paper, unnecessarily distract the reader from the
main point, and is as such not worth pursuing.

3 The proof

Recall that we are trying to prove that the random graph process {Gi} is typically such
that starting from m > 1+ε

6
n log n the giant of Gm is resilient with respect to connectivity.

Before diving into the details we give a brief outline of the ideas used.
We follow the exact path paved by the proof of [26, Proposition 3.1]. The most

natural thing one could try is to show that for a fixed m > n log n/6 the giant of Gm is
w.h.p. resilient with respect to connectivity and apply a union bound over all such m.
Unfortunately, this approach would fail as this probability is roughly 1 − e−α·2m/n, for a
small constant α > 0—clearly not enough for a union bound over all values of m of order
n log n. Instead, we group graphs into batches of size εn log n and show that w.h.p. all
graphs in a batch satisfy the property simultaneously. This allows us to apply a union
bound over only a constant number of batches in order to cover all values of m up to
Cn log n. Choosing C to be large enough, we may then cover the remaining values of
m individually, as now for each fixed one the statement holds with probability at least
1− o(n−3).

For a cleaner exposition, we generate the graph Gm with the help of a binomial random
graph Gn,p, instead of doing it from scratch. Namely, we sample the graphs G− ∼ Gn,p0

and Gn,p′ where the values of p0 and p′ are such that G− w.h.p. has at most some m0

edges and G+ = G− ∪ Gn,p′ has at least (1 + ε/6)m0 edges. Taking now a permutation
π of the edges of Gn,p′ uniformly at random we may generate each Gm as a union of G−

and the first m− e(G−) edges given by π.
Crucially, the properties of the graphs G− and G+ that we make use of are such

that all graphs ‘squeezed’ in between them also satisfy them. The most important one
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concerns tiny and atypical vertices and states that not many of them can be ‘clumped’
together. Actually, an even stronger statement is true: adding an additional ε-fraction of
random edges to G− in order to obtain G+ does not make tiny and atypical vertices of
G− more clumped. The next lemma, which is a special case of [26, Lemma 2.6], captures
this precisely.

Lemma 13. For every ε > 0 there exist positive constants δ(ε) and L(ε) such that if
p0 > (1 + ε) log n/(3n) and p′ 6 εp0 then w.h.p. the following holds. Let G− ∼ Gn,p0 and
set G+ = G− ∪Gn,p′ and p1 = 1− (1− p0)(1− p′). Then:

(i) for every v ∈ V (G+) we have |N3
G+(v) ∩ TINYp0,δ(G

−)| 6 2,

(ii) for every v ∈ V (G+) we have |NG+(v) ∩ ATYPp0,δ(G
−)| 6 L.

(iii) for every cycle C ⊆ G+ with v(C) = 3, we have |V (C) ∩ TINYp0,δ(G
−)| 6 1.

Lastly, in order for the whole strategy to work in the resilience setting we keep only
the edges of Gm existing in G−, but allow the adversary to remove edges with respect to
the degrees in Gm.

Proposition 14. Let k > 1 be an integer. For every ε > 0 and integer m0 > 1+ε
6
n log n the

random graph process {Gi} w.h.p. has the following property: for every integer m0 6 m 6
(1+ε/6)m0 the giant of Gm is (1/2−ε)-resilient with respect to connectivity. Furthermore,
if k > 2, the k-core of Gm is (1/2− ε, k)-resilient with respect to k-connectivity.

Proof. Given ε let us define δ = min {ε/4, δ13(ε/2)} and L = L13(ε/2), and let c = c9.
Take p0 = (1 − ε/16)m0/

(
n
2

)
, p′ = (ε/2)p0, and let G+ be the union of two independent

copies of random graphs G− ∼ Gn,p0 and Gn,p′ . Then G+ is distributed as Gn,p1 , where
p1 = 1− (1− p0)(1− p′). By Lemma 9 (or simply Chernoff’s inequality) we have that the
number of edges in G− is w.h.p. at most m0 and the number of edges in G+ is w.h.p. at
least (1 + ε/6)m0.

For the rest of the proof consider some m0 6 m 6 (1 + ε/6)m0. As the proof for both
connectivity and k-connectivity (for k > 2) is identical, we treat them together and think
of the graph we work with as the giant of Gm in the former and as the k-core of Gm in the
latter. With this in mind, let G ⊆ Gm be the giant of Gm, and respectively a subgraph
obtained by iteratively removing all vertices of degree less that k from Gm for k > 2. Let
V = V (G) denote the vertex set of G, and let TINY and ATYP be sets of vertices defined
as:

TINY := TINYp0,δ(G
−) ∩ V and ATYP := ATYPp0,δ(G

−) ∩ V.

It is a well-known fact that for m > n log n/6 the size of the giant (resp. the k-core)
of Gm is at least (1 − o(1))n (cf. [14, 22, 23]). If we show that for every graph H whose
vertex degrees fulfil

degH(v) 6 min {(1/2− ε) degG(v), degG(v)− k} (1)

the electronic journal of combinatorics 26(2) (2019), #P2.24 8



the graph G − H is k-connected, then G is (1/2 − ε, k)-resilient with respect to k-
connectivity.

First, we list a series of properties that the graph G satisfies, which we subsequently
show are sufficient for proving the k-connectivity of G−H:

(C1) for all X ⊆ V we have eG(X) 6
(|X|

2

)
p1 + c|X|√np1,

(C2) for all v ∈ V we have |N3
G(v) ∩ TINY| 6 2 and |NG(v) ∩ ATYP| 6 L,

(C3) every cycle C ⊆ G with v(C) = 3 contains at most one vertex from TINY,

(C4) |ATYP| 6 n
logn

.

We show that the properties hold in G+ and hence in every subgraph G ⊆ G+.
Property (C1) is given by Lemma 9 applied to G+ with p1 (as p). Properties (C2)
and (C3) hold by our choice of δ and L, and by Lemma 13 applied with ε/2 (as ε), p0
and p′, since p0 > (1 + ε/2) log n/(3n) and p′ 6 εp0. Lastly, (C4) holds by Lemma 11.

Consider a graph H on the same vertex set V as G which satisfies (1), and let G′ :=
G − H. We prove the k-connectivity of G′ by showing that for every S ⊆ V of size
|S| 6 k − 1, the neighbourhood of every X ⊆ V r S is not completely contained in X
in the graph G′′ := G′[V r S]. Without loss of generality, we only consider |X| 6 |V |/2.
Assuming towards a contradiction that all edges incident to the vertices belonging to X
have both endpoints in X gives

2eG′′(X) =
∑
v∈X

degG′′(v). (2)

From (1) we see that all vertices v in G′ satisfy

degG′(v) >


max {d(1/2 + ε) degG(v)e, k}, if v ∈ TINY,

(δ/2)np0, if v ∈ ATYP r TINY,

(1/2 + ε/4)np1, otherwise,

(3)

where the last part follows from the fact that every vertex v ∈ V r ATYP has degree at
least (1− δ)np0 in G and thus

degG′(v) > (1/2 + ε) degG(v) > (1/2 + ε)(1− δ)np0 > (1/2 + ε/4)np1,

making use of our choice of δ and p1 in the last inequality.
We consider two cases depending on the size of X: (I) |X| 6 n

1000
and (II) |X| > n

1000
.

Let us look at (I) first. The most critical point is to show that a significant part of the
vertices in X are actually not in TINY. The next claim establishes precisely that.

Claim 15. |X ∩ TINY| 6 b2|X|/3c.
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Proof. Observe first that there cannot exist a path of length two in the induced subgraph
G′′[X ∩ TINY]. Indeed, if such a path exists, as it was a part of the giant G initially, it
follows that there was a vertex v ∈ V with three tiny vertices (the ones on the path) in
N3
G(v)—a contradiction to (C2). Consequently, the graph G′′[X ∩TINY] consists only of

isolated vertices and edges. Let XE and XV be the partition of X∩TINY into a matching
and an independent set and let

NE :=
⋃

{u,v}∈E(G′′[XE ])

(
NG′′(u) ∪NG′′(v)

)
∩ (X r TINY) and

NV :=
⋃
u∈XV

NG′′(u) ∩ (X r TINY).

If k = 1 then as every edge {u, v} ∈ E(G′′[XE]) was initially a part of the giant G, we
have |NE| > |XE|/2 due to (C2) and (3). Additionally, if k > 2, by (3) together with
properties (C2) and (C3) one easily derives (assuming |XE| > 0, otherwise |NE| > |XE|
trivially holds)

|NE| > (2k − 2)|XE| − |S| > |XE|+ (2k − 3)|XE| − k + 1 > |XE|.

Similarly, as no three vertices from XV can have a common neighbour in X r TINY by
(C2), we deduce |NV | > d|XV |/2e. Indeed, every vertex has at least k neighbours in
X r TINY and at most k − 1 are removed due to the removal of S; moreover, at most
one other vertex in XV can share this remaining neighbour due to (C2).

Clearly now, if the number of vertices in X r TINY is strictly smaller than |XE|/2 +
d|XV |/2e by the pigeonhole principle there is a vertex v ∈ X r TINY which has at least
three vertices from X∩TINY in N3

G′′(v), again a contradiction to (C2). The claim readily
follows.

The remaining vertices can be partitioned into X r TINY = Xatyp ∪Xtyp where

Xatyp := (ATYP r TINY) ∩X and Xtyp := X r ATYP.

Next, we show that |Xtyp| > |Xatyp|. Assume towards contradiction that this is not the
case. As np0 = ω(1) and |S| 6 k − 1 we have

eG′′(Xatyp, Xtyp)
(3)

>
(
(δ/2)np0 − (k − 1)

)
· |Xatyp| − 2eG′′(Xatyp)− eG′′(Xatyp,TINY)

(C2)

> (δ/4)np0 · |Xatyp| − 2L · |Xatyp| − 2 · |Xatyp| > L|Xtyp|,

where the last inequality follows from our assumption |Xatyp| > |Xtyp|. Thus, a simple
averaging argument shows that there exists a vertex u ∈ Xtyp with degG′′(u,Xatyp) > L,
which is a contradiction to (C2). Together with Claim 15 we conclude |Xtyp| > |X|/6.
Therefore, we have ∑

v∈X

degG′′(v) > |Xtyp| ·
1

2
np1 >

|X|np1
12

,
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where we again make use of (3). On the other hand, by (C1) we also have 2eG′′(X) 6
|X|2p1 + 2c|X|√np1, and as |X| 6 n/1000 the assumption (2) is wrong. Thus, NG′′(X)r
X 6= ∅.

We now consider case (II). By (C4), at most n/ log n vertices are in ATYP, which
implies that at least (1− ε/8)|X| vertices are in X r ATYP, as |X| > n/1000. Thus, by
(3) the sum of the degrees of the vertices in X in G′′ can be bounded by∑

v∈X

degG′′(v) > (1− ε/8)|X| · (1/2 + ε/4)np1.

Combining (C1) and the bound from above with equation (2) gives

(1− ε/8)(1/2 + ε/4)|X|np1 6 2

(
|X|
2

)
p1 + 2c|X|√np1 6 (1/2 + ε/16)|X|np1,

where the last inequality follows from the fact that np1 = ω(1) and |X| 6 n/2—again a
contradiction.

In conclusion, there is no connected component of G′′ of size at most |V |/2, which
completes the proof of the proposition.

Having Proposition 14 at hand we proceed to complete the proof of the main result.
For convenience of the reader we restate the theorem.

Theorem 2. Let ε > 0 be a constant and consider the random graph process {Gi}. Then
w.h.p. for every m > 1+ε

6
n log n we have that the giant of Gm is (1/2 − ε)-resilient with

respect to connectivity.

Proof. With a slightly more careful inspection, one can see that the conclusion of Proposi-
tion 14 holds with probability 1−e−α·C logn for every fixed m > Cn log n, some α > 0, and
for sufficiently large C depending on ε. Therefore, a union bound over all m > Cn log n
shows that with probability at least 1 − n2 · e−αC logn = 1 − o(1), every Gm is resilient
with respect to connectivity. Note that it is also possible to draw the same conclusion
from the results of Montgomery [25] and Nenadov, Steger, and the second author [26] as
connectivity is a necessary condition for Hamiltonicity (even starting at m > 1+ε

2
n log n).

For the smaller values of m, consider intervals of the form [1+iε
6
n log n, 1+(i+1)ε

6
n log n),

for i ∈ {1, . . . , Cε}, where Cε is such that the last interval contains Cn log n. For each
fixed interval the conclusion of Proposition 14 holds with probability 1 − o(1), thus a
union bound over constantly many intervals shows that it w.h.p. holds for all intervals
simultaneously. This concludes the proof.

The proof of Theorem 5 is analogous. This immediately implies Theorem 3 and
Theorem 6.

We conclude by showing that if the adversary is allowed to remove slightly more than
a (1/2)-fraction of the edges incident to each vertex, then w.h.p. it is possible to make the
giant of Gm disconnected. For simplicity we only show an analogue of Proposition 14. In
order to capture all values of m one proceeds as in the proof of Theorem 2.
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Proposition 16. For every ε > 0 and integer m0 > 1+ε
6
n log n the random graph process

{Gi} w.h.p. has the following property. For every integer m0 6 m 6 (1 + ε/6)m0, the
giant of Gm is not (1/2 + ε)-resilient with respect to connectivity.

Proof. Given ε, let δ = min {ε/32, δ13(ε/2)}, and L = L13(ε/2). Take p0 = (1 −
ε/16)m0/

(
n
2

)
, p′ = (ε/2)p0, and let G+ be the union of two independent copies of ran-

dom graphs G− ∼ Gn,p0 and Gn,p′ . Then G+ is distributed as Gn,p1 , where p1 =
1 − (1 − p0)(1 − p′). Similarly as before, we have that the number of edges in G− is
w.h.p. at most m0 and the number of edges in G+ is w.h.p. at least (1 + ε/6)m0. For the
rest of the proof consider some m0 6 m 6 (1 + ε/6)m0.

Let G be the giant of Gm and V its vertex set. Suppose there exists a partition
V = A ∪B such that the following property is satisfied:

for all v ∈ V : degG[A,B](v) 6 (1/2 + ε) degG(v). (?)

Then by taking H to be a subgraph consisting of all edges in G[A,B] the graph G −H
is not connected. In the remainder we show that such a partition indeed exists.

Consider first an arbitrary equipartition V = A′ ∪B′ (i.e. A′ and B′ differ by at most
one in size). As before, let

TINY := TINYp0,δ(G
−) ∩ V and ATYP := ATYPp0,δ(G

−) ∩ V.

and assume that the property (C2) holds, which follows from Lemma 13 applied with ε/2
(as ε). Let D be defined as:

D := {v ∈ V : degG[A′,B′](v) > (1/2 + δ)np1}.

Claim 17. There exists a positive constant L′(ε) such that w.h.p. for all v ∈ V we have
|NG+(v) ∩D| < L′.

The proof follows an analogous argument as the proof of [26, Lemma 2.7].

Proof. We show that, for a sufficiently large constant L′ = L′(ε), if T ⊆ G+ is a tree
with L′ 6 v(T ) 6 2L′ vertices then it contains at most L′ − 1 vertices from D, which
is sufficient for the claim to hold. Clearly, if for a vertex v ∈ V there are L′ vertices in
NG+(v) ∩ D then taking a tree containing v and every such vertex u together with the
edge {v, u} contradicts the former.

Let T ⊆ Kn be a tree with L′ 6 v(T ) 6 2L′ and S ⊆ V (T ) a set of size exactly L′.
Let ET denote the event that T ⊆ G+ and ET,S that every v ∈ S satisfies |NG+[A′,B′](v) r
V (T )| > (1/2 + δ/2)np1. By Chernoff’s inequality we have that a fixed vertex v ∈ S
satisfies this with probability at most

Pr
[
Bin
(
n
2
, p1
)
> (1/2 + δ/2)np1

]
6 e−γnp1 ,

for some γ > 0 depending on δ (and thus ε). As these events are independent for different
vertices v, u ∈ S, the probability that ET,S holds is bounded by

Pr[ET,S] 6 (e−γnp1)L
′
.
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Note that Pr[ET ] = p
v(T )−1
1 . Hence, a simple union bound over all pairs (T, S) shows that

the probability that some ET ∧ ET,S happens is at most

Pr
[ ⋃
(T,S)

(ET ∧ ET,S)
]
6

2L′∑
t=L′

(
n

t

)(
t

L′

)
tt−2 · Pr[ET ∧ ET,S] 6

2L′∑
t=L′

ntt3L
′ · pt−11 · e−L′γnp1 .

As np1 = Ω(log n) and ntpt−11 · e−L′γnp1 is decreasing in p1, this finally implies

Pr
[ ⋃
(T,S)

(ET ∧ ET,S)
]

= Oε

(
n · (log n)2L

′ · e−L′γnp1
)

= o(1),

for L′ large enough depending on ε.

We now construct the partition V = A ∪ B as follows. In the beginning set A0 :=
A′ r (ATYP ∪D) and B0 := B′ r (ATYP ∪D). We sequentially add vertices to A0 and
B0, first those of (ATYP∪D)rTINY and then of TINY, in an arbitrary order following
a simple rule: if in step i > 1 we have degG(v,Ai−1) > degG(v,Bi−1) set Ai := Ai−1 ∪ {v}
and Bi := Bi−1; otherwise set Ai := Ai−1 and Bi := Bi−1 ∪ {v}. Lastly, set A := Am and
B := Bm for m := |ATYP ∪D|.

Note that the degree of a vertex added at step i > 0 in graph G[Ai, Bi] can increase
by at most L+ L′ + 2 until the end of the process by (C2) and Claim 17. Therefore, for
every vertex v ∈ V r (ATYP ∪D) we have

degG[A,B](v) 6 (1/2 + δ)np1 + L+ L′ + 2 6 (1/2 + 2δ)np1 6 (1/2 + ε/2) degG(v),

as degG(v) > (1 − δ)np0, p1 6 (1 + ε/2)p0, and due to our choice of δ. Similarly, for
v ∈ (ATYP ∪D) r TINY we have

degG[A,B](v) 6 degG(v)/2 + L+ L′ + 2 6 (1/2 + ε/2) degG(v),

as degG(v) > δnp0 and due to our choice of δ.
Lastly, let us look at tiny vertices. If after the end of the process there is no vertex

v ∈ TINY which has degG[A,B](v) > degG(v)/2, we are done. Hence, assume w.l.o.g. that
v ∈ A is such a vertex. In particular, this implies that v had a neighbour u ∈ TINY added
to B after v itself. Since u ∈ B, it implies that there exists w ∈ NG(u,B). Consequently,
due to (C2), none of the neighbours of v in A belong to TINY and we may move v to
B without harming the degree of any vertex significantly (it changes by at most one for
non-tiny vertices, which is negligible compared to their degree). Moreover, by doing this
we cannot make additional vertices v′ ∈ TINY have degG[A,B](v

′) > degG(v′)/2 and thus
the rearranging process eventually stops with all vertices satisfying (?). This completes
the proof.
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