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Abstract

We obtain a structure theorem of the positive support of the n-th power of the
time evolution of the Grover walk on k-regular graph whose girth is greater than
2(n − 1). This structure theorem is provided by the parity of the amplitude of
another quantum walk on the line which depends only on k. The phase pattern of
this quantum walk has a curious regularity. We also exactly show how the spectrum
of the n-th power of the time evolution of the Grover walk is obtained by lifting up
that of the adjacency matrix to the complex plain.

Mathematics Subject Classifications: 05C50, 81Q99

1 Introduction

The Grover walk is one of the important quantum walk model for not only quantum
search algorithm [1, 16, 17] but also bridges connecting to the quantum graphs [27, 33],
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reversible random walks [13], and also graph zeta [20, 25] and graph theory [23]. The time
evolution of the Grover walk is explained by a discrete-time analogue of reflection and
transmission of the wave at each junction, that is, the vertex [6]. To give more precise
definition, we prepare notions of graphs. For given G = (V,E), let A = A(G) be the set
of symmetric arcs induced by the edge set E. The element of A is called an arc. The
inverse arc of a ∈ A is denoted by ā. The arc from a vertex u to a vertex v is denoted by
(u, v). For an arc a = (u, v), o(a) = u and t(a) = v are called the origin and the terminus
of a, respectively. Furthermore, the edge joining u and v is denoted by |a| = {u, v}. Note
that |a| = |ā| ∈ E. The degree of u ∈ V is defined by deg(u) = |{a ∈ A | t(a) = u}|.
Remark that since we treat the symmetric digraph, that is, a ∈ A iff ā ∈ A, then the
degree can be expressed by deg(u) = |{a ∈ A | o(a) = u}|. Of course, deg(u) is equal to
the out degree of u.

The total Hilbert space A is generated by the symmetric arc set A of the given graph
G. The quantum coin assigned at each vertex u produces the complex valued weight
of the transmission and reflection rate so that this representation matrix is a deg(u)-
dimensional unitary operator. In particular, for the Grover walk case, the transmission
rate is 2/deg(u), and the reflection rate is 2/deg(u)− 1. Then the Grover walk is defined
as follows:

Definition 1 (Grover walk on G = (V,A)).

1. The total Hilbert space: A := `2(A) = {ψ : A → C | ||ψ|| < ∞}. Here the inner
product is the standard inner product, that is, 〈ψ, ϕ〉 =

∑
a∈A ψ(a)ϕ(a).

2. Time evolution U : A → A (unitary):

(Uψ)(a) =
∑

b:t(b)=o(a)

(
2

deg(o(a))
− δb,ā

)
ψ(b).

Let the the time evolution operator of the Grover walk and the n-th iteration of the
Grover walk starting from the initial state ψ0 be denoted by U and ψn, respectively. We
introduce two non-linear maps µ : A → `(A) and ν : A → [0, 2π]A as follows: for ψ ∈ A,

(µ(ψ))(a) = |ψ(a)|2, (1)

(ν(ψ))(a) = arg(ψ(a)). (2)

Due to the unitarity of the Grover walk, µn := µ(ψn) becomes a probability distribution
when the norm of the initial state ψ0 is unit. Main interest of the Grover walk has
been the investigation of the sequence of µn’s: the typical behaviors of quantum walks
drive from observing the behavior µn, for example, the coexistence of linear spreading
and localization e.g., [18, 32] and its stationary measure for infinite graphs e.g., [19], the
efficiency to the quantum search algorithm e.g., [24] and its references therein and perfect
state transfer e.g., [7, 26]. However it seems that it is natural to investigate also the phase
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measurement νn’s. To explain it, let us prepare notion of the positive support of a real
matrix M . For any b ∈ A, δb ∈ A is the delta function such that

δb(a) =

{
1 : a = b,

0 : a 6= b.

The matrix element (M)b,a is denoted by 〈δb,Mδa〉 = (Mδa)(b). Let the positive support
of a real matrix M ; S(M), be defined by

(S(M))b,a =

{
1 : (M)b,a > 0

0 : (M)b,a 6 0
(3)

Indeed, we focus on this ν in this paper since the map ν plays a key role to give the
structure theorem of the positive support of the Grover walk. Taking the positive support
of the Grover walk is first motivated by the fact of a direct connection between the Ihara
zeta function and the positive support of the time evolution of the Grover walk [25]:

ζG(u) = det(1− uS(UG))−1,

where ζG(u) is the Ihara zeta function and UG is the time evolution of the Grover walk
induced by graph G. Zeta function of a graph was started from Ihara zeta function of
a graph [15]. Originally, Ihara defined p-adic Selberg zeta functions of discrete groups,
and showed that its reciprocal is a explicit polynomial. Serre [28] pointed out that the
Ihara zeta function is the zeta function of the quotient T/Γ (a finite regular graph) of
the one-dimensional Bruhat-Tits building T (an infinite regular tree) associated with
GL(2, kp). A zeta function of a regular graph G associated with a unitary representation
of the fundamental group of G was developed by Sunada [30, 31]. Hashimoto [11] treated
multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara’s result on the
Ihara zeta function of a regular graph to an irregular graph, and showed that its reciprocal
is again a polynomial. New proofs for Bass’ formula were given in [5, 21, 29]. Furthermore,
Konno and Sato [20] presented an explicit formula for the characteristic polynomial of
the time evolution of the Grover walk on a graph G by using the determinant expression
for the second weighted zeta function of G, and directly obtained spectra for the time
evolution of the Grover walk on G.

The second motivation to take the positive support of the time evolution of the Grover
walk is that the spectrum of the positive support of the time evolution of the Grover walk
has been believed to be a strong tool for the graph isomorphism problem:

Conjecture 2. [4] Let G and H be strongly regular graphs. Then

G ∼= H ⇔ σ(S(U3
G)) = σ(S(U3

H)),

where σ(A) is the spectrum of A.
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Recently, a counter example of the graph having a large number of vertices are suggested
by a combination of theoretical and numerical method [9]. However finding the class of
strongly regular graphs which conserves the conjecture is still an interesting open problem.

Therefore taking together with the above two motivations of the positive support of
the Grover walk, we can naturally extend the Ihara zeta function as follows:

ζ
(n)
G (u) = det(1− uS(Un))−1.

There are structure theorems for S(U2) and S(U3) as follows:

Theorem 3. Structure theorem for S(U2) and S(U3)

1. ([8]) If G is a graph without leaves, then

S(U2) = I + S(U)2;

2. ([12]) additionally, if the girth is greater than 4; g(G) > 4, and it is k-regular, then

S(U3) = S(U)3 + >S(U).

Here the girth G; g(G), is the smallest length of cycle of G.

Moreover a beautiful structure theorem of S(U3) in [10] for the strongly regular graph is
obtained. In this paper, we consider the structure theorem of S(Un) for general n. The
graph in our setting should have a large girth g(G) > 2(n−1) with the degree’s regularity
which includes the setting of [12].

In our main theorem, S(Un) is expressed by a linear combination of S(U)k, JS(U)k,
>S(U)k and J >S(U)k (k = 0, . . . , n), where J : `2(A)→ `2(A) such that (Jψ)(a) = ψ(ā),
>M is the transpose of M . The advantage point of this expression is that we express
the spectrum of S(Un) by using the spectrum of the adjacency matrix of G. Thus we
can see how the spectrum of S(Un) is lifted up to the complex plane from the spectrum
of the adjacency matrix on the real line. See Theorem 13 and Fig. 7, we obtain the
support of the non-trivial zero’s of 1/(z|A|ζ

(n)
G (z−1)). On the other hand, the negative

point is that σ(S(Un)) with g(G) > 2(n − 1) cannot determine the graph isomorphism
since there are graphs which are not isomorphism but cospectral of the positive support
due to this “advantage” point. As is suggested by the appearance of the Hadamard
product in [10], only the spectrum of the adjacency matrix cannot determine S(Un) in
general. However we believe that our main theorem brings a new study motivation of
quantum walks investigating the phase observation ν; note that the operation taking
support is converted to the phase observation problem, that is, letting ψ

(b)
n (a) be the n-th

iteration of the Grover walk at a starting from b, that is, ψ
(b)
n (a) = (Unδb)(a), then we

have (S(Un))a,b = 1⇔ ν(ψ
(b)
n )(a) = 0.

We show that in our setting, this phase observation problem can be switched to solving
the phase pattern {νn}n∈N of the discriminant quantum walk on the one-dimensional
lattice defined below, which is another quantum walk model. As we will see, this phase
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pattern informs us an exact expression for the structure theorem and seems to have a
curious regularity (see Figs. 2–3). However a complete decode of this pattern still remains
as one of the interesting open problems induced by the operation of the positive support.
The following is the definition of the discriminant quantum walk:

Definition 4. Discriminant quantum walk. Let k > 2 be a natural number.

1. Hilbert space: `2(Z;R2) = {ψ : Z→ R2 |
∑

x∈Z ||ψ(x)||2 <∞}.

2. Time evolution: Let |L〉 := >[1, 0] and |R〉 := >[0, 1] and 〈L| = |L〉∗, 〈R| = |R〉∗.
For x ∈ Z, define Hm(x) based on the sign of x:

Hm(x) =



[
2
√
k − 1/k −1 + 2/k

1− 2/k 2
√
k − 1/k

]
: x > 0,

[
2
√
k − 1/k 1− 2/k

−1 + 2/k 2
√
k − 1/k

]
: x < 0.

Let P (x) = |L〉〈L|Hm(x), Q(x) = |R〉〈R|Hm(x) given initial state φ0(x) = δ0(x)|R〉.
The state after n-step is φn = Wφn−1, where

(Wφ)(x) = P (x+ 1)φ(x+ 1) +Q(x− 1)φ(x− 1)

for any φ ∈ `2(A).

3. Phase measure: Letting φ ∈ `2(Z;R2), we put φ(x) := >[φ(x;L), φ(x;R)] ∈ R2.
Then the phase measure ν : `2(Z;R2) → {0, π,∅}Z×{L,R} is the operation to pick
up the argument of φ ∈ `2(Z;R2), that is,

(ν(φ))(x;N) =


0 : φ(x;N) > 0,

∅ : φ(x;N) = 0,

π : φ(x;N) < 0.

(N ∈ {L,R})

Here we regard (x;L) and (x;R)(x ∈ N) as arcs of Z as follows: (x;L) = (x + 1, x)
and (j, R) = (x− 1, x).

Now we are ready to give our main theorem as follows:

Theorem 5. Let φn ∈ `2(Z;C2) and ν : `2(Z;C2) → {0, π,∅}Z×{L,R} be the above. Let
εj, τj ∈ {0, 1} (j ∈ Z) be the indicator functions with respect to the signs of φn(j;R) and
φn(j;L), respectively such that

εj =

{
1 : (ν(φn))(j;R) = 0

0 : otherwise
, τj =

{
1 : (ν(φn))(j − 1;L) = 0

0 : otherwise.
(4)
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Moreover let J be defined by (Jψ)(a) = ψ(ā) for any ψ ∈ `2(A) and a ∈ A. Under the
assumption g(G) > 2(n− 1), and the regularity k, we have

S(Un) =
n∑
j=0

(
εjS(U)j + τjJS(U)j

)
+

n−1∑
j=1

(
ε−j
>S(U)j + τ−jJ

>(S(U)j)
)
. (5)

This paper is organised as follows. We provide the phase pattern of the discriminant
quantum walk in section 2, which is useful to obtain the exact form of RHS of Theorem 5
for each n. We put νn := ν(φn). The sequence of {νn}n seems to depict a kind of
interesting regular pattern when we see it up to large time step. Section 3 is devoted to
show the proof of our main theorem. Finally we give the spectral orbit of S(Un) with
respect to the adjacency matrix of G for g(G) > 2(n− 1) and the degree k.

2 Demonstration of the phase pattern

In this section, we provide the phase pattern of the discriminant quantum walk. By
Theorem 5, it is convenient to give the following one-to-one correspondence between
{(j;R), (j;L) | j ∈ Z} and {S(U)j, >(S(U)j), JS(U)j, J >(S(U)j) | j ∈ Z>0}

(j;R)↔

{
S(U)j : j > 0
>(S(U)|j|) : j < 0

(j;L)↔

{
JS(U)j+1 : j > 0

J >(S(U)|j+1|) : j < 0
(6)

We put the matrix valued weights associated with left and right movings by

P (x) =



P+ =

[
2
√
k − 1/k −1 + 2/k

0 0

]
: x > 0,

P− =

[
2
√
k − 1/k 1− 2/k

0 0

]
: x < 0,

Q(x) =



Q+ =

[
0 0

1− 2/k 2
√
k − 1/k

]
: x > 0,

Q− =

[
0 0

−1 + 2/k 2
√
k − 1/k

]
: x < 0,

For n = 1, computing φ1 = Wφ0, we have φ1(1) = Q+|R〉 and φ1(−1) = P+|R〉, that is,

φ1(j) =


>[0 2

√
k − 1/k] : j = 1;

>[−1 + 2/k 0] : j = −1;

0 : otherwise.
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Thus the phase measurement results are

(ν(φ1))(j;R) =

{
0 : j = 1

∅ : otherwise
, (ν(φ1))(j;L) =

{
π : j = −1

∅ : otherwise

Since (1;R) is the unique arc such that the phase value is 0, that is, εj = 1 (j = 1), εj = 0
(j 6= 1), and τj = 0 for any j ∈ Z, then inserting them into (5), we check the trivial
equation S(U) = S(U). We define νn : A→ {�,�} by

νn(a) =

{
� : (ν(φn))(a) = 0

� : otherwise

Let us consider n = 2 case. To obtain RHS of (5) for n = 2 case explicitly, we check the
arcs colored by “�”. Since φ2(−2) = P−P+|R〉, φ2(2) = Q2

+|R〉 and φ2(0) = (Q−P+ +
P+Q+)|R〉, examining the phases, we have

(ν(φ2))(2;R) = 0, (ν(φ2))(0;L) = π, (ν(φ2))(0;R) = 0, (ν(φ2))(−2;L) = π (7)

which implies all the arcs colored by “�” at time n = 2 are (2;R) and (0;R). Then using
the relation (6), we have

S(U2) = I + S(U)2.

Now we understand that we only need to focus on the sequence of {νn}n∈N to obtain
the explicit expression for RHS of (5) at each time. Figure 1 depicts the νn’s up to n = 4,
that is, {ν1, ν2, ν3, ν4}. Each cell corresponds to (n, (j;N)) with n ∈ N, j ∈ Z and
N ∈ {L,R}. If νn(j;N) = �, that is, εj = 1 for N = R and τj = 1 for N = L, then the
corresponding cell color is black, otherwise the color is white. Referring the pattern of
Fig. 1 and using (6), we can easily obtain the structure theorem for n = 3 and n = 4:

S(U3) = >S(U) + S(U)3, (8)

S(U4) = >S(U)2 + I + S(U)4. (9)

After n = 5, a condition analysis arises with respect to the degree k for example,

S(U5) =

{
>S(U)3 + >S(U) + S(U) + S(U)5 : 3 6 k 6 6,
>S(U)3 + J >S(U)2 + >S(U) + S(U) + JS(U)2 + S(U)5 : k > 7.

(10)

(11)

S(U6) =


>S(U)4 + >S(U)2 + I + S(U)2 + S(U)6 : k = 3, 4,
>S(U)4 + J >S(U)3 + >S(U)2 + I + S(U)2 + JS(U)3 + S(U)6 : 5 6 k 6 11,
>S(U)4 + J >S(U)3 + I + S(U)2 + JS(U)3 + S(U)6 : 12 > k.

(12)

Figures 2(a)–2(c) are the phase patterns of νn’s for k = 20 up to n = 10, 20 and 100,
respectively. According to the result on the phase pattern, we can divide Ξ := {(n, x) ∈
N× Z | |x| 6 2n} plane into three regions (A), (B) and (C): there exists 0 < c < 1 such
that
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1. Region (A): around the origin;

2. Region (B): {(n, x) ∈ Ξ | 0 < |x|/n 6 2c};

3. Region (C): {(n, x) ∈ Ξ | 2c < |x|/n 6 2}.

In Region (A), we can observe a kind of check pattern, and in Region (C), there is
some regularity while complex pattern appears in Region (B). The value c seems to
be 2
√
k − 1/k which is the diagonal part of the discriminant quantum walk’s coin. See

Figures 3(a)–3(c) for k = 20, k = 10 and k = 3 cases until n = 500. We can show
the check pattern of Region (A) in the forth coming paper [3] using the fact that the
localization factor of the Grover walk is the infinite energy flow of the given graph [14].
We believe that a mathematical formulation of this phase pattern and also rigorous proof
of each pattern are candidate of future’s interesting problems.

0 1 2 3-1-2-3 4

n=1

n=2

n=3

n=4

Ini�al state

Figure 1: The phase pattern up to n = 4 for k = 20: Each cell corresponds to (n, (j;N))
with n ∈ N, j ∈ Z and N ∈ {L,R}. If νn(j;N) = �, that is, εj = 1 for N = R and τj = 1
for N = L, then the corresponding cell color is black, otherwise the color is white.

3 Proof of main theorem

First, we prepare notations for the proof of the theorem. Secondly, we give the proof for
k-regular tree case. After this consideration, we address to the proof for k-regular graph
with g(G) > 2(n − 1) by using the local tree structure. See Fig 6 for the fundamental
idea of the proof.

3.1 Preliminary for the proof of main theorem

For given G = (V,E), let A = A(G) be the set of symmetric arcs induced by the edge
set E. A sequence of arcs (a1, . . . , ar) in G satisfying t(a1) = o(a2), . . . , t(ar−1) = o(ar)
is called an r-length walk or simply a walk. The length of a shortest path from u to v
is denoted by dist(u, v). If t(ar) = o(a1), then this is called a r-length closed path. A
back track of a closed path (b0, . . . , bs−1) is a subsequence (bj, bj+1) with bj = b̄j+1, where
j ∈ Z/sZ. If there are no back tracks in a closed path, the closed path is called a cycle.

the electronic journal of combinatorics 26(2) (2019), #P2.26 8



(a)The phase pattern up to n = 10 (b)The phase pattern up to n = 20

(c)The phase pattern up to n = 100

Figure 2: Figures (a),(b) and (c) are the phase patterns up to n = 10, n = 20 and
n = 100, respectively for k = 20 case

The phase pattern for k = 20 The phase pattern for k = 10

The phase pattern for k = 3

Figure 3: Figures (a),(b) and (c) are the phase patterns Upton n = 500, and whose
degrees are k = 3, k = 10 and k = 20, respectively. The value c which determines the
boundary of the region B and C increases when k approaches to a small value. The value
c seems to be 2

√
k − 1/k which is the diagonal part of the discriminant quantum walk’s

coin.
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If G has no cycles and G is connected, then G is called a tree. When G is a tree, then the
depth of the tree is the minimum height, where the height of the tree with a root o ∈ V
is defined by the largest distance from o. The m-level set of the tree with the root o is
the set of all the vertices whose distance from o is m. The girth denoted by g(G) is the
length of a shortest cycle in G; when G is a tree, we define g(G) =∞.

We define a distance of pair of arcs (a, b) as follows:

dist(a, b) := min{dist(t(a), o(b)), dist(t(a), t(b)), dist(o(a), t(b)), dist(o(a), o(b))}.

Every pair of arcs (a, b) has at least one of the following positional relations (see also
Fig. 4):

Let u
j∼ v denote dist(u, v) = j for u, v ∈ V . Then for |a| 6= |b|,

1. ∃j1 ∈ N ∪ {0} such that dist(a, b) = j1 with t(a)
j1∼ o(b);

2. ∃j2 ∈ N ∪ {0} such that dist(a, b) = j2 with t(a)
j2∼ t(b);

3. ∃j3 ∈ N ∪ {0} such that dist(a, b) = j3 with o(a)
j3∼ t(b);

4. ∃j4 ∈ N ∪ {0} such that dist(a, b) = j4 with o(a)
j4∼ o(b);

and for |a| = |b|, (5) a = b̄; (6) a = b.
Remark that the action S(U) to δa corresponds to moving forward δa to its arcs whose
origins are same as t(a) except its inverse arc. Then the action S(U)j to δa corresponds
to moving forward δa to j-step walks without any backtrackings. On the other hand, the
action of J corresponds to moving back to the inverse arc; that is, the backtrack. Then
for cases (1)–(4), since >S(U) = JS(U)J , it holds

(S(U)j1+1)b,a > 0, (JS(U)j2+1)b,a > 0, (>S(U)j3+1)b,a > 0, (J >S(U)j4+1)b,a > 0,

for cases (5) and (6), (J)b,a > 0, (I)b,a > 0, respectively. We should remark that there
is a possibility that (S(U)j1+1)b,a > 0 and (JS(U)j2+1)b,a > 0, simultaneously since there
might be a cycle which accomplishes both positional relations (1) and (2).

3.2 k-regular tree case

If the graph is a tree, the positional relation of arbitrary pair of arcs (a, b) is uniquely
applicable to one of the cases (1)–(6): if not, a cycle would appear in the tree. Note that
the action of S(U)j to δa corresponds to j-walks without any backtracks while the action
J corresponds to the backtrack. Then if the graph is a tree, it holds

(S(U)j1)b,a > 0⇔ (S(U)j1)b,a = 1, ∀j 6= j1, (S(U)j)b,a = 0

(JS(U)j2)b,a > 0⇔ (JS(U)j2)b,a = 1, ∀j 6= j2, (JS(U)j)b,a = 0

(J >S(U)j3)b,a > 0⇔ (J >S(U)j3)b,a = 1, ∀j 6= j3, (J >S(U)j)b,a = 0

(>S(U)j4)b,a > 0⇔ (>S(U)j4)b,a = 1. ∀j 6= j4, (>S(U)j)b,a = 0

We summarize the above observation as follows.
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Figure 4: The positional relations of cases (1)–(4)

Lemma 6. Assume that the graph is a tree. Let Ξ be the following set of matrices

{S(U)j, JS(U)j, J >S(U)j, >S(U)j | j ∈ N ∪ {0}}.

Then we have

(a, b) is the positional relation (1)

⇔ ∃j s.t., (S(U)j+1)b,a = 1, ∀ξ ∈ Ξ \ {S(U)j+1}, (ξ)b,a = 0;

(a, b) is the positional relation (2)

⇔ ∃j s.t., (JS(U)j+1)b,a = 1, ∀ξ ∈ Ξ \ {JS(U)j+1}, (ξ)b,a = 0;

(a, b) is the positional relation (3)

⇔ ∃j s.t., (>S(U)j+1)b,a = 1, ∀ξ ∈ Ξ \ {>S(U)j+1}, (ξ)b,a = 0;

(a, b) is the positional relation (4)

⇔ ∃j s.t., (J >S(U)j+1)b,a = 1, ∀ξ ∈ Ξ \ {J>S(U)j+1}, (ξ)b,a = 0;

(a, b) is the positional relation (5)

⇔ (J)b,a = 1, ∀ξ ∈ Ξ \ {J}, (ξ)b,a = 0;

(a, b) is the positional relation (6)

⇔ (I)b,a = 1, ∀ξ ∈ Ξ \ {I}, (ξ)b,a = 0.

Let T be the k-regular tree (which is an infinite graph). From now on we fix an
arbitrary arc e as the initial arc and consider S(Un)δe. We take an isometric deformation
of T so that we can keep the symmetricity with respect to this fixed arc e: we “unbend”
the tree by moving all the descendants of o(e) to the opposite side as follows (see Fig 6):
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we decompose the vertices V (T) into (. . . , V−1, V0, V1, . . . ), where for j > 1,

V0 = {t(e)},
V−j = {u | dist(t(e), u) = j, dist(o(e), u) = j − 1},
Vj = {u | dist(t(e), u) = j} \ V−j

Remark that every vertex u ∈ Vj (j > 1), dist(o(e), u) = j + 1. We also decompose the
arc set A(T) into (. . . , AR−1, A

R
0 , A

R
1 , . . . ), (. . . , AL−1, A

L
0 , A

L
1 , . . . ), where

ARj = {a | t(a) ∈ Vj, o(a) ∈ Vj−1};
ALj = {a | t(a) ∈ Vj, o(a) ∈ Vj+1}.

Note that the positional relation between a and e is represented by ANj . By Lemma 6,
the matrix satisfying with (ξ)a,e = 1 is uniquely determined and represented by

ξ =


S(U)j : a ∈ ARj (j > 0);

JS(U)j+1 : a ∈ ALj (j > 0);
>S(U)|j| : a ∈ ARj (j < 0);

J >S(U)|j+1| : a ∈ ALj (j < 0).

(13)

Figure 5 depicts a simple chart of this one-to-one correspondence between Z×{L,R} and
Ξ. Note that if a, b ∈ ANj , then (ξ)a,e = (ξ)b,e for every ξ ∈ Ξ. On the other hand, the

0 1 2 3-1-2-3

Figure 5: The one-to-one correspondence between Z× {L,R} and Ξ: The right directed
arrow on the position j ∈ Z depicts (j;R), that is, ARj , and the left directed arrow on j
depicts (j;L), that is, ALj . The corresponding element of Ξ to each arrow overlaps in this
figure, e.g., the arrow (2;L) corresponds to JS(U)3.

following lemma shows that the amplitudes of the Grover walk itself; that is, (Um)a,e and
(Um)b,e for a, b ∈ ANj , take also the same value.

Lemma 7. Assume G is the k-regular tree. Let ψn = Unδe. Then

ψn(a) = ψn(b) (14)

holds for any a, b ∈ ANj with j ∈ Z and N ∈ {L,R}.
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Proof. For n = 0, (14) obviously holds. Assume (14) holds until n-step. Remark that by

this assumption, if a′ ∈ A(N)
j , we can put ψn(a′) = ψ̃n(j;N). Note that ψ̃n is a constant

vector depended on only j and N . From the definition of the Grover walk, we have

ψn+1(a) = (Uψn)(a) = −ψn(ā) +
2

k

∑
t(b)=o(a)

ψn(b).

If a ∈ A(R)
j and j > 1, then RHS is reexpressed by

RHS = −ψ̃n(j − 1;L) +
2

k

 ∑
b∈A(R)

j−1, t(b)=o(a)

ψn(b) +
∑

b∈A(L)
j−1, t(b)=o(a)

ψn(b)


= −ψ̃n(j − 1;L) +

2

k

(
ψ̃n(j − 1;R) + (k − 1)ψ̃n(j − 1;L)

)
Since the expression is determined by only j and R, we have ψn+1(a) = ψn+1(b) for any

a, b ∈ A
(R)
j . In the same way, we can show the statement for a, b ∈ A

(R)
j (j 6 0) case.

Furthermore, we can show that ψn(a) = ψn(b) for any a, b ∈ ALj .

Thus by (13) and Lemma 7, S(Un)δe is expressed by a linear combination of Ξδe :=
{ξδe | ξ ∈ Ξ} with the {0, 1}-coefficient; that is,

S(Un)δe =
n∑
j=0

(
εjS(U)jδe + τjJS(U)jδe

)
+

n−1∑
j=1

(
ε−j
>(S(U)j)δe + τ−jJ

>(S(U)j)δe
)
,

(15)
where εj, τj ∈ {0, 1}. Moreover to obtain the {0, 1} coefficient of each term of Ξ, by
Lemma 7, we pick up the parity of only the representative of each ANj ’s. To this end more
efficiently, we introduce the following map: Ψ : `2(A(T))→ `2(Z× {L,R}) such that

(Ψ(ψ))(j;R) =
1√
|ARj |

∑
a∈AR

j

ψ(a), (Ψ(ψ))(j;L) =
1√
|ALj |

∑
a∈AL

j

ψ(a).

We will regard Ψ(ψn)(j;N) as the “representative” of ψn(a) for a ∈ ANj . A direct com-
putation provides the following lemma.

Lemma 8. Let Ψ and ψn be the above. Then we have

(Ψ(ψn))(j;R) =

{
2
k

√
k − 1(Ψ(ψn−1))(j − 1;R)−

(
2
k − 1

)
(Ψ(ψn−1))(j − 1;L) : j > 0,

2
k

√
k − 1(Ψ(ψn−1))(j − 1;R) +

(
2
k − 1

)
(Ψ(ψn−1))(j − 1;L) : j < 0,

(16)

(Ψ(ψn)(j;L) =

{(
2
k − 1

)
(Ψ(ψn−1))(j + 1;R) + 2

k

√
k − 1(Ψ(ψn−1))(j + 1;L) : j > 0,

−
(

2
k − 1

)
(Ψ(ψn−1))(j + 1;R) + 2

k

√
k − 1(Ψ(ψn−1))(j + 1;L) : j < 0.

(17)
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Putting φn(j) = >[(Ψ(ψn))(j;L) (Ψ(ψn))(j;R)], we obtain the difference equation of
the discriminant quantum walk; that is,

φ0(j) = δ0(j)|R〉,
φn+1(j) = P (j + 1)φn(j + 1) +Q(j − 1)φn(j − 1),

where P (j) and Q(j) are given by Definition 4.

Remark 9. Let ψn be the n-th iteration of the Grover walk on k-regular tree starting from
δe, and let φn be its discriminant quantum walk at time n. Then

ψn(a) =


1√
|AR

j |
〈R, φn(j)〉 : a ∈ ARj ,

1√
|AL

j |
〈L, φn(j)〉 : a ∈ ALj .

(18)

This implies the phase is invariant with respect to Ψ.

Therefore by (13) and Remark 9, it holds in the k-regular tree case that the coefficients
in (15) are given by

〈R, φn(j)〉 > 0⇔ εj = 1, 〈L, φn(j)〉 > 0⇔ τj−1 = 1. (19)

Since e ∈ A(T) can be chosen as an arbitrary arc due to the symmetricity of the k-regular
tree, the statement of (19) also holds if we choose another initial arc f ∈ A(T) \ {e} and
consider S(Un)δf in the same way; which implies

S(Un)[δe, δf , . . . ]

=

(
n∑
j=0

(
εjS(U)j + τjJS(U)j

)
+

n−1∑
j=1

(
ε−j
>(S(U)j) + τ−jJ

>(S(U)j)
))

[δe, δf , . . . ].

Since [δe, δf , . . . ] = I with some appropriate computational basis order, the statement of
our main theorem is true for the k-regular tree.

3.3 k-regular graph with g(G) > 2(n − 1) case

We consider a k-regular graph whose girth is greater than 2(n−1). For an arbitrary fixed
e ∈ A(G), we put t(e) := o and define Ain by the following sub-arc set such that

Ain = {a ∈ A | dist(o, t(a)) 6 n− 1, dist(o, o(a)) 6 n− 2}

Next we also define the boundary arc-set with respect to Ain as follows:

∂A = {a ∈ A | dist(o, t(a)) = n, dist(o, o(a)) = n− 1}

∪{a′, a′′ | a ∈ A, dist(o, t(a)) = n− 1, dist(o, o(a)) = n− 1}.
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If a ∈ ∂A with dist(o, t(a)) = dist(o, o(a))(= n − 1), then we “cut” the edge |a| into a′

and a′′ such that o(a′) = o(a), o(a′′) = o(ā); but we regard t(a′), t(a′′) = “∅”. See also

Fig 6. The directed subgraph T(n)
e = (V ′, A′) ⊂ G is denoted by

A′ = Ain ∪ ∂A, V ′ = t(Ain) = {t(a) | a ∈ Ain},

Note that in this setting, we omit the terminal vertices of all a ∈ ∂A.

Lemma 10. Let G be a k-regular and g(G) > 2(n− 1). Then T(n)
e is a directed tree with

depth n and the root t(e).

Proof. If there is a cycle in T(n)
e , then the cycle does not pass any arcs in ∂A since all

the terminal vertices ∂A are vanished. The length of a largest cycle in this graph is not
less than the girth of G, that is 2(n − 1) + 1, which should run through each level set.
To accomplish this cycle, we need the arc connecting two vertices in (n − 1)-level set,
but such an arc belongs to non available arcs in ∂A by the definition. Then the largest
length of the cycle is at most 2(n − 1). By the assumption g(G) > 2(n − 1), then the
contradiction occurs. Thus there are no cycles.

Thus for the k-regular graph G whose girth is greater than 2(n − 1), when we look
around from an arbitrary vertex, we can regard it as a local k-regular tree within (n− 1)-
distance from the vertex. For a graph H, the time evolution of the Grover walk on
the graph H is denoted by UH . By Lemma 10, the following statement is immediately
obtained.

Lemma 11. Let G be k-regular with g(G) > 2(n−1) and also let T(n)
e be the above directed

subtree with depth n. Then for every e ∈ A(G), and for every f ∈ A′,

(U j
G)f,e = (U j

T(n)
e

)f,e (j = 0, 1, . . . , n).

Proof. If f ∈ Ain, the statement is trivial. We show it for f ∈ ∂A case. To reach f ∈ ∂A
from the initial arc e, it takes at least n iterations. If there are two shortest paths from
e to f ; (e, e1, . . . , en−1, f) and (e, e′1, . . . , e

′
n−1, f), then since o(e1) = o(e′1) = t(e) and

t(en−1) = t(e′n−1) = o(f), the 2(n− 1)-length cycle appears. This is contradiction to the
assumption g(G) > 2(n− 1).

Therefore when the Grover walk on the k-regular graph G; whose girth is greater than
2(n−1), starts from δe, we can convert it to the Grover walk on the k-regular tree starting
from e whose terminus is the root of the tree as long as the time iteration is less than n.
Since e ∈ A(G) can be chosen as an arbitrary arc, the same statement also holds if we
choose another initial arc e′ ∈ A(G) \ {e} and consider S(Un)δe′ . It completes the proof.
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Figure 6: The idea of the main theorem: Let us start the walk from the arc e of the
Petersen graph in this figure (g(G) = 5). After taking an automorphism transpose with
respect to the distance from t(e), we cut the red edges. We take an automorphism
transpose to this tree again so that the subtree whose vertices are descendants of o(e) is
placed to the opposite side. By using this symmetricity of the last figure, we can show that
this Grover walk is essentially same as the discriminant quantum walk until (n =)3-step.

4 Spectrum of S(Un)

For given k-regular graph G = (V,E), we consider the spectrum of S(Un). We show the
spectrum of S(Un) is inherited from the spectrum of the underlying graph. Although
the setting of [22], whose setting was for an extended Szegedy walk, is different from
our setting, our fundamental analytical method can follow [22] with some modifications
to be able to apply to our setting. The operation ”S” will remove regularities of the
unitary operator Un. This method enables us to find when S(Un) loses the diagonalizable
property.

We introduce K : `2(A) → `2(V ) as the following boundary operator corresponding
to an incidence matrix with respect to the terminal vertices:

K =
∑
a∈A

|t(a)〉〈a|.

where |u〉 and |a〉 denote the standard basis of `2(V ) and `2(V ) corresponding to u ∈ V ,
a ∈ A, respectively. This boundary operator K plays the important role for our spectral
analysis due to the following properties:

1. S(U) = J(K∗ K − I);
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2. KK∗ = k1|V |;

3. KJK∗ = M , where M is the adjacency matrix of G.

We put L : `2(V )× `2(V )→ `2(A) such that L = [K∗, JK∗]. Using the above properties
of K∗ and J2 = 1|A|, we obtain

S(U)L = LM̃ (20)

Here M̃ : `2(V )× `2(V )→ `2(V )× `2(V ) is

M̃ =

[
0 −1

k − 1 M

]
.

Remarking that >S(U) = JS(U)J , we can easily obtain that

S(U)jL = LM̃ j;

JS(U)jL = Lσ̃XM̃
j;

>S(U)jL = Lσ̃XM̃
jσ̃X ;

J >S(U)jL = LM̃ jσ̃X . (21)

Here σ̃X = σX ⊗ I|V | with

σX =

[
0 1
1 0

]
.

Let F (x; y) be a linear combination of {xj, yxj, yxjy, xjy | j ∈ Z>0}. Then by (21),

F (S(U); J)L = LF (M̃ ; σ̃X). (22)

Let L ⊂ `2(A) be L(`2(V ) × `2(V )), that is, L = {K∗f + JK∗g | f, g ∈ `2(V )}. By
(22), we have the following equivalent deformation with respect to the eigenequation of
F (S(U); J) restricted to L ;

F (S(U); J)|Lψ = λψ, ψ 6= 0⇔ L(λ− F (M̃ ; σ̃X))φ = 0, φ /∈ kerL. (23)

Thus we need to clarify kerL. Indeed this is expressed as follows.

Lemma 12. Let L and M̃ be as the above. Then we have

ker(L) = ker(1− M̃2) = ker

(
k +

[
0 M
M 0

])
.

Proof. First we show ker(L) ⊂ ker(1− M̃2). Let >[f, g] ∈ ker(L). Then K∗f + JK∗g = 0
holds. By multiplying K and KJ , then we have

kf +Mg = 0, Mf + kg = 0. (24)

Using this equation, a simple computation leads

(1− M̃2)>[f, g] = 0.
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which implies >[f, g] ∈ ker(1 − M̃2), that is, ker(L) ⊂ ker(1 − M̃2). Next we show
ker(L) ⊃ ker(1− M̃2). We assume >[f, g] ∈ ker(1− M̃2). Then

kf +Mg = 0, Mf + kg = 0.

Remarking KK∗ = k and KJK∗ = M , we can provides the following equivalent expres-
sion of the above equations:

K(K∗f + JK∗g) = 0, KJ(K∗f + JK∗g) = 0,

which are also equivalent to K∗f + JK∗g ∈ L⊥. Thus K∗f + JK∗g should be 0 since
K∗f + JK∗g ∈ L. It is completed the proof.

Since the adjacency matrix M is a regular matrix, then M can be decomposed into

M =
∑

µ∈σ(M)

µΠµ,

where Πµ is the orthogonal projection onto the eigenspace of µ and σ(M) is set of all
eigenvalues of M . Remarking

∑
µ Πµ = I|V |, we can decompose M̃ into

M̃ =
∑

µ∈σ(M)

[
0 −1

k − 1 µ

]
⊗ Πµ.

Therefore the equivalent deformations of the eigenequation (23) can be continued to

(1− M̃2)(λ− F (M̃ ; σ̃X))φ = 0, φ /∈ ker(1− M̃2)

⇔

 ∑
µ∈σ(M)

(1−K2
µ)(λ− F (Kµ;σX))⊗ Πµ

φ = 0, φ /∈ ker(1− M̃2) (25)

Here Kµ is the 2-dimensional matrix defined by

Kµ =

[
0 −1

k − 1 µ

]
.

We are interested in so-called non-trivial zeros ( or eigenvalues) of

det(λ− S(Un)) = 0

not living in the real line, which is a graph analogue of the non-trivial poles of the Riemann
zeta function; that is the zeros of the Ihara zeta [2, 15, 21] motivated by the quantum
walks. Remark that all the eigenvalues for the eigenspace L⊥ are included in R because
L⊥ = ker(K) ∩ ker(KJ) = {ker(K) ∩ ker(1− J)} ∩ {ker(K) ∩ ker(1 + J)}. Let Fn(x; y)
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be the linear combination of {xj, yxj, yxjy, xjy | j ∈ Z>0} determined by (5) switching
the notations of S(U) and J in (5) to x and y, respevetively; that is,

Fn(x; y) =
n∑
j=0

(
εjx

j + τjyx
j
)

+
n−1∑
j=1

(
ε−jyx

jy + τ−j x
jy
)
. (26)

For example, if n = 3, then F3(x; y) = x3 + yxy. Here x and y are non-comutative in
general.1 Then to see the non-trivial eigenvalues, we can concentrate on the eigenequation:

Theorem 13. Let λ be the non-trivial eigenvalue of S(Un). Then the value λ satisfies

det(λ− Fn(Kµ;σX)) = 0 (27)

for some µ ∈ σ(M).

Proof. Let us consider the decomposition (25). We consider the solution of the eigenequa-
tion

det

 ∑
µ∈σ(M)

(1−K2
µ)(λ− Fn(Kµ;σX))⊗ Πµ

 = 0. (28)

Let σ(M) = {µ1, . . . , µ|V |}, and Aµj := (1 − K2
µj

)(λ − Fn(Kµj ;σX)) for j = 1, . . . , |V |.
Remark that for any 2× 2 matrix X and |V |× |V | matrix Y , X ⊗Y = Q∗(Y ⊗X)Q with
Q(x ⊗ y) = y ⊗ x for x ∈ C2, y ∈ C|V | and we also remark that QQ∗ = Q∗Q = I2|V |.
Moreover it holds Πµj = (P |j〉)(P |j〉)∗, where P is the unitary matrix on C|V | such that

P−1MP = diag[µ1, . . . , µ|V |] and |j〉 is the standard base of C|V | labeled by j. Then

|V |∑
j=1

Aµj ⊗ Πµj = (P ∗ ⊗ I2)Q∗

 |V |∑
j=1

|j〉〈j| ⊗ Aµj

Q(P ⊗ I2)

Therefore (28) is equivalent to

det


Aµ1 0 · · · 0
0 Aµ2 · · · 0
...

...
. . .

...
0 0 · · · Aµ|V |

 = 0.

The eigenequation can be reduced as follows:∏
µ∈σ(M)

det(1−K2
µ)(λ− Fn(Kµ;σX)) = 0.

First we easily notice that det(1 − K2
µ) = 0 iff µ = ±k. Then if µ 6= ±k, the solution

of det(λ − Fn(Kµ;σX)) = 0 with respect to λ is an eigenvalue of Fn(S(U); J) = S(Un).

1We used >S(U) = JS(U)J and J>S(U) = S(U)J for (26).
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Then we showed that the statement is true at least for µ 6= ±k. So secondly we consider
µ = k case. Since

ker(1−K2
k) = ker

[
k k
k k

]
,

we have

ker(1−K2
k)(λ− Fn(Kk;σX)) =

{[
α
β

]
| (a+ c− λ)α + (b+ d− λ)β = 0

}
when we put

Fn(Kk;σX) =

[
a b
c d

]
.

Moreover it is easy to compute that

Kj
k =

1

k − 2

[
(k − 1)− (k − 1)j 1− (k − 1)j

(k − 1)j+1 − (k − 1) −1 + (k − 1)j+1

]
.

Let

Kj
k =

1

k − 2

[
p q
r s

]
.

Then we have p+ r = q + s. Furthermore, we have

Kj
kσX =

1

k − 2

[
q p
s r

]
, σXK

j
k =

1

k − 2

[
r s
p q

]
,

which implies a+ c = b+ d. Then if a+ c− λ 6= 0, then

ker(1−K2
k)(λ− Fn(Kk;σX)) =

{[
α
β

]
| α + β = 0

}
.

However in that case, we can check that

[
α
β

]
∈ ker(1− M̃2). Thus λ = a+ c. which is a

real value and not a non-trivial eigenvalue. The case for µ = −k can be done in the same
way as µ = k case. Therefore µ = ±k cases can be excluded.

Theorem 5 shows the concrete expression of Fn(Kµ, σX) for each n. For example, for
n = 3 case, (27) is reduced to

det(λ− (K3
µ + σXKµσX)) = 0.

We put the solution λ(µ) := x(µ)+ iy(µ) with x(µ), y(µ) ∈ R. Since Fn(µ) := Fn(Kµ;σX)
is a 2×2 matrix, the solution of (27) with respect to λ is that of the following characteristic
polynomial:

λ2 − tr(Fn(µ))λ+ det(Fn(µ)) = 0.
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Define Dn(µ) := tr(Fn(µ))2 − 4 det(Fn(µ)). The real part x(µ) of this solution λ(µ) lies
on

Rn := {(µ, x) ∈ [−k, k]× R | x2 − tr(Fn(µ))x+ det(Fn(µ)) = 0, Dn(µ) > 0}
∪ {(µ, x) ∈ [−k, k]× R | tr(Fn(µ))− 2x = 0, Dn(µ) 6 0}. (29)

On the other hand, the imaginary part y(µ) lies on the following algebraic equation which
draws a kind of hyperelliptic curve for n > 2:

In := {(µ, y) ∈ [−k, k]× R | 4y2 +Dn(µ) = 0}. (30)

Therefore the non-trivial eigenvalues of S(Un) are inherited from all the eigenvalues of
the underlying graph satisfying Dn(µ) 6 0. In Appendix, explicit expressions for Rn(µ)
and In(µ) for n = 1, . . . , 6 are described. The parity of Dn(·) determines the range of the
spectrum of S(Un). On the other hand, the following theorem shows the affect of zero’s
of Dn(·) on the matrix property of S(Un).

Theorem 14. A solution for Dn(µ) = 0; µ∗, belongs to σ(M) and Fn(µ∗) 6= cI with some
nonzero constant c if and only if S(Un) is not diagonalizable.

Proof. This is obtained by the fact that the geometric multiplicity of the eigenvalue λ(µ∗)
of Kµ∗ is strictly less than the algebraic multiplicity: If ker(λ−Fn(µ)) ⊂ ker(λ−Fn(µ))2,
then Dn(µ) = 0 since the solution for λ2 − tr(Fn(µ))λ + det(Fn(µ)) = 0 must have a
multiple root. Remark that if Dn(µ) = 0 with ker(λ − Fn(µ)) = ker(λ − Fn(µ))2, then
Fn(µ) = cI with some constant c since Fn(µ) is a 2×2 matrix. Therefore ker(λ−Fn(µ)) ⊂
ker(λ− Fn(µ))2 if and only if Dn(µ) = 0 and Fn(µ) 6= cI.

Remark that if the spectrum of the underlying graph has the branch points of Rn (see
Fig 8), then

σ(M) ∩ {µ | Dn(µ) = 0} 6= ∅.
If such a µ∗ ∈ {µ ∈ σ(M) | Dn(µ) = 0} satisfies with Fn(µ∗) 6= cI, then S(Un) becomes
non-diagonalizable.

Finally we draw the support of non-trivial eigenvalues with the parameter µ ∈ [−k, k] ⊃
σ(M) in the complex plane, that is, {(x(µ), y(µ)) | µ ∈ [−k, k], Dn(µ) 6 0} in Fig. 7 and
In and Rn to show how <(σ(S(U)n)) and =(σ(S(U)n)) are inherited from σ(M) in Fig. 8
for n = 1, 2, . . . , 6.

5 Summary

We obtained the structure theorem of the n-th power of the time evolution of the Grover
walk on G (Theorem 5) and its support of the non-trivial spectrum for the girth g(G) >
2(n − 1) (Theorem 13). The non-trivial spectrum is not living on the real line, which is
a graph analogue of the non-trivial poles of the Riemann zeta function. We showed that
this problem is converted to solving the phase pattern of the one-dimensional quantum
walk in Definition 4 which is only determined by the regularity of G. The curious phase
pattern can be seen in Fig. 3 and the support of the spectrum can be seen in Fig. 4.
Solving rigorously this phase pattern is one of the interesting future’s problems.
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Figure 7: Figures (1)–(6) are the support of the non-trivial eigenvalues in C of
S(U), S(U2), . . . , S(U6), respectively for k = 12 and g(G) > 2(n − 1). The horizontal
and vertical lines are real and imaginary lines, respectively. The eigenvalues of S(Un)
must lie on this support for each n.

Appendix A

The curve Rn(µ) for Dn(µ) 6 0 is the set of the zero’s of the following polynomial Qn

with respect to µ and x:
Q1 = µ− 2x

Q2 = (4− 2k) + µ2 − 2x

Q3 = (4− 3k)µ+ µ3 − 2x

Q4 =
(
6− 6k + 2k2

)
+ (5− 4k)µ2 + µ4 − 2x

Q5 = (6− 11k + 5k2)µ+ (6− 5k)µ3 + µ5 − 2x

Q6 =
(
4− 6k + 6k2 − 2k3

)
+
(
10− 20k + 9k2

)
µ2 + (7− 6k)µ4 + µ6 − 2x

The curve In(µ) is the set of the zero’s of the following polynomial Pn with respect to µ
and y which draws a hyperelliptic curve for n > 2, where Dn(µ) is obtained by Pn − 4y2.

P1 = (4− 4k) + µ2 + 4y2

P2 = (4− 4k)µ2 + µ4 + 4y2
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Figure 8: The orbits of real and imaginary parts of eigenvalue of S(Un) for k = 12 and
g(G) > 2(n−1) (n = 1, . . . , 6) obtained by (29) and (30), respectively: The horizontal line
is the parameter µ ∈ [−k, k] ⊃ σ(M), and the vertical line is the real and imaginary parts
of eigenvalue of S(Un); Rn(µ) and In(µ), respectively. The green curve depicts Rn(µ) and
the blue curve depicts In(µ). Thus Rn(µ) and In(µ) show how the spectrum of the graph
is mapped to the real and imaginary parts of that of induced S(Un). If the spectrum of
the graph has the branch points in Rn(µ), then S(Un) is non-diagonalizable.

P3 = −8
(
−2 + 4k − 3k2 + k3

)
+
(
16− 24k + 13k2

)
µ2 + (4− 6k)µ4 + µ6 + 4y2

P4 = 12
(
3− 7k + 6k2 − 2k3

)
µ2 +

(
25− 44k + 24k2

)
µ4 + (6− 8k)µ6 + µ8 + 4y2

P5 = (16− 48k + 76k2 − 68k3 + 36k4 − 8k5) + (48− 152k + 205k2 − 146k3 + 41k4)µ2

+ (52− 156k + 174k2 − 66k3)µ4 + (28− 66k + 39k2)µ6

+ (8− 10k)µ8 + µ10 + 4y2

P6 = −12((−1 + k)3(3− 7k + 5k2))µ2 + (100− 428k + 704k2 − 524k3 + 149k4)µ4

+ (100− 324k + 358k2 − 136k3)µ6 + (45− 100k + 58k2)µ8

+ (10− 12k)µ10 + µ12 + 4y2

Remark that for k > 5, the forms of {Qn} and {Pn} need classifications with respect to
the value k; see (8)–(12); the above forms are in the case of k > 12. The forms of Qn

and Pn for general n can be obtained by running the discriminant quantum walk on Z
until n-step, and taking the phase measurement; e.g., for k = 20, the phase pattern until
n = 100 can be referred in Fig. 2.
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