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Abstract

Super RSK correspondence is a bijective correspondence between superbiwords
and pairs of semistandard supertableaux. Such a bijection was given by Bonetti,
Senato and Venezia, via an insertion algorithm closely related to Schensted insertion.
Notably, the symmetry property satisfied by the classical RSK bijection holds only
in special cases under this bijection. We present a new super RSK bijection, based
on the mixed insertion process defined by Haiman, where the symmetry property
holds in complete generality.

Mathematics Subject Classifications: 05A19, 16T30

1 Introduction

The work of Robinson [R] in 1938, and Schensted [S] in 1961, describes a bijection between
permutations and pairs of same-shape standard tableaux, now known as the Robinson-
Schensted (RS) correspondence. A key ingredient in the bijection is an algorithm called
Schensted insertion. In 1970, Knuth showed that Schensted insertion could be adapted
to a more general setting to achieve a bijection between two-line arrays of letters called
‘biwords’ (which are in natural bijection with matrices of non-negative integers) and pairs
of same-shape semistandard tableaux [K]. This bijection is known as the Robinson-
Schensted-Knuth (RSK) correspondence.

A celebrated feature of the RSK correspondence is a certain symmetry property;
namely, exchanging the rows of a biword (or, transposing the matrix from the matrix
perspective) translates via the RSK correspondence to exchanging the positions of the as-
sociated pair of semistandard tableaux. This property, proven for the RS correspondence
by Viennot [V] in 1977 and extended to the full RSK correspondence by Fulton [F] in
1997, is far from obvious from the workings of the RSK algorithm itself.
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The RSK correspondence has applications in a variety of settings; of particular rel-
evance for this paper is its application in representation theory and invariant theory,
where it describes a bijection between various important bases for associative algebras
and Lie algebras. We consider here the generalization of RSK correspondence to combi-
natorial objects associated with the representation theory and invariant theory of superal-
gebras. These ‘super’ combinatorial objects are restricted superbiwords and semistandard
supertableaux. In contrast with the classical situation, letters in restricted superbiwords
can have even or odd parity, with repetition of mixed-parity biletters disallowed. Semis-
tandard supertableaux are nondecreasing tableaux in which letters of even parity strictly
increase down columns, and letters of odd parity strictly increase along rows. See for
example [CPT, DR, GRS, LNS, MZ] for a few instances of these combinatorial objects
arising in the study of bases of superalgebras and their representations. In particular,
‘super’-RSK correspondence plays a key role in the theory of generalized Schur algebras
associated to quasihereditary superalgebras, as it provides a bijection between natural
bases and heredity bases for these algebras, see [KM].

In this paper we prove that an adaptation of the mixed insertion algorithm defined
by Haiman [H] can be used to define a super-RSK correspondence between restricted
superbiwords and same-shape pairs of semistandard supertableaux. This correspondence
fully generalizes the classical RSK correspondence, in the sense that classical RSK can be
viewed as a specialization of super-RSK to the case of even-parity superbiwords, and the
classical symmetry property described above holds for super-RSK in full generality.

Numerous variants of super-RSK correspondence exist in the literature. Most notably,
Bonetti, Senato, and Venezia [BSV] presented a different correspondence between the
same sets of combinatorial objects considered in this paper. At the heart of their algorithm
are dual insertion processes which are very much like the classical Schensted insertion
process, in that insertion progresses linearly from one row to the next (or one column to
the next), and the number of ‘bumps’ in a given insertion is bounded by the number of rows
(or the number of columns) in the Young diagram. By contrast, the Haiman insertion
process utilized in this paper progresses in a less direct fashion, where the number of
‘bumps’ in an insertion is bounded only by the number of nodes in the Young diagram. A
more crucial difference between the two algorithms is the fact that the super-RSK of [BSV]
does not have the symmetry property in general (see Example 31). La Scala, Nardozza
and Senato describe [LNS, Proposition 4.7] a subset of superbiwords where symmetry is
known to hold for the [BSV] correspondence, but a complete description of such biwords
is still an open problem.

Another variant of super-RSK correspondence appears in work by Shimozono and
White [SW]. Their algorithm is based around the same Haiman insertion algorithm as
used here, but adapted to work with a different class of combinatorial objects: unre-
stricted superbiwords (repetitions of mixed biletters allowed), and supertableaux which
are row-weak and column-strict with respect to both parities. They demonstrate a bijection
between these objects, and prove that their correspondence generalizes the classical sym-
metry property as well. While the [SW] algorithm generally yields different supertableaux
from ours (see again Example 31), we note that they agree, crucially, in the special case
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of ‘standard’ superbiwords—those with no repeated letters. This is a key ingredient in
the proof of the symmetry of our super-RSK correspondence.

Now for a description of the structure of this paper. In §2, we set up basic notation and
definitions of the relevant combinatorial objects. In §3, we describe the ε-insertion process
which drives the super-RSK algorithm, and prove some useful lemmas about the process.
In §4, we prove some bounds on the distribution of bumped nodes during the insertion
process, which are necessary for the results in the subsequent section, and perhaps of
independent interest in the study of tableau growth. In §5, we define the super-RSK map
‘sRSK’ and prove the first main theorem of the paper, which appears as Theorem 21 in
the text:

Theorem 1 (Super-RSK correspondence). The map sRSK defines a bijection between
restricted superbiwords and same-shape pairs of semistandard supertableaux.

In §6, we prove some lemmas related to standardizing superbiwords, and prove the other
main theorem of the paper, which appears as Corollary 30 in the text:

Theorem 2 (Super-RSK symmetry). Under super-RSK correspondence, exchanging rows
in the superbiword w is equivalent to exchanging the positions of the pair of supertableaux
sRSK(w).

2 Preliminaries

Since all combinatorial objects considered in this paper are Z2-colored, we will henceforth
suppress the prefix ‘super’ from most of our terminology.

2.1 Alphabets

An alphabet X is a set equipped with a parity function X → Z2, x 7→ x, and a total
order <X . Elements of alphabets are called letters. We call x ∈X even if x = 0 and odd
if x = 1. Let ≺X be the total order on X defined by

a ≺X b ⇐⇒


a = 1, b = 0, or

a = b = 0 and a <X b, or

a = b = 1 and a >X b.

Note then that

a <X b =⇒

{
a ≺X b if b̄ = 0̄

a �X b if b̄ = 1̄.

The dual alphabet X ∗ of an alphabet X has underlying set {x∗ | x ∈X }, parity function
defined by x∗ = x+ 1, and total order <X ∗ defined so that

x∗ <X ∗ y
∗ ⇐⇒ x <X y.
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It follows that a∗ ≺X ∗ b
∗ if and only if a �X b.

The standardizing alphabet X • of an alphabet X has underlying set {x(i) | x ∈X , i ∈
Z>0}, parity function defined by x(i) = x, and total order <X • defined so that

a(i) <X • b
(j) ⇐⇒

{
a <X b, or

a = b and i < j.

Define the ‘forget superscripts’ function •̂ : X • →X by x(i) 7→ x.

Going forward, we will suppress the subscripts and write < or ≺ when the underlying
alphabet is clear from context.

2.2 Tableaux

We set N := Z>0 × Z>0 and refer to the elements of N as nodes. Define a partial order 6
on N as follows: (r, s) 6 (r′, s′) if and only if r 6 r′ and s 6 s′. For u = (r, s) ∈ N we will
write u′ := (s, r) ∈ N.

For ε ∈ Z2 and u = (r, s) ∈ N, define

uε =

{
r ε = 0,

s ε = 1.

and for i ∈ Z>0 define

N(ε, i) = {u ∈ N | uε = i}.

I.e., N(ε, i) is the ith row of nodes if ε = 0, and the ith column of nodes if ε = 1.

We write u ↑ v if u0 > v0 and u1 = v1, and u ⇒ v if the inequality is strict. We write
u ↗ v if u0 > v0 and u1 6 v1, and u ⇒ v if both inequalities are strict. We similarly
define the symbols →,⇒,↘,⇒ , ↓,

⇒

.

For n ∈ Z>0, we say λ = (λ1, . . . , λn) ∈ Zn>0 is a partition of n, writing λ ` n, if
λ1 > · · · > λn and

∑
λi = n. Let Λ+(n) be the set of all partitions of n. The Young

diagram of λ is

[λ] = {(r, s) ∈ N | s 6 λr}.

We say a node u of [λ] is removable if [λ]\{u} = [µ] for some partition µ. We say a node
u /∈ [λ] is addable if [λ] ∪ {u} = [µ] for some partition µ. For a partition λ, the conjugate
partition λ′ is defined such that u ∈ [λ′] if and only if u′ ∈ [λ].

An (X , λ)-tableau is a function T : [λ] → X . If T is an (X , λ)-tableau, we write
sh(T) = λ. The content con(T) of an (X , λ)-tableau T is the multiset {T(u) | u ∈ [λ]}.

An (X , λ)-tableau is semistandard if:
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(i) it is non-decreasing: T(u) 6X T(v) whenever u 6 v.

(ii) it is row-strict with respect to odd letters: if T(u) = T(v) for u, v in the same row,
then T(u) = 0.

(iii) it is column-strict with respect to even letters: if T(u) = T(v) for u, v in the same
column, then T(u) = 1.

A standard tableau is a semistandard tableau such that T(u) 6= T(v) for every u 6= v ∈
[λ]. For an (X , λ)-tableau T, define the dual (X ∗, λ)-tableau T∗ by T∗(u) := T(u)∗, and
define the conjugate (X , λ′)-tableau T′ by T′(u) := T(u′). We write T′∗ := (T′)∗ = (T∗)′ for
the dual conjugate (X ∗, λ′)-tableau. The following lemmas are obvious.

Lemma 1. The following are equivalent:

(i) T is a standard (X , λ)-tableau.

(ii) T′ is a standard (X , λ′)-tableau.

(iii) T∗ is a standard (X ∗, λ)-tableau.

Lemma 2. An (X , λ)-tableau T is semistandard if and only if the dual conjugate T′∗ is
a semistandard (X ∗, λ′)-tableau.

2.3 Standardizing tableaux

Recalling the standardizing alphabet X • from §2.1, for any (X •, λ)-tableau T, define
•̂(T) := •̂ ◦ T. I.e., •̂(T) is the tableau T with superscripts deleted. We say a standard
(X •, λ)-tableau U is •-standard provided

(i) T := •̂(U) is a semistandard (X , λ)-tableau.

(ii) If u↗ v ∈ [λ] and T(u) = T(v), then U(u) ≺X • U(v).

We say then that U is a •-standardization of T.

Example 3. Take X = {1̂ < 1 < 2̂ < 2 < 3̂ < 3}, with odd elements indicated by carets.
Let λ = (4, 4, 2). An (X , λ)-tableau T, its dual T∗, conjugate T′, and dual conjugate T′∗

are shown below.

T =

1̂ 1 1 2̂

1̂ 2̂ 3 3

1̂ 2̂

T∗ =

1̂∗ 1∗ 1∗ 2̂∗

1̂∗ 2̂∗ 3∗ 3∗

1̂∗ 2̂∗
T′ =

1̂ 1̂ 1̂

1 2̂ 2̂

1 3

2̂ 3

T′∗ =

1̂∗ 1̂∗ 1̂∗

1∗ 2̂∗ 2̂∗

1∗ 3∗

2̂∗ 3∗
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Then T is a semistandard (X , λ)-tableau, and T′∗ is a semistandard (X ∗, λ′)-tableau. In
the standardizing alphabet X • we have

1̂(1) < 1̂(2) < 1̂(3) < 1(1) < 1(2) < 2̂(1) < 2̂(2) < 2̂(3) < 3(1) < 3(2),

and

2̂(3) ≺ 2̂(2) ≺ 2̂(1) ≺ 1̂(3) ≺ 1̂(2) ≺ 1̂(1) ≺ 1(1) ≺ 1(2) ≺ 3(1) ≺ 3(2),

and so the (X •, λ)-tableau

U =

1̂(1) 1(1) 1(2) 2̂(1)

1̂(2) 2̂(2) 3(1) 3(2)

1̂(3) 2̂(3)

is a •-standardization of T.

3 Insertion and Extraction

It will be convenient in practice to formally extend the domain and range of an (X , λ)-
tableau T to a function T : N→X ∪{∞} by setting T(u) =∞ for all u /∈ [λ]. We extend
the order < on X to X ∪ {∞} by setting x <∞ for all x ∈X . We define the symbols
0
< :=< and 1

< :=6.

3.1 Insertion

Let λ ` n, and assume T is a semistandard (X , λ)-tableau. Let ε ∈ Z2 and x ∈X . From
this data we construct an (X , µ)-tableau (T

ε←− x), where µ ` n + 1, via the method of
ε-insertion.

Algorithm for ε-insertion.

(1) Set i := 1, j := 1, and x1 := x.

(2) Set bj to be the smallest node in N(ε+ xj, i) such that xj
ε
< T(bj).

(3) If T(bj) =∞, go to step (5). Otherwise, set j := j + 1.

(4) Set xj := T(bj−1). Set i := (bj−1)ε+xj + 1 and go to step (2).

(5) Define µ such that [µ] := [λ] ∪ {bj}. Define (T
ε←− x) to be the (X , µ)-tableau such

that (T
ε←− x)(bk) = xk for all 1 6 k 6 j, and (T

ε←− x)(u) = T(u) for all other nodes
of [µ].
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Assuming the process terminates when j = m, we call b1, . . . , bm the bumped node
sequence, and call A(T, ε, x) := bm the added node. We call x1, . . . , xm the bumped letter
sequence.

Remark 4. Informally speaking, under 0̄-insertion, bumped even letters are inserted in the
next row down and bumped odd letters are inserted in the next column to the right. In
1̄-insertion, this is reversed. The fuss over the differing comparisons 0

< and 1
< is needed to

assure that semistandardness is maintained under ε-insertion, as will be shown in Lemma
12.

Remark 5. If X = N, where < is the usual order on integers and every element is of even
parity, then 0-insertion is Schensted insertion [S]. For general X and standard tableaux,
0-insertion is mixed insertion as defined by Haiman (where odd letters are referred to as
circled) [H].

Remark 6. In [SW, §3], Shimozono and White define a process called doubly-mixed in-
sertion, also adapted from from [H], which is very similar to the ε-insertion presented in
this paper; the processes are identical when applied to the subclass of standard tableaux.
We note however that Shimozono and White use a different definition for semistandard
tableaux—in their setup, semistandard tableaux are row-weak and column-strict with re-
spect to both parities—so doubly-mixed insertion and ε-insertion differ substantially in
the presence of repeated letters.

Example 7. With X as in Example 3 and T as shown below, we have

T =

1 2̂ 2

3̂ 3

3̂

(T
0←− 1) =

1 1 2̂

2 3̂

3̂ 3

(T
1←− 1) =

1 1 2

2̂ 3

3̂

3̂

The bumped node sequence for (T
0←− 1) is

(1, 2), (1, 3), (2, 1), (2, 2), (3, 2),

and the bumped letter sequence is 1, 2̂, 2, 3̂, 3. The bumped node sequence for (T
1←− 1) is

(1, 1), (1, 2), (2, 1), (3, 1), (4, 1),

and the bumped letter sequence is 1, 1, 2̂, 3̂, 3̂.

3.2 Extraction

Let U be a semistandard (X , µ)-tableau, let u be a removable node of [µ], and set λ
to be such that [λ] = [µ]\{u}. We define a (X , λ)-tableau (U

ε−→ u) by the method of
ε-extraction.

Algorithm for ε-extraction.

the electronic journal of combinatorics 26(2) (2019), #P2.27 7



(1) Set j := 1, c1 := u, and y1 := U(u).

(2) Set i := (cj)ε+yj − 1. If i = 0, go to step (5).

(3) Set cj+1 to be the greatest node in N(ε+ yj, i) such that yj
ε
> U(cj+1).

(4) Set j := j + 1. Set yj := U(cj). Go to step (2).

(5) Define (U
ε−→ u) to be the λ-tableau such that (U

ε−→ u)(ck) = yk−1 for all 2 6 k 6 j,
and (U

ε−→ u)(v) = U(v) for all other nodes of [λ].

Assuming the process terminates when j = m, we call y1, . . . , ym the unbumped letter
sequence., and define R(U, ε, u) := ym to be the extracted letter. We call c1, . . . , cm the
unbumped node sequence.

Example 8. With X as in Example 3 and T as shown below, we have

T =

1 2̂ 2

3̂ 3

3̂

(T
0−→ (3, 1)) =

1 2̂ 2

3̂ 3
(T

1−→ (3, 1)) =
1 2 3̂

3̂ 3

The unbumped node sequence for (T
0−→ (3, 1)) is only the node (3, 1), and the un-

bumped letter sequence is 3̂.

The unbumped node sequence for (T
1−→ (3, 1)) is

(3, 1), (2, 1), (1, 3), (1, 2)

and the unbumped letter sequence is 3̂, 3̂, 2, 2̂.

3.3 Some results on insertion and extraction

As noted in Remark 5, ε-insertion is an adaptation of ‘mixed insertion’ defined by Haiman
[H]. Although Haiman works with standard tableaux, he remarks that his results may be
extended to the semistandard case in a straightforward manner—this is outlined in [H, §1]
and we take some pains to make the idea explicit in Lemma 14. Though some of the
results in this subsection would follow from those in [H] and Lemma 14, we nevertheless
include full proofs working in the general semistandard case, for the sake of clarity and
self-containment, and since our notation and approach differ substantially from that of [H].

The following two lemmas follow directly from definitions of the algorithms.
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Lemma 9. Let T be a standard (X , λ)-tableau, and assume x ∈X \T. Then

(i) (T
ε←− x)′ = (T′

ε+1←−− x), and if b1, . . . , bm is the bumped node sequence for (T
ε←− x),

then b′1, . . . , b
′
m is the bumped node sequence for (T′

ε+1←−− x).

(ii) (T
ε←− x)∗ = (T∗

ε+1←−− x∗), and both insertions have the same bumped node sequence.

Lemma 10. Let T be a semistandard (X , λ)-tableau. Then

(i) (T
ε←− x)′∗ = (T′∗

ε←− x∗) for every x ∈ X , and if b1, . . . , bm is the bumped node
sequence for (T

ε←− x), then b′1, . . . , b
′
m is the bumped node sequence for (T′∗

ε←− x∗).

(ii) (T
ε−→ u)′∗ = (T′∗

ε−→ u′) for every removable node u ∈ [λ], and if c1, . . . , cm is the
unbumped node sequence for (T

ε−→ u), then c′1, . . . , c
′
m is the unbumped node sequence

for (T′∗
ε−→ u′).

Lemma 11. Let b1, . . . , bm be the bumped node sequence, and let x1, . . . , xm be the bumped
letter sequence for the ε-insertion (T

ε←− x). Assume i < j. Then:

(i) xi
ε
< xj

(ii) T(bi)
ε
< T(bj)

(iii) (T
ε←− x)(bi)

ε
< (T

ε←− x)(bj)

(iv) bi 6> bj.

Proof. (i)–(iii) are obvious. For (iv), note that if T is semistandard, then bi > bj and (ii)
would imply T(bi) = T(bi+1) = · · · = T(bj), ε = 1, and either bj ↓ bi or bj → bi. In the

former case, semistandardness implies that T(bi) = 1, hence by the 1-insertion algorithm,
(bi+a)0 = (bi)0 + a for 0 6 a 6 j − i, so bj is in a lower row than bi, a contradiction. In

the latter case, semistandardness implies that T(bi) = 0, hence by the insertion algorithm,
(bi+a)1 = (bi)1+a for 0 6 a 6 j−i, so bj is in a column rightward of bi, a contradiction.

Lemma 12. Let T be a semistandard (X , λ)-tableau.

(i) (T
ε←− x) is semistandard for every x ∈X .

(ii) (T
ε−→ u) is semistandard for every removable node u ∈ [λ].

Proof. (i) Let b1, . . . , bm be the bumped node sequence, and let x1, . . . , xm be the bumped
letter sequence for the insertion (T

ε←− x). For 1 6 i 6 m, let Ti be the tableau defined by
setting Ti(bj) = xj for 1 6 j 6 i, and Ti(u) = T(u) for all other u ∈ [λ]. It is easy to see
that T1 is semistandard. Now we argue that Tk is semistandard by induction.
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Assume ε+xk = 0. Then (bk)0 = (bk−1)0+1 by the algorithm. If z is the node directly
below bk−1, then z 6= bi for any 1 6 i 6 k − 1 by Lemma 11(iv). By semistandardness of
Tk−1 then

xk = Tk−1(bk−1) 6 Tk−1(z) = T(z),

so bk → z, and thus bk ↗ bk−1. Let l, r be the nodes to the immediate left and right of
bk, respectively. Then

Tk(l) = Tk−1(l) 6 T(l) ε+1
< xk

ε
< T(bk) = Tk−1(bk) 6 Tk−1(r) = Tk(r).

Thus the (bk)0th row of Tk is non-decreasing. Moreover, if xk = 1, then ε = 1, so
Tk(l) < xk = Tk(bk). If xk = Tk(r), then Tk−1(bk) = Tk−1(r), yet both are odd, a
contradiction of the semistandardness of Tk−1. Thus Tk(bk) = xk < Tk(r). Thus the
(bk)0th row of Tk is row-strict with respect to odd letters.

Let u, d be the nodes directly above and below bk, respectively. Then u → bk−1 or
u = bk−1. Then

Tk(u) = Tk−1(u) 6 Tk−1(bk−1) = xk−1
ε
< xk

ε
< T(bk) = Tk−1(bk) 6 Tk−1(d) = Tk(d).

Thus the (bk)1th column of Tk is non-decreasing. Moreover, if xk = 0, then ε = 0, and
Tk(u) < xk = Tk(bk) < Tk(d), so the (bk)1th column of Tk is column-strict with respect to
even letters.

Thus Tk is semistandard if ε + xk = 0. Assume on the other hand that ε + xk = 0.
Let U = T′∗. Then, applying the above argument to the insertion (U

ε←− x∗), we have that
Uk is semistandard. But by Lemma 9, Uk = T′∗k . Thus by Lemma 2, Tk is semistandard.
This completes the proof of (i).

(ii) Let c1, . . . , cm be the unbumped node sequence, and y1, . . . , ym be the unbumped
letter sequence for the extraction (T

ε−→ u). Let µ be defined such that [µ] = [λ]\{u}.
Let T1 be the (X , µ)-tableau defined by T1(v) = T(v) for all v ∈ [µ]. For 2 6 i 6 m,
let Ti be the (X , µ)-tableau defined by Ti(cj) = yj−1 for 2 6 j 6 i, and Ti(v) = T(v)
otherwise. We have that T1 is semistandard by assumption. We show by induction that
Tk is semistandard for all k.

Assume ε+yk−1 = 0. Let l, r be the nodes to the immediate left and right of ck. Then

Tk(l) = Tk−1(l) 6 Tk−1(ck) = T(ck)
ε
< yk−1 ε+1

< T(r) = Tk(r).

Thus the (ck)0-th row of Tk is non-decreasing. Moreover, if yk−1 = 1, then ε = 1, so
Tk(ck) = yk−1 < Tk(r). If Tk(l) = yk−1, then Tk−1(l) = Tk−1(ck), yet both are odd,
a contradiction since Tk−1 is semistandard by assumption. Thus Tk is row-strict with
respect to odd letters.

Let u, d be the nodes directly above and below ck, respectively. Then ck−1 ↗ ck and
ck is in the row above ck−1. So ck−1 → d or ck−1 = d. In either case we have

Tk(u) = Tk−1(u) 6 Tk−1(ck) = Tk(ck)
ε
< yk−1

ε
< yk−2 = Tk−1(ck−1) 6 Tk−1(d) = Tk(d).
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Thus the (ck)1-th column of Tk is non-decreasing. Moreover, if yk−1 = 0, then ε = 0, so
Tk(u) < yk−1 = Tk(ck) < Tk(d), and thus Tk is column-strict with respect to even letters.

Therefore Tk is semistandard if ε+ yk−1 = 0. On the other hand assume ε+ yk−1 = 1.

Let U = T′∗. Then, applying the above argument to the extraction (U
ε−→ u′), we have that

Uk is semistandard. But Uk = T′∗k by Lemma 9. Thus by Lemma 2, Tk is semistandard.

Lemma 13. Let T be a semistandard (X , λ)-tableau.

(i) T = ((T
ε←− x)

ε−→ A(T, ε, x)) for every x ∈X .

(ii) T = ((T
ε−→ u)

ε←− R(T, ε, u)) for every removable node u ∈ [λ].

Proof. By Lemma 12, (T
ε←− x) and (T

ε−→ u) are semistandard tableaux, and ε-insertion
and ε-extraction are inverse processes by construction.

The following lemma is a key tool in generalizing some results proved for standard
tableaux to the more general case of semistandard tableaux.

Lemma 14. Let T be a semistandard (X , λ)-tableau, and let T• be a •-standardization of
T. Let y ∈X • be such that

(i) x ≺ y if ε+ y = 0,

(ii) x � y if ε+ y = 1,

for every x ∈ T• such that •̂(x) = •̂(y). Then (T•
ε←− y) is a •-standardization of (T

ε←−
•̂(y)). Moreover, if b1, . . . , bk is the bumped node sequence for the insertion (T

ε←− •̂(y)),
and b•1, . . . , b

•
m is the bumped node sequence for the insertion (T•

ε←− y), then k = m and
bi = b•i for all i.

Proof. We will first prove the result in the case ε = 0, so that x < y for all x ∈ T•

such that •̂(x) = •̂(y). We will write T•y for (T•
0←− y) and T•̂(y) for (T

0←− •̂(y)). We will

also write x1, . . . , xk be the bumped letter sequence for the insertion (T
ε←− •̂(y)), and

x•1, . . . , x
•
m for the bumped letter sequence for the insertion (T•

ε←− y). We will first prove
by induction that bi = b•i for all i, hence k = m.

We have y < T•(b•1), so •̂(y) 6 •̂(T•(b•1)) = T(b•1). Moreover, by the assumption on y,
we have that •̂(y) 6= T(b•1), so •̂(y) < T(b•1). If y = 0 (resp. if y = 1), let u be the node
directly to the left (resp. directly above) of b•1. Then T•(u) < y, so T(u) 6 •̂(y). Thus
b1 = b•1.

Now assume that bi = b•i . If T•(b•i ) = 0 (resp. if T•(b•i ) = 1), then b•i+1 ↗ bi (resp.
bi ↗ b•i+1), so T•(b•i+1) < T•(bi) if T(b•i+1) = T(bi), since T• is a •-standardization of T.
However, we also have T•(bi) < T•(b•i+1), so T(bi) 6 T(b•i+1), and hence xi+1 = T(bi) <
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T(b•i+1). If T•(b•i ) = 0 (resp. if T•(b•i ) = 1), let u be the node directly to the left (resp.
directly above) b•i+1. Then T•(u) < T•(bi), so T(u) 6 T(bi) = xi+1, and thus bi+1 = b•i+1.

Therefore we have that •̂(T•y) = T•̂(y), and by construction T•y is standard. Now we show
that T•y is •-standard. Let u ↗ v ∈ [sh(T•y)], and assume T•̂(y)(u) = T•̂(y)(v). If neither u
nor v is equal to a bumped node b•i , then the result follows since T• is •-standard. On the
other hand if both are bumped nodes, say u = bi and v = bj, then T•y(u) = x•i , T

•
y(v) = x•j ,

and xi = xj. But this cannot happen in 0̄-insertion for distinct i and j. This leaves the
cases where exactly one of u, v is a bumped node. We consider the two cases separately:

(a) Assume that v = bi is a bumped node, and u is not. Then T•y(v) = x•i , and

T(u) = T•̂(y)(u) = T•̂(y)(v) = xi. Note that if y = 1, then •̂(y) = 1, and b1 is
in the first column. Then by Lemma 11, •̂(y) = T•̂(y)(b1) < T•̂(y)(w) for every
node w directly below b1. Then, since T•̂(y) is semistandard, T•̂(y)(b1) < T•̂(y)(w)
for every node w such that b1 ↘ w. Thus b1 ↗ w for every node w such that
•̂(y) = T•̂(y)(b1) = T•̂(y)(w). Thus if i = 1, then y = 0 and by the assumption on y,
T•y(u) = T•(u) < y = x•1 = T•y(v) as required.

Assume i > 2. Then x•i = T•(bi−1). If xi = 0, then bi ↗ bi−1. Thus u ↗ bi−1,
so T•y(u) = T•(u) < T•(bi−1) = T•y(v) since T• is •̂-standard. Assume xi = 1. Then
bi−1 ↗ bi = v. If v is directly above u, then T•y(v) < T•y(u) since T•y is standard.
Assume v is not directly above u. If it is not the case that u↗ bi−1, then it must be
that u↘ bi−1. But then since Ty(bi−1) = xi−1 < T(bi−1) = T(u) = Ty(u), this cannot
be true. Therefore u ↗ bi−1, and again we have T•y(u) = T•(u) > T•(bi−1) = Ty(v),
as required.

(b) Assume that u = bi is a bumped node, and v is not. Then T•y(u) = x•i , and

T(v) = T•̂(y)(v) = T•̂(y)(u) = xi. Note that if y = 0, then w ↗ b1 for every
node w such that •̂(y) = T•̂(y)(b1) = T•̂(y)(w). Thus if i = 1, then y = 1 and
T•(u) = y = x•1 > T•(v) as required.

Assume i > 2. Then x•i = T•(bi−1). If xi = 1, then bi−1 ↗ bi. Thus bi−1 ↗ v,
so T•y(u) = T•(bi−1) > T•(v) = T•y(v). Assume xi = 0. If v is directly to the right
of u, then T•y(u) < T•y(v). Assume v is not directly to the right of u. Then if it
is not the case that bi−1 ↗ v, then it must be that v ↘ bi−1. But then since
Ty(bi−1) = xi−1 < T(bi−1) = T(v) = Ty(v), this cannot be true. Therefore bi−1 ↗ v,
and thus we have T•y(u) = T•(bi−1) > T•(v) = Ty(v), as required.

This completes the proof of the lemma when ε = 0. Now assume ε = 1. Then x > y
for all x ∈ T•. This proof proceeds along the same lines as the first part, but because
there is an inherent discrepancy in the comparisons 0

< =< and 1
< =6 we will provide the

details in full. We’ll write T •y for (T •
1←− y) and T•̂(y) for (T

1←− •̂(y)). We will prove by
induction that bi = b•i for all i, hence k = m.

We have y < T•(b•1), so •̂(y) 6 •̂(T•(b•1)) = T(b•1) since T• is a •-standardization of T.
If y = 0 (resp. if y = 1), let u be the node directly above (resp. directly to the left of)
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b•1. Then T•(u) < y, so T(u) 6 •̂(y). Moreover, by the assumption on y, we have that
•̂(y) 6= T(u), so •̂(y) > T(u). Thus b1 = b•1.

Now assume that bi = b•i . We have x•i+1 = T•(bi) < T•(b•i+1), so xi+1 = T(bi) 6 T(b•i+1).

If T•(bi) = 1 (resp. T•(bi) = 0), let u be the node directly to the left of (resp. directly
above) b•i+1, and note that u ↗ bi (resp. bi ↗ u), so that T•(u) > T•(bi) = x•i+1 if
T(u) = T(bi) = xi+1. But x•i+1 > T•(u) by the definition of b•i+1, so it must be that
T(u) 6= xi+1. Therefore xi+1 > T(u), and so bi+1 = b•i+1.

Therefore we have that •̂(T •y ) = T•̂(y), and by construction T•y is standard. Now
we show that T•y is •-standard. Let u ↗ v ∈ [sh(T•y)], and assume T•̂(y)(u) = T•̂(y)(v). If
neither u nor v is equal to a bumped node b•i , then the result follows since T• is •-standard.

On the other hand if both are bumped nodes, say u = bi and v = bj, then T•y(u) = x•i ,

T•y(v) = x•j , and xi = xj. Note in general that if xk = xk+1, then bk ↗ bk+1 if xk = 0,

and bk+1 ↗ bk if xk = 1. Thus, if i < j, then xi = xi+1 = · · · = xj and bi ↗ bj
imply that xi = 0 and T•y(u) = T•y(bi) = x•i < x•j = T•y(bj) = T•y(v), as required. On the

other hand, if j < i, then xj = xj+1 = · · · = xi and bi ↗ bj imply that xi = 1 and
T•y(u) = T•y(bi) = x•i > x•j = T•y(bj) = T•y(v), as required. This leaves the cases where
exactly one of u, v is a bumped node. We consider the two cases separately:

(a) Assume that v = bi is a bumped node, and u is not. Then T•y(v) = x•i , and

T•̂(y)(u) = T•̂(y)(v) = xi. Note that if y = 0, then b1 ↗ w for every node w such that
•̂(y) = T•̂(y)(w). Thus if i = 1, then y = 1 and T•y(u) = T•(u) > y = x•1 = T•y(v) as
required.

Assume i > 2. Then x•i = T•(bi−1). If xi = 1, then bi ↗ bi−1. Thus u ↗ bi−1, so
T•y(u) = T•(u) > T•(bi−1) = T•y(v). Assume xi = 0. Since T•̂(y)(u) = T•̂(y)(v) = xi
and T•̂(y) is semistandard, it cannot be that v is directly above u. If it is not the
case that u ↗ bi−1, then it must be that u ↘ bi−1. Moreover since T(u) = T(bi−1)
and T is semistandard, it cannot be that u is directly above bi−1, so u ⇒ bi−1. But
then T•̂(y)(u) = T(u) < T(bi−1) = T•̂(y)(v), a contradiction. Therefore u↗ bi−1, and
thus we have T•y(u) = T•(u) < T•(bi−1) = T•y(v), as required.

(b) Assume that u = bi is a bumped node, and v is not. Then T•(u) = x•i , and
T•̂(y)(u) = T•̂(y)(v) = T(v) = xi. Note that if y = 1, then w ↗ b1 for every node w
such that •̂(y) = T•̂(y)(w). Thus if i = 1, then y = 0 and T•(u) = y = x•1 < T•(v) as
required.

Assume i > 2. Then x•i = T•(bi−1). If xi = 0, then bi−1 ↗ bi. Thus bi−1 ↗ v, so
T•y(u) = T•(bi−1) < T•(v) = T•y(v). Assume xi = 1. Since T•̂(y)(u) = T•̂(y)(v) = xi and
T•̂(y) is semistandard, it cannot be that v is directly to the right of u. If it is not the
case that bi−1 ↗ v, then it must be that v ↘ bi−1. Moreover since T(v) = T(bi−1)
and T is semistandard, it cannot be that bi−1 is directly to the right of v, so v⇒ bi−1.
But then T•̂(y)(u) = T(bi−1) > T(v) = T•̂(y)(v), a contradiction. Therefore bi−1 ↗ v,
and thus we have T•y(u) = T•(bi−1) > T•(v) = T•y(v), as required.
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This completes the proof of the lemma in the case ε = 1.

4 Behavior of bumped nodes

In this section we prove some technical results on the distribution of bumped nodes in
ε-insertion. These results generalize some of those in [K] to the superalphabet setting, and
are key in proving Theorem 21. Moreover, as bounds on the distribution of bumped nodes
in successive insertions are examined in this section, the results may be of independent
interest in the area of tableaux growth.

4.1 Bumped node distribution

Lemma 15. Let T be a semistandard (X , λ)-tableau, ε, δ ∈ Z2, and x ∈X . Let b1, . . . , bm
be the bumped node sequence for the insertion (T

ε←− x). If i < j and (bi)δ < (bj)δ, then
there exists a sequence i 6 t0 < · · · < tk < j, where k = (bj)δ − (bi)δ − 1, such that

(bta)δ = (bi)δ + a, and ε+ T(bta) = δ for all a.

Proof. Let l be minimal such that (bi+l)δ > (bi)δ+1. Then i < l 6 j. If ε+T(bi+l−1) = δ+1,
then the algorithm implies that (bi+l)δ 6 (bi+l−1)δ, a contradiction of the minimality of l.
Thus ε+ T(bi+l−1) = δ, hence (bi+l)δ = (bi+l−1)δ + 1, so by minimality of l, we must have
(bi+l−1)δ = (bi)δ. Set t0 = i + l − 1. Then i 6 t0 < t0 + 1 6 j, and (bt0+1)δ = (bi)δ + 1.
Now the claim follows by induction.

Lemma 16. Let T be a semistandard (X , λ)-tableau, ε ∈ Z2, and x ∈X . Let b1, . . . , bm
be the bumped node sequence for the insertion (T

ε←− x). Let i, j, k be such that

(i) i, j < k,

(ii) bi ⇒ bk ⇒ bj,

(iii) ((bi)0, (bj)1 − 1), ((bi)0 − 1, (bj)1) ∈ [sh(T
ε←− x)].

Then there exists some l > k such that

(i) bi ⇒ bl and bl ⇒ bi, or;

(ii) bj ⇓ bl and bi ⇒ bl.

Proof. We will call a triple (i, k, j) which satisfies (i)–(iii) a stair triple. For compactness
we’ll write ra for (ba)0 and ca for (ba)1. Define:

mi,j,k := (cj − ck) + (ri − rk)
ni,j := (cj − ci) + (ri − rj)
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Note that 2 6 mi,j,k 6 ni,j − 2.

Take ni,j = 4, the least possible value for ni,j. Thenmi,j,k = 2. Then bk = (ri−1, cj−1),
so bk ∈ [λ] and thus cannot be the last bumped node. By Lemma 11, either bk+1 = (ri, ci+1)
(if ε+ T(bi) = 0) or bk+1 = (rj + 1, cj) (if ε+ T(bi) = 1). Taking l = k + 1, this completes
the base case.

We argue by induction. Assume that i, j, k satisfy (i)-(iii), and further assume that
the claim holds for all i′, j′, k′ such that ni′,j′ < ni,j, or ni′,j′ = ni,j and mi′,j′,k′ < mi,j,k.

Assume ε+T(bk) = 0 (the argument in the other case is exactly dual to what follows).
Then rk+1 = rk + 1. If rk+1 = rj, then, taking l = k + 1, we are in case (i). Assume
rk+1 < ri. If ck+1 = ck, we may apply the induction assumption to the stair triple
(i, k + 1, j). Thus assume ck+1 < ck. Since k + 1 > j, it must be that ck+1 > cj. Now,
apply the induction assumption to the stair triple (i, k + 1, k). This either gives a node
bl which satisfies (i), or bl is such that cl = ck and rk < rl < ri. In the former case we
are done, so assume the latter. Now apply the induction assumption to the stair triple
(i, l, j), and we are done.

4.2 Bumped nodes in successive insertions

In this section we prove a key result which bounds the distribution of bumped nodes
appearing in successive insertions. Theorem 18, together with Corollary 19 can be viewed
as a generalization of [K, Theorem 1] to the realm of superalphabets and ε-insertion. We
begin by defining a certain set partition of the nodes of a Young diagram that naturally
results from the ε-insertion process.

Let y ∈ X , ε ∈ Z2, and let T be a semistandard (X , λ)-tableau. Let by1, . . . , b
y
m be

the bumped nodes for the insertion (T
ε←− y). Assume sh(T

ε←− y) = µ. Let ryi = (byi )0 and
cyi = (byi )1 for and 1 6 i 6 m. For arbitrary v ∈ N we set

l(v) = max
[
{j | ryj = v0, c

y
j < v1} ∪ {0}

]
u(v) = max

[
{j | cyj = v1, r

y
j < v0} ∪ {0}

]
.

Then byl(v) is the nearest node directly to the left of v which was bumped in the y

insertion. If no such element exists then l(v) = 0. Similarly, byu(v) is the nearest node
directly above v which was bumped in the y insertion. If no such element exists then
u(v) = 0. Let [µ]A be the set of all nodes of [µ] together with all addable nodes of [µ].

Now define the sets

NE(T, ε, y) := {v ∈ [µ]A | l(v) > u(v)} ∪ {v ∈ [µ]A | l(v) = u(v) = 0, ε+ y = 1}
SW(T, ε, y) := {v ∈ [µ]A | l(v) < u(v)} ∪ {v ∈ [µ]A | l(v) = u(v) = 0, ε+ y = 0}

Remark 17. Informally, NE(T, ε, y) represents the set of nodes ‘northeast’ of a rough
perimeter delineated by tracing the path of the bumped nodes in sequence, and SW(T, ε, y)
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represents the nodes to the ‘southwest’ of that perimeter. For example, if ε+ y = 1, and
the bumped nodes are those labeled in the diagram of [µ] below, then the red-colored nodes
represent the set NE(T, ε, y), and the blue-colored nodes represent the set SW(T, ε, y).

by1

by2 by3

by4

by5 by6

by7

by8

by9

by10

by11 by12

by13 by14

by15 by16

by17

by18

by19

by20

by21

by22 by23

by24 by25 by26

by27

by28

by29

by30

by31

by32

by33

by34

by35

by36 by37

by38

Though we will not need this fact, it follows from the definition that byi ∈ NE(T, ε, y) if

and only if (T
ε←− y)(byi ) + ε = 1, as can be verified in the example above.

Theorem 18. Assume ε ∈ Z2, y, z ∈ X , and T is a semistandard (X , λ)-tableau. Let
by1, . . . , b

y
m1

and bz1, . . . , b
z
m2

be the bumped node sequences for the insertions Ty := (T
ε←− y)

and Tz := (Ty
ε←− z) respectively. Then

{bz1, . . . , bzm2
} ⊆ NE(T, ε, y) ⇐⇒


y ≺ z and ε = 0, or

y � z and ε = 1, or

y = z and y = 0,

and

{bz1, . . . , bzm2
} ⊆ SW(T, ε, y) ⇐⇒


y � z and ε = 0, or

y ≺ z and ε = 1, or

y = z and y = 1.

Proof. Since NW(T, ε, y) t SE(T, ε, y) = [µ]A, we may prove the equivalent statement:

bzi ∈ NE(T, ε, y) ⇐⇒


y ≺ z and ε = 0, or

y � z and ε = 1, or

y = z and y = 0,

(4.1)
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for all 1 6 i 6 m2. First we prove that the lemma holds when T is a standard tableau,
y, z /∈ T, y 6= z, and y = 0. Note that in this situation we need not consider the third case
in the right side of (4.1). We will go by induction on 1 6 i 6 m2. We will write NE for
NE(T, ε, y) where the context is clear.

Base case i = 1. Assume y ≺ z. Since y = 0, we have y < z and z = 0. If ε = 0, then
by1 is in the first row, and Ty(b

y
1) = y < z, so by1 ⇒ bz1. Then l1 > 0 = u1, so bz1 ∈ NE. If

ε = 1, then by1 is in the first column, and bz1 ⇒ b
y
1 so l1 = 0 < u1, so bzi /∈ NE.

Now assume y � z and ε = 0. Then by1 is in the first row. If z = 0, then z < y, so
bz1 ⇒ by1. Then l1 = 0, so bz1 /∈ NE. If z = 1, then bz1 is in the first column, so l1 = 0, and
again bz1 /∈ NE.

Now assume y � z and ε = 1. Then by1 is in the first column. If z = 0, then z < y, so
by1 ⇒ bz1. Then u1 = 0, so bz1 ∈ NE. If z = 1, then bz1 is in the first row, so again u1 = 0 and
bz1 ∈ NE.

Induction step. So (4.1) holds when i = 1. Now we show that

bzi ∈ NE ⇐⇒ bzi+1 ∈ NE.

( =⇒ ) Assume bzi ∈ NE. Then li > ui, or li = ui = 0 and ε = 1. We assume the former,
and will later address the latter case. If byk 6= byui is a node such that byk ↘ byui , then k < ui.
By Lemma 16, if byk is a node such that byli ⇒ b

y
k ⇒ byui , then k < li. From this it follows

that ε+ T(byli) = 0, so (byli+1)0 = (byli)0 + 1. There are two cases to consider:

(a) Assume ε + Ty(bzi ) = 0. Then (bzi+1)0 = (bzi )0 + 1. First we show that bzi 6= byr for
any r. Indeed, if we did have that bzi = byr , then by Lemma 15 applied to (byli , b

y
r),

there is some bys in the column to the left of byr , with li 6 s < i and ε + T(bys) = 1.
Then by the above paragraph, bys ↗ byi . But then bys+1 is in the same column as byi ,
but cannot be above or below byi since ui < s < s + 1 6 i. Then the only option is
s+ 1 = r. But this cannot be, since by assumption

ε+ T(bys) = ε+ T(byr−1) = ε+ Ty(b
y
r) = ε+ Ty(bzi ) = 0,

a contradiction. So bzi 6= byr , thus Ty(b
z
i ) = T(bzi ) and ui+1 6 li.

We have (byli+1)0 = (byli)0 + 1, so (byli+1)0 = (bzi+1)0. Moreover, since Ty(b
y
li+1) =

T(byli) < T(bzi ) = Ty(b
z
i ) = xzi+1, we have that byli+1 ⇒ bzi+1, so li+1 > li+1 > li > ui+1.

Thus bzi+1 ∈ NE.

(b) Assume ε+Ty(bzi ) = 1. Note Ty(b
z
i ) = Tz(b

z
i+1). We have (bzi+1)1 = (bzi )1+1. First we

prove that ui+1 < li. Assume this is not the case. Then by Lemma 15, there exists a
sequence t0, . . . , tk, where k = (byui+1

)1−(byli)1−1, such that li 6 t0 < · · · < tk < ui+1,

(bytj)1 = (byli)1 + j and ε+ T(bytj) = 1 for all j. Then bytk is in the same column as bzi ,
and ui < li 6 tk, so we must have bzi ↓ b

y
tk

. Then xzi+1 = Ty(b
z
i ) 6 Ty(b

y
tk

) < Ty(b
y
ui+1

),
a contradiction of the ε-insertion algorithm. Thus ui+1 < li.
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If ui+1 = 0, then bzi+1 ∈ NE unless li+1 = 0 and ε = 0. We rule out this case by way
of contradiction. Let ui+1 = li+1 = 0 and ε = 0. Then by Lemma 16, there is no
m such that bym ↘ bzi+1. Then bzi+1 ↗ by1. Thus there is a sequence t0, . . . , tk, where

k = (byli)0 − 2 such that 1 6 t0 < · · · < tk < li, (bytj)0 = 1 + j and ε + T(bytj) = 0 for
all j. Writing tk+1 := li, there is some ta such that byta is in the same row as bzi+1.
But then either bzi+1 = byta (in which case xzi+1 < Ty(b

y
ta)), or bzi+1 ⇒ byta (in which

case xzi+1 < Ty(b
z
i+1) < Ty(b

y
ta)). But we also have xzi+1 = Ty(b

z
i ) > Ty(b

y
li
) > Ty(b

y
ta),

a contradiction of the ε-insertion algorithm.

So assume ui+1 > 0. Then by Lemma 15 there exists a sequence t0, . . . , tk, where
k = (byli)0 − (bui+1

)0 − 1, such that ui+1 6 t0 < · · · < tk < li, (bytj)0 = (bui+1
)0 + j

and ε + T(bytj) = 0 for all j. If bzi ⇒ bzi+1, then li+1 > li. Otherwise there is some
0 6 a 6 k such that byta is in the same row as bzi+1. But since Ty(b

z
i+1) > Ty(b

z
i ) >

Ty(b
y
li
) > Ty(b

y
ta), it must be that byta ⇒ bzi+1. Then li+1 > ta > ui+1, and thus

li+1 > ui+1, so bzi+1 ∈ NE.

Now assume that ui = li = 0 and ε = 1. We will show that ui+1 = 0. By way of
contradiction assume ui+1 > 0. There are two cases to consider:

(a) Assume Ty(bzi ) = 0. Then, since by1 is in the first column, by Lemma 15 there exists
a sequence t0, . . . , tk, where k = (byui+1

)1 − 2, such that 1 6 t0 < · · · < tk < ui+1,

(bytj)1 = 1 + j and ε + T(bytj) = 1 for all j. Then bzi ↓ b
y
tk

. Then xzi+1 = Ty(b
z
i ) 6

Ty(b
y
tk

) < Ty(b
y
ui+1

), so by 1-insertion, bzi+1 ↓ byui+1
, a contradiction.

(b) Assume Ty(bzi ) = 1. Then, applying Lemma 15, we have ui+1 = 0 unless bzi ⇓ bzi+1

and bzi = byr for some r. Then T(byr−1) = Ty(b
y
r), and Ty(b

y
r) = 1, so byr−1 is in the row

above byr , and byr ⇒ b
y
r−1. Then, since by1 is in the first column, by Lemma 15 there

exists a sequence t0, . . . , tk, where k = (byr−1)1−2, such that 1 6 t0 < · · · < tk < r−1,

(bytj)1 = 1 + j and T(bytj) = 0 for all j. Then there exist some tj such that bytj is in
the same column as byr . Then, since tj < r, we have byr ⇑ b

y
tj , a contradiction, since

ui = 0.

This completes the proof that bzi+1 ∈ NE if bzi ∈ NE.

( ⇐= ) Now assume bzi /∈ NE(T, ε, y). Let cy1, . . . , c
y
m1

and cz1, . . . , c
z
m2

be the bumped

node sequences for the insertions (T′
ε+1←−− y) and ((T′

ε+1←−− y)
ε+1←−− z), respectively. Then

by Lemma 2, cyj = (byj )
′ and czj = (bzj)

′ for all j. But then u(bzj) = l(czj) and l(bzj) = u(czj)

for all j, so czi ∈ NE(T′, ε+1, y). Then, applying the ‘only if’ direction of the claim proved
above, we have czi+1 ∈ NE(T′, ε+ 1, y). Then

u(bzj) = l(czj) > u(czj) = l(bzj), or u(bzj) = l(czj) = 0 = u(czj) = l(bzj) and ε+ y = 0,

so bzi+1 /∈ NE(T, ε, y), as required.
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This completes the proof of the lemma when T is a standard tableau, y, z /∈ T, y 6= z,
and y = 0. Now we maintain the above assumptions but consider the case y = 1. Let

cy
∗

1 , . . . , c
y∗
m1

and cz
∗

1 , . . . , c
z∗
m2

be the bumped node sequences for the insertions (T∗
ε+1←−− y∗)

and ((T∗
ε+1←−− y∗)

ε+1←−− z∗), respectively. Then byi = cy
∗

i and bzi = cz
∗
i for all i, so u(bzi ) =

u(cz
∗
i ) and l(bzi ) = l(cz

∗
i ) for all i by Lemma 2. Then, since y∗ = 0, we have that, for all i,

bzi ∈ NE(T, ε, y) ⇐⇒ cz
∗

i ∈ NE(T∗, ε+ 1, y∗)

⇐⇒

{
y∗ ≺ z∗ and ε+ 1 = 0, or

y∗ � z∗ and ε+ 1 = 1

⇐⇒

{
y � z and ε = 1, or

y ≺ z and ε = 0.

This completes the proof of the lemma when T is a standard tableau, y, z /∈ T, y 6= z.

Now, let T be an arbitrary semistandard tableau, with arbitrary y, z ∈ X . We may
choose elements z•, y• ∈X •, and a •-standardization T• of T, such that

(i) •̂(z•) = z

(ii) •̂(y•) = y

(iii) For all x ∈ T• such that y = •̂(x), we have:

(a) x ≺ y• if ε+ y = 0

(b) x � y• if ε+ y = 1

(iv) For all x ∈ T• such that z = •̂(x), we have:

(a) x ≺ z• if ε+ z = 0

(b) x � z• if ε+ z = 1

(v) If z = y, we have:

(a) y• ≺ z• if ε+ z = 0

(b) y• � z• if ε+ z = 1.

Then by this choice we have

bzi ∈ NE(T, ε, y) ⇐⇒ bz
•

i ∈ NE(T•, ε, y•)

⇐⇒

{
y• ≺ z• and ε = 0, or

y• � z• and ε = 1

⇐⇒


y ≺ z and ε = 0, or

y � z and ε = 1, or

y = z and y = 0,
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by application of Lemma 14.

Corollary 19. Assume ε ∈ Z2, y, z ∈X , and T is a semistandard (X , λ)-tableau. Then

A(T, ε, y)↗ A((T
ε←− y), ε, z) ⇐⇒


y ≺ z and ε = 0, or

y � z and ε = 1, or

y = z and y = 0.

Proof. Let by1, . . . , b
y
m1

, bz1, . . . , b
z
m2

be as in Lemma 18. By that lemma, bzm2
∈ NE(T, ε, y)

if and only if the right side holds.

( ⇐= ) Assume by way of contradiction that bzm2
∈ NE and bzm2

↗ bym1
. Then bym1

cannot be in the same column as bzm2
, else um2 > lm2 .

First assume lm2 > 0. Then by Lemma 15, there exists a sequence t0, . . . , tk, where
k = (bym1

)1 − (bylm2
)1 − 1, such that lm2 6 t0 < · · · < tk < m1, (bytj)1 = (bylm2

)1 + j and

ε+ T(bytj) = 1 for all j. Then there is some tj such that bytj is in the same column as bzm2
.

Moreover, we have bzm2
⇑ bytj , hence um2 > tj > lm2 , a contradiction.

Now assume lm2 = 0. Then um2 = 0 and ε + y = 1. Then by1 is in the first column,
and by Lemma 15, there exists a sequence t0, . . . , tk, where k = (bym1

)1 − 2, such that

1 6 t0 < · · · < tk < m1, (bytj)1 = 1 + j and ε + T(bytj) = 1 for all j. Then there is
some tj such that bytj is in the same column as bzm2

. Moreover, we have bzm2
⇑ bytj , hence

um2 > tj > 0, a contradiction.

( =⇒ ) Applying the ‘if’ statement proved above to the conjugate situation (as in the
proof of claim Lemma 18), we have that bm2 /∈ NE implies that bzm2

↗ bym1
, completing

the proof.

5 Super RSK correspondence

5.1 Biwords

Given alphabets X and Y , we call an element of X ×Y an (X ,Y )-biletter. We call a
biletter (x, y) mixed if x+y = 1. We define a total order / on (X ,Y )-biletters by setting
(x1, y1) / (x2, y2) if

y1 <Y y2, or y1 = y2, x1 ≺X x2.

For k ∈ Z>0, we call an element w = ((x1, y1), . . . , (xk, yk)) ∈ (X × Y )k an (X ,Y )-
biword of length k. We say that w is restricted if it is multiplicity free with respect to
mixed biletters; i.e. (xi, yi) = (xj, yj) for i 6= j only if xi + yi = 0. We say that w is
ordered if (xi, yi) E (xj, yj) for all i 6 j. The left content lcon(w) of w is the multiset
{x1, . . . , xk} and the right content rcon(w) of w is the multiset {y1, . . . , yk}.
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If L is a multiset of elements of X and R is a multiset of elements of Y , with |L| =
|R| = k, we say (L,R) is an (X ,Y )-content pair of length k. For an (X ,Y )-content
pair, define RBiw(L,R) to be the set of restricted (X ,Y )-biwords w with lcon(w) = L
and rcon(w) = R. Let RBiw(L,R)E = {w ∈ RBiw(L,R) | w is ordered}. Finally, define
Tab(L,R) to be the set of pairs (L, R) of tableaux such that sh(L) = sh(R), con(L) = L and
con(R) = R. Let SStd(L,R) ⊆ Tab(L,R) be the subset of semistandard tableau pairs.

5.2 Super RSK algorithm

Let (L,R) be an (X ,Y )-content pair of length k. Let w = ((x1, y1), . . . , (xk, yk)) ∈
RBiw(L,R)E. We define T0w := ∅, then for 1 6 i 6 k we inductively define Tiw :=

(Ti−1w

yi←− xi), and define aiw to be the added node of this insertion. We say Tw := Tkw is the
insertion tableau of w. The recording tableau of w is the (Y , sh(Tw))-tableau Tw defined
by Tw(aiw) := yi. We then define

sRSK(w) := (Tw, T
w).

Example 20. Let X be as in Example 3, and take Y = X . Let

L = {1̂, 1, 2̂, 2, 3̂, 3̂, 3̂, 3} and R = {1̂, 2̂, 2, 2, 3̂, 3̂, 3, 3}

be multisets of letters. Then (L,R) is an (X ,Y )-content pair of length 8. Let w be the
biword

w = ((3̂, 1̂), (1, 2̂), (2, 2), (3, 2), (3̂, 3̂), (3̂, 3̂), (2̂, 3), (1̂, 3)).

Then w ∈ RBiw(L,R)E, and sRSK(w) yields the tableaux:

Tw =

1̂ 2̂ 3̂ 3

1 2 3̂

3̂

Tw =

1̂ 2 2 3̂

2̂ 3 3

3̂

Theorem 21 (Super RSK correspondence). Let (L,R) be an (X ,Y )-content pair. The
map sRSK : w 7→ (Tw, T

w) defines a bijection RBiw(L,R)E → SStd(L,R).

Proof. Let |L| = |R| = k, and w = ((x1, y1), . . . , (xk, yk)) ∈ RBiw(L,R)E. We have that
Tw is semistandard by inductive application of Lemma 12 . Define Twi by Twi (ajw) := yj
for all 1 6 j 6 i. By induction, assume:

(i) Twi is semistandard

(ii) If r < s 6 i, yr = ys, and yr = 0, then arw ↗ asw

(iii) If r < s 6 i, yr = ys, and yr = 1, then asw ↗ arw.
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If yi+1 > yi, then Twi+1 automatically satisfies (i)-(iii). Assume yi+1 = yi. Then either
xi ≺ xi+1 or xi = xi+1 and yi+1 + xi+1 = 0. Note that Twi+1 is non-decreasing since the
upper row of w is non-decreasing. There are two cases:

(a) Assume yi+1 = 0. Then (iii) holds, and Twi is column-strict with respect to odd
letters. Moreover by Corollary 19, aiw ↗ ai+1

w , so (ii) holds, and Twi is row-strict
with respect to even letters.

(b) Assume yi+1 = 1. Then (ii) holds, and Twi is row-strict with respect to even letters.
Moreover by Corollary 19, ai+1

w ↗ aiw, so (iii) holds, and Twi is column-strict with
respect to odd letters.

Thus, by induction Twk = Tw is semistandard. Thus sRSK(w) ∈ SStd(L,R).

Now let (L, R) ∈ SStd(L,R). We define Lk = L, Rk = R, and then for 1 6 i 6 k
inductively define Ri−1 and Li−1 in the following manner. Define yi ∈ Y to be the <-
maximal element of Ri. If yi = 0 (resp. yi = 1), let ui be the rightmost (resp. bottommost)

node in Ri such that Ri(ui) = yi. Let Ri−1 = Ri\{ui}. Let Li−1 = (Li
yi−→ ui), and let xi be

the extracted letter. Then define

sRSK∗(L, R) = ((x1, y1), . . . , (xk, yk))

Let w := sRSK∗(L, R). By construction and Lemma 11 we have that Tjw = Lj, T
w
j = Rj,

and uj = ajw for all 1 6 j 6 k. We argue by induction on i that

wi := ((x1, y1), . . . , (xi, yi))

is an ordered restricted (X ,Y )-biword. By construction, yi+1 > yi, so wi+1 is an ordered
restricted biword if yi+1 6= yi. Assume yi = yi+1. Then there are two cases.

(a) Assume yi+1 = 0. If xi � xi+1 or xi = xi+1 and xi = 1, then by Corollary 19, ui+1 =
ai+1
w ↗ aiw = ui, which by the choice of ui+1 implies that ui ⇓ ui+1, R(ui) = R(ui+1),

and R(ui) = 0, a contradiction, since R is semistandard.

(b) Assume xi+1 = 1. If xi � xi+1 or xi = xi+1 and xi = 0, then by Corollary 19,
ui = aiw ↗ ai+1

w = ui+1, which by the choice of ui+1 implies that ui ⇒ ui+1,
R(ui) = R(ui+1), and R(ui) = 1, a contradiction, since R is semistandard.

Thus wi+1 is an ordered restricted biword. Thus by Lemma 11, sRSK and sRSK∗ are
mutual inverses on RBiw(L,R)E and SStd(L,R).

Remark 22. When X = Y = N, where < is the usual order on integers and every element
is of even parity, the super RSK correspondence of Theorem 21 reduces to the classical
RSK correspondence [K].
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Remark 23. As noted in §1, the existence of a bijection between the sets in Theorem 21
was proved by Bonetti, Senato, and Venezia [BSV], using a more straightforward insertion
algorithm which yields a different bijection than the one in Theorem 21. Our motivation
in presenting this new bijection is in the direction of fully generalizing the symmetry
property of classical RSK, which we do in §6.

Remark 24. In [SW, §3], Shimozono and White present a close relative to our super
RSK correspondence—the algorithm they use to construct the upper and lower tableaux
of an (X ,Y )-biword (called in their paper a doubly-colored biword) is very similar in
spirit to the super RSK algorithm presented here (see Remark 6). However, they work
with the set of all (not just restricted) biwords, and their semistandard tableaux are
defined to be row-weak and column-strict for both parities. Consequently, the fact that a
bijective correspondence exists between these objects (as noted in [SW, Theorem 22]) can
be deduced from classical RSK correspondence, while this is not true of the correspondence
in Theorem 21, which involves distinct (and distinctly-sized) sets of combinatorial objects.

Note that RBiw(L,R)E is a set of orbit representatives for RBiw(L,R) under the
action of the symmetric group Sk. For w ∈ RBiw(L,R), write wE for the unique element
of RBiw(L,R)E which belongs to the Sk-orbit of w. By precomposing with the function
w 7→ wE, we may extend sRSK to a function sRSK : RBiw(L,R)→ SStd(L,R) which is
constant on Sk-orbits.

6 Symmetry

In this section we prove that the super RSK algorithm defined in §5.2 satisfies the sym-
metry property that holds for the classical RSK algorithm. In this section we assume that
(L,R) is an (X ,Y )-content pair of length k.

6.1 Inversion

Let w = ((x1, y1), . . . , (xk, yk)) ∈ RBiw(L,R)E. Then there is a unique biword winv ∈
RBiw(R,L)E which consists of the biletters (y1, x1), . . . , (yk, xk). I.e., we construct winv

by swapping the entries of the biletters in w, then reordering the biletters according to
the ordering on biletters. We refer to winv as the inversion of w. For (L, R) ∈ Tab(L,R),
write (L, R)inv := (R, L) ∈ Tab(R,L).

6.2 Standardizing biwords

We will say a biword is standard if no letter occurring in the biword has multiplicity
greater than one. For a multiset L of letters in X , we define

L• = {x(i) ∈X • | x ∈X , 1 6 i 6 multL(x)},

where multL(x) is the multiplicity of x in L.
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Definition 25. Let (L,R) be an (X ,Y )-content pair of length k. Let w ∈ RBiw(L,R)E.
We construct a related biword in RBiw(L•, R•)E as follows.

Label the distinct elements of L such that x1 ≺ x2 ≺ · · · ≺ xs, and label the distinct
elements of R such that y1 ≺ y2 ≺ · · · ≺ yt. Let `i,j be the multiplicity of (xi, yj) in w.
Then define w• to be the unique biword in RBiw(L•, R•)E which consists of the biletters

(x
(`i,1+···+`i,j−1+m)
i , y

(`1,j+···+`i−1,j+m)
j ) for i ∈ [1, s], j ∈ [1, t],m ∈ [1, `i,j], yj = 0̄,

and

(x
(`i,1+···+`i,j−1+m)
i , y

(`1,j+···+`i,j+1−m)
j ) for i ∈ [1, s], j ∈ [1, t],m ∈ [1, `i,j], yj = 1̄.

We call w• the •-standardization of w.

Note that by construction, w• is a standard biword. Define SRBiw(L•, R•)E as the set
of standard restricted biwords in RBiw(L•, R•)E. Let • : RBiw(L,R)E → SRBiw(L•, R•)E

be the map defined by w 7→ w•. Let •̂ : SRBiw(L•, R•)E → Biw(L,R) be given by
‘forgetting superscripts’. By definition of the orders on biletters we have that •̂ ◦ • is the
identity on RBiw(L,R)E.

Lemma 26. For w ∈ RBiw(L,R)E, we have (w•)inv = (winv)•.

Proof. If `i,j is the multiplicity of (xi, yj) in w, then `i,j is the multiplicity of (yj, xi) in
winv. Then (w•)inv consists of the biletters

(y
(`1,j+···+`i−1,j+m)
j , x

(`i,1+···+`i,j−1+m)
i ) for i ∈ [1, s], j ∈ [1, t],m ∈ [1, `i,j], yj = 0̄,

and

(y
(`1,j+···+`i,j+1−m)
j , x

(`i,1+···+`i,j−1+m)
i ) for i ∈ [1, s], j ∈ [1, t],m ∈ [1, `i,j], yj = 1̄.

while (winv)• consists of the biletters

(y
(`1,j+···+`i−1,j+m)
j , x

(`i,1+···+`i,j−1+m)
i ) for j ∈ [1, t], i ∈ [1, s],m ∈ [1, `i,j], xi = 0̄,

and

(y
(`1,j+···+`i−1,j+m)
j , x

(`i,1+···+`i,j+1−m)
i ) for j ∈ [1, t], i ∈ [1, s],m ∈ [1, `i,j], xi = 1̄.

Assume that (y
(a)
j , x

(b)
i ) is a biletter of (w•)inv, for some j ∈ [1, t], i ∈ [1, s], and

a, b ∈ Z>0. We will show that (y
(a)
j , y

(b)
i ) is a biletter in (winv)• as well. We consider three

cases:

(a) Assume that yj + xi = 1̄. Then `i,j = 1 since w is a restricted biword. Then
a = `1,j + · · ·+ `i,j and b = `i,1 + · · ·+ `i,j, so the claim follows.
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(b) Assume that yj = xi = 0̄. Then a = `1,j+· · ·+`i−1,j+m and b = `i,1+· · ·+`i,j−1+m,
for some m ∈ [1, `i,j], so the claim follows.

(c) Assume that yj = xi = 1̄. Then a = `1,j+· · ·+`i,j+1−m and b = `i,1+· · ·+`i,j−1+m,
for some m ∈ [1, `i,j]. But then, setting n = `i,j −m + 1, we have that n ∈ [1, `i,j],
and a = `1,j + · · ·+ `i−1,j + n and b = `i,1 + · · ·+ `i,j + 1− n, so the claim follows.

Then in any case, every biletter of (w•)inv appears in (winv)•. Since the letters in w•

appear with multiplicity one, and the biwords (w•)inv and (winv)• are ordered and have
the same length, this completes the proof of the lemma.

We extend the ‘forget superscripts’ map •̂ : X • → X to a map •̂ : SStd(L•, R•) →
Tab(L,R) via ‘forgetting superscripts’ of all entries in the tableaux.

Lemma 27. For w ∈ RBiw(L,R)E we have •̂(sRSK(w•)) = sRSK(w).

Proof. Recall from Definition 25 that we label the distinct elements of L such that x1 ≺
x2 ≺ · · · ≺ xs, and label the distinct elements of R such that y1 ≺ y2 ≺ · · · ≺ yt. Assume
that (x

(a)
i , y

(b)
j ) / (x

(c)
i , y

(d)
j′ ) are biletters in w•. We first prove that x

(a)
i ≺ x

(c)
i if and only

if xi + yj′ = 0̄. There are four cases to consider:

(a) Assume that j < j′. Then we have yj ≺ yj′ and y
(b)
j < y

(d)
j′ , which implies that

yj < yj′ . Then yj′ = 0̄. By the definition of the •-standardization w•, we have, for
some m ∈ [1, `i,j], n ∈ [1, `i,j′ ],

a = `i,1 + · · ·+ `i,j−1 +m < `i,1 + · · ·+ `i,j−1 + · · ·+ `i,j′−1 + n = c.

Thus x
(a)
i < x

(c)
i . The claim follows.

(b) Assume that j > j′. Then we have yj � yj′ and y
(b)
j < y

(d)
j′ , which implies that

yj > yj′ . Then yj′ = 1̄. Then by the definition of the •-standardization w•, we
have, for some m ∈ [1, `i,j], n ∈ [1, `i,j′ ],

a = `i,1 + · · ·+ `i,j′−1 + · · ·+ `i,j−1 +m > `i,1 + · · ·+ `i,j′−1 + n = c.

Thus x
(a)
i > x

(c)
i . The claim follows.

(c) Assume that j = j′ and ȳj′ = 0̄. Then b < d since y
(b)
j = y

(b)
j′ < y

(d)
j′ , and we have,

for some m,n ∈ [1, `i,j′ ],

`1,j′ + · · ·+ `i−1,j′ +m = b < d = `1,j′ + · · ·+ `i−1,j′ + n,

so m < n. Then we have

a = `i,1 + · · ·+ `i,j′−1 +m < `i,1 + · · ·+ `i,j′−1 + n = c,

so x
(a)
i < x

(c)
i . The claim follows.
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(d) Assume that j = j′ and ȳj′ = 1̄. Then b < d since y
(b)
j = y

(b)
j′ < y

(d)
j′ , and we have,

for some m,n ∈ [1, `i,j′ ],

`1,j′ + · · ·+ `i,j′ + 1−m = b < d = `1,j′ + · · ·+ `i,j′ + 1− n,

so m > n. Then we have

a = `i,1 + · · ·+ `i,j′−1 +m > `i,1 + · · ·+ `i,j′−1 + n = c,

so x
(a)
i > x

(c)
i . The claim follows.

Thus in any case, the claim follows.

Let Tiw (resp. Tiw•) be the ith insertion tableaux in the Super RSK algorithm applied
to w (resp. w•), and let aiw (resp. aiw•) be the added node of this insertion, using notation
in §5.2. By induction, assume that •̂(Tiw•) is a •-standardization of Tiw, and aiw• = aiw,

for all i < n. If (x
(c)
i , y

(d)
j′ ) is the nth biletter in w•, then (xi, yj′) is the nth biletter in

w. If yj′ + xi = 0̄, then, by the above claim, we have x
(c)
i � z for every z ∈ Tn−1w• such

that •̂(z) = xi. On the other hand if yj′ + xi = 1̄, then, by the above claim, we have

x
(c)
i ≺ z for every z ∈ Tn−1w• such that •̂(z) = xi. Therefore by Lemma 14, it follows that

Tnw• = (Tn−1w•
yj′←− x

(c)
i ) is a •-standardization of (Tn−1w

yj′←− xi) = Tnw, and anw• = anw, as
desired. Thus •̂(Tw•) = Tw and •̂(Tw•) = Tw, so •̂(sRSK(w•)) = sRSK(w), proving the
lemma.

6.3 Symmetry

As noted in Remark 24, Shimizono and White [SW] define a super-analogue of the RSK
algorithm which is identical to the super RSK algorithm presented here when restricted
to standard biwords. Thus their symmetry result proves a special case of the symmetry
of the sRSK map:

Lemma 28. If w ∈ RBiw(L,R)E is a standard biword, then we have

sRSK(winv) = (sRSK(w))inv.

Proof. This follows from [SW, Theorem 21(3),(6)].

Now we extend this result to the general case.

Theorem 29. The following is a commuting diagram:
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RBiw(L,R)E SRBiw(L•, R•)E

RBiw(R,L)E SRBiw(R•, L•)E

Tab(L,R) SStd(L•, R•)

Tab(R,L) SStd(R•, L•)

inv

•

sRSK

sRSK

inv

•

sRSK

inv inv

•̂

sRSK

•̂

Proof. The top face commutes by Lemma 26. The bottom face commutes since ‘forgetting
superscripts’ then swapping tableaux clearly yields the same result as swapping tableaux
and then ‘forgetting superscripts’. The front and back faces commute by Lemma 27. The
right face commutes by Lemma 28. Thus we have

sRSK ◦ inv = •̂ ◦ sRSK ◦ • ◦ inv = •̂ ◦ sRSK ◦ inv ◦ •
= •̂ ◦ inv ◦ sRSK ◦ • = inv ◦ •̂ ◦ sRSK ◦ • = inv ◦ sRSK,

so the left face commutes, proving the theorem.

Corollary 30 (Super RSK symmetry). For all w ∈ RBiw(L,R)E we have

sRSK(winv) = (sRSK(w))inv.

Example 31. As in Example 20, take the alphabet

X = Y = {1̂ < 1 < 2̂ < 2 < 3̂ < 3},

where odd parity letters are indicated by carets, and the restricted biword

w = ((3̂, 1̂), (1, 2̂), (2, 2), (3, 2), (3̂, 3̂), (3̂, 3̂), (2̂, 3), (1̂, 3)).

The inversion of w is

winv = ((3, 1̂), (2̂, 1), (3, 2̂), (2, 2), (3̂, 3̂), (3̂, 3̂), (1̂, 3̂), (2, 3)).

We have

sRSK(w) =


1̂ 2̂ 3̂ 3

1 2 3̂

3̂

,

1̂ 2 2 3̂

2̂ 3 3

3̂

 ,

sRSK(winv) =


1̂ 2 2 3̂

2̂ 3 3

3̂

,

1̂ 2̂ 3̂ 3

1 2 3̂

3̂

 ,
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so sRSK(winv) = sRSK(w)inv, as expected.

By way of comparison, consider the super-RSK algorithm (label it sRSKBSV to differ-
entiate it from the algorithm in this paper) defined by Bonetti, Senato and Venezia [BSV].
When we apply sRSKBSV w and winv, we get (after reordering the biletters to agree with
their combinatorial setup):

sRSKBSV(w) =



1̂ 2̂ 3

1 2

3̂

3̂

3̂

,

1̂ 2̂ 2

2 3

3̂

3̂

3


,

sRSKBSV(winv) =


1̂ 2̂ 2 2

3̂ 3 3

3̂

,

1̂ 2̂ 3̂ 3

1 2 3̂

3̂

 ,

so evidently symmetry does not generally hold for sRSKBSV.

Finally consider the super-RSK algorithm (label it sRSKSW) defined by Shimozono
and White [SW]. When we apply sRSKSW to w and winv, we get (again after reordering
biletters):

sRSKSW(w) =

(
1̂ 2̂ 3̂ 3̂ 3̂

1 2 3
,

1̂ 2 2 3̂ 3̂

2̂ 3 3

)
,

sRSKSW(winv) =

(
1̂ 2 2 3̂ 3̂

2̂ 3 3
,

1̂ 2̂ 3̂ 3̂ 3̂

1 2 3

)
,

so sRSKSW(winv) = sRSKSW(w)inv, as expected, given [SW, Theorem 21]. Note however
that the tableaux output by the sRSKSW algorithm are row-weak and column-strict with
respect to both parities, a different flavor of ‘semistandard’ than the notion defined in this
paper.
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