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Abstract

A positroid variety is an intersection of cyclically rotated Grassmannian Schubert
varieties. Each graded piece of the homogeneous coordinate ring of a positroid
variety is the intersection of cyclically rotated (rectangular) Demazure modules,
which we call the cyclic Demazure module. In this note, we show that the cyclic
Demazure module has a canonical basis, and define the cyclic Demazure crystal.

Mathematics Subject Classifications: 05E10,14N15

1 Introduction

The classical Borel-Weil theorem identifies the global sections Γ(G/B,Lλ) of a line bundle
on a flag variety with the irreducible highest weight representation V (λ). When the same
line bundle is restricted to a Schubert variety Xw, the global sections Γ(Xw, Lλ) can be
identified with the Demazure module Vw(λ). In this paper, we study the global sections
Γ(Πf ,O(d)) of a line bundle on a positroid subvariety Πf of the Grassmannian Gr(k, n).

Positroid varieties (see Section 4) are certain intersections of cyclically rotated Schu-
bert varieties in the Grassmannian. They were introduced in Postnikov’s work [Pos] on the
totally nonnegative Grassmannian, and subsequently studied in algebro-geometric terms
by Knutson-Lam-Speyer [KLS13]. Via [KLS13], the work of Lakshmibai and Littelmann
[LaLi] gives a description of the vector space Γ(Πf ,O(d)) in terms of standard monomials.
In the present work, we give a new description of Γ(Πf ,O(d)) that is compatible with the
cyclic symmetry of the Grassmannian and its positroid varieties.

∗Supported by NSF grants DMS-1160726 and DMS-1464693, and by a Von Neumann fellowship at
the Institute of Advanced Study.
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We define in Section 5 the cyclic Demazure module Vf (dωk) as the intersection of
cyclically rotated Demazure modules. We show in Theorem 15 that a graded piece of the
homogeneous coordinate ring of a positroid variety can be identified with the (dual of
the) cyclic Demazure module.

We define the cyclic Demazure crystal Bf (dωk) as the intersection of cyclically rotated
(via promotion) Demazure crystals. We show in Theorem 14 that Vf (dωk) has a basis given
by the canonical basis elements indexed by Bf (dωk). We obtain the following dichotomy
(Theorem 23): a dual canonical basis element either (1) vanishes on Πf (if it is outside
Bf (dωk)), or (2) it takes strictly positive values on the totally positive part Πf,>0 (if it is
inside Bf (dωk)).

Our approach is based on the key observation (Theorem 1(iv)) that the dual canonical
basis of the Grassmannian is invariant under signed cyclic rotation. This relies heavily
on the work of Rhoades [Rho]. In Theorem 1(ii), we show that dual canonical basis in
degree two is identical to the Temperley-Lieb invariants of [Lam14], which are defined in
a combinatorially explicit manner.

Our work was initially motivated by the budding theory of Grassmann polytopes, and
many of the results here were announced initially in [Lam16]. However, the results herein
were so simple and clean, we felt that they deserved a short and separate exposition. We
plan to pursue our intended applications in other work. In Section 6, we also indicate
some further directions of study.

Acknowledgements. We are grateful to Nima Arkani-Hamed, Allen Knutson, Alex
Postnikov, Mark Shimozono, and David Speyer for conversations over the years related
to this work. We thank the referee for a number of helpful suggestions.

2 The dual canonical basis of the Grassmannian

Let [n] := {1, 2, . . . , n} and
(
[n]
k

)
denote the collection of k-element subsets of [n].

2.1 The Grassmannian and its homogeneous coordinate ring

Let Gr(k, n) denote the Grassmannian of k-planes in Cn and let Ĝr(k, n) denote the affine
cone over the Grassmannian. A point X ∈ Ĝr(k, n) is determined by a set ∆I(X) of
Plücker coordinates satisfying the Plücker relations, where I ∈

(
[n]
k

)
(see [Lam16, Section

3]). We allow the possibility that all ∆I(X) are simultaneously zero. The Grassmannian
Gr(k, n) is the quotient of Ĝr(k, n) − {0} by the equivalence relation of simultaneously
scaling all Plücker coordinates by the same scalar.

Let Ĝr(k, n)>0 denote the cone over the totally nonnegative Grassmannian: it consists
of points X ∈ Ĝr(k, n)>0 where ∆I(X) > 0 for all I. The totally nonnegative Grassman-
nian Gr(k, n)>0 [Pos] is the image of Ĝr(k, n)>0 in Gr(k, n).

Let R(k, n) denote the coordinate ring of Ĝr(k, n), or equivalently, the homogeneous
coordinate ring of Gr(k, n). Thus,

R(k, n) = C[∆I ]/(Plücker relations)
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is a graded ring where the degree of ∆I is taken to be 1. For example,

R(2, 4) = C[∆12,∆13,∆14,∆23,∆24,∆34]/(∆13∆24 −∆12∆34 −∆14∆23).

We also note that R(k, n) is a unique factorization domain. We let R(k, n)d denote the d-
th graded piece of R(k, n), spanned by monomials ∆I1∆I2 · · ·∆Id . We begin by reviewing
the classical description of R(k, n)d in representation theoretic terms.

2.2 Highest weight representations

A partition λ = (λ1 > λ2 > · · · > λ` > 0) is a weakly decreasing sequence of positive
integers. We say that λ = (λ1 > λ2 > · · · > λ` > 0) has ` parts and size |λ| =
λ1 + λ2 + · · · + λ`. We have the following dominance order on partitions: λ > µ if and
only if |λ| = |µ| and λ1 > µ1, λ1 + λ2 > µ1 + µ2, and so on.

For a partition λ with at most n parts, we have an irreducible, finite-dimensional
representation V (λ) of GL(n) with highest weight λ. We state some basic facts concerning
V (λ).

The Young diagram of λ is the collection of boxes in the plane with λ1 boxes in the
1st row, λ2 boxes in the 2nd row, and so on, where all boxes are upper-left justified. A
semistandard tableaux T of shape λ is a filling of the Young diagram of λ by the numbers
1, 2, . . . , n so that each row is weakly-increasing, and each column is strictly increasing.
The weight wt(T ) of a tableau T is the composition (α1, α2, . . . , αn) where αi is equal to
the number of i-s in T . For example,

1 1 3 4 4
2 3 4 5
4 4

is a semistandard tableau with shape (5, 4, 2) with weight (2, 1, 2, 5, 1). Let B(λ) denote
the set of semistandard tableaux of shape λ. (Note that this set depends on n, which
is suppressed from the notation.) The dimension dim(V (λ)) is equal to the cardinality
of B(λ). A vector v in a GL(n)-representation V is called a weight vector with weight
α = (α1, α2, . . . , αn) if the diagonal matrix diag(x1, x2, . . . , xn) sends v to (xα1

1 x
α2
2 · · ·xαn

n )v.
Lusztig [Lus90] and Kashiwara [Kas93a] have constructed a canonical basis, or global

basis of the Uq(sln)-module Vq(λ). We shall only use the evaluation of this basis at
q = 1. After picking a highest weight vector v+ for V (λ), this is a distinguished basis
{G(T ) | T ∈ B(λ)} of V (λ) such that each G(T ) is a weight vector with weight wt(T )
(see [Lus90, Section 8.11]).

We shall also let {H(T ) | T ∈ B(λ)} denote the dual basis of V (λ)∗, called the dual
canonical basis. Let (·, ·) denote the unique nondegenerate symmetric bilinear form on
V (λ) satisfying (v+, v+) = 1, and (x · v, u) = (v, xT · u) where x ∈ gln and xT denotes
the transpose. We may identify V (λ) with V (λ)∗ via (·, ·), and H(T ) becomes a basis of
V (λ).
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2.3 Crystals

The set B(λ) has the structure of a crystal graph. We will only need the operations

ẽi : B(λ)→ B(λ) ∪ {0}

and
f̃i : B(λ)→ B(λ) ∪ {0}

for i = 1, 2, . . . , n − 1. Let T ∈ B(λ). The rowword row(T ) of T is obtained by reading
the rows of T from left to right, starting from the bottom row.

For a fixed i ∈ {1, 2, . . . , n − 1}, we think of each occurrence of i in row(T ) to be a
closed parenthesis “)” and each occurrence of i + 1 in row(T ) to be an open parenthesis
“(”. We then pair these parentheses as usual until no pairing can be done. We are left
with a sequence that looks like “))))((”. The operation f̃i changes the i corresponding to
the rightmost unpaired “)” into a i+ 1. The operation ẽi changes the i+ 1 corresponding
to the leftmost unpaired “(” into a i. The result will be the rowword of a unique tableau
ẽi(T ) or f̃i(T ) of shape λ. If there is no such “)” (resp. “(”), then f̃i(T ) (resp. ẽi(T )) is
defined to be 0.

2.4 Kirillov-Reshetikhin crystals

Let ωk = (1, 1, . . . , 1) be the partition with k 1’s. Then V (ωk) is isomorphic to the k-
exterior power Λk(Cn) of the standard representation Cn of GL(n) and the canonical basis
of V (ωk) is simply the basis {ei1 ∧ ei2 ∧ · · · ∧ eik}. For an integer d > 1, the representation
V (dωk) for a rectangular partition has very special properties. The set B(dωk) is the set
of semistandard Young tableaux with k rows and d columns. For example,

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

belongs to B(5ω3).
The crystal B(dωk) has an additional operation called promotion, which is a bijection

χ : B(dωk) → B(dωk) such that χn = 1 and χ ◦ ẽi = ẽi+1 ◦ χ (resp. χ ◦ f̃i = f̃i+1 ◦ χ)
(see [Shi]). This defines extra operations ẽ0 and f̃0 on B(dωk), and the index i of ẽi
(resp. f̃i) will always be considered modulo n. Together these structures form part of the
affine crystal structure of B(dωk), which in this case is a Kirillov-Reshetikhin crystal, see
[Shi, HKOTT].

Promotion is defined as follows: first remove all occurrences of the letter n in T . Then
slide the boxes to the bottom right of the rectangle, always keeping the rows weakly-
increasing and columns strictly-increasing. Once all slides are complete, add one to all
remaining letters and fill the empty boxes with the letter 1 to obtain χ(T ). For example,

1 1 3 4 4
2 3 4 5 5
4 4 6 6 6

→
1 1 3 4 4
2 3 4 5 5
4 4

→
1 1

2 3 3 4 4
4 4 4 5 5

→
1 1 1 2 2
3 4 4 5 5
5 5 5 6 6
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2.5 The dual canonical basis of the Grassmannian

By the classical Borel-Weil theorem, the degree d component R(k, n)d of the graded ring
R(k, n) is canonically isomorphic, as a GL(n)-representation, to the dual V (dωk)

∗ of the
highest weight representation V (dωk).

Let χ : Cn → Cn denote the (signed) cyclic rotation linear map given by sending ei
to ei+1 for i = 1, 2, . . . , n− 1 and sending en to (−1)k−1e1. Since χ ∈ GL(n), we obtain a
cyclic rotation map χ : V (dωk)→ V (dωk). Abusing notation, also define χ : [n]→ [n] by
the formula χ(i) = i+ 1 mod n. Then χ also acts on subsets of [n].

We have an induced rotation map χ : Gr(k, n) → Gr(k, n). Define χ∗ : R(k, n) →
R(k, n) to be the pullback ring homomorphism induced by χ−1 : Gr(k, n)→ Gr(k, n). It
is uniquely determined by χ∗(∆I) = ∆χ(I).

Theorem 1. The vector space R(k, n)d has a dual canonical basis {H(T ) | T ∈ B(dωk)}
with the following properties:

(i) For d = 1, we have H(T ) = ∆I , where I is the set of entries in the one-column
tableau T .

(ii) For d = 2, the set {H(T ) | T ∈ B(2ωk)} is exactly the set of Temperley-Lieb
invariants {∆(τ,T ) | (τ, T ) ∈ Ak,n} of Section 3.

(iii) For any T ∈ B(dωk), the function H(T ) is a nonnegative function on Ĝr(k, n)>0.

(iv) For any T ∈ B(dωk), we have χ∗(H(T )) = H(χ(T )).

Theorem 1(i) is well-known. Theorem 1(ii) will be discussed in Section 3. Theorem
1(iii) is due to Lusztig [Lus94]. We deduce Theorem 1(iv) from a result of Rhoades [Rho]
in the next subsection.

Already for d = 3, the canonical basis of V (3ωk) is combinatorially obscure to us. In
[Lam14], we studied the closely related web basis in combinatorial terms.

2.6 Cyclicity of canonical basis

Theorem 2. We have χ(G(T )) = G(χ(T )) and χ∗(H(T )) = H(χ(T )).

Proof. Let χ̃ denote the unsigned cyclic rotation map that sends ei to ei+1 mod n. We first
show that χ̃(G(T )) = ±G(χ(T )).

LetA(n) denote the coordinate ring of n×n matrices, so thatA(n) = C[xij | i, j ∈ [n]].
The ring A(n) has a dual canonical basis bP,Q labeled by pairs of semistandard tableaux
P,Q of the same shape and entries bounded by n. The cyclic rotation χ̃ acts on A(n)
by sending the matrix entry xij to xi+1,j where indices are taken modulo n. Equivalently,
thinking of A(n) as the space of polynomial functions on End(Cn) ∼= gln, we have

(χ̃ · f)(g) = f(χ̃−1g), (1)
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for f ∈ A(n) and g ∈ End(Cn). In [Rho, Proposition 5.5], Rhoades shows that when P,Q
have rectangular shape, we have

χ̃ · bP,Q = ±bχ(P ),Q + other terms (2)

where the other terms belong to the span of the dual canonical basis indexed by shapes
different to the shape of P,Q.

The basis studied in [Rho] is connected to the canonical bases of the highest weight
representations V (dωk) via the works of Skandera [Ska] and Du [Du92]. Specifically,
let µ∗ : V (dωk) → V (dωk) ⊗ A(n) be the coaction map dual to the action map µ :
V (dωk)

∗ × End(Cn) → V (dωk)
∗. Du shows that the coaction sends the highest weight

vector v+ of V (dωk) to the sum

µ∗(v+) =
∑

bP,Q∈T (d,k)

G(P )⊗ bP,Q

where T (d, k) is some subset of the dual canonical basis of A(n) and G(P ) belongs to
the canonical basis of V (dωk). (The coincidence of Du’s basis with Lusztig’s is shown in
[Du95].) The coaction and action are related by the formula µ∗(v)(w, g) = 〈µ(w, g), v〉,
where 〈·, ·〉 denotes the natural pairing V (dωk)

∗ ⊗ V (dωk) → C, and w ∈ V (dωk)
∗ and

g ∈ End(Cn). For any v ∈ V (dωk), w ∈ V (dωk)
∗, and g ∈ End(Cn), using (1), we have

((χ̃⊗ χ̃)µ∗(v))(w, g) = 〈µ(w, χ̃−1g), χ̃v〉 = 〈χ̃µ(w, g), χ̃v〉 = 〈µ(w, g), v〉 = µ∗(v)(w, g).

Thus, (χ̃⊗ χ̃)µ∗(v) = µ∗(v) and in particular, we have (χ̃⊗ χ̃)µ∗(v+) = µ∗(v+). It follows
that

µ∗(v+) =
∑

bP,Q∈T (m,k)

χ̃(G(P ))⊗ χ̃ · bP,Q. (3)

The set T (d, k) consists of all bP,Q where Q is some fixed semistandard tableaux of rect-
angular shape dk. It follows that χ̃ · bP,Q ∈ T (d, k), and in (3) all the “other terms” from
(2) cancel out. We conclude that χ̃(G(P )) = ±G(χ(P )).

It follows easily from the fact that G(P ) is a weight-vector that χ(G(P )) = ±G(χ(P ))
and by duality we have χ∗(H(P )) = ±H(χ(P )). Now χ(Gr(k, n)>0) = Gr(k, n)>0, so it
follows from Theorem 1(iii) that we must have χ∗(H(P )) = H(χ(P )). (Note that H(P )
cannot be identically 0 on Gr(k, n)>0 because the latter is Zariski-dense in Gr(k, n).)

3 Temperley-Lieb immanants

3.1 Dual canonical basis for R(k, n)2

A (k, n)-partial noncrossing pairing (τ, T ) consists of a noncrossing pairing τ of a subset
S ⊂ [n] together with a subset T ⊂ [n]\S of marked vertices, satisfying 2|T |+ |S| = k. In
[Lam14] we constructed a basis {∆(τ,T )} for R(k, n)2 labeled by (k, n)-partial noncrossing
pairings (τ, T ). Here is an example of a (4, 8)-partial non-crossing pairing, where the
vertex 6 is marked:
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4
3

2

1

8
7

6

5

Let (I, J) ∈
(
[n]
k

)2
. We say that that (τ, T ) is compatible with (I, J) if (a) I ∩ J = T ,

and (b) each pair of matched boundary vertices in τ contains one element of I and one
element of J . Let C(I, J) denote the set of (k, n)-partial noncrossing pairings that are
compatible with (I, J). We have the following identity [Lam14] which determines the
elements ∆(τ,T ) ∈ R(k, n)2 uniquely.

Theorem 3. Let I, J ∈
(
[n]
k

)
. Then

∆I∆J =
∑

(τ,T )∈C(I,J)

∆(τ,T ). (4)

Define a bijection θ : Ak,n → B(2ωk) as follows. Given (τ, T ), the tableau θ(τ, T )
has columns I, J , where I ∩ J = T , and for each strand (a, b) ∈ τ with a < b, we have
a ∈ I and b ∈ J . We next describe the inverse θ−1 : B(2ωk)→ Ak,n. Given a two-column
tableau with columns I and J , we construct θ−1(I, J) = (τ, T ) = (τ(I, J), T ). First, set
T = I ∩ J . Next, we think of τ as partial noncrossing matching of n points 1, 2, . . . , n
arranged from left to right on a line. Mark the points of I \ J as “left endpoints” and the
points of J \ I as “right endpoints”. Draw a strand connecting each left endpoint p to the
leftmost right endpoint q such that between p and q there is an equal number of left and
right endpoints. The tableau condition for (I, J) guarantees that for each p ∈ I \ J there
exists such a q ∈ J \ I. The collection of these strands gives τ = τ(I, J).

We now prove Theorem 1(ii).

Proposition 4. We have ∆(τ,T ) = H(θ(τ, T )). Thus Temperley-Lieb immanants are the
dual canonical basis of V (2ωk).

Proof. We deduce the proposition from setting q = 1 in work of Brundan [Bru] and Cheng-
Wang-Zhang [CWZ]. In [CWZ, Section 4], the dual canonical basis for V (ωk) ⊗ V (ωk)
is constructed for any k. The dual canonical basis elements are denoted Lf in [CWZ];
we shall write them as LI,J where I, J are k-element subsets of [n] (note that [CWZ] are
working with n =∞). The standard basis of V (ωk)⊗ V (ωk) will be denoted by KI,J .

By [Bru, Theorem 26], there is a linear map ξ : V (ωk)⊗V (ωk)→ V (2ωk) which sends
LA,B to H(T ) if A,B are the two columns of a semistandard tableau T of shape 2k, and to
0 otherwise. In our notation, the map ξ also sends the standard basis element KI,J to the
monomial ∆I∆J . By Theorem 3, it thus suffices to show that for a 2-column tableau T
with columns A,B, that the coefficient of LT := LA,B in KI,J is equal to 1 or 0 depending
on whether θ−1(T ) is compatible with (I, J) or not.
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Let A,B be two k-element subsets of [n]. Cheng-Wang-Zhang [CWZ] define a set of
pairs Σ−A,B = {(i, j)} (denoted Σ−f in [CWZ]). First, let AA,B be the set of ordered pairs

(i, j), where i ∈ A \B, j ∈ B \ A, and i < j. Recursively define Σ−,rA,B for r > 1 by

Σ−,rA,B :=

{
(i, j) ∈ AA,B | j − i = r and i, j do not appear in

⋃
16`<r

Σ−,`A,B

}
.

We set Σ−A,B :=
⋃
r>1 Σ−,rA,B. It is then shown in [CWZ, Corollary 4.18]1 that the coefficient

of LA,B in KI,J is equal to 1 if (I, J) can be obtained from (A,B) by swapping the pairs
in some subset Σ ⊆ Σ−A,B, and equal to 0 otherwise.

Now, suppose that A,B are the two columns of a semistandard tableaux T of shape
2k. It is then easy to check that Σ−A,B is exactly the set of strands of the non-crossing
matching of θ−1(A,B). This completes the proof.

3.2 Explicit formula for Temperley-Lieb invariants

Call a pair (I, J) standard if I and J form the two columns of a semistandard tableaux.
Recall that θ−1(I, J) = (τ(I, J), T = I ∩ J) is a partial noncrossing matching.

We shall need to consider pairs (I, J) where I is an ordered sequence (i1, i2, . . . , ik) of
distinct integers in [n]. Let Ī ∈

(
[n]
k

)
denote the k-element subset consisting of the elements

of the sequence I. We say that (I, J) is standard if (Ī, J) is. We also have a matching
τ(I, J) := τ(Ī, J). We write (I = (i1, . . . , ia, . . . , ik), J) →a (I′ = (i1, . . . , j, . . . , ik), J

′ =
J \ {j} ∪ {ia}) where (ia, j) ∈ τ(I, J) and if (I′, J ′) is a standard pair.

A legal path P of length |P | = r between (I, J) and (K,L) is a sequence

(I0, J)→a1 (I1, J1)→a2 · · · →ar (Ir, Jr)

where I0 is equal to I arranged in order, Īr = K, and a1 > a2 > · · · > ar. Note that
I ∪ J = K ∪ L as multisets whenever a legal path exists.

The following result can be deduced from [CWZ]. We give an independent proof.

Theorem 5. We have

∆(τ,T ) =
∑
(I,J)

(∑
P

(−1)|P |

)
∆I∆J (5)

where the first summation is over all standard pairs (I, J) and the second summation is
over legal paths from (I, J) to θ(τ, T ).

Example 6. Let k = 3 and n = 6. Then the standard pairs (I, J) with I ∪ J = [6] are

(123, 456), (124, 356), (134, 256), (125, 346), (135, 246).

1The parameters m and n in [CWZ] are both equal to k for us.
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The transition matrix from {∆I∆J} to {∆θ−1(I,J)} and its inverse are
1 1 0 0 1
0 1 1 1 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

 and


1 −1 1 1 −2
0 1 −1 −1 1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1


respectively. Reading the last column of the right matrix, we get

∆θ−1(135,246) = ∆135∆246 −∆125∆346 −∆134∆256 + ∆124∆356 − 2∆123∆456.

The term 2∆123∆456 arises from the two legal paths

((1, 2, 3), {456})→2 ((1, 5, 3), {246})

((1, 2, 3), {456})→3 ((1, 2, 4), {356})→3 ((1, 2, 5), {346})→2 ((1, 3, 5), {246}).
Note that the path

((1, 2, 3), {456})→3 ((1, 2, 4), {356})→2 ((1, 3, 4), {256})→3 ((1, 3, 5), {246})

is not legal, because the sequence 3, 2, 3 is not weakly decreasing.

If (i < j), (r < s) ∈ τ are two strands of a noncrossing matching, we say that (i, j) is
nested under (r, s) if (r < i < j < s). We say that (i, j) is nested immediately under (r, s)
if, in addition, there is no strand (p, q) such that (i, j) is nested under (p, q), and (p, q) is
nested under (r, s).

Lemma 7. Suppose that (I, J) →a (I′, J ′), where (ia, j) is the strand swapped. Then
there is a unique (ib, j̃) ∈ τ(I, J) such that (ia, j) is nested immediately under (ib, j̃).
Furthermore, τ(I′, J ′) is obtained from τ(I, J) by replacing the two strands (ia, j) and
(ib, j̃) by the two strands (ib, ia) and (j, j̃).

Proof. If (ia, j) is not nested under any other strand, then |Ī∩ [1, ia−1]| = |J ∩ [1, ia−1]|.
It follows that swapping ia with j in (Ī, J) cannot give a standard pair. This gives the
first statement. It is easy to see that replacing (ia, j) and (ib, j̃) by the two strands (ib, ia)
and (j, j̃) does indeed give a noncrossing matching, and the second statement follows.

Lemma 8. Suppose that we have a legal path ending at (I = (i1, i2, . . . , ik), J). Suppose
that a < b and that (ia, j) and (ib, j̃) are both in τ(I, J). Then (ia, j) is never nested under
(ib, j̃).

Proof. Let P = (I0, J) →a1 (I1, J1) →a2 · · · →ar (Ir, Jr) be a legal path ending at
(Ir, Jr) = (I = (i1, i2, . . . , ik), J), and suppose a < b. We proceed by induction on r. If
r = 0, the claim is clear. If ia < ib, the claim is clear. Thus we may assume that ia > ib
and ar 6 a. If ar < a, then by induction and Lemma 7, the last swap →ar (Ir, Jr) does
not affect the strands (ia, j) and (ib, j̃) incident to ia and ib.

Finally, suppose that ar = a, and let (I′, J ′) = (Ir−1, Jr−1). There are two cases:
i′a < i′b and i′a > i′b. In the first case, the claim follows from Lemma 7, and in the second
case, the claim follows from the inductive assumption and Lemma 7.
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Proof of Theorem 5. Any i ∈ T is present in both I and J for all terms on the RHS. Thus
it suffices to prove the statement assuming that T = ∅ and τ is a complete noncrossing
matching on [n] = [2k]. Henceforth, we make this assumption; thus we restrict to standard
pairs (I, J) using each element in [2k] exactly once. Restricting Theorem 3 to these
standard pairs, we must show that (4) and (5) give inverse matrices.

Define a partial order 6 on standard pairs by (I, J) 6 (C,D) if ir 6 cr for r =
1, 2, . . . , k, where I = {i1 < i2 < · · · < ik} and C = {c1 < c2 < · · · < ck}. A legal path
from (I, J) to (C,D) can exist only if (I, J) 6 (C,D). Also θ−1(C,D) is compatible with
(K,L) only if (C,D) 6 (K,L). The transition matrices from (4) and (5) are triangular
with respect to this partial order. Thus let (I, J) 6 (K,L) be given. We must show that

∑
(C,D)

∑
P

(−1)|P | =

{
1 if (I, J) = (K,L),

0 if (I, J) < (K,L),
(6)

where the first summation is over all standard pairs (C,D) such that θ−1(C,D) ∈ C(K,L),
and the second summation is over all legal paths P from (I, J) to (C,D). The statement
is clear when (I, J) = (K,L).

Suppose (I, J) < (K,L). We provide a sign-reversing involution ι on the terms in
(6). If τ(C,D) is compatible with (K,L) we can obtain (K,L) from (C,D) by swapping
some (uniquely determined) subset S(C,D) of the strands in τ(C,D). Let a legal path
P = · · · (C′′, D′′) →x (C, D) from (I, J) to (C,D) be given, where C = (c1, c2, . . . , ck).
With respect to (C, D), the minimum strand (ci, d) in S(C,D) is the strand where i is
minimal. We define ι(P ) by splitting into two cases.
Case (1): If |S(C,D)| > 0 and (ci, d) is the minimal strand, and either

1. P is empty, or

2. P is nonempty and i 6 x,

then ι(P ) = P →i (C′, D′) is the path obtained by concatenating to P the swap (C, D)→i

(C′, D′). Note that τ(C̄′, D′) is still compatible with (K,L): if (ci, d) is nested under
a strand (cs, d

′), then by Lemmas 7 and 8, we cannot have (cs, d
′) ∈ S(C,D). Thus

S(C̄′, D′) = S(C,D) \ (ci, d).
Case (2): If either

1. |S(C,D)| = 0 (that is, (C,D) = (I, J)), or

2. |S(C,D)| > 0 with (ci, d) minimal strand, and P is nonempty and i > x,

then ι(P ) is obtained from P by removing the last swap, so that ι(P ) now ends at (C′′, D′′).
By Lemmas 7 and 8 again, note that τ(C′′, D′′) is compatible with (I, J), and we have
S(C̄′′, D′′) = S(C,D) ∪ {(p, q)} where (p, q) is the last swap in P .

Finally, it is straightforward to verify that ι is an involution and that (−1)|ι(P )| =
−(−1)|P |.
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4 Schubert varieties and positroid varieties

4.1 Schubert varieties

Let I ∈
(
[n]
k

)
be a k-element subset of [n]. Let F• = {0 = F0 ⊂ F1 ⊂ · · ·Fn−1 ⊂ Fn = Cn}

be a flag in Cn, so that dimFi = i. The Schubert cell X̊I(F•) is given by

X̊I(F•) := {X ∈ Gr(k, n) | dim(X ∩ Fj) = #(I ∩ [n− j + 1, n]) for all j ∈ [n]}. (7)

The Schubert variety XI(F•) is given by

XI(F•) := {X ∈ Gr(k, n) | dim(X ∩ Fj) > #(I ∩ [n− j + 1, n]) for all j ∈ [n]}. (8)

We have XI(F•) = X̊I(F•) in the Zariski topology. Also, X[k](F•) = Gr(k, n) and
codim(XI(F•)) = i1 + i2 + · · ·+ ik − (1 + 2 + · · ·+ k), where I = {i1, i2 . . . , ik}. Here and
elsewhere, we always mean complex (co)dimension when referring to complex subvarieties.

Let E• be the standard flag defined by Ei = span(en, en−1, . . . , en−i+1). Then we set the
standard Schubert varieties to be XI := XI(E•). Suppose v1, v2, . . . , vn are the columns of
a k × n matrix (with respect to the basis e1, e2, . . . , en) representing X ∈ Gr(k, n). Then
the condition dim(X ∩ Ej) = d is equivalent to the condition dim span(v1, . . . , vn−j) =
k−d. Thus the Schubert variety XI(E•) is cut out by rank conditions on initial sequences
of columns of X.

4.2 Bounded affine permutations, Grassmann necklaces, and positroids

A (k, n)-bounded affine permutation is a bijection f : Z→ Z satisfying conditions:

1. f(i+ n) = f(i) + n,

2.
∑n

i=1 f(i) =
(
n+1
2

)
+ kn,

3. i 6 f(i) 6 i+ n.

The set B(k, n) of (k, n)-bounded affine permutations forms a lower order ideal in the
Bruhat order of the affine symmetric group ([KLS13]).

Let I = {i1 < i2 < · · · < ik} and J = {j1 < j2 < · · · < jk} be two k-element subsets of
[n]. We define a partial order 6 on

(
[n]
k

)
by I 6 J if ir 6 jr for r = 1, 2, . . . , k. We write

6a for the cyclically rotated ordering a <a a+ 1 <a · · · <a n <a 1 <a · · · <a a− 1 on [n].
Replacing 6 by 6a, we also have the cyclically rotated version partial order I 6a J on(
[n]
k

)
.
A (k, n)-Grassmann necklace [Pos] is a collection I = (I1, I2, . . . , In) of k-element

subsets Ii ∈
(
[n]
k

)
satisfying the following property for each a ∈ [n]:

Ia+1 =

{
Ia if a /∈ Ia
Ia − {a} ∪ {a′} for some a′ ∈ [n] if a ∈ Ia.
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There is a partial order on the set of (k, n)-Grassmann necklaces, given by I 6 J if
Ia 6a Ja for all a = 1, 2, . . . , n.

Given f ∈ B(k, n), we define a sequence I(f) = (I1, I2, . . . , In) of k-element subsets
by the formula

Ia = {f(b) | b < a and f(b) > a} mod n

where mod n means that we take representatives in [n]. For example, let k = 2, n = 6,
and f = [246759]. Then I(f) = (13, 23, 34, 46, 16, 16).

Proposition 9. The map f 7→ I(f) is a bijection between (k, n)-bounded affine permu-
tations and (k, n)-Grassmann necklaces.

The inverse map I 7→ f(I) is given as follows. Suppose a /∈ Ia. Then define f(a) = a.
Suppose a ∈ Ia and Ia+1 = Ia − {a} ∪ {a′}. Then define f(a) = b where b ≡ a′ mod n
and a < b 6 a+ n.

The Bruhat order on
(
[n]
k

)
is given by I = {i1 < i2 < · · · < ik} 6 J = {j1 < j2 < · · · <

jk} if and only if ir 6 jr for all r. For I ∈
(
[n]
k

)
, the Schubert matroidMI is by definition

the collection
MI := {J > I | J ∈

(
[n]
k

)
}.

It indexes the set of Plücker coordinates ∆J that do not vanish on XI [Ram].
Let I be a (k, n)-Grassmann necklace. The positroid M(I) of I is the rank k matroid

on n elements given by

M(I) :=MI1 ∩ χ(Mχ−1(I2)) ∩ · · · ∩ χn−1(Mχ1−n(In)). (9)

If I = I(f) then we write M(f) for M(I).

4.3 Positroid varieties

Define the positroid variety Πf

Πf = ΠI := XI1 ∩ χ(Xχ−1(I2)) ∩ · · · ∩ χn−1(Xχ1−n(In)) (10)

where I = I(f) and the open positroid variety Π̊f

Π̊f = Π̊I := X̊I1 ∩ χ(X̊χ−1(I2)) ∩ · · · ∩ χn−1(X̊χ1−n(In)).

By [KLS13, KLS14], the restriction map Γ(Gr(k, n),O(d))→ Γ(Πf ,O(d)) is surjective,
where O(1) is the line bundle on Gr(k, n) associated to the Plücker embedding (and in
particular, Γ(Πf ,O(d)) = 0 for d < 0). Thus the homogeneous coordinate ring R(Πf ) :=⊕

d>0 Γ(Πf ,O(d)) of Πf is a quotient of the homogenous coordinate ring R(k, n). We write

I(Πf ) for the homogeneous ideal of Πf and denote by Π̂f := Spec(R(Πf )) ⊂ Ĝr(k, n) the
affine cone over the positroid variety Πf .

Recall that for X ∈ Gr(k, n), the matroid MX of X is defined as

MX := {J ∈
(
[n]
k

)
| ∆J(X) 6= 0}.

Define Πf,>0 := Π̊f ∩Gr(k, n)>0. The following result of Oh characterizes the matroids of
totally nonnegative points.

Theorem 10 ([Oh]). For any X ∈ Πf,>0, we have MX =M(f).
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5 The cyclic Demazure module

5.1 Demazure modules and Demazure crystals

Let I(XI) ⊂ R(k, n) denote the homogeneous ideal of the Schubert variety XI (see Section
4.1) and let I(XI)d ⊂ R(k, n)d denote the degree d component. Let R(XI)d = Γ(XI ,O(d))
denote the degree d part of the homogeneous coordinate ring of XI . The restriction map
Γ(Gr(k, n),O(d))→ Γ(XI ,O(d)) is known to be surjective, and thus the space R(XI)d is
naturally a quotient of R(k, n)d = V (dωk)

∗.
For I ∈

(
[n]
k

)
, we have an extremal weight vector G(TI) ∈ V (dωk). The vector G(TI)

spans the weight space of V (dωk) with weight α = (α1, . . . , αn) given by αi = d if i ∈ I
and αi = 0 otherwise. The Demazure module VI(dωk) is defined to be the B−-submodule
of V (dωk) generated by the vector G(TI). It is a classical result that I(XI)d can be
identifed with VI(dωk)

⊥ ⊂ V (dωk)
∗ (see for example [Kum, Chapter 8]).

For I ∈
(
[n]
k

)
, we have a tableau TI ∈ B(dωk) with all entries in the r-th row equal

to ir, where I = {i1, i2, . . . , ik}. The canonical basis vector G(TI) is an extremal weight
vector of V (dωk). Define the Demazure crystal BI(dωk) ⊂ B(dωk) to be the subset of
B(dωk) obtained by repeatedly applying the operators f̃1, f̃2, . . . , f̃n−1 to TI .

The following result is due to Kashiwara [Kas93b].

Theorem 11. The B−-submodule VI(dωk) has a basis {G(T ) | T ∈ BI(dωk)}.

By Theorem 11, we obtain:

Proposition 12. We have

1. I(XI)d = VI(dωk)
⊥ ⊂ V (dωk)

∗ = R(k, n)d has a basis given by {H(T ) | T /∈
BI(dωk)}.

2. R(XI)d has a basis given by (the image of) {H(T ) | T ∈ BI(dωk)}.

Let us give a more explicit description of BI(dωk).

Proposition 13. The set BI(dωk) consists of tableaux T which are entry-wise greater
than or equal to TI .

Proof. Let S denote the set of tableaux T ∈ B(dωk) that are entry-wise greater than or
equal to TI . Since the operators f̃i increases a single entry of a tableau, it is clear that
BI(dωk) is contained in S. Also, it is known that the set S indexes a basis for R(XI)d
known as the standard monomial basis, see for example [LaLi]. Thus |BI(dωk)| = |S|, so
BI(dωk) = S. (Alternatively, we can apply ẽi to see that S ⊆ BI(dωk).)

5.2 Cyclic Demazure modules

Let f be a (k, n)-bounded affine permutation. Define I(Πf )d ⊂ R(k, n)d by

I(Πf )d := I(Πf ) ∩R(k, n)d
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to be the degree d homogeneous component of I(Πf ). Since I(Πf ) is a homogeneous ideal,
it is spanned by the subspaces I(Πf )d. The aim of this section is to give a representation-
theoretic description of I(Πf )d as a subspace of R(k, n)d ' V (dωk)

∗.
Let f ∈ B(k, n) have (k, n)-Grassmann-necklace I(f) = (I1, I2, . . . , In). Define the

cyclic Demazure crystal Bf (dωk) to be intersection

Bf (dωk) := BI1(dωk) ∩ χ(Bχ−1(I2)(dωk)) ∩ · · · ∩ χn−1(Bχ1−n(In)(dωk)).

If we identify B(ωk) with the set
(
[n]
k

)
of k-element subsets of [n], then Bf (ωk) is simply the

positroid M(f) (9). Also, define the cyclic Demazure module Vf (dωk) to be intersection

Vf (dωk) := VI1(dωk) ∩ χ(Vχ−1(I2)(dωk)) ∩ · · · ∩ χn−1(Vχ1−n(In)(dωk)). (11)

Let R(Πf ) denote the homogeneous coordinate ring of the positroid variety Πf .

Theorem 14. The subspace Vf (dωk) has a basis {G(T ) | T ∈ Bf (dωk)}.

Theorem 15.

(i) I(Πf )d is isomorphic to Vf (dωk)
⊥ and has a basis given by {H(T ) | T /∈ Bf (dωk)}.

(ii) R(Πf )d has a basis given by the images of {H(T ) | T ∈ Bf (dωk)}.

Theorem 15 reduces in the case d = 1 to Theorem 10.

Corollary 16. For f ∈ B(k, n) and d > 1, the cyclic Demazure crystal Bf (dωk) is
nonempty.

Indeed, for any a, the function ∆Ia is non-zero on Π̂f , and so is ∆d
Ia

. Thus, Bf (dωk)
contains the tableaux TI1 , TI2 , . . . , TIn .

Remark 17. It follows from Theorem 15 that the vectors H(T ) ∈ V (dωk)
∗ that do not

restrict to identically zero on Πf form a basis for R(Πf )d. This is not the case for the
standard monomial basis (cf. [LaLi]).

Example 18. Suppose k = 1. In this case BI(dω1) is the set of one-row tableaux (of
length d) with entries in 1, 2, . . . , i, where I = {i}. By choosing the (1, n)-Grassmann
necklace appropriately, Bf (ω1) can be arranged to be any subset of {1, 2, . . . , n}. For
example, if n = 4, (I1, I2, I3, I4) = (1, 3, 3, 1) gives Bf (ω1) = {1, 3}. The set Bf (dω1) is
simply the set of one-row tableaux with entries in Bf (ω1).

Example 19. Take k = 2 and n = 4. Let us consider the positroid variety Πf where
f = [2547] ∈ B(2, 4). The Grassmann necklace is I(f) = (13, 23, 13, 41). The set Bf (2ω2)
is given by the set of tableaux

1 1
3 3

1 2
3 3

1 2
3 4

1 1
3 4

2 2
3 3

2 2
3 4

1 1
4 4

1 2
4 4

2 2
4 4
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Example 20. Consider k = 2 and n = 5. Let us consider the positroid variety Πf

where f = [63547] ∈ B(2, 5) and compute Bf (2ω2). The Grassmann necklace is I(f) =
(12, 12, 13, 15, 15). Since B12(2ω2) = B(2ω2), we have

Bf (2ω2) = χ(B15(2ω2)) ∩ χ2(B14(2ω2)) ∩ χ3(B23(2ω2)).

The set B15(2ω2) consists of all tableaux of the form

a b
5 5 with 1 6 a 6 b 6 4 and thus

χ(B15(2ω2)) consists of all tableaux of the form

1 1
a b with 2 6 a 6 b 6 5. In particular,

every tableau in Bf (2ω2) has exactly two 1-s. Intersecting with χ2(B14(2ω2)) imposes no
additional restriction. On the other hand, looking at tableaux in B23(2ω2) with two 3-s,
we get the six tableaux

2 2
3 3

2 3
3 4

2 3
3 5

3 3
4 4

3 3
4 5

3 3
5 5

and thus Bf (2ω2) consists of the tableaux

1 1
5 5

1 1
2 5

1 1
3 5

1 1
2 2

1 1
2 3

1 1
3 3

Next we give an example of a Schubert variety whose ideal does not have a basis given
by a subset of the dual canonical basis.

Example 21. Let X ⊂ Gr(2, 4) be given by the single equation {∆13 = 0}. This is
a permutation of a standard Schubert variety that is not a positroid variety. Then the
degree two part of I(X) has a one-dimensional weight space for the weight (1, 1, 1, 1).
It is spanned by the vector ∆13∆24. This vector is a sum of two elements of the dual
canonical basis by Theorem 3.

5.3 Proof of Theorem 14

By Theorem 11, Vχ1−a(Ia)(dωk) has basis {G(T ) | T ∈ Bχ1−a(Ia)(dωk)}. Thus by Theorem
1(iv), the rotation χa−1(Vχ1−a(Ia)(dωk)) has basis given by

{G(T ) | T ∈ χa−1Bχ1−a(Ia)(dωk)}.

It follows that the intersection (11) has basis {G(T ) | T ∈ Bf (dωk)}, establishing Theorem
14.

5.4 Proof of Theorem 15

Our proof of Theorem 15 relies on the following result proved jointly with Knutson and
Speyer [KLS13, KLS14]. It states that the intersection in (10) is reduced, so the equality
in (10) holds as schemes.
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Proposition 22. The homogeneous ideal If of a positroid variety is given by

I(Πf ) = I(XI1) + χ(I(Xχ−1(I2))) + · · ·+ χn−1(I(Xχ1−n(In))).

Since (A ∩B)⊥ = A⊥ +B⊥, combining with Proposition 12, we deduce that

I(Πf )d =
(
VI1(dωk) ∩ χ(Vχ−1(I2)(dωk)) ∩ · · · ∩ χn−1(Vχ1−n(In)(dωk))

)⊥
= Vf (dωk)

⊥.

Combining with Theorem 11, we obtain Theorem 15(i). Theorem 15(ii) follows from the
isomorphism of vector spaces R(Πf )d ∼= R(k, n)d/I(Πf )d.

5.5 Positivity

Theorem 23. For f ∈ B(k, n) and T ∈ B(dωk), if H(T ) is not identically zero on Πf ,
then it takes strictly positive values everywhere on Πf,>0.

Proof. Fix f ∈ B(k, n). By [Lam16, Section 7], the totally nonnegative cell Πf,>0
∼= Rd

>0

has a parametrization of the following form:

Rd
>0 3 (t1, t2, . . . , td) 7→ xi1(t1) · · ·xid(td) · eI ∈ Πf,>0

where eI ∈ Gr(k, n)>0 for I = {i1, . . . , ik} ∈
(
[n]
k

)
denotes the point

eI = span(ei1 , ei2 , . . . , eik) ∈ Gr(k, n)>0

and xi(a) = exp(aei,i+1) ∈ GL(n) is the one parameter subgroup associated to the Cheval-
ley generator for i = 1, 2, . . . , n − 1. For i = 0, we define x0(a) by conjugating x1(a) by
χ.

Fix a lift of eI to Ĝr(k, n). Then the value of the dual canonical basis element H(T ) ∈
V (dωk)

∗ on the point X = xi1(t1) · · ·xid(td) · eI ∈ Ĝr(k, n) is given by

〈H(T ), xi1(t1) · · ·xid(td) ·G(TI)〉

where 〈·, ·〉 denotes the natural pairing between V (dωk)
∗ and V (dωk), and G(TI) is the

canonical basis element of extremal weight indexed by TI .
Thus it suffices to show that for any T ∈ B(dωk), the coefficient of G(T ) in the

vector xi1(t1) · · ·xid(td) · G(TI) is equal to a (possibly zero) polynomial in t1, t2, . . . , td
with nonnegative coefficients. For i = 1, 2, . . . , n− 1, it follows from the proof of [Lus94,
Proposition 3.2] that the matrix coefficients of xi(a) on the canonical basis of V (dωk) are
polynomials in t1, t2, . . . , td with nonnegative coefficients. By Theorem 1(iv), the same
holds for i = 0. The claim follows.

6 Future directions

6.1 The character of the cyclic Demazure module

The character of highest weight representation V (dωk) is given by the celebrated Weyl
character formula. The character of the Demazure module VI(dωk) is given by the De-
mazure character formula [Dem, And].
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Problem 24. Find a formula for the character of Vf (dωk). Equivalently, compute the
weight generating function of Bf (dωk).

For the bounded affine permutation f = [2547] of Example 19, we have

ch(Vf (2ω2)) = x21x
2
3 + x21x3x4 + x21x

2
4 + x1x2x

2
3 + x1x2x3x4 + x1x2x

2
4 + x22x

2
3 + x22x3x4 + x22x

2
4

and for f = [63547] of Example 20, we have

ch(Vf (2ω2)) = x21(x
2
2 + x2x3 + x2x5 + x23 + x3x5 + x25).

6.2 Quantization

Quantum versions of Grassmannians and Schubert varieties have been studied by many
authors, see for example [LeRi]. In that setting, positroid varieties correspond to certain
torus-invariant prime ideals, classified in [MéCa, Yak].

Problem 25. Find the quantum version of the cyclic Demazure module, and quantum
versions of Theorems 14 and 15.

Note however that the cyclic symmetry acts on the quantum Grassmannian in a more
subtle way than it does on the Grassmannian [LaLe11].

6.3 Higher degree matroids

Definition 26. For an integer d > 1, and X ∈ Gr(k, n), define the degree d canonical
basis matroid

MX,d := {T ∈ B(dωk) | H(T )(X) 6= 0}.

By Theorem 1(i), for d = 1, MX,1 is the usual matroid of X. By Theorem 23,
the degree d canonical basis matroids MX,d of a point X ∈ Gr(k, n)>0 is completely
determined by the usual positroid MX . Thus for any d, there is a natural bijection
between B(k, n) and the set of degree d positroids, sending f ∈ B(k, n) to Bf (dωk).

Problem 27. Find axioms for degree d canonical basis matroids.

6.4 Projective geometry interpretation of dual canonical basis

Let X be a k × n matrix representing a point in Gr(k, n). We assume that all columns
of X are non-zero and think of X as a collection p1, p2, . . . , pn of points in Pk−1. The
vanishing of ∆i1,...,ik(X) is equivalent to the geometric statement that pi1 , . . . , pik do not
span the whole of Pk−1.

The Temperley-Lieb invariants ∆(τ,T ) can be interpreted as tensor invariants [FLL,
Appendix], and thereby we obtain an interpretation of degree two matroids in geometric
terms. For example, let k = 3 and n = 6. If τ = {(1, 6), (2, 5), (3, 4)}, then ∆(τ,∅) =
∆123∆456, which vanishes if and only if either p1, p2, p3 are colinear or p4, p5, p6 are colinear.
If τ = {(1, 2), (3, 4), (5, 6)}, then ∆(τ,∅) vanishes if the lines 23, 45, and 16 have a common
intersection point. (If any of these pairs, say p2 and p3, do not span a line, then ∆(τ,∅)
also vanishes.)
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Problem 28. Give an interpretation of the vanishing of the function H(T ), T ∈ B(dωk)
in projective geometry terms.

See also [FoPy, BHL, Lam16] for related work.

6.5 Two maps on R(k, n)

We have a map
∧ : Λ`(Cn)⊗ Λk(Cn)→ Λk+`(Cn)

induced by

(ei1 ∧ ei2 ∧ · · · ∧ ei`)⊗ (ej1 ∧ ej2 ∧ · · · ∧ ejk) 7−→ ei1 ∧ · · · ∧ ei` ∧ ej1 ∧ · · · ∧ ejk .

This is a map of GL(n)-representations, and up to scalar, it is the unique such map, since
the multiplicity of Λk+`(Cn) in Λ`(Cn)⊗ Λk(Cn) is equal to one.

Similarly, by [Ste, Theorem 3.1], the GL(n)-representation V (dω`) ⊗ V (dωk) is mul-
tiplicity free, and in particular, the irreducible representation V (dωk+`) appears with
multiplicity one. We thus have a canonical (up to scalar) surjective map

κdk,` : V (dω`)⊗ V (dωk)→ V (dωk+`)

of GL(n)-representations.

Problem 29. Give an explicit combinatorial formula for the expansion of κdk,`(G(T ) ⊗
G(T ′)) in the canonical basis.

We have obtained an explicit combinatorial solution to Problem 29 for Temperley-Lieb
invariants, which we hope to explain elsewhere.

Remark 30. Let φk,` : Gr(k, n) × Gr(`, n) 99K Gr(k + `, n) be the (rational) direct sum
map [Lam16], sending (V,W ) to V

⊕
W . It is not difficult to see that the map κdk,` can

be chosen to be dual to the map R(k + `, n)d → R(`, n)d ⊗R(k, n)d induced by φk,`. The
study of φk,` was one of the main motivations for the present work, and we refer the reader
to [Lam16] for further details.

Remark 31. An alternating formula for κdk,`(G(T )⊗G(T ′)) can be computed in terms of
Kazhdan-Lusztig polynomials, for example by work of Brundan [Bru].

Similarly, there is (up to scalar) a unique non-trival GL(n) homomorphism

ηd,d
′

k : V ((d+ d′)ωk)→ V (dω`)⊗ V (d′ωk).

This map is dual to the natural multiplication map R(k, n)d ⊗R(k, n)d′ → R(k, n)d+d′ of
the homogeneous coordinate ring.

Problem 32. Give an explicit combinatorial formula for the expansion of ηd,d
′

k (G(T )) in
the canonical basis.
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