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Abstract

In this paper, we study the generating function for the number of set partitions
of [n] represented as bargraphs according to the perimeter/site-perimeter. In par-
ticular, we find explicit formulas for the total perimeter and the total site-perimeter
over all set partitions of [n].

Mathematics Subject Classifications: 05A18

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called
parts, whose sum is n. A composition is a partition in which the parts may come in
any order, as originally defined by MacMahon [11]. Compositions can be represented as
bargraphs. A bargraph is a column convex polyomino such that the lower edge lies on a
horizontal axis, when it is drawn on a regular planar lattice grid and is made up of square
cells. Clearly, the number parts and the size of a composition is the number columns
and the total number of cells in the representing bargraph, respectively. For instance,
Figure 1 presents the bargraph 122341411. Recently, statistics on bargraphs have been

Figure 1: The bargraph 122341411

received a lot of attention. For instance, in [10, 17] it is found the generating function for
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the number of bargraphs according to the number of horizontal and up steps. In [14] it
is studied the generating function for the number of bargraphs according to the number
of interior vertices and edges. Moreover, Blecher et al. counted bargraphs according to
statistics: descents [3], levels [1], peaks [2] and walls [4].

The enumeration of polyominoes according to their area and perimeter is an interest-
ing problem in combinatorics [7, 9]. When one studies combinatorial families presented
geometrically, the perimeter and the area are the most natural and most important statis-
tics to be considered. The perimeter of a bargraph B, denoted by per(B), is the number
of edges on the boundary of B. The site-perimeter of a bargraph B, denoted by sper(B),
is the number of nearest-neighbor cells outside the boundary of B. The perimeter and
the site perimeter of words were studied in [5] and [6], respectively. Motivated by these
results, we extend the study of perimeter/site-perimeter to set partitions.

A set partition of [n] is any collection of nonempty, pairwise disjoint subsets, called
blocks, whose union is [n] (there is a single empty set partition of [0] which has no blocks).
We denote the set of all set partitions of [n] by P (n) and the set of all set partitions
of [n] with k blocks by P (n, k). We will write a set partition π ∈ P (n, k) as π =
B1/B2/ · · · /Bk, where min(B1) < min(B2) < · · · < min(Bk). Equivalently, we will write
a set partition by the canonical sequential form π = π1π2 · · · πn, wherein i ∈ Bπi for i ∈ [n]
(see, e.g., [12, 19]). For example, the set partition π = {1, 4, 8, 9}/{2, 3}/{5}/{6, 7} has
the canonical sequential form π = 122134411. We will represent each set partition π by
the corresponding bargraph of the canonical sequential form of π. For instance, Figure
1 represents the bargraph of π = {1, 6, 8, 9}/{2, 3}/{4}/{5, 7}. Recently, statistics on
bargraphs of set partitions have been investigated by several authors (see, e.g., [13, 15,
16]).

The aim of this paper is to study the perimeter (see Section 2) and the site-perimeter
(see Section 3) of set partitions. For example, the perimeter and the site-perimeter of the
set partition 122341411 are 32 and 24, respectively. In particular, we show that the total
of the half of the perimeter over all set partitions of [n] is given by (see Corollary 5)

an =
n+ 3

6
Bn+1 −

5

36
Bn+2 +

18n+ 13

18
Bn −

6n+ 7

36
Bn−1

and the total of the site-perimeter over all set partitions of [n] is given by (see Corollary
7)

bn =

(
n

4
+

73

72

)
Bn+1 −

11

48
Bn+2 +

(
4n

3
+

91

48

)
Bn +

(
n

4
− 67

72

)
Bn−1

+

(
n

6
− 23

144

)
Bn−2,

where Bn is the nth Bell number.
In order to obtain asymptotic estimates for the moments as well as the limiting dis-

tribution, we need

Bn+h = Bn
(n+ h)!

n!rh

(
1 +O

(
log n

n

))
(1)
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uniformly for h = O(log n), where Bn is the nth Bell number and r is the positive root
of rer = n + 1. See [8] for an even stronger form that includes further terms in the
asymptotic expansion. We say that the sequence fn is asymptotically equivalent to the
sequence gn, denoted by fn ∼ gn, if limn→∞

fn
gn

= 1. So,

an
Bn

∼ n+ 3

6

Bn+1

Bn

− 5

36

Bn+2

Bn

+
18n+ 13

18
− 6n+ 7

36

Bn−1

Bn

∼ n+ 3

6

Bn+1

Bn

− 5

36

Bn+2

Bn

and

bn
Bn

∼ 36n+ 146

144

Bn+1

Bn

− 33

144

Bn+2

Bn

+
192n+ 273

144
− 36n− 134

144

Bn−1

Bn

+
24n− 23

144

Bn−2

Bn

∼ 36n+ 146

144

Bn+1

Bn

− 33

144

Bn+2

Bn

,

which, by (1), leads to the following corollary.

Corollary 1. Asymptotically,

an =
n2Bn

6(log(n)− log log n)

(
1− 5

6(log n− log log n)

)(
1 +O

(
log n

n

))
and

bn =
n2Bn

48(log(n)− log log n)

(
12− 11

log n− log log n

)(
1 +O

(
log n

n

))
.

2 The perimeter of set partitions

Let Pk(x, q) =
∑

n>k

∑
π∈Pn,k

xnq
1
2
per(π) be the generating function for the number of set

partitions of n with exactly k blocks, according to the half of the perimeter. Generally,
let Pk(x, q|a1a2 · · · as) =

∑
n>k

∑
π=π′a1a2···as∈Pn,k

xnq
1
2
per(π) be the generating function for

the number of set partitions π = π′a1a2 · · · as of n with exactly k blocks, according to the
half of the perimeter. We define P0(x, q) = 1. Since each set partition with one block has

the form 11 · · · 1, we have P1(x, q) = xq2

1−xq . By definitions we have

Pk(x, q|a) =
k∑
b=1

Pk(x, q|ba) = x
a∑
b=1

qa−b+1Pk(x, q|b) + xq
k∑

b=a+1

Pk(x, q|b), (2)

for all 1 6 a 6 k − 1. Moreover,

Pk(x, q|k) = x

k∑
b=1

qk−b+1Pk(x, q|b) + x
k−1∑
b=1

qk−b+1Pk−1(x, q|b). (3)
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Define Pk(x, q, v) =
∑k

a=1 Pk(x, q|a)va−1. Then (2)-(3) can be written as

Pk(x, q, v) = Pk(x, q|k)vk−1 +
x

1− qv
(qPk(x, q, v)− qkvk−1Pk(x, q, 1/q))

+
xq

1− v
(Pk(x, q, 1)− Pk(x, q, v))

with
Pk(x, q|k) = xqkPk(x, q, 1/q) + xqkPk−1(x, q, 1/q).

Thus, we can state the following result.

Proposition 2. We have

Pk(x, q, v) = xqkvk−1Pk−1(x, q, 1/q) +
xq

1− qv
(Pk(x, q, v)− qkvkPk(x, q, 1/q))

+
xq

1− v
(Pk(x, q, 1)− Pk(x, q, v))

with P1(x, q, v) = xq2

1−xq .

Proposition 2 with q = 1 gives Pk(x, 1, v) = xvk−1Pk−1(x, 1, 1)+ x(1−vk)
1−v Pk(x, 1, 1) with

P1(x, 1, v) = x
1−x . If we take v → 1, then we obtain Pk(x, 1, 1) = x

1−kxPk−1(x, 1, 1) with

P1(x, 1, 1) = x
1−x , which leads to Pk(x, 1, 1) = xk

(1−x)···(1−kx) , as expected. Thus, for all
k > 1,

Pk(x, 1, v) =
xk(vk−1(1− v)(1− kx) + x(1− vk))

(1− v)(1− x) · · · (1− kx)
. (4)

Define Fk(x, v) = ∂
∂q
Pk(x, q, v) |q=1 and Gk(x, v) = ∂

∂v
Pk(x, 1, v). By Proposition 2, we

have

Fk(x, v) = kxvk−1Pk−1(x, 1, 1) + xvk−1Fk−1(x, 1)− xvk−1Gk−1(x, 1)

+
x

(1− v)2
(Pk(x, 1, v)− vkPk(x, 1, 1))

+
x

1− v
(Fk(x, v)− kvkPk(x, 1, 1)− vkFk(x, 1) + vkGk(x, 1))

+
x

1− v
(Pk(x, 1, 1)− Pk(x, 1, v)) +

x

1− v
(Fk(x, 1)− Fk(x, v))

with F1(x, v) = x(2−x)
(1−x)2 . Thus, by using (4) and taking v → 1, we obtain

Fk(x, 1) =
x

1− kx
Fk−1(x, 1) +

xk(12 + 3(k2 − 5k + 2)x− k(2k − 7)(k − 1)x2)

6(1− kx)
∏k

j=1(1− jx)
(5)

with F0(x, 1) = 0. Thus by induction, we can state the following result.
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Theorem 3. The generating function Fk(x, 1) for the total of the half of the perimeter
over all set partitions of [n] with exactly k blocks is given by

xk

6
∏k

j=1(1− jx)

k∑
i=1

12 + 3(i2 − 5i+ 2)x− i(i− 1)(2i− 7)x2

1− ix
.

In order to study further the total of the half of the perimeter over all set partitions
of [n], we consider the exponential generating function Ek(x) =

∑
n>0[x

n](Fk(x, 1))x
n

n!
,

where [xn]f(x) denotes the coefficient of xn in the generating function f(x). Note that
xk∏k

j=1(1−jx)
=
∑

n>0 Sn,kx
n and 1

k!
(ex − 1)k =

∑
n>0 Sn,k

xn

n!
, where Sn,k denotes the Stirling

number of the second kind (for example, see [12]). So, by (5), we have

(1− kx)Fk(x, 1) = xFk−1(x, 1) +
12 + 3(k2 − 5k + 2)x− k(2k − 7)(k − 1)x2

6

∑
n>0

Sn,kx
n

with F0(x, 1) = 0. Thus, the exponential generating function Ek(x) satisfies,

Ek(x) = k

∫ x

0

Ek(t)dt+

∫ x

0

Ek−1(t)dt+
2(ex − 1)k

k!

+
k2 − 5k + 2

2

∫ x

0

(et − 1)k

k!
dt− k(2k − 7)(k − 1)

6

∫ x

0

∫ t

0

(er − 1)k

k!
drdt

with E0(x) = 0. Hence,

d2

dx2
Ek(x) = k

d

dx
Ek(x) +

d

dx
Ek−1(x) +

2ex(ex − 1)k−2(kex − 1)

(k − 1)!

+
k2 − 5k + 2

2

(ex − 1)k−1ex

(k − 1)!
− k(2k − 7)(k − 1)

6

(ex − 1)k

k!

Define E(x, y) =
∑

k>0Ek(x)yk. By multiplying by yk, and summing over k > 1, we
obtain

∂2

∂x2
E(x, y) = y

∂2

∂x∂y
E(x, y) + y

∂

∂x
E(x, y)

+
1

6
y(y2e3x + 9ye2x + 3(2− y2)ex + 2y2 + 3y)ey(e

x−1).

Solving this partial differential equation under the condition ∂
∂x
E(x, y) |x=0= 2y, we obtain

the following result.

Theorem 4. The exponential generating function E(x, y) for the total of the half of the
perimeter over all set partitions of [n] with exactly k blocks is given by

y

36

∫ x

0

((6t− 5)y2e3t + 9(6t+ 1)ye2t + 9(y2 + 4t+ 8)et − y(4y + 9))eye
t−ydt.
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By Theorem 4 we have

∂

∂x
E(x, y)

=
y

36
((6x− 5)y2e3x + 9(6x+ 1)ye2x + 9(y2 + 4x+ 8)ex − y(4y + 9))eye

x−y

=
6x− 5

36

∂3

∂x3
eye

x−y +
3x+ 2

3

∂2

∂x2
eye

x−y +
9y2 − 6x+ 53

36

∂

∂x
eye

x−y − 4y3 + 9y2

36
eye

x−y.

By comparing the coefficient of xnyk/n! in both sides, we get the following formula.

Corollary 5. The total of the half of the perimeter over all set partitions of [n+ 1] with
exactly k blocks is given by

n+ 4

6
Sn+2,k −

5

36
Sn+3,k +

36n+ 53

36
Sn+1,k

+
1

4
Sn+1,k−2 −

n

6
Sn,k −

1

9
Sn,k−3 −

1

4
Sn,k−2,

and the total of the half of the perimeter over all set partitions of [n+ 1] is given by

n+ 4

6
Bn+2 −

5

36
Bn+3 +

18n+ 31

18
Bn+1 −

6n+ 13

36
Bn,

where Sn,k denotes the Stirling number of the second kind and Bn denotes the nth Bell
number.

3 The site-perimeter of set partitions

Let Qk(x, q) =
∑

n>k

∑
π∈Pn,k

xnqsper(π) be the generating function for the number of set
partitions of n with k blocks according to the site-perimeter. Generally, let

Qk(x, q|a1a2 · · · as) =
∑
n>k

∑
π=π′a1a2···as∈Pn,k

xnqsper(π)

be the generating function for the number of set partition π = π′a1a2 · · · as of n with k
blocks according to the site-perimeter. We define Q0(x, q) = 1. Since each set partition
with one block has the form 11 · · · 1, we have

Q1(x, q) =
xq4

1− xq2
.

Since each set partition with two blocks has either the form 11 · · · 12π′2 or the form
11 · · · 12π′1, where π′ is a word over alphabet {1, 2}, we obtain

Q2(x) =
q7x2

1− 2q2x
+

(
q6x2

1− 2q2x
− q6x2

1− q2x

)
=

q7x2(1 + qx− q2x)

(1− 2q2x)(1− q2x)
.
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Clearly, Qk(x, q) =
∑k

a=1Qk(x, q|a) and Qk(x, q|a) =
∑k

b=1Qk(x, q|ba) for all 1 6 a 6
k − 1. By the definitions we have

Qk(x, q|a) =
a−1∑
b=1

Qk(x, q|ba) + xq2Qk(x, q|a) + xq
k∑

b=a+1

Qk(x, q|b), (6)

Qk(x, q|ba) = xq2a−2b+1

b∑
c=1

Qk(x, q|cb) + x
a∑

c=b+1

q2a−b−c+2Qk(x, q|cb)

+ x

k∑
c=a+1

qa−b+2Qk(x, q|cb), (7)

where 1 6 b 6 a− 1 and 1 6 a 6 k − 1. Moreover,

Qk(x, q|k) =
k−1∑
b=1

Qk(x, q|bk) + xq2Qk(x, q|k), (8)

Qk(x, q|bk) = xq2k−2b+1

b∑
c=1

(Qk(x, q|cb) +Qk−1(x, q|cb))

+ x
k−1∑
c=b+1

q2k−b−c+2(Qk(x, q|cb) +Qk−1(x, q|cb)) + xqk−b+2Qk(x, q|kb), (9)

where 1 6 b 6 k − 1.
Our goal is to find a recurrence relation for the generating function

Q′k(x) =
∂

∂q
Qk(x, q) |q=1 .

To do that, let Hk(x) = xk∏k
j=1(1−jx)

to be the generating function for the number of set

partitions of n with exactly k blocks (see [12]). Clearly,

Qk(x, 1|a) = xHk(x), a = 1, 2, . . . , k − 1, (10)

Qk(x, 1|k) = xHk−1(x) + xHk(x). (11)

Define Q′k(x|a) = ∂
∂q
Qk(x, q|a) |q=1 and Q′k(x|ba) = ∂

∂q
Qk(x, q|ba) |q=1. Differentiating

(6)-(7) at q = 1 gives

Q′k(x|a) =
a−1∑
b=1

Q′k(x|ba) + xQk(x, 1|a) + x
k∑
b=a

Qk(x, 1|b) + x
k∑
b=a

Q′k(x|b),

Q′k(x|ba) = x(2a− 2b+ 1)
b∑
c=1

Qk(x, 1|cb) + x
a∑

c=b+1

(2a− b− c+ 2)Qk(x, 1|cb)

+ x

k∑
c=a+1

(a− b+ 2)Qk(x, 1|cb) + x

k∑
c=1

Q′k(x|cb),
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where 1 6 b 6 a− 1 and 1 6 a 6 k − 1. Thus, by (10)-(11), we have

Q′k(x|ba) =
x2((a2 − b2 − a− b)x+ 2a− 2b+ 4)

2
Hk(x) + xQ′k(x|b),

which, by substituting into Q′k(x|a) and using (10)-(11), implies

Q′k(x|a) =
a−1∑
b=1

x2((a2 − b2 − a− b)x+ 2a− 2b+ 4)

2
Hk(x)

+ (k − a+ 2)x2Hk(x) + x2Hk−1(x) + xQ′k(x),

for all a = 1, 2, . . . , k − 1. Therefore, by summing over a = 1, 2, . . . , k − 1 we obtain

Q′k(x) =
1

12
x(k − 1)(k(k − 2)(k − 3)x2 + 2k(k + 1)x+ 12)Hk(x)

+Q′k(x|k) + (k − 1)xQ′k(x). (12)

Now, we focus on Q′k(x|k). By differentiating (8)-(9), we have

Q′k(x|k) =
k−1∑
b=1

Q′k(x|bk) + 2xQk(x, 1|k) + xQ′k(x|k),

Q′k(x|bk) = x(2k − 2b+ 1)
b∑
c=1

(Qk(x, 1|cb) +Qk−1(x, 1|cb))

+ x
k−1∑
c=b+1

(2k − b− c+ 2)(Qk(x, 1|cb) +Qk−1(x, 1|cb))

+ x(k − b+ 2)Qk(x, 1|kb) + xQ′k(x|b) + xQ′k−1(x|b),

where 1 6 b 6 k − 1. Thus, by substituting expression of Q′k(x|bk) into expression of
Q′k(x|k) with using (10)-(11), we obtain

Q′k(x|k) =
1

6
(2k(k − 2)(k − 4)x2 + 3(k2 − k − 4)x+ 18)(1− (k − 1)x)Hk(x)

+ xQ′k(x) + xQ′k−1(x). (13)

By substituting (13) into (12), we obtain that the generating function Q′k(x) satisfies

Q′k(x) =
36 + 6k(k − 5)x− 12(k2 − 4k + 2)x2 − k(k − 1)(k − 2)(3k − 13)x3

12(1− kx)
Hk(x)

+
x

1− kx
Q′k−1(x), (14)

for all k > 3. Note that Q′0(x) = 0, Q′1(x) = 2(2−x)
(1−x)2 and Q′2(x) = x2(7−16x+9x2−2x3)

(1−2x)2(1−x)2 . By

(14), we can introduce first values of the total of the site-perimeter over all set partitions
of [n] with k blocks, see Table 1.
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k\n 1 2 3 4 5 6 7

1 4 6 8 10 12 14 16
2 0 7 26 74 188 450 1040
3 0 0 10 71 345 1426 5398
4 0 0 0 13 151 1122 6816
5 0 0 0 0 16 276 2915

Table 1: The total of the site-perimeter over all set partitions of [n] with k blocks, where
n = 1, 2, . . . , 7 and k = 1, 2, . . . , 5.

To study further the total of the site-perimeter over all set partitions of [n], we consider
the exponential generating function Rk(x) =

∑
n>0[x

n](Q′k(x))x
n

n!
. By (14), we have

(1− kx)Q′k(x)

=

(
3 +

1

2
k(k − 5)x− (k2 − 4k + 2)x2 − 1

12
k(k − 1)(k − 2)(3k − 13)x3

)∑
n>k

Sn,kx
n

+ xQ′k−1(x)

with Q′0(x) = 0, Q′1(x) = 2(2−x)
(1−x)2 and Q′2(x) = x2(7−16x+9x2−2x3)

(1−2x)2(1−x)2 . Note that Hk(x) =
xk∏k

j=1(1−jx)
=
∑

n>0 Sn,kx
n and 1

k!
(ex − 1)k =

∑
n>0 Sn,k

xn

n!
, where Sn,k denotes the Stirling

number of the second kind (for example, see [12]). Thus, the exponential generating
function Rk(x) satisfies,

Rk(x) = k

∫ x

0

Rk(t)dt+

∫ x

0

Rk−1(t)dt+ 3
(ex − 1)k

k!

+
1

2
k(k − 5)

∫ x

0

(et − 1)k

k!
dt− (k2 − 4k + 2)

∫ x

0

∫ t

0

(er − 1)k

k!
drdt

− 1

12
k(k − 1)(k − 2)(3k − 13)

∫ x

0

∫ t

0

∫ r

0

(es − 1)k

k!
dsdrdt,

which is equivalent to

d3

dx3
Rk(x) = k

d2

dx2
Rk(x) +

d2

dx2
Rk−1(x) + 3

d3

dx3
(ex − 1)k

k!

+
1

2
k(k − 5)

d2

dx2
(ex − 1)k

k!
− (k2 − 4k + 2)

d

dx

(ex − 1)k

k!

− 1

12
k(k − 1)(k − 2)(3k − 13)

(ex − 1)k

k!

with R0(x) = 0, R1(x) = 2xex + 2ex − 2 and R2(x) = 3
4
− x

2
− 2(1 + x)ex + (2x+ 5

4
)e2x.
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Define R(x, y) =
∑

k>0Rk(x)yk. Multiplying by yk and summing over k > 3 gives

∂3

∂x3
R(x, y)− y ∂

2

∂x2
R(x, y)− y ∂3

∂x2y
R(x, y)

=
y(−y2(3y + 4) + (12y3 + 6y2 + 24)ex − 12y(y2 − 6)e2x + 34y2e3x + 3y3e4x)ey(e

x−1)

12

By solving for ∂2

∂x2
R(x, y), we obtain the following result.

Theorem 6. The exponential generating function R(x, y) for the total of the site-peri-
meter over all set partitions of [n] with exactly k blocks satisfies

∂2

∂x2
R(x, y) =

y

144
ey(e

x−1)
(
y2(9y + 16)− 12(4y3 + 3y2 − 24x− 72)ex

+ 72y(y2 + 12x+ 14)e2x + 4y2(102x+ 5)e3x + 3y3(12x− 11)e4x
)
.

By Theorem 6, we have

∂2

∂x2
R(x, y) =

(
x

4
− 11

48

)
∂4

∂x4
ey(e

x−1) +

(
4x

3
+

109

72

)
∂3

∂x3
ey(e

x−1)

+

(
y2

2
+
x

4
+

65

16

)
∂2

∂x2
ey(e

x−1) +

(
−y

3

3
− 3y2

4
+
x

6
+

47

72

)
∂

∂x
ey(e

x−1)

+

(
y4

16
+
y3

9

)
ey(e

x−1).

By comparing the coefficient of xnyk/n! in both sides, we get the following formula.

Corollary 7. The total of the site-perimeter over all set partitions of [n+ 2] with exactly
k blocks is given by(

n

4
+

109

72

)
Sn+3,k −

11

48
Sn+4,k +

(
4n

3
+

65

16

)
Sn+2,k +

1

2
Sn+2,k−2 +

(
n

4
+

47

72

)
Sn+1,k

− 1

3
Sn+1,k−3 −

3

4
Sn+1,k−2 +

n

6
Sn,k +

1

16
Sn,k−4 +

1

9
Sn,k−3,

and the total of the site-perimeter over all set partitions of [n+ 2] is given by(
n

4
+

109

72

)
Bn+3 −

11

48
Bn+4 +

(
4n

3
+

73

16

)
Bn+2 +

(
n

4
− 31

72

)
Bn+1 +

(
n

6
+

25

144

)
Bn,

where Sn,k denotes the Stirling number of the second kind and Bn denotes the nth Bell
number.
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Remark 8. Based on this work, we realized that there is a typo in the statement of
Corollary 2.6 in [13]. More precisely, by (1) we have that, asymptotically, the total
number of interior vertices (a vertex in B is called an interior vertex if it is adjacent to
exactly four different cells of bargraph B) in set partitions of [n+ 1]is given by

n2Bn+1

3(log(n)− log log n)

(
1− 1

3(log n− log log n)

)(
1 +O

(
log n

n

))
.

We end the paper by emphasizing that all the above results have been compared with
exact enumerations.
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