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Abstract

In this paper, we study the generating function for the number of set partitions
of [n] represented as bargraphs according to the perimeter/site-perimeter. In par-
ticular, we find explicit formulas for the total perimeter and the total site-perimeter
over all set partitions of [n].

Mathematics Subject Classifications: 05A18

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called
parts, whose sum is n. A composition is a partition in which the parts may come in
any order, as originally defined by MacMahon [11]. Compositions can be represented as
bargraphs. A bargraph is a column convex polyomino such that the lower edge lies on a
horizontal axis, when it is drawn on a regular planar lattice grid and is made up of square
cells. Clearly, the number parts and the size of a composition is the number columns
and the total number of cells in the representing bargraph, respectively. For instance,
Figure 1 presents the bargraph 122341411. Recently, statistics on bargraphs have been

Figure 1: The bargraph 122341411

received a lot of attention. For instance, in [10, 17] it is found the generating function for
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the number of bargraphs according to the number of horizontal and up steps. In [14] it
is studied the generating function for the number of bargraphs according to the number
of interior vertices and edges. Moreover, Blecher et al. counted bargraphs according to
statistics: descents [3], levels [1], peaks [2] and walls [4].

The enumeration of polyominoes according to their area and perimeter is an interest-
ing problem in combinatorics [7, 9]. When one studies combinatorial families presented
geometrically, the perimeter and the area are the most natural and most important statis-
tics to be considered. The perimeter of a bargraph B, denoted by per(B), is the number
of edges on the boundary of B. The site-perimeter of a bargraph B, denoted by sper(B),
is the number of nearest-neighbor cells outside the boundary of B. The perimeter and
the site perimeter of words were studied in [5] and [6], respectively. Motivated by these
results, we extend the study of perimeter/site-perimeter to set partitions.

A set partition of [n] is any collection of nonempty, pairwise disjoint subsets, called
blocks, whose union is [n] (there is a single empty set partition of [0] which has no blocks).
We denote the set of all set partitions of [n] by P(n) and the set of all set partitions
of [n] with & blocks by P(n,k). We will write a set partition 7 € P(n,k) as 7 =
By/By/ - /By, where min(B;) < min(Bs) < --- < min(By). Equivalently, we will write
a set partition by the canonical sequential form m = mymy - - - m,, wherein i € By, for i € [n]
(see, e.g., [12, 19]). For example, the set partition 7 = {1,4,8,9}/{2,3}/{5}/{6, 7} has
the canonical sequential form 7= = 122134411. We will represent each set partition 7 by
the corresponding bargraph of the canonical sequential form of 7. For instance, Figure
1 represents the bargraph of 7 = {1,6,8,9}/{2,3}/{4}/{5,7}. Recently, statistics on
bargraphs of set partitions have been investigated by several authors (see, e.g., [13, 15,
16]).

The aim of this paper is to study the perimeter (see Section 2) and the site-perimeter
(see Section 3) of set partitions. For example, the perimeter and the site-perimeter of the
set partition 122341411 are 32 and 24, respectively. In particular, we show that the total
of the half of the perimeter over all set partitions of [n] is given by (see Corollary 5)

n+3 5 187 + 13 6n + 7
“ T R T 36 !

and the total of the site-perimeter over all set partitions of [n] is given by (see Corollary

7)
n 73 11 4n 91 n 67
b, = (Z + i) By — 4_SBT'L+2 + (? + @) B, + (Z — i) Bn_1

n 23
— -~ ) B,
+<6 144> e

where B,, is the nth Bell number.
In order to obtain asymptotic estimates for the moments as well as the limiting dis-

tribution, we need
h)! 1
B, — B, nt M (1 L0 ( Og”)) (1)

nlrh n
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uniformly for h = O(logn), where B, is the nth Bell number and r is the positive root

of re" = n+ 1. See [8] for an even stronger form that includes further terms in the

asymptotic expansion. We say that the sequence f, is asymptotically equivalent to the
In

sequence g,, denoted by f, ~ g, if lim,,_, o= 1. So,

Qp, n+3 Bn+1 E Bn+2 18n + 13 _ 6n + 7 Bn—l

B. 6 B, 36 B, 18 36 B,
n+3Bn+1 5} Bn+2

~7%6 B, 36 B,
and
b_n 36n + 146 B, B EBHQ n 192n + 273 B 36m — 134 B,,_; n 24n — 23 B,,_»
B, 144 B, 144 B, 144 144 B, 144 B,

36n + 146 Bn+1 _ EBTL-‘FQ
144 B, 144 B, '

which, by (1), leads to the following corollary.

Corollary 1. Asymptotically,

n’B, 5 logn
L= 1— 1+0
¢ 6(log(n) — loglogn) < 6(logn — loglog n)) ( * ( n ))

n’B, 11 logn
b, = 12 — 1 .
" 48(log(n) — loglogn) < logn — log logn> ( 0 < n ))

2 The perimeter of set partitions

and

Let Py(7,q) = > sk ZwePn,k 2"q2P (™ be the generating function for the number of set
partitions of n with exactly k blocks, according to the half of the perimeter. Generally,
let Py(z,qlarag---as) =, -, Zﬂ:ﬂ,GWQ__asepn . x”q%pe’"(”) be the generating function for
the number of set partitions 7 = 7’ajas - - - a, of n with exactly k blocks, according to the
half of the perimeter. We define Py(x,q) = 1. Since each set partition with one block has

the form 11---1, we have Py(z,q) = laf]jq. By definitions we have

k a k
Pi(z,qla) = Pz, qlba) =2y ¢ " Pi(x,qlb) + z¢ Y Pulz.qlb), (2

b=1 b=1 b=a+1

for all 1 <a < k— 1. Moreover,

k k1
Py, qlk) =z qufbﬂpk(w: qlb) + qufbﬂpkfl(x: qlb). (3)
b=1 b=1
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Define Py(z,q,v) = S.°_, Pu(x,qla)v®!. Then (2)-(3) can be written as

Pe(, q,v) = Pe(x, gl + —

T g 1Pk 0. 0) - ¢“v* " P(r,q,1/q))

X
+ %(P]AJZ,Q, 1) - Pk(*ra(LU»

with
Py(x,q|k) = 2¢" Pi(z,q,1/q) + 2¢* Pi_1(2, 4, 1/q).

Thus, we can state the following result.

Proposition 2. We have

X
Pi(w,¢,0) = 2¢"v* " P (0, 1/9) + 5 _qu(Pk(:v, q,v) — """ Pi(x,q,1/q))
Xz
+ —q(Pk(xa q, 1) - Pk(ma Q7U))

1—w

with Py(z,q,v) = 2

l—xq”

Proposition 2 with ¢ = 1 gives Py(z,1,v) = a0 1P,y (2, 1,1) + QE(%ZIC)P;C(L 1,1) with
Py(x,1,v) = ;%= If we take v — 1, then we obtain Py(v,1,1) = 7= Pr—1(z,1,1) with

11—z

1,1) = %, which leads to P(x,1,1) = as expected. Thus, for all

zk
(1—z)--(1—kx)’

oF (0P 1 — ) (1 — k) + 2(1 — b))
(1—v)(1—2) - (1—kx) ' )

Pi(x,1,v) =

Define Fy(z,v) = a%Pk(a:, q,v) g=1 and Gy(z,v) = £ Pi(z,1,v). By Proposition 2, we

have

Fi(z,v) = k‘:wk_lPk_l(a:, 1,1) + 2" F_ (, 1) — 2" 1 Gy (2, 1)
T

+ m(Pk(x, 1,v) — 0" Py(z,1,1))
+ %(Fm, v) — kv* Pe(x,1,1) = 0" Fy(x, 1) + 0" G (2, 1))
+ &(Pk(:c, 1,1) = Pu(z,1,0)) + ﬁ—U(Fk(xv 1) = Fi(z,v))
with Fy(z,v) = {25 Thus, by using (4) and taking v — 1, we obtain
ot = i+ (12 4 3(/4; - sik;)zgk— Z@—k —Nk=Da)
joi(l—jz)

with Fy(z,1) = 0. Thus by induction, we can state the following result.
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Theorem 3. The generating function Fy(x,1) for the total of the half of the perimeter
over all set partitions of [n] with exactly k blocks is given by

z’“: 12 + 3(i2 — 5i + 2)x — i(i — 1)(2i — 7)a?
6HJ 1( i=1 1 -

In order to study further the total of the half of the perimeter over all set partitions

of [n], we consider the exponential generating function Ey(x) = Y, _ola"](Fi(z, 1)),

where [2"]f(x) denotes the coefficient of 2™ in the generating function f(z). Note that
k

m = D o S and %(ex — 1)k = > ns0 Sk, Where S, ;. denotes the Stirling

number of the second kind (for example, see [12]). So, by (5), we have

12+ 3(k* — 5k + 2)x — k(2k — 7)(
+3(k2 = 5k + 2)a — k( 2 S,

(1 —kx)Fy(z,1) = vFpq(x, 1) + 6

n=0
with Fy(z,1) = 0. Thus, the exponential generating function Ejy(x) satisfies,

Ey(z) Zk/oxEk(t)dtJr/OxEk W[t )dt+2(exk——1)k

2 T (bt k _ —
Lk 5k:+2/ ("= 1)F,  k(2k— 7 1) // er 1 (=1t

with Ey(z) = 0. Hence,

d? d d 2e%(e® — 1)k2(ke® — 1)
LB Bk~ D k@R = T)(k— 1) (¢ - 1}
2 (k—1)! 6 k!

Define E(x,y) = > -0 Ey(z)y*. By multiplying by %*, and summing over k > 1, we
obtain

0? 0? 0
3 E@y) =Yz 39 E(z,y) +y5-E(z,y)

1 .
+ sy e 4+ 9ye™ + 3(2 = y7)e” + 2% 4 By)er Y.

Solving this partial differential equation under the condition %E (,9) |z=0= 2y, we obtain
the following result.

Theorem 4. The exponential generating function E(x,y) for the total of the half of the
perimeter over all set partitions of [n] with exactly k blocks is given by

% ((6t — 5)y2e® + 9(6t + 1)ye* + 9(y> 4 4t + 8)e! — y(4y + 9))ev* ~¥dt.
0
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By Theorem 4 we have

0
—F
e (z,y)
= (6 — S 4+ 9(6m + e + (57 + -+ B)e” — y(dy + )
3 2 2 3 2
6050 e, 30420 o 9P 60530 e, AP0 .,
36 Oz 3 0x2 36 Ox 36

By comparing the coefficient of 2"y* /n! in both sides, we get the following formula.

Corollary 5. The total of the half of the perimeter over all set partitions of [n + 1] with
exactly k blocks is given by

n+4 5 36n + 53
6 Sntak — %SnJrS,k + 3—65n+1,k
1 n 1 1
+ ZLSn—i-l,k—2 - gsn,k - §Sn,k—3 - an,k‘—Qa

and the total of the half of the perimeter over all set partitions of [n + 1] is given by

n+4 5 18n + 31 6n + 13
Bpio— —Bpis+ ——2p ., ——"“p
6 27 3P T g 1 36

where S, denotes the Stirling number of the second kind and B, denotes the nth Bell
number.

3 The site-perimeter of set partitions

Let Qr(7,q) = > o1 D rep, . 2"q°*"(™) be the generating function for the number of set
partitions of n with k blocks according to the site-perimeter. Generally, let

Qk(l’, q|a1a2 o as) = Z Z ansper(w)

nzk m=n'aiaz--as€P, i

be the generating function for the number of set partition 7 = 7’ajas - - - as of n with k
blocks according to the site-perimeter. We define Qo(z,q) = 1. Since each set partition
with one block has the form 11---1, we have

Iq4

1 —xq?

Ql(%Q) =

Since each set partition with two blocks has either the form 11---127'2 or the form
11---127'1, where 7’ is a word over alphabet {1,2}, we obtain

Ta? o - #2221+ gz — *x)
11— 2¢%x 1-2¢22 1—q¢*x) (1—2¢%7)(1—¢?x)’

Qa(z)
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Clearly, Qx(z,q) = 22:1 Qr(x,gla) and Q(x,qla) = Zlgzl Qr(x,qlba) for all 1 < a <
k — 1. By the definitions we have

(, qla) ZQk 7, qlba) + 1¢°Qx(z, qla) + xq Z Qk(, q|b), (6)

b=1 b=a+1

b a
Qulz, alba) = 2g* S Qu(wgleb) + 3 3 ¢ Qu(w, glch)

c=1 c=b+1
k
+2 Y " Qk(w, glch), (7)
c=a+1

where 1 <b<a—1and 1 <a<k—1. Moreover,

k-1
Qu(, qlk) = Qulw, qlbk) + 2¢°Qu(x, g|k), (8)
b—1
b
Qi(x, q|bk) = 2¢”* " "(Qr(x, qlcb) + Qu—1(z, qlcb))
c=1

k-1
+x Z " (Qu(, qlcb) + Qr—i(w, gleb)) + 2¢" 2 Qu(x, glkb),  (9)

c=b+1

where 1 < b < k—1.
Our goal is to find a recurrence relation for the generating function

0
Q) = 8—qQk(9€7Q) lg=1 -

k

To do that, let Hi(z) = m to be the generating function for the number of set
partitions of n with exactly & blocks (see [12]). Clearly,
Qr(x,1|a) = xHi(x), a=1,2,...,k—1, (10)
Qr(z, 1|k) = zHp_1(x) + v Hy(x). (11)

Define Q) (z|a) = (_%Qk(x,q\a) li=1 and Q).(z|ba) = %Qk(x,qﬂm) l;=1. Differentiating
(6)-(7) at g = 1 gives

k
Qi (z]a) Z%MM+WMH+%Z@JW) z Y Qi)
b=a
b a
Qi(xlba) = (20 — 26+ 1) Y Qu(x, 1]cb) + 2 Y (20— b— ¢ + 2)Qu(w, 1|cb)
c=1 c=b+1

k k
+2 Y (a—b+2)Qu(, 1|ch) + 2> Q(w[ch),

c=a+1 c=1
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where 1 <b<a—1and1<a<k—1. Thus, by (10)-(11), we have

2?((a* = bv* —a—b)x +2a — 20+ 4)
2

Qy(x|ba) = Hy,(x) + 2Qp (x[b),

which, by substituting into @Q}.(z|a) and using (10)-(11), implies

a—l o2 g2 _
Q(zla) = Z z*((a®* = b*—a 2b)x +2a —2b+4) Hy(x)
b=1

+ (k—a+2)x*Hy(z) + 2° Hy,_1(2) + 2Q)(2),

forall a =1,2,...,k — 1. Therefore, by summing over a = 1,2,...,k — 1 we obtain

= il — 1)(k(k — 2)(k — 3)a + 2h(k + 1)z + 12) ()

+ Qp(z[k) + (k — D@y (z). (12)

Now, we focus on @} (z|k). By differentiating (8)-(9), we have

Qi ()

k—1

Qi(lk) =Y Qi [bk) + 22Qx(w, 1[k) + 2Q) (x[k),
b=1
b
Q(w[bk) = x(2k — 20+ 1) Y _(Qr(x, L|cb) + Qr1(x, 1|cb))
k—1 -
+a Y (2k = b—c+2)(Qulz, 1[cb) + Qi (w, 1|cd))
c=b+1

+x(k — b+ 2)Qx(z, 11kb) + 2@} (z|b) + xQ}_, (2]b),
where 1 < b < k — 1. Thus, by substituting expression of Q) (z|bk) into expression of
Q). (z|k) with using (10)-(11), we obtain
Q. (z]k) = é(%(k —2)(k —4)2* + 3(k* — k — 4)x + 18)(1 — (k — 1)) Hy(z)
+2Qy(7) + 2@} (2). (13)
By substituting (13) into (12), we obtain that the generating function @} (x) satisfies

36+ 6k(k — 5)r — 12(k2 — 4k + 2)2? — k(k — 1)(k — 2)(3k — 13)2

Qhlz) = 12(1 — ka) Hi(x)

Qp—1(2), (14)

X

+1—k$

—Z 172 —10x 272— .TS
for all £ > 3. Note that Q)(z) = 0, Q}(x) = % and Q4(x) = ((71_126w)§?1_m)22 ) By
(14), we can introduce first values of the total of the site-perimeter over all set partitions
of [n] with k blocks, see Table 1.
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K\nll 2 3 4 5 6 7
1 46 8 10 12 14 16
2 |0 7 26 74 188 450 1040
3 10 0 10 71 345 1426 5398
4 /0 0 0 13 151 1122 6816
5 |00 0 0 16 276 2915

Table 1: The total of the site-perimeter over all set partitions of [n] with k blocks, where
n=12,....,7and k=1,2,...,5.

To study further the total of the site-perimeter over all set partitions of [n], we consider
the exponential generating function Ry (z) = 3, _o[z"](Q}())%;. By (14), we have

(1 - kz)Qy ()
1 ) , 1
= <3+§k;(k;—5)x— (K = ak + 202> = Zk(k = 1)(k = 2)(3k — 13)a )ankx

n=k

+ Q) (x)

with Q4(z) = 0, Q}(x) = 1 ;2 and Q4(x) = 211601927 20%)  Note that Hi(x) =

(1—22)2(1—=z)2
k

m = Z@o Sprx™ and k!( — 1)k = =D 0 Sn,k%, where S, denotes the Stirling

number of the second kind (for example, see [12]). Thus, the exponential generating
function Ry(x) satisfies,

Ru(z) :k/ox Rk(t)dtJr/Ox Rkl(t)dt+3(e$k+1)k

T (Lt _ 1\k z ot (or _ 1\k
+ - 5)/ (Glnlt) SR 2)/ / =
2 o K o Jo K

1 T t pr (68 _ 1)k
— okl = 1)(k = 2)(3k - 13)/0 /O /0 Sy dsdrdt,

which is equivalent to

d3 d2 d2 d3 (ex o 1)k
1 d? (e® —1)* d (e* — 1)
Tohlh =0T Ak 2
1 (e* — 1)k
— (k= (k= 2)(3k — 13)—-——

with Ro(z) =0, Ri(z) = 2ze” + 2¢” — 2 and Ry(x) = 2 — £ — 2(1 + z)e” + (2z + 2)e?
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Define R(z,y) = > .- Ry(z)y*. Multiplying by 4* and summing over k > 3 gives

o 0 ok

—R —y=5R - R

53 @ Y) — Y5 R(@,y) —y 9y (z,y)

~ y(—=y2By 4+ 4) 4 (12¢° + 6% + 24)e” — 12y(y? — 6)e* + 34y2e®® 4 3yPe) ey« D)
B 12

By solving for ;—;R(x, y), we obtain the following result.

Theorem 6. The exponential generating function R(x,y) for the total of the site-peri-
meter over all set partitions of [n] with exactly k blocks satisfies

82

5 R(r.y) = ﬁey@’—” (y2(9y +16) — 12(4y® + 3y> — 24z — 72)e"

+ 72y (y* + 127 + 14)e** + 4y*(102z + 5)e** + 3y° (127 — 11)e4$> :

By Theorem 6, we have

o2 z 11\ o iz 109\ &
— R — [ Z =) Iyl 20 T (et =)
g2 ) (4 48) 0t * 3T ) ase

2 2 3 2
Yy 00N O ey, (LY 3w AT O e
+<2+4+16)8x26 Ty a st et

4 3
Y LY\ uer-n
+(16+ 9)6 .

By comparing the coefficient of 2"y* /n! in both sides, we get the following formula.

Corollary 7. The total of the site-perimeter over all set partitions of [n + 2] with exactly
k blocks is given by

n 109 11 4n 65 1 n 47
<Z + ﬁ) Sntsk — @Snﬂ,k + <§ + 1_6> Snt2k + §Sn+2,k72 + (Z + E) Snt1,k
1

1 3

n 1
- _Sn -3 = T+n — _Sn _Sn — _Sn -3
3On k=3 T yont Lk 2+6 ,k+16 k 4+9 k-3

and the total of the site-perimeter over all set partitions of [n + 2] is given by

n 109 11 dn 73 n 31 n 25
—+ — | B,.3— —B —+— | B - ——|B —+— B
(4 N 72> IR ( 3" 16) nt2 ¥ (4 72) w1 ¥ (6 * 144) "
where S, denotes the Stirling number of the second kind and B, denotes the nth Bell
number.
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Remark 8. Based on this work, we realized that there is a typo in the statement of
Corollary 2.6 in [13]. More precisely, by (1) we have that, asymptotically, the total
number of interior vertices (a vertex in B is called an interior vertex if it is adjacent to
exactly four different cells of bargraph B) in set partitions of [n + 1]is given by

2
n°Bpi1 1 1 140 logn .
3(log(n) — loglogn) 3(logn — loglogn) n

We end the paper by emphasizing that all the above results have been compared with
exact enumerations.
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