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Abstract

We describe an involution on Tamari intervals and m-Tamari intervals. This
involution switches two sets of statistics known as the “rises” and the “contacts”
and so proves an open conjecture from Préville-Ratelle on intervals of the m-Tamari
lattice.

Mathematics Subject Classifications: 05A19, 05E99

1 Introduction

The Tamari lattice [Tam62, HT72] is a well known lattice on Catalan objects, most fre-
quently described on binary trees, Dyck paths, and triangulations of a polygon. Among
its many interesting combinatorial properties, we find the study of its intervals. Indeed,
it was shown by Chapoton [Cha07] that the number of intervals of the Tamari lattice on
objects of size n is given by

2

n(n+ 1)

(
4n+ 1

n− 1

)
. (1.1)

This is a surprising result. Indeed, it is not common that we find a closed formula
counting intervals in a lattice. For example, there is no such formula to count the intervals
of the weak order on permutations. Even more surprising is that this formula also counts
the number of simple rooted triangular maps, which led Bernardi and Bonichon to describe
a bijection between Tamari intervals and said maps [BB09]. This is a strong indication
that Tamari intervals have deep and interesting combinatorial properties.

One generalization of the Tamari lattice is to describe it on m-Catalan objects. This
was done by Bergeron and Préville-Ratelle [BPR12]. Again, they conjectured that the
number of intervals could be counted by a closed formula, which was later proved in
[BMFPR11]:
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m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

)
. (1.2)

In this case, the connection to maps is still an open question. The rich combinatorics of
Tamari intervals and their generalizations has led to a surge of effort in their study. This
is motivated by their connections with various subjects such as algebra, representation
theory, maps, and more. For example, in [Rog18], the author motivates the study of some
subfamilies of intervals by connections to operads theory as well as path algebras. Another
fundamental example is the work of Begeron and Préville-Ratelle on diagonal harmonic
polynomials [BPR12] which has led to the study of m-Tamari lattices and more recently
generalized Tamari lattices [PX15, FPR17]. The relation to maps, and more specifically
Schnyder woods [BB09] is a motivation for studying the relation between Tamari intervals
and certain types of decorated trees (see for example [CFLM18] and [Fan18]). A by-
product of our paper is to introduce a new family of trees, the grafting trees, which are
very close to these decorated trees. In fact, they are in bijection with (1, 1) decoration
trees of [CS03].

The goal of the present paper is to prove a certain equi-distribution of statistics on
Tamari intervals related to contacts and rises of the involved Dyck paths. This was first
noticed in [BMFPR11]. At this stage, the equi-distribution could be seen directly on
the generating function of the intervals but there was no combinatorial explanation. In
his thesis [PR12], Préville-Ratelle developed the subject and left some open problems
and conjectures. The one related to the contacts and rises of Tamari intervals is Conjec-
ture 17, which we propose to prove in this paper. It describes an equi-distribution not only
between two statistics (as in [BMFPR11]) but between two sets of statistics. Basically,
in [BMFPR11], only the initial rise of a Dyck path was considered, whereas in Conjec-
ture 17, Préville-Ratelle considers all positive rises of the Dyck path. Besides, a third
statistic is described, the distance, which also appears in many other open conjectures
and problems of Préville-Ratelle ’s thesis: it is related to trivariate diagonal harmonics,
which is the original motivation of the m-Tamari lattice. According to Préville-Ratelle,
Conjecture 17 can be proved both combinatorially1 and through the generating function
when m = 1. But until now, there was no proof of this result when m > 1.

To prove this conjecture, we use some combinatorial objects that we introduced in
a previous paper on Tamari intervals [CP15]: the interval-posets. They are posets on
integers, satisfying some simple local rules, and are in bijections with the Tamari intervals.
Besides, their structure includes two planar forests (from the two bounds of the Tamari
interval), which are very similar to the Schnyder woods of the triangular planar maps.
Another quality of interval-posets is that m-Tamari intervals are also in bijection with a
sub-family of interval-posets, which was the key to prove the result when m > 1.

Section 2 of this paper gives a proper definition of Tamari interval-posets and re-
explores the link with the Tamari lattice in the context of our problem. In Section 3,
we describe the rise, contact, and distance statistics and their relations to interval-poset
statistics. This allows us to state Theorem 23, which expresses our version of Conjecture 17

1Gilles Schaeffer says that this derives from a natural involution on maps.
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in the case m = 1. Section 4 is dedicated to the proof of Theorem 23 through an involution
on interval-posets described in Theorem 54. However, the main results of our paper lie in
our last section, Section 5, where we are able to generalize the involution to them > 1 case.
Theorem 61 is a direct reformulation of Conjecture 17 from [PR12]. It is a consequence
of Theorem 74, which describes an involution on intervals of the m-Tamari lattice.

Remark 1. A previous version of this involution was described in [CCP14] (extended
abstract). This was only for the m = 1 case and did not include the whole set of statistics.
Also, in this original description, the fact that it was an involution could be proved but was
not clear. We leave it to the curious reader to see that the bijection described in [CCP14]
is indeed the same as the one we are presenting in details now.

Remark 2. This paper comes with a complement SageMath-Jupyter notebook [Pon] avail-
able on github and binder. This notebook contains SageMath code for all computations
and algorithms described in the paper. The binder system allows the reader to run and
edit the notebook online.

2 Tamari Interval-posets

2.1 Definition

Let us first introduce some notations that we will need further on. In the following, if P
is a poset, then we denote by CP , EP , BP and DP the smaller, smaller-or-equal, greater
and greater-or-equal, respectively, relations of the poset P . When the poset P can be
uniquely inferred from the context, we will sometimes leave out the subscript “P”. We
write

rel(P ) = {(x, y) ∈ P, x C y} (2.1)

for the set of relations of P . A relation (x, y) is said to be a cover relation if there is
no z in P such that x C z C y. The Hasse diagram of a poset P is the directed graph
formed by the cover relations of the poset. A poset is traditionally represented by its
Hasse diagram.

We say that we add a relation (i, j) to a poset P when we add (i, j) to rel(P ) along
with all relations obtained by transitivity (this requires that neither i CP j nor j CP i
before the addition). Basically, this means we add an edge to the Hasse Diagram. The
new poset P is then an extension of the original poset.

We now give a first possible definition of interval-posets.

Definition 3. A Tamari interval-poset (simply referred as interval-poset in this paper)
is a poset P on {1, 2, . . . , n} for some n ∈ N, such that all triplets a < b < c in P satisfy
the following property, which we call the Tamari axiom:

• a C c implies b C c;

• c C a implies b C a.

the electronic journal of combinatorics 26(2) (2019), #P2.32 3



Figure 1 shows an example and a counter-example of interval-posets. The first poset
is indeed an interval-poset. The Tamari axiom has to be checked on every a < b < c such
that there is a relation between a and c: we check the axiom on 1 < 2 < 3 and 3 < 4 < 5
and it is satisfied. The second poset of Figure 1 is not an interval poset: it contains 1 C 3
but not 2 C 3 so the Tamari axiom is not satisfied for 1 < 2 < 3.

3

1

2

4 5 2

1

3

Example of interval-poset Example of a poset which
is not an interval-poset

Figure 1: Example and counter-example of interval-poset

Definition 4. Let P be an interval-poset and a, b ∈ P such that a < b. Then

• if a C b, then (a, b) is said to be an increasing relation of P .

• if b C a, then (b, a) is said to be a decreasing relation of P .

As an example, the increasing relations of the interval-poset of Figure 1 are (1, 3) and
(2, 3) and the decreasing relations are (2, 1), (4, 3), and (5, 3). Clearly a relation x C y
is always either increasing or decreasing and so one can split the relations of P into two
non-intersecting sets.

Definition 5. Let P be an interval-poset. Then, the final forest of P , denoted by F>(P ),
is the poset formed by the decreasing relations of P , i.e., b CF>(P ) a if and only if (b, a)
is a decreasing relation of P . Similarly, the initial forest of P , denoted by F6(P ), is the
poset formed by the increasing relations of P .

By Definition 3 it is immediate that the final and initial forests of an interval-poset are
also interval-posets. By extension, we say that an interval-poset containing only decreas-
ing (resp. increasing) relations is a final forest (resp. initial forest). The designation forest
comes from the result proved in [CP15] that an interval-poset containing only increasing
(resp. decreasing) relations has indeed the structure of a planar forest, i.e., every vertex
in the Hasse diagram has at most one outgoing edge.

The increasing and decreasing relations of an interval-poset play a significant role
in the structure and properties of the object. We thus follow the convention described
in [CP15] to draw interval-posets, which differs from the usual representation of posets
through their Hasse diagram. Indeed, each interval-poset is represented with an overlay
of the Hasse Diagrams of both its initial and final forests. By convention, an increasing
relation b C c with b < c is represented in blue with c on the right of b. A decreasing
relation b C a with a < b is represented in red with a above b. In general a relation (either
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increasing or decreasing) between two vertices x C y is always represented such that y
is on a righter and upper position compared to x. Thus, the color code, even though
practical, is not essential to read the figures. Figure 2 shows the final and initial forests
of the interval-poset of Figure 1. A more comprehensive example is shown in Figure
3. Following our conventions, you can read off, for example, that 3 C 4 C 5 and that
9 C 8 C 5.

Hasse diagram of P F>(P ) F6(P ) P drawn as interval-poset
3

1

2

4 5

2

1

4

3

5

1

2

3

4

5

2

1

4

3

5

Figure 2: Final and initial forests of an interval-poset

1

3 4

2

6 7

9

8

5

10

Figure 3: An example of an interval-poset

We also define some vocabulary on the vertices of the interval-posets related to the
initial and final forests.

Definition 6. Let P be an interval-poset. Then

• b is said to be a decreasing root of P if there is no a < b with the decreasing relation
b C a;

• b is said to be an increasing root of P if there is no c > b with the increasing relation
b C c;

• an increasing-cover (resp. decreasing-cover) relation is a cover relation of the initial
(resp. final) forest of P ;

• the decreasing children of b are all elements c > b such that c C b is a decreasing-
cover relation;

• the increasing children of b are all elements a < b such that a C b is an increasing-
cover relation.
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As an example, in Figure 3: the decreasing roots are 1, 2, 5, the increasing roots are
1, 5, 7, 10, there are 7 decreasing-cover relations (red edges) and 6 increasing-cover relations
(blue edges), the decreasing children of 5 are 6, 7, 8, 10 and its increasing children are 2
and 4.

We also need to refine the notion of extension related to increasing and decreasing
relations.

Definition 7. Let I and J be two interval-posets, we say that

• J is an extension of I if for all i, j in I, i CI j implies i CJ j;

• J is a decreasing-extension of I if J is an extension of I and for all i, j such that
i CJ j and i 6I j then i > j;

• J is an increasing-extension of I if J is an extension of I and for all i, j such that
i CJ j and i 6I j then i < j;

In other words, J is an extension of I if it is obtained by adding relations to I, it is
a decreasing-extension if it is obtained by adding only decreasing relations and it is an
increasing-extension if it is obtained by adding only increasing relations.

Remark 8. If you add a decreasing relation (b, a) to an interval-poset I, all extra relations
that are obtained by transitivity are also decreasing. Indeed, suppose that J is obtained
from I by adding the relation b C a with a < b (in particular neither (a, b) nor (b, a) is a
relation of I). And suppose that the relation i CJ j with i < j is added by transitivity,
which means i 6I j, i EI b and a EI j. If i < a, the Tamari axiom on (i, a, b) implies
a CI b, which contradicts our initial statement. So we have a < i < j and a CI j,
the Tamari axiom on (a, i, j) implies i CI j and again contradicts our statement. Note
on the other hand that nothing guarantees that the obtained poset is still an interval-
poset. Similarly, if you add an increasing relation (a, b) to an interval-poset, you obtain
an increasing-extension.

2.2 The Tamari lattice

It was shown in [CP15] that Tamari interval-posets are in bijection with intervals of the
Tamari lattice. The main purpose of this paper is to prove a conjecture of Préville-
Ratelle [PR12] on Tamari intervals. To do so, we first give a detailed description of the
relations between interval-posets and the realizations of the Tamari lattice in terms of
trees and Dyck paths. Let us start with some reminder on the Tamari lattice.

Definition 9. A binary tree is recursively defined by being either

• the empty tree, denoted by ∅,

• a pair of binary trees, respectively called left and right subtrees, grafted on a node.

If L and R are two binary trees, we denote by •(L,R) the binary tree obtained from
L and R grafted on a node.

the electronic journal of combinatorics 26(2) (2019), #P2.32 6



What we call a binary tree is often called a planar binary tree in the literature (as the
order on the subtrees is important). Note that in our representation of binary trees, we
never draw the empty subtrees.

The size of a binary tree is defined recursively: the size of the empty tree is 0, and the
size of a tree •(L,R) is the sum of the sizes of L and R plus 1. It is also the number of

nodes. For example, the following tree has size 3, it is given by the recursive grafting
•(•(∅, •(∅, ∅)), ∅). It is well known that the unlabeled binary trees of size n are counted
by the nth Catalan number

1

n+ 1

(
2n

n

)
. (2.2)

Definition 10 (Standard binary search tree labeling). Let T be a binary tree of size n.
The binary search tree labeling of T is the unique labeling of T with labels 1, . . . , n such
that for a node labeled k, all nodes on the left subtree of k have labels smaller than k
and all nodes on the right subtree of k have labels greater than k. An example is given
in Figure 4.

1

2

3

4

5

Figure 4: A binary search tree labeling

In other words, the binary search tree labeling of T is an in-order recursive traversal
of T : left, root, right. For the rest of the paper, we identify binary trees with their
corresponding binary search tree labeling. In particular, we write v1, . . . , vn the nodes of
T : the index of the node corresponds to its label in the binary search tree labeling.

To define the Tamari lattice, we need the following operation on binary trees.

Definition 11. Let vy be a node of T with a non-empty left subtree of root vx. The
right rotation of T on vy is a local rewriting which follows Figure 5, that is replacing
vy(vx(A,B), C) by vx(A, vy(B,C)) (note that A, B, or C might be empty).

vx

vy

A B

C →

vx

vyA

B C

Figure 5: Right rotation on a binary tree.

It is easy to check that the right rotation preserves the binary search tree labeling. It
is the cover relation of the Tamari lattice [Tam62, HT72]: a binary tree T is said to be
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Figure 6: Tamari lattice of sizes 3 and 4 on binary trees.

bigger in the Tamari lattice than a binary tree T ′ if it can be obtained from T ′ through
a sequence of right rotations. The lattices for the sizes 3 and 4 are given in Figure 6.

Dyck paths are another common set of objects used to define the Tamari lattice. First,
we recall their definition.

Definition 12. A Dyck path of size n is a lattice path from the origin (0, 0) to the point
(2n, 0) made from a sequence of up-steps (steps of the form (x, y) → (x + 1, y + 1)) and
down-steps (steps of the form (x, y)→ (x+ 1, y − 1)) such that the path stays above the
line y = 0.

A Dyck path can also be considered as a binary word by replacing up-steps by the
letter 1 and down-steps by 0. We call a Dyck path primitive if it only touches the line
y = 0 on its end points. As widely known, Dyck paths are also counted by the Catalan
numbers. There are many ways to define a bijection between Dyck paths and binary trees.
The one we use here is the only one which is consistent with the usual definition of the
Tamari order on Dyck paths.

Definition 13. We define the tree map from the set of all Dyck paths to the set of binary
trees recursively. Let D be a Dyck path.

• If D is empty, then tree(D) is the empty binary tree.

• If D is of size n > 0, then the binary word of D can be written uniquely as D11D20
where D1 and D2 are Dyck paths of size smaller than n (in particular, they can be
empty paths). Then tree(D) is the tree •(tree(D1), tree(D2)).
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Note that the path defined by 1D20 is primitive; it is the only non-empty right factor
of the binary word of D which is a primitive Dyck path. Similarly, the subpath D1 corre-
sponds to the left factor of D up to the last touching point before the end. Consequently,
if D is primitive, then D = 1D20, while D1 is empty and thus tree(D) is a binary tree
whose left subtree is empty. If both D1 and D2 are empty, then D = 10, the only Dyck
path of size 1, and tree(D) is the binary tree formed by a single node.

The tree map is a bijection and preserves the size as it is illustrated in Figure 7.

←→

Figure 7: Bijection between Dyck paths and binary trees.

Following this bijection, one can check that the right rotation on binary trees corre-
sponds to the following operation on Dyck paths.

Definition 14. A right rotation of a Dyck path D consists of switching a down step d
followed by an up step with the primitive Dyck path starting right after d. (See Figure
8.)

−→
1101 0 11100100 1001100 −→ 1101 11100100 0 1001100

Figure 8: Rotation on Dyck Paths.

By extension, we then say that a Dyck path D is bigger than a Dyck path D′ in the
Tamari lattice if it can be obtained from D′ through a series of right rotations. The
Tamari lattices of sizes 3 and 4 in terms of Dyck paths are given in Figure 9.

2.3 Planar forests

The bijection between interval-posets and intervals of the Tamari lattice uses a classical
bijection between binary trees and planar forests.

Definition 15. Let T be a binary tree of size n and v1, . . . vn its nodes taken in in-order
as to follow the binary search tree labeling of T .

The final forest of T , F>(T ) is the poset on {1, . . . , n} whose relations are defined as
follows: b C a if and only if vb is in the right subtree of va. (Thus, b C a implies b > a.)

Similarly, the initial forest of T , F6(T ), is the poset on {1, . . . , n} whose relations are
defined as follows: a C b if and only if va is in the left subtree of vb. (Thus, a C b implies
b > a.)
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Figure 9: Tamari lattices of sizes 3 and 4 on Dyck paths.

Tree T F>(T ) F6(T )

1

2

3

4

5

6

7

8

9

10

2

4

3

1

6

8

5

7

9

10

1

2 3

4

5 6 7

8 9

10

Figure 10: A binary tree with its corresponding final and initial forests.

An example of the construction is given in Figure 10. As explained in [CP15], both the
initial and the final forest constructions give bijections between binary trees and planar
forests, i.e., forests of trees where the order on the trees is fixed as well as the orders
of the subtrees of each node. Indeed, we first notice that the labeling on both images
F>(T ) and F6(T ) is entirely canonical (such as the labeling on the binary tree) and can
be retrieved by only fixing the order in which to read the trees and subtrees. Then these
are actually well known bijections. The one giving the final forest is often referred to as
“left child = left brother” because it can be achieved directly on the unlabeled binary
tree by transforming every left child node into a left brother and by leaving the right
child nodes as sons. Thus in Figure 10, 2 is the left child of 3 in T and it becomes the
left brother of 3 in F>(T ), 9 is a right child of 7 in T and it stays the right-most child of
7 in F>(T ). The increasing forest construction is then the “right child = right brother”
bijection.

Also, the initial and final forests of a binary tree T are indeed initial and final forests
in the sense of interval-posets. In particular, they are interval-posets. The fact that they
contain only increasing (resp. decreasing) relations is given by construction. It is left to
check that they satisfy the Tamari axiom on all their elements: this is due to the binary

the electronic journal of combinatorics 26(2) (2019), #P2.32 10



search tree structure. In particular, if you interpret a binary search tree as poset by
pointing all edges toward the root then it is an interval-poset.

Theorem 16 (from [CP15] Thm 2.8). Let T1 and T2 be two binary trees and R =
rel(F>(T1)) ∪ rel(F6(T2)). Then, R is the set of relations of a poset P if and only if
T1 6 T2 in the Tamari lattice. And in this case, P is an interval-poset. This construction
defines a bijection between interval-posets and intervals of the Tamari lattice.

There are two ways in which R could be not defining a poset. First, R could be
non-transitive. Because of the structure of initial and final forests, this never happens.
Secondly, R could be non-anti-symmetric by containing both (a, b) and (b, a) for some
a, b 6 n. This happens if and only if T1 66 T2. You can read more about this bijection
in [CP15]. Figure 11 gives an example.

T1 → F>(T1) T2 → F6(T2) [T1, T2]

1

2

4

3

5

10

8

7 9

6

1

3 4

2

6 7

9

8

5

10

1

5

2

4

3

7

6 10

8

9

1 2

3 4

5 6 7

8

9

10

1

3 4

2

6 7

9

8

5

10

Figure 11: Two trees T1 6 T2 in the Tamari lattice and their corresponding interval-poset.

To better understand the relations between Tamari intervals and interval-posets, we
now recall some results from [CP15, Prop. 2.9], which are immediate from the construction
of interval-posets and the properties of initial and final forests.

Proposition 17 (From [CP15] Prop. 2.9). Let I and I ′ be two interval-posets such that
their respective Tamari intervals are given by [A,B] and [A′, B′], then

1. I ′ is an extension of I if and only if A′ > A and B′ 6 B;

2. I ′ is a decreasing-extension of I if and only if A′ > A and B′ = B;

3. I ′ is an increasing-extension of I if and only if A′ = A and B′ 6 B.

As the Tamari lattice is also often defined on Dyck paths, it is legitimate to wonder
what is the direct bijection between a Tamari interval [D1, D2] of Dyck paths and an
interval-poset. Of course, one can just transform D1 and D2 into binary trees through the
bijection of Definition 13 and then construct the corresponding final and initial forests.
But because many statistics we study in this paper are more naturally defined on Dyck
paths than on binary trees, we give the direct construction.
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Recall that for each up-step d in a Dyck path, there is a corresponding down-step d′

which is the first step you meet by drawing a horizontal line starting from d. From this,
one can define a notion of nesting: an up-step d2 (and its corresponding down-step d′2) is
nested in (d, d′) if it appears in between d, d′ in the binary word of the Dyck path.

Proposition 18. Let D be a Dyck path on which we apply the following process:

• label from 1 to n all pairs of up-steps and their corresponding down-steps by reading
the up-steps on the Dyck path from left to right,

• define a poset P by b CP a if and only if b is nested in a in the previous labeling.

Then F>(D) := F>(tree(D)) = P .

This bijection is actually a very classical one. It consists of shrinking the Dyck path
into a tree skeleton. In Figure 12, we show in parallel the process of Proposition 18 on
the Dyck path and the corresponding binary tree.

1

2 3

4

5

6 7

8 9

10 5

1 7

3 6 9

2 4 8 10

Step 1: label the up-steps and their corresponding down-steps from left to right.

1

2 3

4

5

6 7

8 9

10
5

1 7

3 6 9

2 4 8 10

Step 2: transform nestings into poset relations.

2

4

3

1

6

8

5

7

9

10

Result: the final forest of the Dyck path.

Figure 12: Bijection between a Dyck path and its final forest.

Proof. We use the recursive definition of the tree map. Let D be a Dyck path. If D is
empty, then tree(D) is the empty binary tree and F>(D) = F>(tree(D)) is the empty poset
of size 0. IfD is a non-empty Dyck path, let T = tree(D). We want to check that P is equal
to F := F>(T ). The path D decomposes into D = D11D20 with tree(D1) = T1, the left
subtree of T and tree(D2) = T2, the right subtree of T . We assume by induction that the
proposition is true on F>(D1) and F>(D2). Let 1 6 k 6 n be such that size(D1) = k−1 (in
Figure 12, k = 5): then k is the label of the pair (1, 0) which appears in the decomposition
of D. We also have that vk is the root of T . Now, let us choose a < b 6 n. Either

• a < b < k: the pairs of steps labeled by a and b both belong to D1, we have b CP a
if and only if b CF a by induction.
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• b = k: the pair labeled by a belongs to D1. It does not nest k, so b 6P a. In T , va
is in T1, the left subtree of T and so we also have b 6F a.

• a < k < b: then a belongs to D1 and b belongs to D2 In particular b is not nested
in a and so b 6P a. In T , va is in T1 and vb is in T2. In particular, vb is not in the
right subtree of va and so b 6F a.

• a = k: the pair labeled by b belongs to D2. It is nested in k, so b CP a. In T , vb
belongs to T2 the right subtree of T , we have b CF a.

• k < a < b: the pairs of steps labeled by a and b both belong to D2, we have b CP a
if and only if b CF a by induction.

On binary trees, the constructions of the final and initial forests are completely sym-
metrical: the difference between the two only consists of a choice between left subtrees
and right subtrees. Because the left-right symmetry of binary trees is not obvious when
working on Dyck paths, the construction of the initial forest from a Dyck path gives a
different algorithm than the final forest one.

Proposition 19. Let D be a Dyck path of size n, we construct a directed graph following
this process:

• label all up-steps of D from 1 to n from left to right,

• for each up-step a, find, if any, the first up-step b following the corresponding down-
step of a and add the edge a −→ b.

Then this resulting directed graph is the Hasse diagram of the initial forest of D.

The construction is illustrated on Figure 13.

1

2 3

4

5

6 7

8 9

10
5

1 7

3 6 9

2 4 8 10

Step 1: label all up-steps from left to right.

1

2 3

4

5

6 7

8 9

10
5

1 7

3 6 9

2 4 8 10

Step 2: Connect each up-step to the first-up step following its down-step.
1

2 3

4

5 6 7

8 9

10

Result: the initial forest of the Dyck path.

Figure 13: Bijection between a Dyck path and its initial forest.
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Proof. We use the same induction technique as for the previous proof. The initial case
is trivial. As before, when D is non-empty, we have D = D11D20 along with the corre-
sponding trees T , T1, and T2 and size(D1) = size(T1) = k − 1. We set F := F6(T ) and
we call P the poset obtained by the algorithm.

First, let us prove that for all a < k, we have a CP k. Indeed suppose there exists
a < k with a 6P k, we take a to be maximal among those satisfying these conditions.
We have a ∈ D1 so its corresponding down-step appears before k, let a′ 6 k be the first
up-step following the down-step of a. If a′ = k, then (a, k) is in the Hasse diagram of P
and so a CP k. If a′ < k, we have a CP a′ by definition and the maximality of a gives
a′ CP k, which implies a CP k by transitivity.

Now let us choose a < b 6 n. Either

• a < b < k: the up-steps labeled by a and b both belong to D1, we have a CP b if
and only if a CF b by induction.

• b = k: in T , b is the root and a is in its left subtree: we have a CF b. In P , we have
also proved a CP b.

• a < k < b: then a belongs to D1 and b belongs to D2 In particular b is above k
in the path and there cannot be any link with a even by transitivity, which means
a 6P b. In T , va is in T1 and vb is in T2. In particular, va is not in the left subtree
of vb and so a 6F b.

• a = k: the corresponding down-step of a is the last step of D, which means there is
no edge (a, b) in P . Similarly, because a is the tree root, there is no edge (a, b) in F .

• k < a < b: the up-steps labeled by a and b both belong to D2, we have a CP b if
and only if a CF b by induction.

Now that we have described the relation between interval-posets and Tamari intervals
both in terms of binary trees and Dyck path, we will often identify a Tamari interval
with its interval-poset. When we refer to Tamari intervals in the future, we consider that
they can be given indifferently by a interval-poset or by a couple of a lower bound and an
upper bound [A,B] where A and B can either be binary trees or Dyck paths.

3 Statistics

3.1 Statement of the main result

Definition 20. Let D be a Dyck path.

• c0(D) is the number of non-final contacts of the path D: the number of time the
path D touches the line y = 0 outside the final point.

• r0(D) is the initial rise of D: the number of initial consecutive up-steps.
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• Let ui be the ith up-step of D, we consider the maximal subpath starting right after
ui which is a Dyck path. Then the contacts of ui, ci(D), are the number of non-final
contacts of this Dyck path.

• Let vi be the ith down-step of D, we say that the number of consecutive up-steps
right after vi are the rises of vi and write ri(D).

• C(D) := (c0(D), c1(D), . . . , cn−1(D)) is the contact vector of D.

• C∗(D) := (c1(D), . . . , cn−1(D)) is the truncated contact vector of D.

• R(D) := (r0(D), r1(D), . . . , rn−1(D)) is the rise vector of D.

• R∗(D) := (r1(D), . . . , rn−1(D)) is the truncated rise vector of D.

• LetX = (x0, x1, x2, . . . ) be a commutative alphabet, we write C(D,X) the monomial
xc0(D), xc1(D), . . . , xcn−1(D) and we call it the contact monomial of D.

• Let Y = (y0, y1, y2, . . . ) be a commutative alphabet, we writeR(D, Y ) the monomial
yr0(D), yr1(D), . . . , yrn−1(D) and we call it the rise monomial of D.

u5 c5(D) = 2

v1 r1(D) = 2

c0(D) = 2 r0(D) = 2
C(D) = (2, 2, 0, 1, 0, 2, 0, 2, 0, 1) R(D) = (2, 2, 0, 0, 2, 2, 2, 0, 0, 0)
C(D,X) = x40x

2
1x

4
2 R(D) = y50y

5
2

Figure 14: Contacts and rises of a Dyck path

Figure 14 gives an example of the different contacts and rises values computed on a
given Dyck path. The Dyck path can be easily reconstructed from R(D). This is also
true of C(D) even though it is less obvious. It will become clear once we express the
statistics in terms of planar forests. At first, let us use the definitions on Dyck paths to
express our main result on Tamari intervals.

Definition 21. Consider an interval I of the Tamari lattice described by two Dyck paths
D1 and D2 with D1 6 D2. Then

1. ci(I) := ci(D1) for 0 6 i 6 n, C(I) := C(D1), C∗(I) := C∗(D1), and C(I,X) :=
C(D1, X);

2. ri(I) := ri(D2) for 0 6 i 6 n, R(I) := R(D2), R∗(I) := R∗(D2) and R(I, Y ) :=
R(D2, Y ).
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To summarize, all the statistics we defined on Dyck paths are extended to Tamari intervals
by looking at the lower bound Dyck path D1 when considering contacts and the upper
bound Dyck path D2 when considering rises.

Most of these statistics have been considered before on both Dyck paths and Tamari
intervals. In [BMFPR11], one can find the same definitions for the initial rise r0(I)
and number of non-final contacts c0(I). Taking x0 = y0 = 1 in C(I,X) and R(I, Y )
corresponds to ignoring 0 values in C(I) and R(I): we find those monomials in Préville-
Ratelle’s thesis [PR12]. Our definition of C(I,X) is slightly different than the one of
Préville-Ratelle: we will explain the correspondence in the more general case of m-Tamari
intervals in Section 5. We now describe another statistic from [PR12] which is specific to
Tamari intervals: it cannot be defined through a Dyck path statistics on the interval end
points.

Definition 22. Let I = [D1, D2] be an interval of the Tamari lattice. A chain between
D1 and D2 is a list of Dyck paths

D1 = P1 < P2 < · · · < Pk = D2

which connects D1 and D2 in the Tamari lattice. If the chain comprises k elements, we
say it is of length k − 1 (the number of cover relations).

We call the distance of I and write d(I) the maximal length of all chains between D1

and D2.

For example, if I = [D,D] is reduced to a single element, then d(I) = 0. If I = [D1, D2]
and D1 6 D2 is a cover relation of the Tamari lattice, then d(I) = 1. This statistic was
first described in [BPR12]. It generalizes the notion of area of a Dyck path to an interval.
To finish, we need the notation size(I), which is defined to be the size of the elements of
I: if I is an interval of Dyck paths of size n, then size(I) = n. Note that it is also the
number of vertices of the interval-poset representing I. We can now state the first version
of the main result of this paper.

Theorem 23 (classical case). Let x, y, t, q be variables and X = (x0, x1, x2, . . . ) and
Y = (y0, y1, y2, . . . ) be commutative alphabets. Consider the generating function

Φ(t;x, y,X, Y, q) =
∑
I

tsize(I)xc0(I)yr0(I) C(I,X)R(I, Y )qd(I) (3.1)

summed over all intervals of the Tamari lattice. Then we have

Φ(t;x, y,X, Y, q) = Φ(t; y, x, Y,X, q). (3.2)

For x0 = y0 = 1, this corresponds to a special case of [PR12, Conjecture 17] where
m = 1, the general case will be dealt in Section 5. The case where X, Y, and q are set to
1 is proved algebraically in [BMFPR11]. In this paper, we give a combinatorial proof by
describing an involution on Tamari intervals that switches c0 and r0 as well as C and R.
The involution is described in Section 4.
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One corollary of Theorem 23 is that the symmetry also exists when we restrict the
sum to Dyck paths, ∑

D

PD(t,X, Y ) =
∑
D

PD(t, Y,X), (3.3)

where PD(t,X, Y ) = tsize(D)xc0(D)yr0(D) C(D,X)R(D, Y ), summed over all Dyck paths.
Indeed, an interval with distance 0 is reduced to a single element and, in this case, the
statistics of the interval correspond to the classical statistics on the Dyck path. This
particular case can be proved directly by conjugating two very classical involutions on
Dyck path: the reversing of the Dyck path and the Tamari symmetry. We illustrate this
in Figure 15. What we call the “Tamari symmetry” is the natural involution that is given
by the top-down symmetry of the Tamari lattice itself. It is described more directly on
binary trees, where it corresponds to recursively switching left and right subtrees. The
Tamari symmetry is by nature compatible with the Tamari order and can be directly
generalized to intervals. This is not the case of the reversal of Dyck path. In other words,
if two Dyck paths are such that D1 6 D2 in the Tamari lattice, then in general D′1 is not
comparable to D′2, where D′1 and D′2 are the reverse Dyck paths of D1 and D2 respectively.
This is exactly where lies the difficulty in finding the rise-contact involution on Tamari
intervals: the transformation of D1 and D2 are inter correlated. Basically, we have found
a way to reverse D2 by keeping track of D1. First, let us interpret the statistics directly
on interval-posets.

reverse−−−−→
C = x40x

2
1x

4
2

R = y50y
5
2

↓Tamari symmetry

reverse←−−−−
C = x50x

5
2

R = y40y
2
1y

4
2

Figure 15: The rise-contact involution on Dyck paths

Definition 24. Let I be an interval-poset of size n, we define

• dc0(I) (resp. ic∞(I)) is the number of decreasing (resp. increasing) roots of I.

• dci(I) (resp. ici(I)) for 1 6 i 6 n is the number of decreasing (resp. increasing)
children of the vertex i.

• DC(I) := (dc0(I), dc1(I), . . . , dcn−1(I)) is called the final forest vector of I and
DC∗(I) := (dc1(I), . . . , dcn−1(I)) is the truncated final forest vector.
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• IC(I) := (ic∞(I), icn(I), . . . , ic2(I)) is called the initial forest vector of I and
IC∗(I) := (icn(I), . . . , ic2(I)) is the truncated initial forest vector.

Note that we do not include dcn nor ic1 in the corresponding vectors as they are always
0. The vertices of I are read in their natural order in DC and in reverse order in IC:
this follows a natural traversal of the final (resp. initial) forests from roots to leaves.
As an example, in Figure 3, we have DC(I) = (3, 0, 2, 0, 0, 4, 0, 0, 1, 0) and IC(I) =
(4, 2, 0, 0, 1, 0, 2, 1, 0, 0).

Proposition 25. Let I be an interval-poset, then DC(I) = C(I).

Proof. This is clear from the construction of the final forest from the Dyck path given in
Proposition 18. Indeed, each non-final contact of the Dyck path corresponds to exactly
one decreasing root of the interval-poset. Then the decreasing children of a vertex are the
contacts of the Dyck path nested in the corresponding (up-step, down-step) tuple.

Remark 26. The vector IC(I) is not equal to R(I) in general. In fact, the interpretation
of rises directly on the interval-poset is not easy. What we will prove anyway is that the
two vectors can be exchanged through an involution on I. This involution is shown in
Section 4 and is a crucial step in proving Theorem 23.

3.2 Distance and Tamari inversions

Before describing the involutions used to prove Theorem 23, we discuss more the distance
statistics on Tamari intervals in order to give a direct interpretation of it on interval-
posets.

Definition 27. Let I be an interval-poset of size n. A pair (a, b) with 1 6 a < b 6 n is
said to be a Tamari inversion of I when

• there is no a 6 k < b with b C k;

• there is no a < k 6 b with a C k.

We write TInv(I) the set of Tamari inversions of a set I.

As an example, the Tamari inversions of the interval-poset of Figure 3 are exactly
(1, 2), (1, 5), (7, 8), (7, 10). As counter-examples, you can see that (1, 6) is not a Tamari
inversion because we have 1 < 5 < 6 and 6 C 5. Similarly, (6, 8) is not a Tamari inversion
because there is 6 < 7 < 8 and 6 C 7. Note also that if (a, b) is a Tamari inversion of I,
then a 6 b and b 6 a. Our goal is to prove the following statement.

Proposition 28. Let I be an interval-poset, then d(I) is equal to the number of Tamari
inversions of I.

The proof of Proposition 28 requires two inner results that we express as Lemmas.
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Lemma 29. Let I be an interval-poset whose Tamari interval is given by [T1, T2] where
T1 and T2 are binary trees. Let I ′ be another interval given by [T ′1, T2] with T ′1 > T1 in the
Tamari lattice. Then the interval-poset of I ′ is an extension of I such that if we have a < b
with (b, a) a decreasing-cover relation of I ′ with b 6I a, then (a, b) is a Tamari inversion
of I. In other words, I ′ can be obtained from I by adding only decreasing relations given
by some Tamari inversions.

Proof. By Proposition 17, we know that I ′ is a decreasing-extension of I. This Lemma is
then just a refinement of Proposition 17, which states that the decreasing relations that
have been added come from the Tamari inversions of I.

Let (b, a) be a decreasing-cover relation of I ′ such that b 6I a. Because I ′ is an
extension of I, we also know that a 6I b. Let k be such that a < k < b. Because we have
b CI′ a, the Tamari axiom on a, k, b gives us k CI′ a. This implies that b 6I′ k as (b, a)
is a decreasing-cover relation of I ′ by hypothesis. In particular, we cannot have b CI k
either as any relation of I is also a relation of I ′. Similarly, we cannot have a CI k as this
would imply a CI′ k, contradicting k CI′ a.

Lemma 30. Let I be an interval-poset such that TInv(I) 6= ∅ and let (a, b) be its first
Tamari inversion in lexicographic order. Then by adding the relation (b, a) to I, we
obtain an interval-poset I ′ such that the number of Tamari inversions of I ′ is the number
of Tamari inversions of I minus one.

Proof. Because (a, b) is a Tamari inversion of I, we have b 6I a and a 6I b, which means
the relation (b, a) can be added to I as a poset. We need to check that the result I ′ is
still an interval-poset.

Let us first prove that for all k such that a < k < b, we have k CI a. Let us suppose
by contradiction that there exist a < k < b with k 6I a and let us take the minimal k
possible. Note that (a, k) is smaller than (a, b) in the lexicographic order, which implies
that (a, k) is not a Tamari inversion. If there is k′ such that a < k′ 6 k with a CI k

′ then
(a, b) is not a Tamari inversion. So there is k′ with a 6 k′ < k with k CI k

′. But because
we took k minimal, we get k′ EI a, which implies k CI a and contradicts the fact that
(a, b) is a Tamari inversion.

Now, we show that the Tamari axiom is satisfied for all a′, all k, and all b such that
a′ < k < b′. By Remark 8, we only have to consider decreasing relations. More precisely,
the only cases to check are the ones where b′ 6I a

′ and b′ CI′ a
′, which means a EI a

′ and
b′ EI b (the relation is either directly added through (b, a) or obtained by transitivity).
Let us choose such a couple (a′, b′) and first prove that a′ 6 a < b 6 b′.

• b′ 6= a and a′ 6= b because both would imply a CI b, which contradicts the fact that
(a, b) is a Tamari inversion.

• If b′ < a, we have b′ < a < b and b′ CI b, which implies a CI b by the Tamari axiom
on (b′, a, b). This contradicts the fact that (a, b) is a Tamari inversion.

• If a < b′ < b, we have proved b′ CI a, which gives b′ CI a
′ by transitivity and

contradicts our initial hypothesis.
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• If b < a′, we have a < b < a′ with a CI a
′, which implies b CI a

′ by the Tamari
axiom on (a, b, a′). This gives b′ CI a

′ by transitivity and contradicts our initial
hypothesis.

• If a < a′ < b then we have a C a′ and (a, b) is not a Tamari inversion.

We now have a′ 6 a < b 6 b′. Now for k such that a′ < k < b′, if k < a we get
k CI a

′ by the Tamari axiom on (a′, k, a). If a < k < b, we have proved that k CI a and
so k CI a

′ by transitivity. If b < k < b′, the Tamari axiom on (b, k, b′) gives us k CI b,
which gives in I ′ k CI′ b CI′ a CI′ a

′ so k CI′ a
′ by transitivity. In all cases, the Tamari

axiom is satisfied in I ′ for (a′, k, b′).
There is left to prove that the number of Tamari inversions of I ′ has been reduced by

exactly one. More precisely: all Tamari inversions of I are still Tamari inversions of I ′

except (a, b). Let (a′, b′) be another Tamari inversion of I. Because (a, b) is minimal in
lexicographic order, we have either a′ > a or a′ = a and b′ > b.

• If a′ > a, let k be such that a′ 6 k < b′. We have b′ 6I k. Suppose that we have
b′ CI′ k, which means that it has been added by transitivity and so we have b′ CI b
and a CI k. Because (a, b) is a Tamari inversion of I, we get that k > b. We have
a < b < k and b < k < b′, the Tamari axioms on (a, b, k) and (b′, k, b) leads to a
contradiction in I. Now, let k be such that a′ < k 6 b′. We have a′ 6I k. No
increasing relation has been created in I ′ and so a′ 6I′ k.

• If a = a′ and b′ > b, first note that b′ 6I b. Indeed we have a′ < b < b′ and this
would contradict the fact that (a′, b′) is a Tamari inversion. Let k be such that
a 6 k < b′, then b′ 6I k. Because b′ 6I b, the relation (b′, k) cannot be obtained
by transitivity in I ′ and so b′ 6I′ k. Now, if a < k 6 b′, we have a 6I k and
by the same argument as earlier that no increasing relation has been created in I ′,
a 6I′ k.

Proof of Proposition 28. Let I be an interval-poset containing v Tamari inversions and
whose bounds are given by two binary trees [T1, T2]. Suppose there is a chain of length k
between T1 and T2. In other words, we have k + 1 binary trees

T1 = P1 < P2 < · · · < Pk+1 = T2

which connects T1 and T2 in the Tamari lattice. Let us look at the intervals [Pi, T2].
Lemma 29 tells us that each of them can be obtained by adding decreasing relations (b, a)
to I where (a, b) ∈ TInv(I). We now apply Proposition 17. In our situation, it means
that, for 1 6 j 6 k+1, the interval-poset of [Pj, T2] is an extension of every interval-posets
[Pi, T2] with 1 6 i 6 j: the Tamari inversions that were added as decreasing relations in
[Pi, T2] are kept in [Pj, T2]. In other words, to obtain Pi+1 from Pi, one or more Tamari
inversions of I are added to Pi as decreasing relations. At least one Tamari inversion is
added at each step, which implies that v > k. This is true for all chain and thus v > d(I).

Now, let us explicitly construct a chain between T1 and T2 of length v. This will give
us that v 6 d(I) and conclude the proof. We proceed inductively.
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• If v = 0, then d(I) 6 v is also 0, which means T1 = T2: this is a chain of size 0
between T1 and T2.

• We suppose v > 0 and we apply Lemma 30. We take the first Tamari inversion of
TInv(I) in lexicographic order and add it to I as a decreasing relation. We obtain an
interval-poset I ′ which is a decreasing-extension of I with v − 1 Tamari inversions.
Then by Proposition 17, the bounds of I ′ are given by [T ′1, T2] with T ′1 > T1. By
induction, we construct a chain of size v − 1 between T ′1 and T2, which gives us a
chain of size v between T1 and T2.

The interpretation of the distance of an interval as a direct statistic on interval-posets
is very useful for our purpose here as it gives an explicit way to compute it and its
behavior through our involutions will be easy to state and prove. It is also interesting in
itself. Indeed, this statistic appears in other conjectures on Tamari intervals, for example
Conjecture 19 of [PR12], which is related to the well known open q-t-Catalan problems.

4 Involutions

4.1 Grafting of interval-posets

In this section, we revisit some major results of [CP15] which we will be used to define
some new involutions.

Definition 31. Let I1 and I2 be two interval-posets, we define a left grafting operation
and a right grafting operation depending on a parameter r. Let α and ω be respectively
the label of minimal value of I2 (shifted by the size of I1) and the label of maximal value
of I1. Let c = c0(I2) and y1, . . . yc be the decreasing roots of I2 (shifted by the size of I1).

The left grafting of I1 over I2 with size(I2) > 0 is written as I1 ~• I2. It is defined by
the shifted concatenation of I1 and I2 along with relations y C α for all y ∈ I1.

The right grafting of I2 over I1 with size(I1) > 0 is written as I1
←−
δr I2 with 0 6 r 6 c.

It is defined by the shifted concatenation of I1 and I2 along with relations yi C ω for
1 6 i 6 r.

Figure 16 gives an example. Note that the vertices of I2 are always shifted by the size
of I1. For simplicity, we do not always recall this shifting: when we mention a vertex x
of I2 in a grafting, we mean the shifted version of x. These two operations were defined

in [CP15, Def. 3.5]. Originally, the right grafting was defined as a single operation
←−
δ

whose result was a formal sum of interval-posets. In this paper, it is more convenient to
cut it into different sub-operations depending on a parameter. We can use these operations
to uniquely decompose interval-posets: this will be explained in Section 4.2. First, we will
study how the different statistics we have defined are affected by the operations. We start
with the contact vector C, which is equal to the final forest vector DC.

Proposition 32. Let I1 and I2 be two interval-posets of respective sizes n > 0 and m > 0,
then
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Figure 16: Grafting of interval-posets

• c0(I1 ~• I2) = c0(I1) + c0(I2);

• C(I1 ~• I2) = (c0(I1) + c0(I2), c1(I1), . . . , cn−1(I1), 0, c1(I2), . . . , cm−1(I2));

• c0(I1
←−
δi I2) = c0(I1) + c0(I2)− i;

• C(I1
←−
δi I2) = (c0(I1) + c0(I2)− i, c1(I1), . . . , cn−1(I1), i, c1(I2), . . . , cm−1(I2)).

If size(I1) = 0 then I1 ~• I2 = I2 and C(I1 ~• I2) = C(I2). If size(I2) = 0 then

I1
←−
δi I2 = I1 and C(I1

←−
δi I2) = C(I1).

This can be checked on Figure 16. We have C(I1) = DC(I1) = (2, 1, 0) because
there are two connected components in the final forest (2 C 1 and 3) and 1 and 2 have
respectively 1 and 0 decreasing children. For I2, we get C(I2) = (2, 0, 1). Now, it can

be checked that C(I1 ~• I2) = (4, 1, 0, 0, 0, 1), C(I1
←−
δ0 I2) = (4, 1, 0, 0, 0, 1), C(I1

←−
δ1 I2) =

(3, 1, 0, 1, 0, 1), C(I1
←−
δ2 I2) = (2, 1, 0, 2, 0, 1).

Proof. First, remember that, by Proposition 25, contacts can be directly computed on
the final forest of the interval-posets: the non-final contacts correspond to the number of
components and cv for 1 6 v 6 n is the number of decreasing children of the vertex v.

Now, in the left grafting I1 ~• I2, the two final forests are simply concatenated. In
particular, c0(I1 ~• I2) = c0(I1) + c0(I2). The contact vector C(I1 ~• I2) is then formed by
this initial value followed by the truncated contact vector of I1, then an extra 0, which
corresponds to cn, then the truncated contact vector of I2.

The contacts of the right grafting I1
←−
δi I2 depend on the parameter i. Indeed, each

added decreasing relation merges one component of the final forest of I2 with the last
component of the final forest of I1 and thus reduces the number of components by one.

As a consequence, we have c0(I1
←−
δi I2) = c0(I1) + c0(I2)− i. The contact vector is formed

by this initial value followed by the truncated contact vector of I1, then the new number
of decreasing children of n, which is i by definition, then the truncated contact vector
of I2.
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Let us now study what happens to the rise vector R and the initial forest vector IC.
They both only depend of the initial forest (increasing relations). The vector IC can be
read directly on the interval-poset and we get the following proposition.

Proposition 33. Let I1 and I2 be two interval-posets of respective sizes n > 0 and m > 0,
then

• ic∞(I1 ~• I2) = ic∞(I2);

• IC(I1 ~• I2) = (ic∞(I2), icm(I2), . . . , ic2(I2), ic∞(I1), icn(I1), . . . ic2(I1));

• ic∞(I1
←−
δi I2) = ic∞(I2) + ic∞(I1);

• IC(I1
←−
δi I2) = (ic∞(I2) + ic∞(I1), icm(I2), . . . , ic2(I2), 0, icn(I1), . . . , ic2(I1)).

If size(I1) = 0 then I1 ~• I2 = I2 and IC(I1 ~• I2) = IC(I2). If size(I2) = 0 then

I1
←−
δi I2 = I1 and IC(I1

←−
δi I2) = IC(I1).

This can be checked on Figure 16. We initially have IC(I1) = (2, 1, 0) and IC(I2) =

(3, 0, 0), and then IC(I1 ~• I2) = (3, 0, 0, 2, 1, 0) and IC(I1
←−
δi I2) = (5, 0, 0, 0, 1, 0) for all

1 6 i 6 2.

Proof. When we compute I1 ~• I2, we add increasing relations from all vertices of I1 to
the first vertex α of the shifted copy of I2. In other words, we attach all increasing roots
of I1 to a new root α. The number of components in the initial forest of I1 ~• I2 is then
given by ic∞(I2) (the last component contains I1) and the number of increasing children
of α is given by ic∞(I1). Other number of increasing children are left unchanged and we
thus obtain the expected vector.

In the computation of I1
←−
δi I2, the value of i only impacts the decreasing relations

and thus does not affects the vector IC. No increasing relation is added, which means
that the initial forests of I1 and I2 are only concatenated and by looking at connected

components, we obtain ic∞(I1
←−
δi I2) = ic∞(I1)+ic∞(I2). The vector IC is formed by this

initial value followed by the truncated initial forest vector of I2, then an extra 0, which
correspond to ic1(I2), then the truncated initial forest vector of I1.

To understand how the rise vector behaves through the grafting operations, we first
need to interpret the grafting on the upper bound Dyck path of the interval. We start
with the left grafting.

Proposition 34. Let I1 and I2 be two interval-posets of respective sizes n > 0 and m > 0.
Let D1 and D2 be their respective upper bound Dyck path. Then, the upper-bound Dyck
path of I1 ~• I2 is given by D1D2 and consequently, if size(I1) > 0, we get

• r0(I1 ~• I2) = r0(I1);

• R(I1 ~• I2) = (r0(I1), r1(I1), . . . , rn−1(I1), r0(I2), r1(I2), . . . , rm−1(I2)).

the electronic journal of combinatorics 26(2) (2019), #P2.32 23



2

1

3 ~•

1 2

3 = 2

1

3

4 5

6

1

2 3

1

2

3

1

2 3

4

5

6

R (2, 1, 0) (3, 0, 0) (2, 1, 0, 3, 0, 0)

Figure 17: The upper bound Dyck paths in the left grafting

Figure 17 gives an example of left-grafting with corresponding upper bound Dyck
paths and rise vectors.

Proof. The definition of I1 ~• I2 states that we add all relations (i, α) with i ∈ I1 and α the
first vertex of I2. This is the same as adding all relations (i, α) where i is an increasing
root of I1 (the other relations are obtained by transitivity). The increasing roots of I1
correspond to the up-steps of D1 whose corresponding down-steps do not have a following
up-step, i.e., the up-steps corresponding to final down-steps of D1. By concatenating D1

and D2, the first up-step of D2 is now the first following up-step of the final down-steps of
D1: this indeed adds the relations from the increasing roots of I1 to the first vertex of I2.
The expressions for the initial rise and rise vectors follow immediately by definition.

The effect of the right grafting on the rise vector is a bit more technical. For simplicity,
we only study the case where I1 is of size one, which is the only case we will need in this
paper.

Proposition 35. Let I be an interval-poset of size n > 0 and D its upper bound Dyck
path. Let u be the only interval-poset on a single vertex. Note that the upper bound Dyck

path of u is given by the word 10. Then, the upper bound Dyck path of u
←−
δi I is 1D0 for

all 0 6 i 6 c0(I), and we have

• r0(u
←−
δi I) = r0(I) + 1;

• R(u
←−
δi I) = (r0(I) + 1, r1(I), . . . , rn−1(I), rn(I) = 0).

1
←−
δ1 2

1

3 =

1

2

3 4

1 1

2 3

1

2

3 4

R (1) (2, 1, 0) (3, 1, 0, 0)

Figure 18: The upper bound Dyck paths in the right grafting

Figure 18 gives an example of right-grafting with corresponding upper bound Dyck
paths and rise vectors.
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Proof. The right-grafting only adds decreasing relations. On the initial forests, it is then

nothing but a concatenation of the two initial forests. In particular, in the case of u
←−
δi I,

no increasing relation is added from the vertex one to any vertex of I. On the upper
bound Dyck path, this means that the down-step corresponding to the initial up-step is
not followed by any up-step: the Dyck path of I has to be nested into this initial up-step.
The expressions for the rise vector follow immediately.

Remark 36. When applying a right-grafting on u, the interval-poset of size 1, the rise
vector and the initial forest vector have similar expressions:

ic∞(u
←−
δi I2) = 1 + ic∞(I2); (4.1)

r0(u
←−
δi I2) = 1 + r0(I2); (4.2)

IC(u
←−
δi I2) = (1 + ic∞(I2), IC

∗(I2), 0) ; (4.3)

R(u
←−
δi I2) = (1 + r0(I2),R

∗(I2), 0) . (4.4)

This will be a fundamental property when we define our involutions. Note also that if

size(I2) = 0, we have ic∞(u
←−
δi I2) = r0(u

←−
δi I2) = 1 and IC(u

←−
δi I2) = R(u

←−
δi I2) = 1.

Now, the only statistic which is left to study through the grafting operations is the
distance. Recall that by Proposition 28, it is given by the number of Tamari inversions.
In the same way as for the R vector, it is more complicated to study on the right grafting
in which case, we will restrict ourselves to size(I1) = 1.

Proposition 37. Let I1 and I2 be two interval-posets, and u be the interval-poset of size
one. Then

• d(I1 ~• I2) = d(I1) + d(I2),

• d(u
←−
δi I2) = d(I2) + c0(I2)− i.

Look for example at Figure 17: the Tamari inversion (1, 3) of I1 and (1, 2) of I2 are
kept through I1 ~• I2 and no other Tamari inversion is added. For the right grafting, you
can look at Figure 18: the interval-poset I2 only has one Tamari inversion (1, 3) and we

have c0(I2) = 2. You can check that d(u
←−
δ1 I2) = 2 = 1+2−1, the two Tamari inversions

being (2, 4) and (1, 4).

Proof. We first prove d(I1 ~• I2) = d(I1) + d(I2). The condition for a couple (a, b) to be
a Tamari inversion is local: it depends only on the values a 6 k 6 b. Thus, because the
local structure of I1 and I2 is left unchanged, any Tamari inversion of I1 and I2 is kept in
I1 ~• I2. Now, suppose that a ∈ I1 and b ∈ I2. Let α be the label of minimal value in I2
(which has been shifted by the size of I1). By definition, we have a < α 6 b and a C α in
I1 ~• I2: (a, b) is not a Tamari inversion.

Now, let I = u
←−
δi I2 with 0 6 i 6 c0(I2) and let us prove that d(I) = d(I2)+c0(I2)− i.

Once again, note that the Tamari inversions of I2 are kept through the right grafting. For
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the same reason, the only Tamari inversions that could be added are of the form (1, b)
with b ∈ I2. Now, let b be a vertex of I2 which is not a decreasing root. This means
there is a < b with b CI2 a. In I, the interval-poset I2 has been shifted by one and so we
have: 1 < a < b with b CI a: (1, b) is not a Tamari inversion of I. Let b be a decreasing
root of I2. If b CI 1 then (1, b) is not a Tamari inversion. If b 6I 1, we have that: by
construction, there is no a ∈ I2 with 1 CI a; because b is a decreasing root there is no
a ∈ I2 with a < b and b C a. In other words, (1, b) is a Tamari inversion of I if and only if

b is a decreasing root of I2 and b 6I 1. By the definition of
←−
δi there are exactly c0(I2)− i

such vertices.

4.2 Grafting trees

Proposition 38. An interval-poset I of size n > 1 is fully determined by a unique triplet

(IL, IR, r) with 0 6 r 6 c0(IR) and size(IL) + size(IR) + 1 = n such that I = IL ~• u
←−
δr IR

with u the unique interval-poset of size 1. We call this triplet the grafting decomposition
of I. See an example on Figure 19.

Remark 39.

• It can easily be checked that the operation IL ~• u
←−
δr IR is well defined as we have

(IL ~• u)
←−
δr IR = IL ~• (u

←−
δr IR). Indeed IL ~• u adds increasing relations from IL

to u while u
←−
δr IR adds decreasing relation from IR to u. The two operations are

independent of each other, see an example on Figure 19. In practice, we think of it

as IL ~• (u
←−
δr IR).

• One or both of the intervals in the decomposition can be empty (of size 0). In
particular, the decomposition of u is the triplet (∅, ∅, 0).

1

3

2 4

5 6 7

8

=
1 2

3
~• 1

←−
δ2

1 2 3

4

Figure 19: Grafting decomposition of an interval-poset

Proof. This is only a reformulation of [CP15, Prop. 3.7]. Indeed, it was proved that
each interval-poset I of size n uniquely appeared in one composition B(IL, IR) of two
interval-posets where we had size(IL) + size(IR) + 1 = n and

B(IL, IR) =
∑

06i6c0(IR)

IL ~• u
←−
δr IR.

The parameter r identifies which element is I in the composition sum.
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Definition 40. Let T be a binary tree of size n. We write v1, . . . , vn the nodes of T
taken in in-order (following the binary search tree labeling). Let ` : {v1, . . . , vn} → N be
a labeling function on T . For all subtrees T ′ of T , we write size(T ′) the size of the subtree
and labels(T ′) :=

∑
vi∈T ′ `(vi) the sum of the labels of its nodes.

We say that (T, `) is a Tamari interval grafting tree, or simply grafting tree if the
labeling ` satisfies that for every node vi, we have `(vi) 6 size(TR(vi)) − labels(TR(vi))
where TR(vi) is the right subtree of the node vi.

An example is given in Figure 20: the vertices v1, . . . , v8 are written in red above
the nodes, whereas the labeling ` is given inside the nodes. For example, you can check
the rule on the root v4, we have size(TR(v4)) − labels(TR(v4)) = 4 − 1 = 3 and indeed
`(v4) = 2 6 3. The rule is satisfied on all nodes. Note that if the right subtree of a node
is empty (which is the case for v1, v3, v6, and v8) then the label is always 0.

Proposition 41. Intervals of the Tamari lattice are in bijection with grafting trees. The
grafting tree of an interval-poset I is written as ∆(I). We compute ∆(I) = (T, `) recur-
sively as follows

• if I = ∅, then T is the empty binary tree;

• if size(I) > 0 and (IL, IR, r) is the grafting decomposition of I, such that ∆(IL) =
(TL, `L) and ∆(IR) = (TR, `R), then T = •(TL, TR) and ` is constructed by keeping
unchanged the labels of TL and TR given by `L and `R and for the new root v of T ,
`(v) = r.

Besides,

c0(I) = size(∆(I))− labels(∆(I)). (4.5)

Figure 20 illustrates the bijection with the full recursive decomposition. The interval-
poset decomposes into the triplet (IL, IR, 2) as shown in Figure 19. The left and right
subtrees of the grafting tree are obtained recursively by applying the decomposition on
IL and IR. As size(IL) = 3, the root of T is v4 and we have `(v4) = 2, which is indeed the
parameter r of the grafting decomposition and also the number of decreasing children of
4 in the interval-poset.

Proof. First, let us check that we can obtain an interval-poset from a grafting tree. We
read the grafting tree as an expression tree where each empty subtree is replaced by an

entry as an empty interval-poset and each node corresponds to the operation IL ~• u
←−
δr IR

where r is the label of the node, IL and IR the respective results of the expressions of the
left and right subtrees, and u the interval poset of size 1. In other words, the interval-poset
I = ∆−1(T, `) where (T, `) is a grafting tree is computed recursively by

• if T is empty then I = ∅;

• if T = vk(TL, TR) then I = ∆−1(TL, `L) ~• u
←−
δr ∆−1(TR, `R) with `(vk) = r, and `L

and `R the labeling function ` restricted to respectively TL and TR.
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Figure 20: Example of grafting tree with corresponding interval-poset and grafting de-
composition.

We need to check that the operation u
←−
δr ∆−1(TR, `R) is well-defined, i.e, in the case

where T is not empty, that we have 0 6 r 6 c0(∆
−1(TR, `R)). We do that by also

proving by induction that c0(∆
−1(T, `)) = size(T )− labels(T ). This is true in the initial

case where T is empty: c0(∅) = 0. Now, suppose that T = vk(TL, TR) with `(vk) = r
and that the property is satisfied on (TL, `L) and (TR, `R). We write IL = ∆−1(TL, `L)

and IR = ∆−1(TR, `R). In this case, I ′ := u
←−
δr IR is well-defined because we have

by definition that r 6 size(TR) − labels(TR), which by induction is c0(IR). Besides, by
Proposition 32, we have c0(I

′) = 1 + c0(IR)− r. We now compute I = IL ~• I ′ and we get
c0(I) = c0(IL)+1+c0(IR)−r, which is by induction size(TL)− labels(TL)+1+size(TR)−
labels(TR)− r = size(T )− labels(T ).

Conversely, it is clear from Proposition 38 that the grafting decomposition of an
interval-poset I gives a labeled binary tree (T, `). By the unicity of the decomposition,
it is is the only labeled binary tree such that I = ∆−1(T, `). This proves that ∆−1 is
injective. To prove that it is surjective, we need to show that ∆(I) is indeed a grafting
tree, i.e., the condition on the labels holds. Once again, this is done inductively. An
empty interval-poset gives an empty tree and the condition holds. Now if I decomposes
into the triplet (IL, IR, r) we suppose that the condition holds on (TL, `L) = ∆(IL) and
(TR, `R) = ∆(IR). We know that 0 6 r 6 c0(IR) and we have just proved that c0(IR) is
indeed size(TR)− labels(TR).

Proposition 42. Let I be an interval-poset and ∆(I) = (T, `), then

1. T is the upper bound binary tree of I;

2. `(vi) is the number of decreasing children of the vertex i in I.
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In other words, the grafting tree of an interval-poset can be obtained directly without
using the recursive decomposition. Also, the tree T only depends on the initial forest and
the labeling ` only depends on the final forest.

Proof. We prove the result by induction on the size of I. If I is empty, there is nothing to
prove. We then suppose that I decomposes into a triplet (IL, IR, r) with k = size(IL) + 1.
We suppose by induction that the proposition is true on IL and IR. Let (T, `) = ∆(I),
(TL, `L) = ∆(IL), and (TR, `R) = ∆(IR, `R). By induction, TL and TR are the upper bound
binary trees of IL and IR respectively. In [CP15, Prop. 3.4], we proved T = vk(TL, TR),
which by construction of the initial forest is indeed the upper bound binary tree of I. The
result on the labeling function ` is obtained by induction on `L and `R for all vertices
vi with i 6= k. Besides, by definition of the grafting tree, we have `(vk) = r, which is
indeed the number of decreasing children of the vertex k in I by the definition of the right

grafting
←−
δr .

Remark 43. Note that the grafting tree of an Tamari interval has similarities with another
structure in bijection with interval-posets: closed flow on a planar forest, which was
described in [CCP14]. The planar forest associated to an interval-poset depends only on
the initial forest of the interval, i.e., only on its upper bound binary tree, which also gives
the shape of the grafting tree. In other words, given a binary tree T , there is a one-to-one
correspondence between the possible labeling ` such that (T, `) is a grafting tree and the
closed flows on a certain planar forest F . As described in [CCP14, Fig. 10], the forest
F corresponding to T is obtained by a classical bijection often referred to by the “left
child to left brother” bijection. It consists of transforming, for each node of the binary
tree, the left child into a left brother and the right child into the last child in the planar
forest. Now, the flow itself depends on the decreasing forest of the interval-poset just as
the labeling ` of the grafting tree. Each node receiving a −1 in the flow corresponds to a
node with a positive label in the grafting tree.

Remark 44. The “left child to left brother“ bijection to planar forest also gives a direct
bijection between grafting trees and (1, 1) description trees of [CS03] (the planar forest
is turned into a tree by adding a root). The labels `′ of the (1, 1) description trees are
obtained through a simple transformation from `: for each node v, `′(v) = 1+size(TR(v))−
labels(TR(v))− `(v).

Proposition 45. Let I be an interval-poset and (T, `) = ∆(I) its grafting tree with
v1, . . . , vn the vertices of T . Then C∗(I) = (`(v1), . . . , `(vn−1)).

Proof. Remember that C∗(I) = DC∗(I) by Proposition 25, i.e., the final forest vector
given by reading the number of decreasing children of the vertices in I. Then the result
is a direct consequence of Proposition 42.

Proposition 46. Let I be an interval-poset and (T, `) = ∆(I) its grafting tree with
v1, . . . , vn the vertices of T . Let di = size(TR(vi))− labels(TR(vi))− `(vi) for all 1 6 i 6 n
where TR(vi) is the right subtree of the vertex vi in T . Then

d(I) =
∑
16i6n

di. (4.6)
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For example, on Figure 20, we have all di = 0 except for d4 = 4 − 1 − 2 = 1 and
d5 = 3 − 1 = 2. This indeed is consistent with d(I) = 3, the 3 Tamari inversions being
(4, 7), (5, 6), and (5, 7). More precisely, the number di is the number of Tamari inversions
of the form (i, ∗).

Proof. Once again, we prove the property inductively. This is true for an empty tree
where we have d(I) = 0. Now, let I be a non-empty interval-poset, then I decomposes

into a triplet (IL, IR, r) with I = IL ~• u
←−
δr IR. Proposition 37 gives us

d(I) = d(IL ~• u
←−
δr IR) (4.7)

= d(IL) + d(u
←−
δr IR) (4.8)

= d(IL) + d(IR) + c0(IR)− r. (4.9)

Now let (T, `) = ∆(I). By definition, we have T = vk(TL, TR) with k = size(TL) + 1,
(TL, `L) = ∆(IL), and (TR, `R) = ∆(IR). Using the induction hypothesis and (4.5), we
obtain

∑
16i6n

di =
∑
16i<k

di + dk +
∑
k<i6n

di (4.10)

= d(IL) + size(TR)− labels(TR)− `(vk) + d(IR) (4.11)

= d(IL) + c0(IR)− r + d(IR). (4.12)

4.3 Left branch involution on the grafting tree

We now give an interesting involution on the grafting tree, which in turns gives an involu-
tion on Tamari intervals. In Section 3.1, we mentioned that the rise-contact involution on
Dyck paths (not intervals) used the reversal of a Dyck path conjugated with the Tamari
symmetry. The equivalent of the Dyck path reversal on the corresponding binary tree is
also a classical involution, which we call the left branch involution. Applying this invo-
lution on grafting trees will allow us to generalize it to intervals. A right hanging binary
tree is a binary tree whose left subtree is empty. An alternative way to see a binary tree
is to understand it as list of right hanging binary trees grafted together on its left-most
branch. For example, the tree of Figure 20 can be decomposed into 3 right hanging binary
trees : the one with vertex v1, the one with vertices v2 and v3 and the one with vertices
v4 to v8.

Definition 47. The left branch involution on binary trees is the operation that recursively
reverse the order of right hanging trees on every left branch of the binary tree. We write
φ(T ) the image of a binary tree T through the involution.
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This operation is a very classical involution on binary trees, see Figure 21 for an
example. It is implemented in SageMath [SD17] as the left border symmetry method
on binary trees. You can also understand it in a recursive manner: if T is an non-empty
tree with TL and TR as respectively left and right subtrees, then the image of T can be
constructed from the respective image TR

′ and TL
′ of TR and TL following the structure of

Figure 22. The root is grafted on the left-most branch of TL
′ with an empty left subtree

and TR
′ as a right subtree.
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c0(I) = 4 = c0(φ(I))
C(I,X) = x40x

2
1x2x4 = C(φ(I), X)

R(I) = [1, 2, 0, 3, 2, 0, 0, 0] = IC(φ(I))

Figure 21: The left-branch involution.

TL TR →

TL
′

TR
′

Figure 22: The left-branch involution seen recursively.

Proposition 48. The left branch involution is an involution on grafting trees.

Proof. First, let us clarify what the involution means on a grafting tree (T, `): we apply the
involution on the binary tree T and the vertices move along with their labels as illustrated
in Figure 21. We obtain a new labeled binary tree (T ′, `′) where every vertex vi of T is
sent to a new vertex vi′ of T ′ such that `(vi) = `′(vi′). For example, in Figure 21, the root
v4 of T is sent to v1 of T ′, with `(v4) = `′(v1) = 2.

The only thing to check is that `′ still satisfies the grafting tree condition. This is
immediate. Indeed, for vi ∈ T , and TR(vi) its right subtree, we have `(vi) 6 size(TR(vi))−
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labels(TR(vi)). Now, if vi′ is the image of vi and T ′R(vi′) its right subtree, even though T ′R
might be different from TR, the statistics are preserved: size(T ′R(vi′)) = size(TR(vi)) and
labels(T ′R(vi′)) = labels(TR(vi)), because the involution only acts on left branches and the
set of labels of the right subtree is preserved.

As a consequence, we now have an involution on Tamari intervals.

Definition 49 (The Left Branch Involution). The left branch involution on Tamari in-
tervals is defined by the left branch involution on their grafting trees.

φ(I) := ∆−1(φ(∆(I))) (4.13)

The grafting tree seems to be the most natural object to describe the involution.
Indeed, even though it can be easily computed on interval-posets using decomposition
and graftings, we have not seen any simple direct description of it. Furthermore, if we
understand the interval as a couple of a lower bound and upper bound, then the action
on the upper bound is simple: the shape of the upper bound binary tree is given by the
grafting tree and so the involution on the upper bound is only the classical left-branch
involution, which corresponds to reversing the Dyck path. Nevertheless, the action on
the lower bound cannot be described as an involution on binary trees: it depends on the
corresponding upper bound. One way to understand this involution is that we apply the
left-branch involution on the upper bound binary tree and the lower bounds “follows” in
the sense given by the labels of the grafting tree.

Proposition 50. Let I be an interval of Tamari, then

c0(I) = c0(φ(I)); (4.14)

C(I) = C(φ(I)); (4.15)

d(I) = d(φ(I)); (4.16)

R(I) = IC(φ(I)). (4.17)

In other words, the involution exchanges the rise vector and initial forest vector while
leaving unchanged the number of contacts, the contact monomial, and the distance.

Proof. Points (4.14) and (4.15) are immediate. Indeed, (4.5) tells us that c0(I) is given by
size(∆(I)) − labels(∆(I)) : this statistic is not changed by the involution. Now remem-
ber that, by Proposition 32, the values c1(I), . . . , cn(I) are given by `(v1), . . . , `(vn), so
C(I) = xc0(I)x`(v1) . . . x`(vn−1) =

xc0(I)x`(v1)...x`(vn)

x0
. This monomial is commutative and the

involution sending ` to `′ only applies a permutation on the indices: the monomial itself is
not changed. Also, we always have `(vn) = `′(vn) = 0 so the division by x0 is still possible
after the permutation and still removes the last value x`′(vn). As an example, on Figure 21,
we have C(I) = x4x0x1x0x2x0x0x1 = x40x

2
1x2x4 = x4x2x0x1x0x0x1x0x0 = C(φ(I)).

Point (4.16) is also immediate by Proposition 46. Indeed, for all 1 6 i 6 n, we have
di = size(TR(vi))− labels(TR(vi)) = size(TR(vi′))− labels(TR(vi′)) = di′ if vi is sent to vi′
by the involution. Once again, the values d1, . . . , dn are only permuted and the sum stays
the same.
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We prove point (4.17) by induction on the size of the tree. It is trivially true when
size(I) = 0 (both vectors are empty). Now suppose that I is an interval-poset of size
n > 0. Let (T, `) = ∆(I), then T is a non-empty binary tree with two subtrees TL and
TR (which can be empty) and a root node v such that `(v) = i. Let us call IL and IR the
interval-posets corresponding to TL and TR respectively. By definition, we have that

I = IL ~• u
←−
δi IR. (4.18)

We call T ′L and T ′R the respective image of TL and TR through the left branch involution
and I ′L and I ′R the corresponding interval-posets. As both TL and TR are of size strictly
less than n, we have by induction that

R(IL) = IC(I ′L), (4.19)

R(IR) = IC(I ′R).

Following the recursive description of the left branch involution given on Figure 22,
we obtain that the image I ′ := φ(I) is given by

(
u
←−
δi I

′
R

)
~• I ′L. (4.20)

We are using a small shortcut here as this expression does not exactly correspond to the
definition of the grafting tree. Indeed, T ′L is a whole tree, not a single node. Nevertheless,
it can be easily checked that the left product ~• is associative. Then any tree can be seen
as a series of a right-hanging trees grafted to each other as in the following picture.

a

TAb

TB

. . .

c

TC

The definition gives us that the interval-poset is computed by

(. . . ((u
←−
δc IC) ~• . . . (u

←−
δb IB)) ~• (u

←−
δa IA)) (4.21)

= (u
←−
δc IC) ~• . . . (u

←−
δb IB) ~• (u

←−
δa IA).
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Using (4.20), we obtain the desired result. Indeed, let J = u
←−
δi IR and J ′ = u

←−
δi I

′
R.

If IR is empty, so is I ′R and we have R(J) = IC(J ′) = (1). If not, we use Propositions 33
and 35 and Remark 36 to obtain

R(J) = (1 + r0(IR),R∗(IR), 0) (4.22)

= (1 + ic∞(I ′R), IC∗(I ′R), 0) (4.23)

= IC(J ′). (4.24)

Now by using Propositions 34 and 33, we obtain

R(I) = R(IL ~• J) = (R(IL),R(J)) (4.25)

= (IC(I ′L), IC(J ′)) (4.26)

= IC(J ′ ~• I ′L) = IC(I ′). (4.27)

4.4 The complement involution and rise-contact involution

As we have seen in Section 3.1, the rise-contact involution on Dyck paths is a conjugation
of the Tamari symmetry involution by the Dyck path reversal involution. The equivalent
of the Dyck path reversal on intervals is the left-branch involution on the grafting tree.
We now need to describe what is the Tamari symmetry on intervals: this is easy, especially
described on interval-posets.

Definition 51 (The Complement Involution). The complement of an interval-poset I of
size n is the interval-poset J defined by

i CJ j ⇔ (n+ 1− i) CI (n+ 1− j). (4.28)

We write ψ(I) the complement of I.

An example is shown on Figure 23. It is clear by Definition 3 that this is still an
interval-poset. Basically, this is an involution exchanging increasing and decreasing re-
lations. This corresponds to the up-down symmetry of the Tamari lattice. It is a well
known fact that the Tamari lattice is isomorphic to its inverse by sending every tree T to
its reverse T ′ where the left and right subtrees have been exchanged on every node. Let
T1 and T2 be respectively the lower and upper bounds of an interval I. Let T ′1 and T ′2 be
the respective reverses of T1 and T2. Then T ′1 is the upper bound of ψ(I) and T ′2 is the
lower bound.

Proposition 52. Let I be an interval-poset, then IC(I) = DC(ψ(I)).

Proof. Every increasing relation a CI b is sent to a decreasing relation (n + 1− a) Cψ(I)

(n + 1 − b). In particular, each connected component of the initial forest of I is sent to
exactly one connected component of the final forest of ψ(I) and so ic∞(I) = dc0(ψ(I)).
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I T1 T2
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2
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ψ(I) T ′2 T ′1
1

2 3

4

5 6

7

8

1

3

2 8

7

4

6

5

1

3

2 4

8

6

5 7

Figure 23: The complement of an interval-poset

Now, if a vertex b has k increasing children in I, its image (n + 1 − b) has k decreasing
children in ψ(I) so icb(I) = dcn+1−b(ψ(I)). Remember that IC∗ reads the numbers
of increasing children in reverse order from n to 2 whereas DC∗ reads the number of
decreasing children in the natural order from 1 = n + 1 − n to n − 1 = n + 1 − 2. We
conclude that IC(I) = DC(ψ(I)).

Proposition 53. Let I be an interval-poset, then d(I) = d(ψ(I)).
More precisely, (a, b) is a Tamari inversion of I if and only if (n+ 1− b, n+ 1− a) is

a Tamari inversion of ψ(I).

Proof. Let a < b be two vertices of I, we set a′ = n+ 1− b and b′ = n+ 1− a.

• There is a 6 k < b with b CI k if and only if there is k′ = n+ 1−k with a′ < k′ 6 b′

and a′ Cψ(I) k
′.

• There is a < k 6 b with a CI k if and only if there is k′ = n+1−k with a′ 6 k′ < b′

and b′ Cψ(I) k
′.

In other words, (a, b) is a Tamari inversion of I if and only if (a′, b′) is a Tamari inversion
of ψ(I). By Proposition 28, this gives us d(I) = d(ψ(I)).

You can check on Figure 23 that I has 3 Tamari inversions (1, 5), (2, 3), and (2, 5),
which give respectively the Tamari inversions (4, 8), (6, 7), and (4, 7) in ψ(I). We are
now able to state the following Theorem, which gives an explicit combinatorial proof of
Theorem 23. We give an example computation on Figure 24. You can run more examples
and compute tables for all intervals using the provided live Sage-Jupyter notebook [Pon].
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I J = β(I)
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2 4
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1 0

0 0 1
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0
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0

0

0 0

φ−→

2

0

3

2

0

0
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I =

1

3

2 4

5 6 7

8

=

[ ]
C(I) = [4, 0, 1, 0, 2, 0, 0, 1] R(I) = [1, 2, 0, 3, 2, 0, 0, 0]
C(I,X) = x40x

2
1x2x4 R(I, Y ) = y40y1y

2
2y3

J =

1

2

3

4 5

6

7

8

=

[ 
C(J) = [1, 2, 3, 2, 0, 0, 0, 0] R(J) = [4, 2, 0, 1, 0, 0, 1, 0]
C(J,X) = x40x1x

2
2x3 R(J, Y ) = y40y

2
1y2y4

Figure 24: The rise-contact involution on an example.

Theorem 54 (the rise-contact involution). Let β be the rise-contact involution defined
by

β = φ ◦ψ ◦φ . (4.29)

Then β is an involution on Tamari intervals such that, for an interval I and a commutative
alphabet X,

r0(I) = c0(β(I)); (4.30)

R(I,X) = C(β(I), X); (4.31)

d(I) = d(β(I)). (4.32)

Proof. The operation β is clearly an involution because it is the conjugate of the comple-
ment involution ψ by the left-branch involution φ. We obtain (4.32) immediately as the
distance is constant through φ by (4.16) and through ψ by Proposition 53.
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Now, using Propositions 50 and 52, we have

c0(β(I)) = c0(φ ◦ψ ◦φ(I)) = c0(φ ◦ψ(I)) = dc0(φ ◦ψ(I)) (4.33)

= ic∞(φ(I)) = r0(I), (4.34)

which proves (4.30). Now, by Proposition 50, we have that C(φ ◦ψ(I)) is a permutation
of C(φ ◦ψ ◦φ(I)). We then use Proposition 52 and again Proposition 50

C(φ ◦ψ(I)) = DC(φ ◦ψ(I)) = IC(φ(I)) = R(I). (4.35)

This means that R(I) is a permutation of C(β(I)), and so, because X is a commutative
alphabet, (4.31) holds.

Remark 55. The reader might notice at this point that the notion of Tamari interval-
poset is not completely necessary to the definition of the rise-contact involution. Indeed,
one novelty of this paper is the introduction of the grafting tree, which, we believe,
truly encapsulates the recursive structure of the Tamari intervals. As an example, it is an
interesting (and easy) exercise to recover the functional equation first described in [Cha07]
and later discussed in [CP15] using solely grafting trees. Nevertheless, please note that the
rise-contact involution cannot be described using solely grafting trees. Indeed, grafting
trees are the natural object to apply the left-branch involution but they do not behave
nicely through the complement involution. In this case, the interval-posets turn out to be
the most convenient object. The complement involution can also be described directly on
intervals of binary trees but then it makes it more difficult to follow some statistics such
as the distance. For these reasons, and also for convenience and reference to previous
results, we have kept interval-posets central in this paper.

Remark 56. In [CKS09] and [CKS13], the authors describe an interesting involution on
(1, 0) description trees that leads to the equi-distribution of certain statistics. Their
bijection is described recursively through grafting and up-raising of trees. Some similar
operations can be defined on (1, 1) description trees. An interesting question is then: is
there a a direct description of the rise-contact involution on (1, 1) description trees? The
answer is most probably yes. Actually, this resumes to understanding the complement
involution on (1, 1) description trees. We leave that for further research or curious readers.

5 The m-Tamari case

5.1 Definition and statement of the generalized result

The m-Tamari lattices are a generalization of the Tamari lattice where objects have an
(m + 1)-ary structure instead of binary. They were introduced in [BPR12] and can be
described in terms of m-ballot paths. An m-ballot path is a lattice path from (0, 0) to
(nm, n) made from horizontal steps (1, 0) and vertical steps (0, 1), which always stays
above the line y = x

m
. When m = 1, an m-ballot path is just a Dyck path where up-steps
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and down-steps have been replaced by respectively vertical steps and horizontal steps.
They are well known combinatorial objects counted by the m-Catalan numbers

1

mn+ 1

(
(m+ 1)n

n

)
. (5.1)

They can also be interpreted as words on a binary alphabet and the notion of primitive
path still holds. Indeed, a primitive path is an m-ballot path which does not touch the
line y = x

m
outside its end points. From this, the definition of the rotation on Dyck path

given in Section 2.2 can be naturally extended to m-ballot-paths, see Figure 25.

−→
10100 0 110100000 100 −→ 10100 110100000 0 100

Figure 25: Rotation on m-ballot paths.

When interpreted as a cover relation, the rotation on m-ballot paths induces a well-
defined order, which is a lattice [BPR12]. This is what we call the m-Tamari lattice or

T (m)
n , see Figure 26 for an example.

The intervals of m-Tamari lattices have also been studied. In [BMFPR11], it was
proved that they are counted by

In,m =
m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

)
. (5.2)

They were also studied in [CP15] where it was shown that they are in bijection with some
specific families of Tamari interval-posets. Our goal here is to use this characterization to
generalize Theorem 23 to intervals of m-Tamari, thus proving Conjecture 17 of [PR12].
First, let us introduce the m-statistics, which correspond to the classical cases statistics
defined in Definition 20.

Definition 57. Let B be an m-ballot path. We define the following m-statistics.

• c(m)0
(B) is the number of non-final contacts of the path B: the number of time the

path B touches the line y = x
m

outside the last point.

• r(m)0
(B) is the initial rise of B: the number of initial consecutive vertical steps.

• Let ui be the ith vertical step of B, (a, b) the coordinate of its starting point and
j an integer such that 1 6 j 6 m. We consider the line `i,j starting at (a, b + j

m
)

with slope 1
m

and the portion of path di,j of B which starts at (a, b + 1) and stays
above the line `i,j. From this, we define c(m)i,j

(B) the number of non-final contacts
between `i,j and di,j.
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Figure 26: m-Tamari on m-ballot paths: T (2)
3 .

• Let vi be the ith horizontal step of B, we say that the number of consecutive vertical
steps right after vi are the m-rises of vi and write r(m)i

(B).

• Cm(B) := (c(m)0
(B), c(m)1,1

(B), . . . , c(m)1,m
(B), . . . , c(m)n,1

(B), . . . , c(m)n,m−1(B)) is
the m-contact vector of B.

• Rm(B) := (r(m)0
(B), r(m)1

(B), . . . , r(m)nm−1(B)) is the m-rise vector of B.

• Let X = (x0, x1, x2, . . . ) be a commutative alphabet, we write Cm(B,X) the mono-
mial xv0 , . . . xvnm−1 where Cm(I) = (v0, . . . , vnm−1) and we call it the m-contact
monomial of B.

• Let Y = (y0, y1, y2, . . . ) be a commutative alphabet, we writeR(B, Y ) the monomial
yw0 , . . . , ywnm−1 where Rm(I) = (w0, . . . , wnm−1) and we call it the m-rise monomial
of B.

Besides, we write size(B) := n. An m-ballot path of size n has n vertical steps and
nm horizontal steps.
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u2

u5

c(m)2,1
= 2

c(m)5,2
= 2

c(m)0
(B) = 2

Cm(B) = [2, 1, 0, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0]
Cm(B,X) = x110 x

2
1x

3
2

r(m)0
(B) = 1

Rm(B) = [1, 1, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0]
Rm(B, Y ) = y100 y

4
1y

2
2

Figure 27: The m-contacts and m-rises of a ballot path.

An example is given on Figure 27. When m = 1, this is the same as Definition 20.
Note also that we will later define a bijection between m-ballot paths and certain families
of Dyck paths which also extends to intervals: basically any element of T (m)

n can also be
seen as an element of Tn×m but the statistics are not exactly preserved, which is why we
use slightly different notations for m-statistics to avoid any confusion.

Both Cm(B) and Rm(B) are of size nm. Also, note that even though `i,j does not
always starts at an integer point, the contacts with the subpath di,j only happen at integer
points. Because the final contact is not counted, it can happen that c(m)i,j

= 0 even when
di,j is not reduced to a single point. Indeed, the initial point is a contact only when j = m.
In this case, the definition of c(m)i,m

is similar to the classical case from Definition 20.

We clearly have
∑

06i6nm r(m)i
(B) = n as the m-rise vector partitions the vertical

steps. Actually, we also have
∑

06i6n;16j6m c(m)i,j
(B) = n. We see this through another

description of the non-zero values of the vector which makes the relation to [PR12, Con-
jecture 17] explicit.

Proposition 58. For each vertical step ui of an m-ballot path, let ai be the number of
1× 1 squares that lies horizontally between the step ui and the line y = x

m
. This gives us

a(B) = [a1, . . . , an], the area vector of B. We partition the values of a(B) such that ai
and aj are in the same set if ai = aj and for all i′ such that i 6 i′ 6 j, then ai′ > ai.
Let λ = (λ1 > λ2 > . . . > λk) be the integer partition obtained by keeping only the
set sizes and let e(B,X) = xλ1 . . . xλk a monomial on a commutative alphabet X. Then
e(B,X) = Cm(B,X) with x0 = 1.

The definition of e(B,X) comes from [PR12, Conjecture 17]. As an example, the area
vector of the path from Figure 27 is (0, 1, 2, 4, 2, 4, 4, 0). The set partition is {{a1, a8}, {a2},
{a3, a5}, {a4}, {a6, a7}}. In particular, the area vector always starts with a 0 and each new
0 corresponds to a contact between the path and the line. Here, we get λ = (2, 2, 2, 1, 1),
which indeed gives e(B,X) = x21x

3
2 = C(B,X) at x0 = 1.

Proof. If the step ui starts at a point (x, y), then we have by definition my = x + ai. In
particular, if ai = aj, then ui and uj both have a contact with a same affine line s of slope
1
m

. Then ai and aj belong to the same set in the partition if and only if the path between
ui and uj stays above the line s. More precisely, the line s cuts a section p of the path,
starting at some point (a, b + j

m
) where (a, b) is the starting point of a vertical step and
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1 6 j 6 m. The non-final contacts of this path p with the line s are exactly the vertical
steps uk with ak = ai. The final contact corresponds either to the end of the path B or
to a horizontal step: it does not correspond to an area ak = ai.

As for the classical case, we now extend those definitions to intervals of the m-Tamari
lattice.

Definition 59. Consider an interval I of T (m)
n described by two m-ballot paths B1 and

B2 with B1 6 B2. Then

1. c(m)0
(I) = c(m)0

(B1), c(m)i,j
(I) := c(m)i,j

(B1) for 1 6 i 6 n and 1 6 j 6 m,

Cm(I) := Cm(B1), and Cm(I,X) := Cm(B1, X);

2. r(m)i
(I) := r(m)i

(B2) for 0 6 i 6 mn, Rm(I) := Rm(B2), and Rm(I, Y ) :=
Rm(B2, Y ).

To summarize, all the statistics we defined on m-ballot paths are extended to m-Tamari
intervals by looking at the lower bound m-ballot path B1 when considering contacts and
the upper bound m-ballot path B2 when considering rises.

Besides, we write size(I) the size n of the m-ballot paths B1 and B2.

Finally, the definition of distance naturally extends to m-Tamari.

Definition 60. Let I = [B1, B2] be an interval of T (m)
n . We call the distance of I and

write d(I) the maximal length of all chains between B1 and B2 in the m-Tamari lattice.

We can now state the generalized version of Theorem 23.

Theorem 61 (general case). Let x, y, t, q be variables and X = (x0, x1, x2, . . . ) and Y =
(y0, y1, y2, . . . ) be commutative alphabets. Consider the generating function

Φm(t;x, y,X, Y, q) =
∑
I

tsize(I)xc(m)0
(I)yr(m)0

(I) Cm(I,X)Rm(I, Y )qd(I) (5.3)

summed over all intervals of the m-Tamari lattices. Then, for all m, we have

Φm(t;x, y,X, Y, q) = Φm(t; y, x, Y,X, q). (5.4)

We will give a combinatorial proof of this result, describing an involution on intervals
of m-Tamari lattices which uses the classical case β involution defined in Theorem 54.
First, we will recall and reinterpret some results of [CP15]. In particular, we recall how
intervals of the m-Tamari lattice can be seen as interval-posets.
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m-ballot path m-Dyck path

Figure 28: A 2-ballot path and its corresponding 2-Dyck path.

5.2 m-Tamari interval-posets

The m-Tamari lattice T (m)
n is trivially isomorphic to an upper ideal of the classical Tamari

lattice Tn×m.

Definition 62. Let B be an m-ballot path, we construct the Dyck path D(B) by replacing
every vertical step of B by m up-steps and every horizontal step of B by a down-step.
The set of such images are called the m-Dyck paths.

See Figure 28 for an example. The m-Dyck paths have a trivial characterization: they
are the Dyck paths whose rises are divisible by m. In other words, a Dyck path D is an
m-Dyck path if and only if all values of R(D) are divisible by m. We say that they are
rise-m-divisible: the set of m-Dyck paths is exactly the set of rise-m-divisible Dyck paths.
Besides, the set of m-Dyck paths is stable by the Tamari rotation. More precisely, they
correspond to the upper ideal generated by the Dyck path (1m0m)n which is the image of

the initial m-ballot path of T (m)
n , see Figure 29 for an example and [BMFPR11] for more

details.

2-ballot path 2-Dyck path 2-binary tree

1

2

3

4

5

6

Figure 29: Minimal element of T (2)
3 .

We can read the m-statistics of an m-ballot path on its corresponding m-Dyck path.

Proposition 63. Let B be an m-ballot path of size n and D = D(B) then

r(m)i
(B) =

1

m
ri(D) for 0 6 i 6 nm; (5.5)

c(m)0
(B) = c0(D); (5.6)

c(m)i,m
(B) = cim(D) for 1 6 i 6 n; (5.7)

c(m)i,j
(B) = c(i−1)m+j(D)− 1 for 1 6 i 6 n and 1 6 j < m. (5.8)

the electronic journal of combinatorics 26(2) (2019), #P2.32 42



Proof. The result is clear for rises. For contacts, note that the m-Dyck path can be
obtained from the ballot path by sending every point (x, y) of the ballot path to (my +
x,my− x). In particular, every contact point between the ballot path and a line of slope
1
m

is sent to a contact point between the m-Dyck path and a horizontal line. When j 6= m,

the line `i,j starts at a non-integer point (a, b+ j
m

) which becomes (mb+ j+a,mb+ b−a)
in the m-Dyck path: it now counts for one extra contact when computing c(i−1)m+j in the
m-Dyck path.

For example, look at Figure 28 and its m-contact vector on Figure 27. The contact
vector of its corresponding 2-Dyck path is given by C(D) = (2,2, 0,3, 0,1, 1,1, 0,1, 2,1,
0,1, 0,1): for each even position, the number is the same and for each odd position
(in red) the number is increased by 1. The rise-vector of the m-Dyck path is R(D) =
(2, 2, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 2, 0): it is indeed the m-rise-vector of Figure 27 multiplied
by 2.

As the m-Tamari lattice can be understood as an upper ideal of the Tamari lattice, it
follows that the intervals of T (m)

n are actually a certain subset of intervals of Tn×m: they
are the intervals whose both upper and lower bounds are m-Dyck paths (in practice, it is
sufficient to check that the lower bound is anm-Dyck path). It is then possible to represent
them as interval-posets. This was done in [CP15] where the following characterization
was given.

Definition 64. An m-interval-poset is an interval-poset of size n×m with

im C im− 1 C . . . C im− (m− 1) (5.9)

for all 1 6 i 6 n.

Theorem 65 (Theorem 4.6 of [CP15]). The m-interval-posets of size n×m are in bijection

with intervals of T (m)
n .

On Figure 32, you can see two examples of m-interval-posets with m = 2 and their
corresponding m-ballot paths. To construct the interval-posets, you convert the ballot
paths into m-Dyck paths and use the classical constructions of Propositions 18 and 19.
You can check that the result agrees with Definition 64: for all k, 2k C 2k − 1. The
proof that it is a bijection uses the notion of m-binary trees. These are the binary trees of
size nm which belong to the upper ideal of Tn×m corresponding to the m-Tamari lattice.
This ideal is generated by the binary tree image of the initial m-Dyck path through the
bijection of Definition 13 as shown in Figure 29. The m-binary trees have a (m + 1)-ary
recursive structure: this is the key element to prove Theorem 65 and we will also use it
in this paper.

Definition 66. The m-binary trees are defined recursively by being either the empty
binary tree or a binary tree T of sizem×n constructed fromm+1 subtrees TL, TR1 , . . . , TRm

such that

• the sum of the sizes of TL, TR1 , . . . , TRm is mn−m;
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• each subtree TL, TR1 , . . . , TRm is itself an m-binary tree;

• and T follows the structure bellow.

TL TR1

TR2

. . .

TRm

The left subtree of T is TL. The right subtree of T is constructed from TR1 , . . . , TRm

by the following process: graft a an extra node to the left of the leftmost node of TR1 ,
then graft TR2 to the right of this node, then graft an extra node to the left of the leftmost
node of TR2 , then graft TR3 to the right of this node, and so on.

Note that in total, m extra nodes were added: we call them the m-roots of T .

Figure 30 gives two examples of m-binary trees for m = 2 with their decompositions
into 3 subtrees. More examples and details about the structure can be found in [CP15].
In particular, m-binary trees are the images of m-Dyck paths through the bijection of
Definition 13.

Figure 30: Examples of m-binary trees for m = 2: TL is in red, TR1 is in dotted blue and
TR2 is in dashed green. In the second example, TR1 is empty.

When working on the classical case, we could safely identify an interval of the Tamari
lattice and its representing interval-poset. For m 6= 1, we need to be a bit more careful
and clearly separate the two notions. Indeed, the m-statistics from Definition 59 of an
interval of T (m)

n are not equal to the statistics of its corresponding interval-poset from
Definition 21. They can anyway be retrieved through simple operations.

Proposition 67. Let I be an interval of T (m)
n , and Ĩ its corresponding interval-poset of

size nm. Then

r(m)i
(I) =

1

m
ri(Ĩ) for 0 6 i 6 nm; (5.10)
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c(m)0
(I) = c0(Ĩ); (5.11)

c(m)i,m
(I) = cim(Ĩ) for 1 6 i 6 n; (5.12)

c(m)i,j
(I) = c(i−1)m+j(Ĩ)− 1 for 1 6 i 6 n and 1 6 j < m; (5.13)

d(I) = d(Ĩ). (5.14)

Proof. All identities related to rises and contacts are a direct consequence of Proposi-
tion 63. Only (5.14) needs to be proved, which is actually also direct: T (m)

n is isomorphic
to the ideal of m-Dyck path in Tn×m and so the distance between two paths in the lattice
stays the same.

5.3 The expand-contract operation on m-Tamari intervals

Definition 68. We say that an interval-poset I of size nm is

• contact-m-divisible if all values of C(I) are divisible by m;

• rise-m-divisible if all values of R(I) are divisible by m;

• rise-contact-m-divisible if it is both contact-m-divisible and rise-m-divisible.

In particular, m-interval-posets are rise-m-divisible but not necessary contact-m-di-
visible. Besides, we saw that rise-m-divisible Dyck paths were exactly m-Dyck paths, but
the set of rise-m-divisible interval-posets is not equal to m-interval-posets. Indeed, an
interval whose upper bound is an m-Dyck path is rise-m-divisible but it can have a lower
bound which is not an m-Dyck path and so it is not an m-interval-poset.

Furthermore, it is quite clear that the set of m-interval-posets is not stable through the
rise-contact involution β. Indeed, the image of an m-interval-poset would be contact-m-
divisible but not necessary rise-m-divisible. In this section, we describe a bijection between
the set of m-interval-posets and the set of rise-contact-m-divisible intervals. This bijection
will allow us to define an involution on m-interval-posets which proves Theorem 61.

Definition 69. Let (T, `) be a grafting tree of size nm and v1, . . . , vnm be the nodes of T
taken in in-order. We say that (T, `) is an m-grafting-tree if `(vi) > 1 for all i such that
i 6≡ 0 mod m.

Proposition 70. An interval-poset I is an m-interval-poset if and only if ∆(I) is an
m-grafting-tree.

As an example, the top and bottom grafting trees of Figure 32 are m-grafting trees:
you can check that every odd node has a non-zero label. The corresponding m-interval-
posets are drawn on the same lines. Proposition 70 is direct consequence of Proposition 42
and Definition 64. Indeed, to obtain (5.9), it sufficient to say that every node i of the
interval-poset such that i 6≡ 0 mod m has at least one decreasing child j > i such that
j C i. By definition of an interval-poset, this gives i+ 1 C i.

Proposition 71. Let (T, `) be an m-grafting-tree, then T is an m-binary-tree.
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Proof. This is immediate by Proposition 42: (T, `) corresponds to an m-interval-poset I.
In particular, the upper bound of I is an m-binary tree which is equal to T .

Proposition 72. Let (T, `) be an m-grafting-tree, and v1, . . . , vnm its nodes taken in in-
order. The expansion of (T, `) is expand(T, `) = (T ′, `′) defined by

• T ′ = T ;

• `′(vi) = m`(vi) if i ≡ 0 mod m, otherwise, `′(vi) = m(`(vi)− 1).

Then expand defines a bijection through their grafting trees between m-interval-posets
and rise-contact-m-divisible interval posets. The reverse operation is called contraction,
we write (T, `) = contract(T, `′). Besides, we have

c0(T, `
′) = m c0(T, `). (5.15)

Note that we write c0(T, `) for c0(∆
−1(T, `)) for short.

The intuition behind this operation is that the relations im C . . . C im− (m− 1) are
not necessary to recover the m-interval-poset (because they are always present). Besides,
the structure of the m-binary tree allows to replace each remaining decreasing relations
by m decreasing relations. Nevertheless, even if the operation is easy to follow on grafting
tree (and the proof mostly straight forward), we would very much like to see a “better”
description of it directly on Tamari intervals.

Proof. This proposition contains different results, which we organize as claims and prove
separately.

Claim 1. (T, `′) = expand(T, `) is a grafting tree such that c0(T, `
′) = m c0(T, `).

These two properties are intrinsically linked, we will prove both at the same time
by induction on the recursive structure of m-binary-trees. Let (T, `) be an m-grafting
tree. By Proposition 71, T is an m-binary tree. If T is empty, then there is nothing to
prove. Let us suppose that T is non-empty: it can be decomposed into m + 1 subtrees
TL, TR1 , . . . , TRm which are all m-grafting trees. By induction, we suppose that they satisfy
the claim.

Let us first focus on the case where TL is the empty tree. Then v1 (the first node
in in-order) is the root, and moreover, the m-roots are v1, . . . vm. We call T1, T2, . . . , Tm
the subtrees of T whose roots are respectively v1, . . . , vm (in particular, T1 = T ). See
Figure 31 for an illustration.

In particular, for 1 6 k < m, the tree Tk follows a structure that depends on TRk
and

Tk+1 as shown in Figure 31 and Tm depends only on TRm . Note that T2, . . . Tk are grafting
trees but they are not m-grafting trees whereas TR1 , . . . , TRm are. Following Definition 40,
the structure gives us

`(vk) 6 size(TRk
) + size(Tk+1)− labels(TRk

, `)− labels(Tk+1, `) (5.16)

= c0(TRk
, `) + c0(Tk+1, `)
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m = 3 General case
T1 = T T2 T3 Tk Tm

1 6 k < m

v1

TR1

v2

TR2

v3

TR3

v2

TR2

v3

TR3

v3

TR3

vk

TRk

Tk+1

vm

TRm

Figure 31: Illustration of T1, . . . , Tm

for 1 6 k < m and
`(vm) 6 c0(TRm , `). (5.17)

Also, for 1 6 k < m, we have `′(vk) = m(`(vk) − 1) > 0 (indeed remember that
`(vk) > 1 because (T, `) is an m-grafting-tree) and `′(vm) = m`(vm) > 0. To prove that
(T, `′) is a grafting tree, we need to show

`′(vk) 6 c0(TRk
, `′) + c0(Tk+1, `

′); (5.18)

`′(vm) 6 c0(TRm , `
′). (5.19)

We simultaneously prove

c0(Tk, `
′) = m c0(Tk, `)− k + 1. (5.20)

The case k = 1 in (5.20) finishes to prove the claim. We start with k = m and then do
an induction on k decreasing down to 1. By hypothesis, we know that (TRm , `) satisfies
the claim. In particular (TRm , `

′) is a grafting tree and c0(TRm , `
′) = m c0(TRm , `).

By definition, we have `′(vm) = m`(vm) and so (5.17) implies (5.19). Besides

c0(Tm, `) = size(Tm)− labels(Tm, `) (5.21)

= 1 + size(TRm)− `(vm)− labels(TRm , `)

= 1− `(vm) + c0(TRm , `),

m c0(Tm, `)−m+ 1 = m−m`(vm) +m c0(TRm , `)−m+ 1 (5.22)

= 1− `′(vm) + c0(TRm , `
′)

= c0(Tm, `
′),

i.e., case k = m of (5.20).
Now, we choose 1 6 i < m and assume (5.18) and (5.20) to be true for k > i. We

have `′(vi) = m (`(vi)− 1), so (5.16) gives us

`′(vi) 6 m c0(TRi
, `) +m c0(Ti+1, `)−m (5.23)
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= c0(TRi
, `′) + c0(Ti+1, `

′) + i−m

using (5.20) with k = i+ 1. As i < m, this proves (5.18) for k = i. Now, the structure of
Ti gives us

c0(Ti, `) = c0(TRi
, `) + c0(Ti+1, `) + 1− `(vi); (5.24)

c0(Ti, `
′) = c0(TRi

, `′) + c0(Ti+1, `
′) + 1− `′(vi) (5.25)

= m c0(TRi
, `) +m c0(Ti+1, `)− (i+ 1) + 1 + 1−m(`(vi)− 1)

= m c0(Ti, `)− i+ 1.

The case where TL is not the empty tree is left to consider but actually follows directly.
The claim is true on TL by induction as its size is strictly smaller than T . Let T̃ be the tree
T where you remove the left subtree TL. Then T̃ is still an m-grafting tree and the above
proof applies. The expansion on T consists of applying the expansion independently on
TL and T̃ and we get c0(T, `

′) = c0(TL, `
′) + c0(T̃ , `

′) = m c0(T, `).

Claim 2. (T, `′) = expand(T ) is rise-contact-m-divisible.

T is still an m-binary tree, which by Proposition 42, means that the upper bound
of ∆−1(T, `′) is an m-binary tree: it corresponds to an m-Dyck path and is then m-
rise-divisible. We have just proved that c0(T, `

′) = m c0(T, `) is a multiple of m. By
Proposition 32 the rest of the contact vector is given by reading the labels on T : by
definition of `′, all labels are multiples of m.

Claim 3. Let (T, `′) be a rise-contact-m-divisible grafting tree, then (T, `) = contract(T, `′)
is an m-grafting tree.

We define (T, `) = contract(T, `′) to make it the inverse of the expand operation:

`(vi) =
`′(vi)

m
if i ≡ 0 mod m (5.26)

`(vi) =
`′(vi)

m
+ 1 otherwise. (5.27)

As earlier, we simultaneously prove that (T, `) is an m-grafting tree and that c0(T, `) =
c0(T,`′)
m

. Our proof follows the exact same scheme as for Claim 1. First note that the fact
that (T, `′) is rise-m-divisible implies that T is an m-binary tree: indeed, it corresponds
to a certain Dyck path which is rise-m-divisible. When T is not empty, we can recursively
decompose it into TL, TR1 , . . . , TRm . As earlier, the only case to consider is actually
when TL is empty. We use the decomposition of T depicted in Figure 31 and prove
(5.20) and (5.16) by induction on k decreasing from m to 1. The case where k = m
is straightforward: we have that (5.19) implies (5.17) and (5.22) is still true. Now, we
choose 1 6 i < m and assume (5.16) and (5.20) to be true for k > i. Using (5.18), we get

m(`(vi)− 1) 6 c0(TRi
, `′) + c0(Ti+1, `

′) (5.28)

= m c0(TRi
, `) +m c0(Ti+1, `)− (i+ 1) + 1
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`(vi) 6 c0(TRi
, `) + c0(Ti+1, `)−

i

m
+ 1.

We have 0 < i
m
< 1 and because `(vi) is an integer then (5.16) is true. Besides, by

definition of `, `(vi) > 1, which satisfies the m-grafting tree condition. The rest of the
induction goes smoothly because (5.25) is still valid.

The expand and contract operations are the final crucial steps that allow us to define
the m-contact-rise involution and prove Theorem 61. Before that, we need a last property
to understand how the distance statistic behaves through the transformation.

Proposition 73. Let (T, `) be an m-grafting tree of size mn, and (T, `′) = expand(T, `),
then

d(T, `′) = m d(T, `) +
nm(m− 1)

2
(5.29)

Proof. For each vertex vi of T , let di(T, `) = size(TR(vi))− labels(TR(vi), `)− `(vi) where
TR(vi) is the right subtree of the vertex vi in T and remember that d(T, `) =

∑nm
i=1 di by

Proposition 46. We claim that

dim−j(T, `
′) = mdim−j(T, `) + j (5.30)

for 1 6 i 6 n and 0 6 j < m, which gives the result by summation. We prove our claim by
induction on n. Let us suppose that T is not empty and decomposes into TL, TR1 , . . . , TRm .
The result is true by induction on the subtrees: indeed the index of a given vertex (in
in-order) in T and in its corresponding subtree is the same modulo m. It remains to
prove the property for the m-roots of T , which are given by {vim−j; 0 6 j < m} for some
1 6 i 6 n. We use the decomposition of Figure 31. Remember that TRm is an m-grafting
tree and we have by Proposition 72 that c0(TRm , `

′) = m c0(TRm , `). We get

dim(T, `′) = size(TRm)− labels(TRm , `
′)− `′(vim) (5.31)

= c0(TRm , `
′)− `′(vim)

= m c0(TRm , `)−m`(vim)

= mdim(T, `).

Now, remember that by the decomposition of Figure 31, TR(vim−j) is made of TRm−j

(which is an m-grafting tree) with Tm−j+1 grafted on its left most branch, using that and
(5.20), we get

dim−j(T, `
′) = size(TR(vim−j))− labels(TR(vim−j), `

′)− `′(vim−j) (5.32)

= size(TRm−j
) + size(Tm−j+1)

− labels(TRm−j
, `′)− labels(Tm−j+1, `

′)− `′(vim−j)
= c0(TRm−j

, `′) + c0(Tm−j+1, `
′)− `′(vim−j)

= m c0(TRm−j
, `) +m c0(Tm−j+1, `)− (m− j + 1) + 1−m(`(vim−j)− 1)

= dim−j(T, `) + j.
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Theorem 74 (The m-rise-contact involution). Let βm be the m-rise-contact involution
defined on m-interval-posets by

βm = contract ◦ β ◦ expand (5.33)

Then βm is an involution on intervals of T (m)
n , such that for an interval I and a commu-

tative alphabet X,

r(m)0
(I) = c(m)0

(βm(I)); (5.34)

Rm(I,X) = Cm(βm(I), X); (5.35)

d(I) = d(βm(I)). (5.36)

Proof. Le I be an interval of T (m)
n with Ĩ its corresponding m-interval-poset in Tn×m and

let (T, `) = expand(Ĩ) be the expansion of its m-grafting-tree. By Propositions 67 and 72,
we have

c0(T, `) = m c0(Ĩ) = m(c(m)0
(I)) (5.37)

cim(T, `) = m cim(Ĩ) = m(c(m)i,m
(I)) (5.38)

c(i−1)m+j(T, `) = m(c(i−1)m+j(Ĩ)− 1) = m(c(m)i,j
(I)) (5.39)

for 1 6 i 6 n and 1 6 j < m. And using again Propositions 67 and the fact that the
expansion does not affect the initial forest, we have

ri(T, `) = ri(Ĩ) = m(r(m)i
(I)) (5.40)

for 0 6 i 6 mn. In other words, (T, `) is rise-contact-m-divisible. Let (T ′, `′) = β(T, `).
By Theorem 54, we have that

r0(T, `) = c0(T
′, `′); (5.41)

R(T, `,X) = C(T ′, `′, X); (5.42)

d(T, `) = d(T ′, `′). (5.43)

In particular, this means that (T ′, `′) is still rise-contact-m-divisible: we can apply the
contract operation and we get an m-interval-poset J̃ of Tn×m, which corresponds to some

interval J of T (m)
n . This proves that βm is well defined and is an involution by construction.

Using (5.40) followed by (5.41) then by (5.37) on (T ′, `′), J and J̃ , we obtain (5.34).
The result (5.35) follows in a similar way. The equality (5.40) tells us that the rise

vector of (T, `) is the rise vector of I where every value has been multiplied by m. Now
(5.42) basically says that the contact vector of (T ′, `′) is a permutation of the rise vector
of (T, `). Finally, we apply (5.37), (5.38), and (5.39) on (T ′, `′), J̃ and J instead of (T, `),
Ĩ and I, and we get the equality (5.35) between the rise and contact partitions.

For (5.36), see in (5.43) that the distance statistic is not affected by β. Proposition 73
tells us that expand applies an affine transformation which does not depend on the shape
of T , it is then reverted by the application of contract later on.
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Figure 32 shows a complete example of the βm involution on an interval of T (2)
11 .

You can run more examples and compute tables for all intervals using the provided live
Sage-Jupyter notebook [Pon].
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Figure 32: The m-rise-contact involution on an example
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