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Abstract

We give a cluster expansion formula for cluster algebras with principal coef-
ficients defined from triangulated surfaces in terms of maximal independent sets
of angles. Our formula simplifies the cluster expansion formula given by Musiker,
Schiffler and Williams in terms of perfect matchings of snake graphs. A key point
of our proof is to give a bijection between maximal independent sets of angles in
some triangulated polygon and perfect matchings of the corresponding snake graph.
Moreover, they also correspond bijectively with perfect matchings of the correspond-
ing bipartite graph and minimal cuts of the corresponding quiver with potential.

Mathematics Subject Classifications: 13F60, 05C70, 05E15

1 Introduction

Cluster algebras, introduced by Fomin and Zelevinsky in 2002 [FZ1], are commutative
algebras with a distinguished set of generators, which are called cluster variables. Their
original motivation was coming from an algebraic framework for total positivity and
canonical bases in Lie Theory. In recent years, it has interacted with various subjects
in mathematics, for example, quiver representations, Calabi-Yau categories, Poisson ge-
ometry, Teichmüller spaces, exact WKB analysis, etc.

In a cluster algebra with principal coefficients, by Laurent phenomenon, any cluster
variable is expressed by a Laurent polynomial of the initial cluster variables (x1, . . . , xN)
and coefficients (y1, . . . , yN)

x =
f(x1, . . . , xN , y1, . . . , yN)

xd11 · · ·x
dN
N

,
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where f(x1, . . . , xN , y1, . . . , yN) ∈ Z[x1, . . . , xN , y1, . . . , yN ] and di ∈ Z>0 [FZ1, FZ2]. An
explicit formula for the Laurent polynomials of cluster variables is called a cluster expan-
sion formula.

We study cluster algebras defined from triangulated surfaces that are developed in
[FoG1, FoG2, FST, FT, GSV]. In the case of triangulated polygons, Carroll and Price
[CPr] gave a cluster expansion formula in terms of perfect matchings of bipartite graphs
(see also [CPi]). Using it, Propp [P] studied the Conway and Coxeter frieze patterns and
Markov numbers. In general case, Musiker, Schiffler and Williams gave a cluster expansion
formula in terms of perfect matchings of snake graphs. Using it, they proved the positivity
conjecture [MSW1] and constructed two bases [MSW2] for these cluster algebras. The
first aim of this paper is to give a cluster expansion formula for these cluster algebras in
terms of maximal independent sets of angles (Theorem 4). This simplifies their formula
as we will discuss later. The second aim of this paper is to give bijections between several
different combinatorial objects containing perfect matchings of snake graphs (Theorem
3). This correspondence gives a generalization of the cluster expansion formula in [CPr].

This paper is organized as follows. In the rest of this section, we give our results
and some examples. For simplicity, we first specialize Theorem 4 to the coefficient-free
case, that is yi = 1 for all i (Theorem 2). Using Theorem 4, we also study f -vectors of
cluster variables. In Section 2, we recall basic definitions and facts on cluster algebras,
triangulated surfaces and the cluster expansion formula of Musiker-Schiffler-Williams. We
prove Theorem 4 and a part of Theorem 3 simultaneously in Section 3. We prove our
results for the corresponding bipartite graphs in Section 4 and study minimal cuts of
the corresponding quivers with potential in Sections 5. Finally, some elements in A(T )
correspond to essential loops in T (see Section 6 for details). In the case of a marked
surface without punctures, it is known that these elements and cluster variables form a
base of A(T ) (see Theorem 59). We give the formula for these elements in terms of good
maximal independent sets of angles in Theorem 61.

1.1 Our results in the coefficient-free case

Let (S,M) be a marked surface and T a tagged triangulation of (S,M). Let A(T ) be
the cluster algebra with principal coefficients defined from T (see Subsection 2.3). Then
there is a bijection between cluster variables in A(T ) and tagged arcs of (S,M), which
are obtained from ordinary arcs by tagging their endpoints plain or notched (see Theorem
17). We represent tagged arcs as follows:

plain notched ./

For simplicity, in this paper, we assume that if (S,M) is a closed surface with exactly
one puncture, all tagged arcs are plain arcs. For a tagged arc δ, we denote by xδ the
corresponding cluster variable in A(T ). We index the tagged arcs of T by [1, N ] :=
{1, . . . , N}. In particular, xi (resp., yi) is the corresponding initial cluster variable (resp.,
coefficient) in A(T ) for i ∈ [1, N ].
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Definition 1. We call a tagged arc δ

• a plain arc if its both ends are tagged plain,

• a 1-notched arc if an end of δ is tagged plain and the other end is tagged notched,

• a 2-notched arc if its both ends are tagged notched.

To give cluster expansion formulas, by changing tags, we can make the following
assumption (see Proposition 18).

Assumption 1. The initial tagged triangulation T consists of plain arcs and 1-notched
arcs, with at most one 1-notched arc incident to each puncture.

In this case, for each 1-notched arc of T , the corresponding plain arc is also in T . Then
there is a unique ideal triangulation T 0 obtained from T by replacing every 1-notched
arc with the corresponding loop cutting out a once-punctured monogon and by forgetting
tags.

For a tagged arc δ of (S,M), we denote by δ the plain arc corresponding to δ. Now,
we only consider the case of γ := δ /∈ T . Let p and q be the endpoints of γ. Let γ(p) be
the 1-notched arc obtained from γ by tagging its end p notched. Similarly, we define the
2-notched arc γ(pq) with both ends tagged notched:

γ

p

γ(p)

./ q p

γ(pq)

./ ./

In particular, δ = γ, γ(p) or γ(pq). By changing tags, we can make the following assumption
(see Proposition 18).

Assumption 2. If δ = γ(p) (resp., δ = γ(pq)), there is no 1-notched arc incident to p
(resp., p or q) in T .

Our cluster expansion formula for xγ (resp., xγ(p) , xγ(pq)) comes down to type A (resp.,

D, D̃) corresponding to polygons with no punctures (resp., one puncture, two punctures).
We construct a triangulated polygon Tδ associated with δ as follows.

Let τ1, . . . , τn be the arcs of T 0 crossing γ in order of occurrence along γ (we can have
τi = τj even if i 6= j). Hence γ crosses n+ 1 triangles 40, . . . ,4n, in this order. Suppose
first that none of these triangles is self-folded. Then for i ∈ [0, n], let 4γ,i be a copy of
the oriented triangle 4i, hence 4γ,i contains the sides τi and τi+1 (τ1 only if i = 0, and
τn only if i = n). Then Tγ is the triangulation of an (n+ 3)-gon obtained by gluing these
triangles along the edges τi. Similarly, we construct Tγ(p) (resp., Tγ(pq)) by adjoining to
Tγ copies of all triangles incident to p (resp., p and q) if none of them is self-folded. See
Figure 1. If γ crosses self-folded triangles or there are self-folded triangles incident to p or
q, we adapt the construction using the local transformations of Figure 2. Note that, by
Assumption 2, it is not necessary to consider the case, where the end of δ in the middle
of Figure 2 is tagged notched.
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· · ·

Tγ (type A)

τ1 τnτn−1τ2
γ

· · ·

Tγ(p) (type D)

pτ1 τnτn−1τ2
γ(p) ./

· · ·

Tγ(pq) (type D̃)

p
q

τ1 τnτn−1τ2
γ(pq)./ ./

Figure 1: Triangulated polygon Tδ for each tagged arc δ

τi

τi−1 = τi+1

δ

→
τi−1

τi

τi

τi

τi+1

δ
r

τ1 or τn

δ → τ1
or τn

r

r

δ
ζi

ζi−1 = ζi+1

δ

./

→
ζi−1

ζi

ζi

ζi

ζi+1

δ

./

Figure 2: Replacing self-folded triangles

In this paper, we call interior arcs of each polygon Tδ diagonals and non-interior arcs of
Tδ boundary segments. We consider the graph whose vertices are all angles of Tδ incident
to at least one diagonal, and whose edges are given by cliques containing all angles incident
to a given vertex of Tδ and cliques containing all angles incident to a given triangle of Tδ.
We call a maximal independent set of the graph a maximal independent set of angles in
Tδ. Note that a maximal independent set of angles in Tδ was called a perfect matching
of angles in the previous paper [Y]. We denote by A(Tδ) the set of maximal independent
sets of angles in Tδ. It is easy to see that A(Tδ) 6= ∅ (e.g. see Figure 3).

For a diagonal or boundary segment τ of Tδ, we denote xτ = xτ ′ if τ corresponds to
a non-boundary segment τ ′ of T and we denote xτ = 1 otherwise. Then, for an angle
a of Tδ, xa := xτ , where τ is the side opposite to a in the triangle containing a. Using
Assumption 1, we define a ring homomorphism

Φ : Z[x±1
1 , . . . , x±1

N ]→ Z[x±1
1 , . . . , x±1

N ] (1.1)

by

Φ(xj) :=

{
xjxk if j is a 1-notched arc, where k is the plain arc of T corresponding to j,
xj otherwise,

for any j ∈ [1, N ]. Our main result Theorem 4 gives a cluster expansion formula for cluster
algebras with principal coefficients defined from triangulated surfaces. In this subsection,
we specialize it to the coefficient-free case.

Theorem 2. Let δ be a tagged arc of (S,M).
(1) If δ /∈ T , we have

xδ = Φ

(
1

cross(T, δ)

∑
A∈A(Tδ)

x(A)

)
, where cross(T, δ) :=

∏
τ∈Tδ

xτ and x(A) :=
∏
a∈A

xa.
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(2) Suppose that δ ∈ T and δ /∈ T . Let p and q be the endpoints of δ. If p (resp., q)
is a puncture, we denote by `p (resp., `q) the loop with endpoint q (resp., p) cutting out
a monogon containing only p (resp., q). We can define triangulated polygons T`p and T`q
in the same way as for plain arcs. Then, for s = p or q, we have

xδ =


x`s
xδ

if δ = δ
(s)

x`px`q+1

xδ
if δ = δ

(pq)

 , where x`s = Φ

(
1

cross(T, `s)

∑
A∈A(T`s )

x(A)

)
.

There are two key steps to prove Theorem 4.
The first step is the cluster expansion formula given by Musiker-Schiffler-Williams

[MSW1]. A perfect matching in a graph G is a set P of edges of G such that each vertex
of G is contained in exactly one edge in P . One can construct a snake graph Gδ associated
with Tδ. Musiker-Schiffler-Williams gave a cluster expansion formula in terms of perfect
matchings of Gδ (see Subsection 2.4). Note that perfect matchings of Gγ(p) and Gγ(pq) are
different from general perfect matchings of graphs, that are also called symmetric perfect
matchings and compatible perfect matchings, respectively (see Definitions 24 and 27).

The second step is Theorem 3 below. It gives bijections between several different
combinatorial objects, that we introduce now. The bipartite graph Bδ associated with Tδ
is defined as follows: The set of black vertices consists of vertices incident to at least one
diagonal of Tδ and the set of white vertices consists of triangles of Tδ. Edges are drawn
between the white vertex corresponding to a triangle ABC and the three black vertices
corresponding to A, B and C if they exist. On the other hand, we associate to δ a quiver
with potential (Qδ,W δ) in Subsection 5.1, and we define minimal cuts of (Qδ,W δ) in
Definition 54.

Theorem 3. There are bijections between the following objects:
(1) Perfect matchings of angles in Tδ, (2) Perfect matchings of Gδ,
(3) Perfect matchings of Bδ, (4) Minimal cuts of (Qδ,W δ),

for any tagged arc δ of (S,M) such that δ /∈ T .

By Theorem 3, we also obtain cluster expansion formulas in terms of perfect match-
ings of bipartite graphs and minimal cuts of quivers with potential. More precisely, the
bijection between (1) and (3) in Theorem 3 is induced by a natural bijection $ between
the set of angles incident to at least one diagonal of Tδ and the set of edges of Bδ given
by the following picture:

a
↔

$(a)

For a side e of Bδ, we denote xe = x$−1(e). For a tagged arc δ of (S,M) with δ /∈ T , we
have

xδ = Φ

(
1

cross(T, δ)

∑
E

x(E)

)
, where x(E) :=

∏
e∈A

xe,

and E runs over all perfect matchings of Bδ. Similarly, we obtain a cluster expansion
formula in terms of minimal cuts of quivers with potential (see Corollary 55).
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Our main result Theorem 4 is obtained from the bijection between (1) and (2) in
Theorem 3 and the cluster expansion formula of Musiker-Schiffler-Williams by showing
that the bijection preserves the corresponding initial cluster variables. Notice that the
construction of Tδ is simpler than the one of Gδ. Moreover, the definition of a maximal
independent set of angles is more uniform than the definition of a perfect matching of Gδ,
where three cases need to be distinguished depending of the tags attached to δ. Therefore,
our new formula simplifies the formula of Musiker-Schiffler-Williams.

1.2 Example in the coefficient-free case

Let (S,M) be a square with three punctures. We consider the following tagged triangu-
lation T and the corresponding ideal triangulation T 0:

T

1
4 5

6

7

8

910

2

./

3
δ1

δ2 ./

δ3

./

./

T 0

1
4 5

6

7

8

910

2
3

δ1
δ2 ./

δ3

./

./

The cluster algebra A(T ) has initial cluster variables x1, . . . , x10. The ring homomorphism
Φ : Z[x±1

1 , . . . , x±1
10 ]→ Z[x±1

1 , . . . , x±1
10 ] is given by

Φ(xi) =

{
x1x2 if i = 2,
xi otherwise.

The combinatorial data corresponding to the above three tagged arcs δ1, δ2 and δ3 are
given as follows:

Tδ1

3

1 1

6

4

2 1 2 3

Tδ2

1 7

1

2 3
6

5

4

Tδ3

3

4

5

6

8

9

10

7

Gδ1

3

1

1

2

2

1

1

3

2

4

6

Gδ2 1

2

1

4

3

6
3

5
5

6

3

4

7

4

1

6

3

2

1

Gδ3

6

7

8

5

10

10

8

9
9

7
8

10

5
6

8

7

6

10

5

3

5

6

4
4

7
6

5

10
8
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Bδ1

3 1 1
6

1 2 2 1 3 2 4

Bδ2

1 6
5

1 3 2 4
5

6

4
3

7

Bδ3
4

610
9

4
5 8

9

6

5

10

8

3
7 7

Qδ1

1 12
3

21 12 23

6
3

4

Qδ2

6

74
3

6
5

5
4

231
2

1

Qδ3

10
7

8
10

9

9
8

5
7

6

4
6

3

5
4

We use Theorem 2 to obtain the cluster expansions of xδ1 , xδ2 and xδ3 with respect to the
initial cluster variables x1, . . . , x10 in A(T ).
(1) δ1: There are five maximal independent sets of angles in Tδ1 , corresponding to five
monomials as follows:

x1x
2
2x6

3

1 1

6

4

2 1 2 3

x1x2x4

3

1 1

6

4

2 1 2 3

x1x2x3x4

3

1 1

6

4

2 1 2 3

x1x2x3x4

3

1 1

6

4

2 1 2 3

x1x2x
2
3x4

3

1 1

6

4

2 1 2 3

Since cross(T, δ1) = x1x
2
2x3, the corresponding cluster variable is

xδ1 = Φ

(
1

x2x3

(x2x6 + x4 + x3x4 + x3x4 + x2
3x4)

)
=

1

x1x2x3

(x1x2x6 + x4 + 2x3x4 + x2
3x4).

(2) δ2: There are nine maximal independent sets of angles in Tδ2 , corresponding to nine
monomials as follows:

x1x2x3x5x6

1
7

1

2 3
6

54

x1x2x
2
6y4

1
7

1

2 3
6

5
4

x1x2x4x6x7y4y5

1
7

1

2 3
6

5
4

x1x4x6y3y4

1
7

1

2 3
6

5
4

x1x
2
4x7y3y4y5

1
7

1

2 3
6

5
4

x1x3x4x6y2y3y4

1
7

1

2 3
6

5
4

x1x3x4x5y3y4y5y6

1
7

1

2 3 6

5
4

x1x3x
2
4x7y2y3y4y5

1
7

1

2 3
6

5
4

x1x
2
3x4x5y2y3y4y5y6

1
7

1

2 3 6

5
4

Since cross(T, δ2) = x2x3x4x5x6, the corresponding cluster variable is

xδ2 = Φ

(
1

x2x3x4x5x6

(
x1x2x3x5x6 + x1x2x

2
6 + x1x2x4x6x7 + x1x4x6 + x1x

2
4x7

+x1x3x4x6 + x1x3x4x5 + x1x3x
2
4x7 + x1x

2
3x4x5

))
=

1

x2x3x4x5x6

(
x1x2x3x5x6 + x1x2x

2
6 + x1x2x4x6x7 + x4x6 + x2

4x7

+x3x4x6 + x3x4x5 + x3x
2
4x7 + x2

3x4x5

)
.
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(3) δ3: There are 12 maximal independent sets of angles in Tδ3 as follows:

and 6 others obtained by rotation of angle π from the bottom row. Since cross(T, δ3) =
x4x5x6x7x8x9x10, the corresponding cluster variable is

xδ3 =
1

x4x5x6x7x8x9x10


x4x5x

2
7x9x10 + x4x5x7x

2
10 + x3x

2
5x7x9x10

+x4x5x7x8x10 + x5x6x9x10 + x3x
2
5x

2
10

+x3x
2
5x8x10 + x5x6x

2
10 + x3x5x6x8x10

+x5x6x8x10 + x3x5x6x
2
8 + x2

6x8x10

+x2
6x

2
8 + x4x6x7x8x10 + x3x5x6x7x8x9

+x4x6x7x
2
8 + x2

6x7x8x9 + x4x6x
2
7x8x9

 ,

which is not affected by Φ since x2 don’t appear.
For the case (2), we illustrate Theorem 3 in Examples 26, 50 and 56.

1.3 Our results in the principal coefficients case

We keep the notations of Subsection 1.1. Let ζ1, . . . , ζm (resp., ξ1, . . . , ξ`) be the diagonals
of Tδ incident to p (resp., q) winding counter-clockwisely around p (resp., q) such that τn,
ζ1, and ζm (resp., τ1, ξ1, and ξ`) are contained in the same triangle (see Figure 3). We
define an element A−(Tδ) ∈ A(Tδ), which we call the minimal matching of Tδ, satisfying
the following min-condition: For each boundary vertex v of Tδ that is incident to at least
one diagonal of Tδ, the angle a ∈ A−(Tδ) at v comes first in the counterclockwise order
around v. Clearly, the minimal matching is uniquely determined (see Figure 3).

· · ·

Tγ

τ1 τnτn−1τ2 · · ·

Tγ(p)

p
τ1

ζm

ζ1 ζ2

τnτn−1τ2 · · ·

Tγ(pq)

p
q

ξ1

ξ`

τ1

ζm

ζ1 ζ2

ξ2

τnτn−1τ2

Figure 3: Minimal matchings

We expand the ring homomorphism (1.1) into

Φ : Z[x±1
1 , . . . , x±1

N , y±1
1 , . . . , y±1

N ]→ Z[x±1
1 , . . . , x±1

N , y±1
1 , . . . , y±1

N ]
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by

Φ(yj) :=

{ yj
yk

if j is plain and corresponds to the 1-notched arc k of T ,

yj otherwise,

for any j ∈ [1, N ]. For two sets A and B, we denote by A4B the symmetric difference
(A ∪ B) \ (A ∩ B). An exterior angle of Tδ is an angle between a boundary segment and
a diagonal of Tδ. Let A ∈ A(Tδ). We denote by Y ′(A) the set of diagonals of Tδ that are
sides of at least one exterior angle in A−(Tδ)4A. We define the set

Y (A):=

Y
′(A) t {τ1}if δ = γ(pq), n = 1, and A contains at least one of the four angles

between ζm or ξ` and τ1 or a boundary segment of Tγ(pq) ,
Y ′(A) otherwise.

We are ready to state the main theorem of this paper.

Theorem 4. Let δ be a tagged arc of (S,M).
(1) If δ /∈ T , we have

xδ = Φ

(
1

cross(T, δ)

∑
A∈A(Tδ)

x(A)y(A)

)
, where y(A) :=

∏
τ∈Y (A)

yτ .

(2) Suppose that δ ∈ T and δ /∈ T . Let r and s be the endpoints of δ. Then, for s = p
or q, we have

xδ =


x`s
xδ

if δ = δ
(s)

,

x`px`qyδ+(1−
∏
τ∈T y

ep(τ)
τ )(1−

∏
τ∈T y

eq(τ)
τ )

xδ
if δ = δ

(pq)
,

where es(τ) is the number of ends of τ incident to s, and

x`s = Φ

(
1

cross(T, `s)

∑
A∈A(T`s )

x(A)y(A)

)
.

Since Theorem 4(2) follows from [FT, Lemma 8.2, Theorem 8.6] and [MSW1, Propo-
sition 4.21], we only prove Theorem 4(1) in Section 3. Theorem 4 is a generalization of
[Y, Theorem 1.3].

In the rest of this section, we consider the bipartite graph Bδ. We define the minimal
matching of Bδ by E−(Bδ) := $−1(A−(Tδ)) ∈ P(Bδ), where P(Bδ) the set of perfect
matchings of Bδ. For a diagonal τ of Tδ, there are exactly two triangles 4, 4′ of Tδ with
edge τ . We label by τ the square of Bδ whose vertices are two white vertices corresponding
to 4, 4′ and two black vertices corresponding to endpoints of τ .

Proposition 5. For E ∈ P(Bδ), the set E−(Bδ)4E consists of all boundary edges of
some (possibly empty or disconnected) subgraph BE of Bδ that is a union of squares.

the electronic journal of combinatorics 26(2) (2019), #P2.33 9



We denote by I(E) the set of the squares of Bδ contained in BE.

Proposition 6. For E ∈ P(Bδ), I(E) = Y ($−1(E)) holds.

By Theorem 4 and Proposition 6, for a tagged arc δ of (S,M) such that δ /∈ T , we
have

xδ = Φ

(
1

cross(T, δ)

∑
E∈P(Bδ)

x(E)y(E)

)
, where y(E) :=

∏
i∈I(E)

yi.

This formula is a generalization of the cluster expansion formula in type A given by Carroll
and Price [CPr] (see also [CPi, P]). We prove Propositions 5 and 6 in Section 4.

1.4 Example in the principal coefficients case

We consider the square (S,M) with three punctures and the tagged triangulation T
of (S,M) given in Subsection 1.2. The cluster algebra A(T ) has initial cluster vari-
ables x1, . . . , x10 and initial principal coefficients y1, . . . , y10. The ring homomorphism
Φ : Z[x±1

1 , . . . , x±1
10 , y

±1
1 , . . . , y±1

10 ]→ Z[x±1
1 , . . . , x±1

10 , y
±1
1 , . . . , y±1

10 ] is given by

Φ(xi) =

{
x1x2 if i = 2,
xi otherwise,

Φ(yi) =

{ y1
y2

if i = 1,

yi otherwise.

We use Theorem 4 to obtain the cluster expansions of δ1, δ2 and δ3 given in Subsection
1.2 with respect to the initial cluster variables x1, . . . , x10 and coefficients y1, . . . , y10 in
A(T ).
(1) δ1: The minimal matching is

A−(Tδ1) = .

Then there are five maximal independent sets of angles in Tδ1 , corresponding to five
monomials as follows:

x1x
2
2x6

3

1 1

6

4

2 1 2 3

x1x2x4y3

3

1 1

6

4

2 1 2 3

x1x2x3x4y2y3

3

1 1

6

4

2 1 2 3

x1x2x3x4y1y2y3

3

1 1

6

4

2 1 2 3

x1x2x
2
3x4y1y

2
2y3

3

1 1

6

4

2 1 2 3

Since cross(T, δ1) = x1x
2
2x3, the corresponding cluster variable is

xδ1 = Φ

(
1

x2x3

(x2x6 + x4y3 + x3x4y2y3 + x3x4y1y2y3 + x2
3x4y1y

2
2y3)

)
=

1

x1x2x3

(x1x2x6 + x4y3 + x3x4y2y3 + x3x4y1y3 + x2
3x4y1y2y3).
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(2) δ2: The minimal matching is

A−(Tδ2) = .

Then there are nine maximal independent sets of angles in Tδ2 , corresponding to nine
monomials as follows:

x1x2x3x5x6

1
7

1

2 3
6

54

x1x2x
2
6y4

1
7

1

2 3
6

54

x1x2x4x6x7y4y5

1
7

1

2 3
6

54

x1x4x6y3y4

1
7

1

2 3
6

54

x1x
2
4x7y3y4y5

1
7

1

2 3
6

54

x1x3x4x6y2y3y4

1
7

1

2 3
6

54

x1x3x4x5y3y4y5y6

1
7

1

2 3 6

54

x1x3x
2
4x7y2y3y4y5

1
7

1

2 3
6

54

x1x
2
3x4x5y2y3y4y5y6

1
7

1

2 3 6

54

Remark that the three angles incident to the puncture of Tδ2 are not exterior angles and
thus don’t contribute to the coefficients. Since cross(T, δ2) = x2x3x4x5x6, the correspond-
ing cluster variable is

xδ2 = Φ

(
1

x2x3x4x5x6

(
x1x2x3x5x6 + x1x2x

2
6y4 + x1x2x4x6x7y4y5 + x1x4x6y3y4 + x1x

2
4x7y3y4y5

+x1x3x4x6y2y3y4 + x1x3x4x5y3y4y5y6 + x1x3x
2
4x7y2y3y4y5 + x1x

2
3x4x5y2y3y4y5y6

))
=

1

x2x3x4x5x6

(
x1x2x3x5x6 + x1x2x

2
6y4 + x1x2x4x6x7y4y5 + x4x6y3y4 + x2

4x7y3y4y5

+x3x4x6y2y3y4 + x3x4x5y3y4y5y6 + x3x
2
4x7y2y3y4y5 + x2

3x4x5y2y3y4y5y6

)
.

(3) δ3: The minimal matching is

A−(Tδ3) = .

Then there are 12 maximal independent sets of angles in Tδ3 as follows:
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and 6 others obtained by rotation of angle π from the bottom row. Since cross(T, δ3) =
x4x5x6x7x8x9x10, the corresponding cluster variable is

xδ3 =
1

x4x5x6x7x8x9x10



x4x5x
2
7x9x10 + x4x5x7x

2
10y8 + x3x

2
5x7x9x10y6

+x4x5x7x8x10y8y9 + x5x6x9x10y4y6 + x3x
2
5x

2
10y6y8

+x3x
2
5x8x10y6y8y9 + x5x6x

2
10y4y6y8 + x3x5x6x8x10y6y7y8

+x5x6x8x10y4y6y8y9 + x3x5x6x
2
8y6y7y8y9 + x2

6x8x10y4y6y7y8

+x2
6x

2
8y4y6y7y8y9 + x4x6x7x8x10y4y5y6y7y8

+x3x5x6x7x8x9y6y7y8y9y10 + x4x6x7x
2
8y4y5y6y7y8y9

+x2
6x7x8x9y4y6y7y8y9y10 + x4x6x

2
7x8x9y4y5y6y7y8y9y10


,

which is not affected by Φ since x2 and y1 don’t appear.

1.5 f-vectors and intersection numbers

We keep the notations of Subsection 1.3. We recall f -vectors of cluster variables [FuG,
Definition 2.6]: For a cluster variable x of A(T ), let fx,1, . . . , fx,N be the maximal degrees
of y1, . . . , yN in the polynomial obtained from the Laurent expression of x by substituting
1 for each of x1, . . . , xN . The integer vector fx := (fx,1, . . . , fx,N) ∈ ZN>0 is called the f -

vector of x. For a tagged arc δ of (S,M) such that δ /∈ T , by Theorem 4(1), the f -vector
(fxδ,1, . . . , fxδ,N) of xδ is given by

N∏
i=1

y
fxδ,i
i = Φ

(∏
τ∈Tδ

yτ

)
. (1.2)

On the other hand, for tagged arcs δ and ε of (S,M), Qiu and Zhou [QZ] defined the
intersection number between δ and ε as follows: Assume that δ and ε intersect transversally
in a minimum number of points in S \ M . Then we define the intersection number
Int(δ, ε) = A+B + C, where

• A is the number of intersection points of δ and ε in S \M ;

• B is the number of pairs of an end of δ and an end of ε that are incident to a
common puncture such that their tags are different;

• C = 0 unless the ideal arcs corresponding to δ and ε form a self-folded triangle, in
which case C = −1.

Note that this definition is different from the “intersection number” (δ |ε) defined in [FST,
Definition 8.4]. We give the main result of this subsection.

Theorem 7. For a tagged arc δ of (S,M), we have fxδ,i = Int(δ, i) for i ∈ [1, N ].

Proof. Considering in each case, it is easy to show that both fxδ,i and Int(δ, i) are equal
to f ∈ Z>0 given as follows: If δ ∈ T , then f = 0; Suppose that δ /∈ T . If i is a plain
arc of T , then f is the number of diagonals of Tδ corresponding to i. If i is a 1-notched
arc of T , then f is the number of diagonals of Tδ corresponding to i minus the number of
diagonals of Tδ corresponding to i; Suppose that δ ∈ T and δ /∈ T . We use the notations

of Theorem 4(2). If δ = δ
(s)

, then f = es(i) − δiδ, where δiδ is the Kronecker delta. If

δ = δ
(pq)

, then f = ep(i) + eq(i).
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2 Preliminary

For the convenience of the reader, we recall basic definitions and facts about cluster
algebras, triangulated surfaces and the cluster expansion formulas of Musiker-Schiffler-
Williams (e.g. [FST, FZ1, FZ2, MSW1]).

2.1 Cluster algebras with principal coefficients

To define cluster algebras with principal coefficients, we need to prepare some notations.
Let F := Q(t1, . . . , t2N) be the field of rational functions in 2N variables over Q.

Definition 8. [FZ2, Definition 2.3] A labeled seed (or simply, seed) is a pair (x,B) con-
sisting of the following data:

(i) x = (x1, . . . , xN , y1, . . . , yN) is a free generating set of F over Q.
(ii) B = (bij)16i62N,16j6N is a 2N×N integer matrix whose upper part B = (bij)16i,j6N

is skew-symmetric, that is, bij = −bji for any i, j ∈ [1, N ].
Then we refer to x as the cluster, to each xi as a cluster variable, to each yi as a coefficient
and to B as the exchange matrix of (x,B).

In general, one may consider skew-symmetrizable or sign-skew-symmetric matrices as
exchange matrices [FZ1]. In this paper, we only study the skew-symmetric case as we
focus on cluster algebras defined from triangulated surfaces.

Definition 9. [FZ2, Definition 2.4, (2.15)] For a seed (x,B), the mutation µk(x,B) =

(x′,B
′
) in direction k (1 6 k 6 N) is defined as follows.

(i) x′ = (x′1, . . . , x
′
N , y1, . . . , yN) is defined by

xkx
′
k =

N∏
i=1

x
[bik]+
i y

[bN+i,k]+
i +

N∏
i=1

x
[−bik]+
i y

[−bN+i,k]+
i , and x′i = xi if i 6= k, (2.1)

where [x]+ := max(x, 0).

(ii) B
′
= (b′ij)16i62N,16j6N is defined by

b′ij =

{
−bij if i = k or j = k,

bij + bik
|bik|

[bikbkj]+ otherwise.
(2.2)

Then it is elementary that µk(x,B) is also a seed. Moreover, µk is an involution, that
is, we have µkµk(x,B) = (x,B).

Now we define cluster algebras with principal coefficients. For a skew-symmetric N×N
integer matrix B, we define B̃ = (bij) as the 2N × N integer matrix whose upper part
(bij)16i,j6N is B and lower part (bij)N+16i62N,16j6N is the N ×N identity matrix. We fix

a seed (x = (x1, . . . , xN , y1, . . . , yN), B̃) that we call an initial seed. We also call each xi
an initial cluster variable.
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Definition 10. [FZ2, Definition 3.1] The cluster algebra A(B) = A(x, B̃) with principal

coefficients for the initial seed (x, B̃) is the Z-subalgebra of F generated by the cluster

variables and coefficients obtained by all sequences of mutations from (x, B̃).

One of the remarkable properties of cluster algebras is the Laurent phenomenon.

Theorem 11. [FZ1, Theorem 3.1] Every element of the cluster algebra A(B) is a Laurent
polynomial over Z[y1, . . . , yN ] in the initial cluster variables, that is, A(B) is contained in
Z[x±1

1 , . . . , x±1
N , y1, . . . , yN ].

Example 12. The matrix B =

[
0 1
−1 0

]
is skew-symmetric. Let ((x1, x2, y1, y2), B̃) be a

seed. Then we get the cluster algebra with principal coefficients

A(B) = Z
[
x1, x2,

x2+y1
x1

, 1+x1y2
x2

, x2+y1+x1y1y2
x1x2

, y1, y2

]
.

2.2 Ideal and tagged triangulations

Let S be a connected compact oriented Riemann surface with (possibly empty) boundary
and M a non-empty finite set of marked points on S with at least one marked point on
each boundary component if S has boundaries. We call the pair (S,M) a marked surface.
Any marked point in the interior of S is called a puncture. For technical reasons, (S,M) is
not a monogon with at most one puncture, a digon without punctures, a triangle without
punctures nor a sphere with at most three punctures.

An ordinary arc δ in (S,M) is a curve in S with endpoints in M , considered up to
isotopy, such that: δ does not intersect itself except at its endpoints; δ is disjoint from M
and from the boundary of S except at its endpoints; δ does not cut out an unpunctured
monogon or an unpunctured digon. An ordinary arc with two identical endpoints is called
a loop. A curve homotopic to a boundary component between two marked points is called
a boundary segment.

Two ordinary arcs are called compatible if they do not intersect in the interior of S.
An ideal triangulation is a maximal collection of pairwise compatible ordinary arcs. A
triangle with only two distinct sides is called self-folded (see Figure 4).

•

•
γ

o

p

•

•
./
ι(γ)

o

p

Figure 4: A self-folded triangle and the corresponding tagged arc

For an ideal triangulation T , a flip at an ordinary arc δ ∈ T replaces δ by another
arc δ′ /∈ T such that T \ {δ} ∪ {δ′} is an ideal triangulation. Notice that an ordinary arc
inside a self-folded triangle can not be flipped. This problem was solved by the notion of
tagged arcs introduced in [FST].
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Definition 13. [FST, Definition 7.1] A tagged arc is an ordinary arc with each end tagged
in one of two ways, plain or notched, such that the following conditions are satisfied: the
tagged arc does not cut out a once-punctured monogon; an endpoint lying on the boundary
of S is tagged plain; both ends of a loop are tagged in the same way.

In this paper, we assume that if (S,M) is a closed surface with exactly one puncture,
all tagged arcs are plain arcs. For an ordinary arc γ of (S,M), we define a tagged arc
ι(γ) as follows: If γ does not cut out a once-punctured monogon, ι(γ) is the tagged arc
obtained from γ by tagging both ends plain: If γ cuts out a once-punctured monogon
with endpoint o and puncture p, ι(γ) is the tagged arc obtained by tagging the unique arc
that connects o and p and does not intersect γ, plain at o and notched at p (see Figure
4). For a tagged arc δ, we denote by δ◦ the ordinary arc obtained from δ by forgetting its
tags.

Definition 14. [FST, Definition 7.4] Two tagged arcs δ and ε are called compatible if the
following conditions are satisfied:

• the two ordinary arcs δ◦ and ε◦ are compatible,

• if δ◦ = ε◦, at least one end of ε is tagged in the same way as the corresponding end
of δ,

• if δ◦ 6= ε◦ and they have a common endpoint o, the ends of δ and ε at o are tagged
in the same way.

A tagged triangulation is a maximal collection of pairwise compatible tagged arcs.

Note that it is possible to flip at any tagged arc of a tagged triangulation [FST,
Theorem 7.9]. Moreover, any two tagged triangulations of (S,M) are connected by a
sequence of flips by [FST, Proposition 7.10].

2.3 Cluster algebras defined from triangulated surfaces

Let (S,M) be a marked surface. First, we consider an ideal triangulation T of (S,M).
For an ordinary arc γ, π(γ) is defined as follows: if there is a self-folded triangle in T with
non-loop side γ, π(γ) is its loop side; otherwise π(γ) = γ.

Definition 15. [FST, Definition 4.1] Let T be an ideal triangulation of (S,M) and
t1, . . . , tN be all ordinary arcs of T . For any non-self-folded triangle 4 in T , an N × N
matrix B4 = (b4ij ) is defined by

b4ij =


1, if π(ti) and π(tj) are sides of 4 with π(tj) following π(ti)

in the clockwise order,
−1, if π(ti) and π(tj) are sides of 4 with π(tj) following π(ti)

in the counterclockwise order,
0, otherwise.

We define the N×N matrix BT =
∑
4B

4, where4 runs over all non-self-folded triangles
in T .
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We consider a tagged triangulation T of (S,M). We obtain a tagged triangulation T̂
from T by simultaneous changing all tags at some punctures, in such a way that there is
an ideal triangulation T 0 satisfying T̂ = ι(T 0) (see [MSW1, Remark 3.11]). Notice that
T̂ satisfies Assumption 1.

Definition 16. [FST, Definition 9.6] For a tagged triangulation T , we define the N ×N
matrix BT := BT 0 .

Since BT is skew-symmetric, we get a cluster algebra A(T ) := A(BT ) with principal
coefficients for any tagged triangulation T .

Theorem 17. [FST, Theorem 7.11][FT, Theorem 6.1] Let T be a tagged triangulation of
(S,M). Then the tagged arcs δ of (S,M) correspond bijectively with the cluster variables
xδ in A(T ). This induces that the tagged triangulations T ′ of (S,M) correspond bijectively
with the clusters xT ′ in A(T ). Moreover, the tagged triangulation obtained from T ′ by
flipping at δ ∈ T ′ corresponds the cluster obtained from xT ′ by mutating at xδ.

For a tagged arc t and a puncture p of (S,M), we denote by t(p) the tagged arc obtained
from t by changing tags at p, where t(p) = t if p is not an endpoint of t.

Proposition 18. [MSW1, Proposition 3.15] Let T be a tagged triangulation of (S,M)
consisting of tagged arcs t1, . . . , tN . We denote by T (p) the tagged triangulation consisting
of t

(p)
1 , . . . , t

(p)
N . Let ΣT = (x,BT ) and ΣT (p) = (x(p), BT (p)) be the corresponding initial

seeds of A(T ) and A(T (p)), respectively. Then for a tagged arc δ, we have

[xδ(p) ]
A(T (p))
Σ
T (p)

= [xδ]
A(T )
ΣT
|x←x(p),y←y(p) ,

where [xδ]
A(T )
ΣT

is the cluster expansion of xδ with respect to ΣT in A(T ).

In view of Proposition 18, since we have T̂ = T (p1···pr) for some punctures p1, . . . , pr,
it is enough to consider a tagged triangulation T satisfying T = T̂ , that is satisfying
Assumption 1. In the rest of this paper, we assume that any tagged triangulation satisfy
Assumption 1. Moreover, suppose that there is a 1-notched arc t ∈ T with endpoint p
tagged notched. Let s ∈ T the corresponding plain arc. Then t(p) = s and s(p) = t hold.
Therefore, for a tagged arc δ, we have

[xδ(p) ]
A(T )
ΣT

= [xδ]
A(T (p))
Σ
T (p)

|x←x(p),y←y(p) = [xδ]
A(T )
ΣT
|xt↔xs

by Proposition 18. Thus we can make Assumption 2.

2.4 Musiker-Schiffler-Williams cluster expansion formulas

In this subsection, we recall the cluster expansion formula given by Musiker-Schiffler-
Williams [MS, MSW1]. We call it the MSW formula. Fix a marked surface (S,M) and a
tagged triangulation T of (S,M) satisfying Assumptions 1 and 2. Let γ be a plain arc of
(S,M) such that γ /∈ T . We use the notations of the introduction.
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2.4.1 Formula for plain arcs

Recall the MSW formula for xγ. In the triangulation Tγ constructed in the introduction,
triangles have at most two sides that are non-boundary segments and at least one side that
is a boundary segment. We construct the snake graph Gγ := GTγ from Tγ by unfolding
each triangle of Tγ, two sides of which are non-boundary segments, along its third side
(see Figure 5). We label all edges of Gγ by the corresponding tagged arcs of T .

4
4

4

a

b c unfolding

along a
+3 a

b c

b c

Figure 5: Unfolding 4, where a is boundary segment, while b and c are not

Example 19. We construct the snake graph Gδ1 for the tagged arc δ1 given in Subsection
1.2 as follows:

Tδ1
3

1 1
6

4

2 1 2 3 →
3

1 1
6

4

2 1 2 3

2 1

→
23
1

1

2
2

11 1

2

3 4
6

→ Gδ1
23
1

1

2
2

11
1
2 3

2 3
4

6

Note that Gγ consists of n squares with diagonals τi for 1 6 i 6 n. We call these
squares tiles of Gγ. Let Gγ := GTγ be the graph obtained from Gγ by removing the
diagonal of each tile. It is easy to see that the following special perfect matching is
uniquely determined.

Definition 20. [MSW1, Definition 4.7] Let e0 be the edge of Gγ corresponding to the
boundary segment of Tγ that follows τ1 in the clockwise direction in the triangle T0. The
minimal matching P−(Gγ) is the perfect matching of Gγ containing e0 and consisting only
of boundary edges.

In Example 19, e0 is the bottom edge of Gδ1 .

Theorem 21. [MS, Theorem 5.1] For P ∈ P(Gγ), the set P−(Gγ)4P consists of all
boundary edges of some (possibly empty or disconnected) subgraph GP of Gγ that is a
union of tiles.

We denote by J(P ) the set of the diagonals of all tiles of Gγ that are contained in GP .
The following cluster expansion formula is obtained by using perfect matchings of Gγ.

Theorem 22. [MSW1, Theorem 4.10] We have

xγ = Φ

(
1

cross(T, γ)

∑
P∈P(Gγ)

x(P )y(P )

)
, x(P ) :=

∏
e∈P

xe, y(P ) :=
∏

j∈J(P )

yj.
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2.4.2 Formula for 1-notched arcs

Recall the MSW formula for xγ(p) . Let q 6= p be the other endpoint of γ(p). In the same
way as above, for the ordinary loop `p defined in Theorem 2, we get the snake graph G`p

which is denoted by Gγ(p) in the introduction. By construction, G`p contains two disjoint
subgraphs G1

`p
and G2

`p
with same form as Gγ. Moreover, we consider the subgraph H i

`p

of Gi
`p

obtained by removing the vertex p and the two edges ζ1, ζm.

Example 23. Let `p be the ordinary loop such that ι(`p) = δ2 in given Subsection 1.2.
We have the triangulated polygon T`p , the snake graph G`p and the subgraphs Gi

`p
and

H i
`p

of G`p as follows:

T`p

1

6
p

4

1

1

7

1

2 3 4 5 6 3 2

G`p

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2
G2
`p

G1
`p

1

2

1

4
p

3

6

p
6

3

4

1

2

1

2

3

3

2
H2
`p

H1
`p

1

2

1
3

3
1

2

1

2

2

Definition 24. [MSW1, Definition 4.15] A perfect matching P of G`p is γ-symmetric if
P |H1

`p
' P |H2

`p
. We denote by P(Gγ(p)) the set of γ-symmetric perfect matchings of G`p .

We also refer to elements of P(Gγ(p)) as perfect matchings of Gγ(p) .

Theorem 25. [MSW1, Theorem 4.17, Lemma 12.4] For P ∈ P(G`p), let res(P ) be a
unique perfect matching of Gγ such that res(P ) \ (res(P ) ∩ {ζ1, ζm}) = P |H1

`p
. Then

P |Gi`p ' res(P ) for some i ∈ {1, 2}. Moreover, we have

xγ(p) = Φ

(
1

cross(T, γ(p))

∑
P∈P(G

γ(p)
)

x(P ) y(P )

)
, x(P ) :=

x(P )

x(res(P ))
, y(P ) :=

y(P )

y(res(P ))
.

Example 26. For G`p and Gi
`p

in Example 23, their minimal matchings are

P−(G`p) =

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

and P−(Gi
`p) =

1

2

1

4
p

3

6

2

3

Then there are nine γ-symmetric perfect matchings P of G`p , corresponding to nine
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monomials x(P ) y(P ) as follows:

x1x2x3x5x6

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x2x
2
6y3

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x2x4x6x7y4y5

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x4x6y3y4

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x
2
4x7y3y4y5

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x3x4x6y2y3y4

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x3x4x5y3y4y5y6

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x3x
2
4x7y2y3y4y5

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

x1x
2
3x4x5y2y3y4y5y6

1

2

1

4
p

3

6
3

5
5

p
6

3

4
p

7

4

1

6

3

2

1

2

3 4 5

6

3

2

Since these are perfect matchings of Gδ2 for δ2 given in Subsection 1.2, the corresponding
cluster variable is

xδ2 = Φ

(
1

x2x3x4x5x6

x1x2x3x5x6 + x1x2x
2
6y4 + x1x2x4x6x7y4y5 + x1x4x6y3y4

+x1x
2
4x7y3y4y5 + x1x3x4x6y2y3y4 + x1x3x4x5y3y4y5y6

+x1x3x
2
4x7y2y3y4y5 + x1x

2
3x4x5y2y3y4y5y6

)

=
1

x2x3x4x5x6

x1x2x3x5x6 + x1x2x
2
6y4 + x1x2x4x6x7y4y5 + x4x6y3y4

+x2
4x7y3y4y5 + x3x4x6y2y3y4 + x3x4x5y3y4y5y6

+x3x
2
4x7y2y3y4y5 + x2

3x4x5y2y3y4y5y6

 .

2.4.3 Formula for 2-notched arcs

Recall the MSW formula for xγ(pq) . As above, we get ordinary loops `p and `q and the
snake graphs G`p and G`q . Note that the pair (G`p , G`q) is denoted by Gγ(pq) in the
introduction. Remark that γ may be a loop. Then we denote by `p and `q the loops as in
Figure 6 although they are not ordinary loops.

Definition 27. [MSW1, Definition 4.18] Let Pp and Pq be γ-symmetric perfect matchings
of G`p and G`q , respectively. The pair (Pp, Pq) is γ-compatible if res(Pp) ' res(Pq). We
denote by P(Gγ(pq)) the set of γ-compatible pairs of P(Gγ(p))× P(Gγ(q)). We also refer to
elements of P(Gγ(pq)) as perfect matchings of Gγ(pq) .

Theorem 28. [MSW1, Theorem 4.20] We have

xγ(pq) = Φ

(
1

cross(T, γ(pq))

∑
(Pp,Pq)∈P(G

γ(pq)
)

x(Pp, Pq) y(Pp, Pq)

)
,
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p = q

γ(pq)

./

./

`p

p = q

γ(pq)

./

./

`q

Figure 6: Analogues of `p and `q for a 2-notched loop

where

x(Pp, Pq) :=
x(Pp)x(Pq)

x(res(Pp))3
, y(Pp, Pq) :=

y(Pp)y(Pq)

y(res(Pp))3
.

3 Proof of Theorem 4

In this section, we keep the notations of the previous sections. We prove the bijection
between (1) and (2) in Theorem 3 and Theorem 4 in the three cases of δ = γ, γ(p) and
γ(pq). Notice that the same notations Φ and cross(T, δ) appear in Theorems 4, 22, 25 and
28. So we only need to consider x(A) and y(A) for A ∈ A(Tδ). Let A(Tδ) be the set of
angles incident to at least one diagonal of Tδ, and let Aex(Tδ) be the set of exterior angles
of Tδ which are angles between boundary segments and diagonals of Tδ. In particular,
Aex(Tδ) is contained in A(Tδ). For a set S, we denote by #S the cardinality of S.

3.1 The case of plain arcs

Recall the result of our previous paper [Y]. For a plain arc γ, we denote by (Gγ)1 (resp.,
(Gγ)b) the set of edges (resp., boundary edges) of Gγ. Let A(Gγ) be the set of angles
between a diagonal τi and a side of the square with diagonal τi in Gγ, and ϕ : A(Gγ) →
(Gγ)1 the surjective map sending a ∈ A(Gγ) to the side that is opposite to a. By the
unfolding process (see Subsection 2.4), there is a canonical surjection π : A(Gγ)→ A(Tγ)
compatible with the construction of Gγ.

Theorem 29. [Y, Lemma 3.2, Proposition 3.4] There exists a bijection ϕ : A(Tγ) →
(Gγ)1 making the following diagram commutative:

A(Gγ)
π

����

ϕ

��

A(Tγ)
∼
ϕ
// (Gγ)1

Moreover the map ϕ induces a bijection ϕ : A(Tγ) → P(Gγ) satisfying x(A) = x(ϕ(A))
for A ∈ A(Tγ).
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Theorem 29 clearly gives the bijection between (1) and (2) in Theorem 3 for plain
arcs. We only need to show that y(A) = y(ϕ(A)) for A ∈ A(Tγ) to prove Theorem 4 for
plain arcs.

Lemma 30. The restriction ϕ|Aex(Tγ) of ϕ deduces a bijection between Aex(Tγ) and (Gγ)b.

Proof. The complement A(Tγ) \ Aex(Tγ) consists of angles ai between τi and τi+1 for
i ∈ [1, n − 1], in particular, #(A(Tγ) \ Aex(Tγ)) = n − 1. It follows from the unfolding
process that ϕ(ai) ∈ (Gγ)1 \ (Gγ)b. Since #((Gγ)1 \ (Gγ)b) = n − 1, the restriction
ϕ|A(Tγ)\Aex(Tγ) is bijective and so is ϕ|Aex(Tγ).

Proposition 31. For A ∈ A(Tγ), we have Y (A) = J(ϕ(A)), that is y(A) = y(ϕ(A)).

Proof. By Theorem 29 and Lemma 30, ϕ(A−(Tγ)) is a perfect matching of Gγ consisting
only of boundary edges. In particular, since e0 ∈ ϕ(A−(Tγ)), where e0 was defined in
Definition 20, ϕ(A−(Tγ)) = P−(Gγ) holds. Thus we have ϕ(A−(Tγ)4A) = P−(Gγ)4ϕ(A).
On the other hand, ϕ maps the four angles incident to τi in Tγ to sides of the square with
diagonal τi in Gγ. Therefore, (A−(Tγ)4A) ∩ Aex(Tγ) contains an angle incident to τi,
which is equivalent to τi ∈ Y (A), if and only if (P−(Gγ)4ϕ(A)) ∩ (Gγ)b contains an
edge of the square with diagonal τi in Gγ, which is equivalent to τi ∈ J(ϕ(A)) by the
definition.

Proof of Theorem 4 for plain arcs. The assertion follows from Theorems 22 and 29 and
Proposition 31.

Finally, we prepare the following lemma to use later.

Lemma 32. For A ∈ A(Tγ), if A−(Tγ)4A contains an exterior angle incident to τi in
Tγ, it contains all exterior angles incident to τi in Tγ.

Proof. By Theorem 21, for P ∈ P(Gγ), if P−(Tγ)4P contains a boundary sides of the
square with diagonal τi in Gγ, it contains all boundary sides of the square with diagonal
τi in Gγ. Since ϕ maps the four angles incident to τi in Tγ to sides of the square with
diagonal τi in Gγ, the assertion follows from Lemma 30.

3.2 The case of 1-notched arcs

In this subsection, we show the following theorem.

Theorem 33. There is a bijection ϕp : A(Tγ(p)) → P(Gγ(p)) satisfying x(A) = x(ϕp(A))
and y(A) = y(ϕp(A)) for A ∈ A(Tγ(p)).

Theorem 33 clearly gives the bijection between (1) and (2) in Theorem 3 for 1-notched
arcs. To prove Theorem 33, we prepare the following notations as in Figure 7. By
construction of the triangulated polygon T`p , it contains two disjoint subgraphs T 1

`p
and

T 2
`p

with same form as Tγ, where T 1
`p

has the boundary segment ζm of T`p . The subgraph

U i
`p

of T i`p is obtained by removing the vertex p and the two sides ζ1, ζm. For i ∈ {1, 2}, let
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vi (resp., v′i) be the common endpoint of τn and ζm (resp., ζ1) in T i`p . Let ai (resp., a′i) be
the angle at vi (resp., v′i) that comes first in the counterclockwise (resp., clockwise) order
around vi (resp., v′i). We denote by a◦i an angle between τn and the boundary segment
of the triangle with sides τn−1 and τn of T i`p . If n > 1, it is uniquely determined, that is
a◦i = ai or a◦i = a′i.

U1
`p

T 1
`p

v1

v′1

p v′2

v2

· · · · · ·· · ·

b1 b2c1

c′1

c2

c′2

τ1 τn

ζm ζ1

ζ1 ζ2 ζm τn τ1
U2
`p

T 2
`p

v1

v′1

p v′2

v2

• a◦i = ai case

· · ·

· · ·· · ·

· · ·
· · ·

a1

a2a′1

a′2

τ1
τn−1 τn

ζm ζ1

ζ1 ζm τn τn−1
τ1 or

v1

v′1

p v′2

v2

• a◦i = a′i case

· · ·

· · ·· · ·

· · ·

· · ·

a1

a2a′1

a′2

τ1 τn−1
τn

ζm ζ1

ζ1 ζm τn τn−1
τ1

Figure 7: T`p and subgraphs T i`p and U i
`p

of T`p

By Theorem 29 and Proposition 31, there exists a bijection ϕp : A(T`p)→ (G`p)1 which
induces a bijection ϕp : A(T`p)→ P(G`p) satisfying x(A) = x(ϕp(A)) and y(A) = y(ϕp(A))
for A ∈ A(T`p).

Lemma 34. The restrictions of ϕp induce bijections

ϕp|A(U i`p )t{a◦i } : A(U i
`p) t {a

◦
i } → (H i

`p)1, ϕp|A(T i`p ) : A(T i`p)→ (Gi
`p)1

for i ∈ {1, 2}. Moreover, the map ϕp|A(T i`p ) induces a bijection between A(T i`p) and P(Gi
`p

).

Proof. The first assertion follows immediately from the unfolding process. The second
assertion follows from T i`p ' Tγ, G

i
`p
' Gγ, and Theorem 29.

Definition 35. We say that A ∈ A(T`p) is γ-symmetric if the restrictions of A satisfies
A|A(U1

`p
)t{a◦1} ' A|A(U2

`p
)t{a◦2}. We denote by Asym(T`p) the set of γ-symmetric maximal

independent sets of angles in T`p .

Let A ∈ A(T`p). It follows from Theorem 25 and Lemma 34 that A|A(T i`p ) ∈ A(T i`p)

for some i ∈ {1, 2}. Since it is uniquely determined up to isomorphism, we denote it by
res(A).
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Proposition 36. The map ϕp induces a bijection ϕp : Asym(T`p) → P(Gγ(p)) satisfying
x(A) = x(ϕp(A)) and y(A) = y(ϕp(A)) for A ∈ Asym(T`p), where

x(A) :=
x(A)

x(res(A))
, y(A) :=

y(A)

y(res(A))
.

Proof. It follows from Lemma 34 that A ∈ A(T`p) is γ-symmetric if and only if ϕp(A) ∈
P(Gγ(p)). Since ϕp is a bijection between A(T`p) and P(G`p), it induces a bijection be-
tween Asym(T`p) and P(Gγ(p)). On the other hand, Theorem 29 and Proposition 31 imply
that x(A) = x(ϕp(A)) and y(A) = y(ϕp(A)) for A ∈ A(T`p), and also x(res(A)) =
x(ϕp(res(A))) and y(res(A)) = y(ϕp(res(A))) for A ∈ Asym(T`p) since T i`p ' Tγ. Since ϕp

is compatible with res, we have

x(A) =
x(ϕp(A))

x(ϕp(res(A)))
=

x(ϕp(A))

x(res(ϕp(A)))
= x(ϕp(A)),

similarly, y(A) = y(ϕp(A)) for A ∈ Asym(T`p).

All that is left is to give the following proposition for the proof of Theorem 33.

Proposition 37. There is a bijection ψp : Asym(T`p) → A(Tγ(p)) satisfying x(A) =
x(ψp(A)) and y(A) = y(ψp(A)) for A ∈ Asym(T`p).

To prove Proposition 37, we prepare some lemmas. We denote by T`p \ T 2
`p

the sub-

graphs obtained from T`p by removing U2
`p

and ζ1 of T 2
`p

. Similarly, we define the notation

T`p \ T 1
`p

. For i ∈ {1, 2}, let ci and c′i be the angles as in Figure 7.

Lemma 38. For A ∈ Asym(T`p) and i ∈ {1, 2}, ci ∈ A if and only if c′i ∈ A.

Proof. Suppose that ci ∈ A. Since T i`p has n + 1 triangles, it follows from ci ∈ A that

#A|A(T i`p ) = n. Thus c′i ∈ A since T i`p has n+ 1 vertices incident to at least one diagonal

in T i`p . The proof of the converse assertion is similar.

For A ∈ Asym(T`p), the γ-symmetry implies that a◦1 ∈ A if and only if a◦2 ∈ A. It is
consistent to use the notations a◦i ∈ A and a◦i /∈ A. Let b1 (resp., b2) be the angles as in
Figure 7.

Lemma 39. For A ∈ Asym(T`p),
(1) if a◦i = ai ∈ A or a◦i = a′i /∈ A, then c2, c

′
2 /∈ A,

(2) if a◦i = ai /∈ A or a◦i = a′i ∈ A, then c1, c
′
1 /∈ A.

Moreover, A = A|A(T`p\T
j
`p

) t A|A(T j`p ) and res(A) = A|A(T j`p ) hold for j ∈ {1, 2}.

Proof. If a◦i = ai ∈ A, then c′2 /∈ A. If a◦i = a′i /∈ A, then b2 ∈ A, and c2 /∈ A. The assertion
(1) follows from Lemma 38. Consequently, we have a decomposition A = A|A(T`p\T 2

`p
) t

A|A(T 2
`p

). Since #A|A(T 2
`p

) = n+1 and T 2
`p

has n+1 triangles, then A|A(T 2
`p

) ∈ A(T 2
`p

). Thus

res(A) = A|A(T 2
`p

) holds. The proof of (2) is similar
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Next, we consider the triangulated polygon Tγ(p) with one puncture p. We prepare the
following notations as in Figure 8. Let v (resp., v′) be the common endpoint of τn and
ζm (resp., ζ1) in Tγ(p) . Let d (resp., d′) be the angle at v (resp., v′) that comes first in the
counterclockwise (resp., clockwise) order around v (resp., v′). We denote by d◦ an angle
between τn and the boundary segment of the triangle with sides τn−1 and τn of Tγ(p) . If
n > 1, it is uniquely determined, that is d◦ = d or d◦ = d′. Let e1 (resp., e2) be the angle
between ζ1 (resp., ζm) and a boundary segment of Tγ(p) .

v

v′

• d◦ = d case

· · ·
· · ·

...

e1 α2

e2 = αmd

d′

τ1
τn−1

τn

ζ1 ζ2

ζm−1
αm−1

p
ζm

or

v

v′

• d◦ = d′ case

· · ·
· · ·

...

e1 α2

e2 = αmd

d′

τ1
τn−1

τn

ζ1 ζ2

ζm−1
αm−1

p
ζm

Figure 8: Tγ(p)

Lemma 40. For A ∈ A(Tγ(p)),
(1) if d◦ = d ∈ A or d◦ = d′ /∈ A, then e2 /∈ A,
(2) if d◦ = d /∈ A or d◦ = d′ ∈ A, then e1 /∈ A.

Proof. We only prove (1) since the proof of (2) is similar. Suppose that e2 ∈ A. For
k ∈ [2,m], we denote by αk the angle between ζk and the boundary segment of the
triangle with sides ζk−1 and ζk. An easy induction shows that αk ∈ A for all k ∈ [2,m]
since αm = e2 ∈ A. Thus A has the angle between ζ1 and ζm, and d◦ = d /∈ A or
d◦ = d′ ∈ A follows easily.

The graph Tγ(p) is obtained from T`p \ T 2
`p

by identifying the two edges ζm along the

direction from p to the other endpoint of ζm. Similarly, it is also obtained from T`p \ T 1
`p

by identifying the two edges ζ1 from p to the other endpoint of ζ1. These constructions
induce bijections

g1 : A(T`p \ T 2
`p)→ A(Tγ(p)) \ {e2} and g2 : A(T`p \ T 1

`p)→ A(Tγ(p)) \ {e1}

such that g1(a◦1) = d◦ = g2(a◦2) holds. In particular, for {i, j} = {1, 2} and A ∈ A(T`p\T
j
`p

),

we also have gi(A) ∈ A(Tγ(p)) and x(A) = x(gi(A)). Moreover, there are bijections

Aex(T`p \ T 2
`p) \ {b1, c1, the angle between ζm−1 and ζm} t {c′2}

∼−→ Aex(Tγ(p)) (3.1)

given by a 7→ g1(a) if a 6= c′2 and c′2 7→ e2, and

Aex(T`p \ T 1
`p) \ {b2, c2, the angle between ζ1 and ζ2} t {c′1}

∼−→ Aex(Tγ(p)) (3.2)
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given by a 7→ g2(a) if a 6= c′1 and c′1 7→ e1. Finally, we give one lemma for a general δ. For
k ∈ [1, n], let T−;k

δ and T+;k
δ be the two subpolygons of Tδ obtained by cutting Tδ along τk,

where T−;k
δ contains q. We denote by A′(T±;k

δ ) the restriction A(Tδ)|T±;k
δ

. We also define

that T−;n+1
δ (resp., T+;0

δ ) is the subgraph obtained from T−;n
δ (resp., T+;1

δ ) by adding the
triangle with sides τn, ζ1 and ζm (resp., τ1, ξ1 and ξ`).

Lemma 41. For A ∈ A(Tδ), there is a unique completion Cτk(A|A′(T±;k
δ )) ∈ A(T±;k∓1

δ )

containing A|A′(T±;k
δ ).

Proof. Since the equality

#A|A′(T±;k
δ ) = #{triangles of T±;k

δ }

= #{vertices of T±;k
δ incident to at least one diagonal}

holds, there is exactly one endpoint v of τk such that A|A′(T±;k
δ ) has no angle incident to

v. Therefore, there is exactly one angle av of A(T±;k∓1
δ ) \ A′(T±;k

δ ) incident to v, and we

have a unique completion Cτk(A|A′(T±;k
δ )) = A|A′(T±;k

δ ) t {av} ∈ A(T±;k∓1
δ ).

For {i, j} = {1, 2} and A ∈ A(T`p \ T i`p), there exists a unique symmetric completion

A ∈ Asym(T`p) of A, that is A|A(T`p\T i`p )t{c′i} = A and A|A(T i`p )t{ci} ' Cτn(A|A(Uj`p )t{a◦j}
).

We are ready to prove Proposition 37.

Proof of Proposition 37. By Lemma 39, we can define the map ψp : Asym(T`p)→ A(Tγ(p))
by

Asym(T`p) ∈A 7→

{
g1(A|A(T`p\T 2

`p
)) if a◦i = ai ∈ A or a◦i = a′i /∈ A,

g2(A|A(T`p\T 1
`p

)) if a◦i = ai /∈ A or a◦i = a′i ∈ A.
(3.3)

We show that ψp is injective. Let A,A′ ∈ Asym(T`p) satisfying A 6= A′. In particular,
the γ-symmetry implies that A|A(T`p\T i`p ) 6= A′|A(T`p\T i`p ). If a◦i ∈ A ∩ A′ or a◦i /∈ A ∪ A′,
then ψp(A) 6= ψp(A′) follows from (3.3). Suppose that a◦i ∈ A and a◦i /∈ A′. Then
d◦ = gi(a

◦
i ) ∈ gi(A) = ψp(A) and d◦ = gj(a

◦
j) /∈ gj(A′) = ψp(A′) for j ∈ {1, 2} \ {i}. Thus

ψp(A) 6= ψp(A′) holds, that is ψp is injective.
We show that ψp is surjective. Let B ∈ A(Tγ(p)). If d◦ = d ∈ A or d◦ = d′ /∈ A, then

B ⊆ A(Tγ(p))\{e2} by Lemma 40(1). Thus g−1
1 (B) ⊆ A(T`p \T 2

`p
). There is the symmetric

completion g−1
1 (B) ∈ Asym(T`p) such that ψp

(
g−1

1 (B)
)

= B. If d◦ = d /∈ A or d◦ = d′ ∈ A,

then e1 /∈ B by Lemma 40(2). In the same way as above, there is g−1
2 (B) ∈ Asym(T`p)

such that ψp
(
g−1

2 (B)
)

= B. Therefore, ψp is surjective.

Let A ∈ Asym(T`p). Since there is at least one i ∈ {1, 2} such that ci, c
′
i /∈ A by Lemma

39, we have

x(A) =
x(A)

x(res(A))
=

x(A)

x(A|A(T i`p ))
= x(A|A(T`p\T i`p )) = x(ψp(A)).
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We only need to prove Y (A)\Y (res(A)) = Y (ψp(A)) to give y(A) = y(ψp(A)). Suppose
that a◦i = ai ∈ A or a◦i = a′i /∈ A. From A−(T`p) = A−(T`p \ T 2

`p
)tA−(T 2

`p
) and c2, c

′
2 /∈ A,

we get a decomposition

A−(T`p)4A = (A−(T`p)4A)|A(T`p\T 2
`p

) t (A−(T`p)4A)|A(T 2
`p

)

= (A−(T`p \ T 2
`p)4A|A(T`p\T 2

`p
)) t (A−(T 2

`p)4A|A(T 2
`p

)).

Thus we have

Y (A) = Y (A|A(T`p\T 2
`p

)) t Y (A|A(T 2
`p

)) = Y (A|A(T`p\T 2
`p

)) t Y (res(A)), (3.4)

where the second equality holds by Lemma 39(1). On the other hand, the equalities

g1(A−(T`p \ T 2
`p)4A|A(T`p\T 2

`p
)) = g1((A−(T`p)4A)|A(T`p\T 2

`p
))

= ψp(A−(T`p)4A) = A−(Tγ(p))4ψp(A) (3.5)

hold by (3.3) and ψp(A−(T`p)) = g1(A−(T`p \T 2
`p

)) = A−(Tγ(p)). Therefore, it follows from

Lemma 32 that A−(T`p \ T 2
`p

)4A|A(T`p\T 2
`p

) contains b1 (resp., c1, the angle between ζm−1

and ζm) if and only if it contains a1 (resp., c′1, the angles between ζm−1 and boundary
segments). Thus we have Y (A|A(T`p\T 2

`p
)) = Y (ψp(A)) by (3.1) and (3.5). Consequently,

we have
Y (A) \ Y (res(A)) = Y (A|A(T`p\T 2

`p
)) = Y (ψp(A))

by (3.4).
Suppose that a◦i = ai /∈ A or a◦i = a′i ∈ A. Since c1, c

′
1 ∈ A−(T`p)4A by Lemma 39(2),

then ζ1 ∈ Y (A). We also have ζ1 ∈ Y (ψp(A)) since e1 ∈ A−(Tγ(p)) and e1 /∈ ψp(A) by
Lemma 40(2). Since we have the equalities

A−(T 1
`p) = A−(T`p)|A(T 1

`p
) t {the angle between τn and ζ1},

A−(T`p \ T 1
`p) = A−(T`p)|A(T`p\T 1

`p
) t {the angle between ζ1 and ζ2},

then the equalities

Y (A) = Y (A)|T 1
`p
t {ζ1} t Y (A)|T`p\T 1

`p

= Y (A|A(T 1
`p

)) t {ζ1} t Y (A|A(T`p\T 1
`p

))

= Y (res(A)) t {ζ1} t Y (A|A(T`p\T 1
`p

)).

hold by Lemma 32 and Lemma 39. In the same way as above proof, we have Y (A|A(T`p\T 1
`p

))

= Y (ψp(A)) \ {ζ1} by (3.2). Consequently, we have

Y (A) \ Y (res(A)) = Y (A|A(T`p\T 1
`p

)) t {ζ1} = Y (ψp(A)).

This finishes the proof.
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Proof of Theorem 33. By Propositions 36 and 37, there is a bijection ϕp = ϕp(ψp)−1 :
A(Tγ(p))→ P(Gγ(p)) satisfying

x(A) = x((ψp)−1(A)) = x(ϕp(ψp)−1(A)) and y(A) = y((ψp)−1(A)) = y(ϕp(ψp)−1(A))

for A ∈ A(Tγ(p)).

Proof of Theorem 4 for 1-notched arcs. The assertion follows from Theorems 25 and 33.

3.3 The case of 2-notched arcs

In this subsection, we show the following theorem.

Theorem 42. There is a bijection ϕpq : A(Tγ(pq))→ P(Gγ(pq)) satisfying x(A) = x(ϕpq(A))
and y(A) = y(ϕpq(A)) for A ∈ A(Tγ(pq)).

Theorem 42 clearly gives the bijection between (1) and (2) in Theorem 3 for 2-notched
arcs. To prove Theorem 42, we prepare the following notations as in Figure 9. For
δ = γ, γ(p), γ(q), or γ(pq), there are three subpolygons T qδ := T−;1

δ , T cδ := T+;1
δ ∩ T−;n

δ and
T pδ := T+;n

δ of Tδ. We denote by T ∗?δ the subpolygon T ∗δ ∪ T ?δ of Tδ for ∗, ? ∈ {q, c, p}.
We have a decomposition A(Tδ) = A(Tδ)

q t A(Tδ)
c t A(Tδ)

p, where A(Tδ)
∗ consists of

angles contained in T ∗δ for ∗ ∈ {q, c, p}. For A ∈ A(Tδ), we define a decomposition
A = Aq t Ac t Ap, where A∗ ∈ A(Tδ)

∗ for ∗ ∈ {q, c, p}. For an arbitrary decomposition
S = Sq t Sc t Sp as above, we use the notations S∗? := S∗ t S? for ∗, ? ∈ {q, c, p}.

T cγ T pγT qγ τ1 τn

ξ1

ξ` ζ1

ζm
· · ·

T c
γ(p)

T p
γ(p)

T q
γ(p)

τ1 τn

ξ1

ξ` ζ1 ζ2

ζm

· · ·
T c
γ(q)

T p
γ(q)

T q
γ(q)

τ1 τn

ξ1ξ2

ξ` ζ1

ζm
· · ·

· · ·
T c
γ(pq)

T p
γ(pq)

T q
γ(pq)

τ1 τn

ξ1ξ2

ξ` ζ1 ζ2

ζm

Figure 9: The decompositions of Tγ, Tγ(p) , Tγ(q) , and Tγ(pq)

Since there is the natural inclusion from Tγ (resp., Tγ(p) , Tγ(q)) to Tγ(pq) , we can view
Tγ (resp., Tγ(p) , Tγ(q)) as a subpolygon of Tγ(pq) , and A(Tγ) (resp., A(Tγ(p)), A(Tγ(q))) as a
subset of A(Tγ(pq)).

Definition 43. The pair (Ap, Aq) ∈ A(Tγ(p))× A(Tγ(q)) is called γ-compatible if Acp = Acq
and Aqp t Acpq ∈ A(Tγ), where we view Aqp t Acpq as a subset of A(Tγ). We denote by
Acom(Tγ(p) , Tγ(q)) the set of γ-compatible pairs of A(Tγ(p))× A(Tγ(q)).
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Lemma 44. If n = 1, (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)) if and only if Aqp t Apq ∈ A(Tγ). If
n > 1, (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)) if and only if Acp = Acq.

Proof. If n = 1, the assertion follows from Acp = ∅ = Acq. Suppose n > 1 and Acp = Acq.
Since Ap and Aq have exactly one angle in each triangle, so does Aqp tAcpq . Therefore, we
only show that Aqp t Acpq has exactly one angle incident to each vertex which is incident
to at least one diagonal of Tγ, which is equivalent that any two distinct angles a and b in
Aqp t Acpq are not incident to a common vertex. If a, b ∈ Aqcp or a, b ∈ Acpq , the assertion
holds since Aqcp ⊂ Ap, A

cp
q ⊂ Aq, and Ap and Aq are so. Suppose that a ∈ Aqp and b ∈ Apq

are incident to a common vertex. Then τ1, . . . , τn must be incident to the vertex. Since
Ap ∈ A(Tγ(p)), A

c
p contains the angle between τi and a boundary segment of the triangle

with sides τi and τi+1 for i ∈ [1, n−1]. Similarly, since Aq ∈ A(Tγ(q)), A
c
q contains the angle

between τi and a boundary segment of the triangle with sides τi−1 and τi for i ∈ [2, n]. It
contradicts Acp = Acq. Thus the assertion holds.

We define the maps r : Acom(Tγ(p) , Tγ(q))→ {subsets of A(Tγ)} and i : Acom(Tγ(p) , Tγ(q))
→ {subsets of A(Tγ(pq))} by

r(Ap, Aq) = Aqp t Acpq , i(Ap, Aq) = Aqq t Acpp

for (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)).

Lemma 45. For (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)), r(Ap, Aq) ∈ A(Tγ) and i(Ap, Aq) ∈ A(Tγ(pq))
hold.

Proof. By the γ-compatibility, r = AqptAcpq ∈ A(Tγ). If n > 1, in the same as the proof of
Lemma 44, i(Ap, Aq) ∈ A(Tγ(pq)) holds. Suppose that n = 1. If i(Ap, Aq) /∈ A(Tγ(pq)), each
of Aqq and App has an angle incident to one endpoint of τ1. Thus each of Aqp and Apq must
have an angle incident to the other endpoint of τ1, so it contradicts Aqp tApq ∈ A(Tδ).

Lemma 46. Let n = 1 and A = (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)). Then the following condi-
tions are equivalent:

(1) τ1 ∈ Y (Ap), (2) τ1 ∈ Y (Aq), (3) τ1 ∈ Y (r(A)), (4) τ1 ∈ Y (i(A)).

Proof. In this case, r(A) = Aqp t Apq has exactly two angles. Each of the conditions (1)-
(3) is equivalent that the angle between τ1 and ξ` is contained in Ap. Moreover, it is
equivalent that Ap contains either the angle between τ1 and ζm or the angle between
ζm and a boundary segment of Tγ(pq) , that is, the condition (4) holds. Therefore, the
conditions (1)-(4) are equivalent.

Proposition 47. The map i is a bijection between Acom(Tγ(p) , Tγ(q)) and A(Tγ(pq)) satis-
fying x(A) = x(i(A)) and y(A) = y(i(A)) for A = (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)), where

x(A) :=
x(Ap)x(Aq)

x(r(A))
, y(A) :=

y(Ap)y(Aq)

y(r(A))
.
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Proof. First of all, we construct the inverse map of i. Let B ∈ A(Tγ(pq)). If n > 1,
Cτ1(B

cp)c = Bc = Cτn(Bqc)c holds. If n = 1, then Cτ1(B
p)q t Cτn(Bq)p ∈ A(Tγ) holds by

the proof of Lemma 45. Thus (Cτ1(B
cp), Cτn(Bqc)) ∈ Acom(Tγ(p) , Tγ(q)) by Lemma 44. We

define the map ω : A(Tγ(pq))→ Acom(Tγ(p) , Tγ(q)) by ω(B) = (Cτ1(B
cp), Cτn(Bqc)). Then it

is easy to show that ω i and iω are identities. Thus i : Acom(Tγ(p) , Tγ(q)) → A(Tγ(pq)) is a
bijection.

We have

x(A) =
x(Ap)x(Aq)

x(Aqp)x(Acpq )
= x(Acpp )x(Aqq) = x(i(A)).

We only need to prove Y (Ap) t Y (Aq) = Y (i(A)) t Y (r(A)), possibly with multiple
elements, to give y(A) = y(i(A)). Suppose that n > 1. By Lemma 32, τi ∈ Y (i(A)) (resp.,
Y (Ap), Y (Aq), Y (r(A))) if and only if there is at least one exterior angle incident to τi in
(A−(Tγ(pq))4 i(A))c (resp., (A−(Tγ(p))4Ap)c, (A−(Tγ(q))4Aq)c, (A−(Tγ)4 r(A))c). On the
other hand, we have the equalities

A−(Tγ(pq))
c = A−(Tγ(p))

c = A−(Tγ(q))
c = A−(Tγ)

c and i(A)c = Acp = Acq = r(A)c.

Then τi ∈ Y (i(A)) (resp., τi ∈ Y (r(A))) if and only if τi ∈ Y (Ap) (resp., τi ∈ Y (Aq)).
Similarly, ζj ∈ Y (i(A)) (resp., ξj ∈ Y (i(A))) if and only if ζj ∈ Y (Ap) (resp., ξj ∈ Y (Aq)).
Thus we have Y (Ap) t Y (Aq) = Y (i(A)) t Y (r(A)).

Suppose that n = 1. As above, ζj ∈ Y (i(A)) (resp., ξj ∈ Y (i(A))) if and only if
ζj ∈ Y (Ap) (resp., ξj ∈ Y (Aq)). Therefore, Lemma 46 implies that Y (Ap) t Y (Aq) =
Y (i(A)) t Y (r(A)). This finishes the proof.

All that is left is to give the following proposition for the proof of Theorem 42.

Proposition 48. There is a bijection ϕpq : Acom(Tγ(p) , Tγ(q)) → P(Gγ(pq)) satisfying
x(A) = x(ϕpq(A)) and y(A) = y(ϕpq(A)) for A = (Ap, Aq) ∈ Acom(Tγ(p) , Tγ(q)).

Proof. By Propositions 36 and 37, there are bijections

A(Tγ(p))× A(Tγ(q)) Asym(T`p)× Asym(T`q)
∼

ψp×ψq
oo ∼

ϕp×ϕq
// P(Gγ(p))× P(Gγ(q))

∈ ∈ ∈

A = (Ap, Aq) (Sp, Sq)
�oo � // (Pp, Pq)

satisfying x(A∗) = x(P∗) and y(A∗) = y(P∗), where A∗ = ψ∗(S∗) P∗ = ϕ∗(S∗) for ∗ ∈
{p, q}.

If n > 1, by construction of ψp and ψq, Acp = Acq if and only if

Cτn(Sp|A(U1
`p

)t{a◦1}) = Cτn(Sp|A(U2
`p

)t{a◦2}) = Cτ1(Sq|A(U1
`q

)t{a◦1}) = Cτ1(Sq|A(U2
`q

)t{a◦2}).

Thus it is the same as res(Sp) = res(Sq), that is res(Pp) = res(Pq). By Lemma 44,
A ∈ Acom(Tγ(p) , Tγ(q)) if and only if (Pp, Pq) ∈ P(Gγ(pq)).

If n = 1 and res(Pp) = res(Pq), then Aqp t Apq corresponds to res(Sp) = res(Sq). Thus
Aqp tApq ∈ A(Tγ). Conversely, suppose that Aqp tApq ∈ A(Tγ). The each angle of Sp which
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is contained in the triangles U1
`p

and U2
`p

corresponds to the angle of Aqp. Thus Aqp t Apq
corresponds to res(Sp) since Aqp t Apq ∈ A(Tγ). Similarly, Aqp t Apq corresponds to res(Sq).
Therefore, we have res(Sp) = res(Sq). So, by Lemma 44, A ∈ Acom(Tγ(p) , Tγ(q)) if and only
if (Pp, Pq) ∈ P(Gγ(pq)), also in this case.

Consequently, we have a bijection

ϕpq := (ϕp × ϕq)(ψp × ψq)−1 : Acom(Tγ(p) , Tγ(q))→ P(Gγ(pq)).

On the other hand, we have r(A) ' res(Sp). As in the proof of Proposition 36, we also
have x(res(Sp)) = x(res(Pp)) and y(res(Sp)) = y(res(Pp)). Therefore, we have

x(ϕpq(A)) =
x(Pp)x(Pq)

x(res(Pp))
=
x(Ap)x(Aq)

x(r(A))
= x(A)

and, similarly, y(ϕpq(A)) = y(A).

Proof of Theorem 42. By Propositions 47 and 48, there is a bijection ϕpq = ϕpq i−1 :
A(Tγ(pq))→ P(Gγ(pq)) satisfying

x(A) = x(i−1(A)) = x(ϕpq i−1(A)) and y(A) = y(i−1(A)) = y(ϕpq i−1(A))

for A ∈ A(Tγ(pq)).

Proof of Theorem 4 for 2-notched arcs. The assertion follows from Theorems 28 and 42.

4 Proofs of our results for bipartite graphs

We refer the necessary notations in this section to the introduction. First, we prove the
bijection between (1) and (3) in Theorem 3 and Proposition 5.

Proof of the bijection between (1) and (3) in Theorem 3. Angles incident to each vertex
in A(Tδ) correspond bijectively with edges incident to the corresponding black vertex in
Bδ. Angles in each triangle in A(Tδ) correspond bijectively with edges incident to the
corresponding white vertex in Bδ. The assertion immediately follows from the definitions
of maximal independent sets of angles and perfect matchings of graphs.

Proof of Proposition 5. Let E ∈ P(Bδ). For any vertex v of Bδ, v is incident to exactly
zero or two edges in E−(Bδ)4E. As a consequence, E−(Bδ)4E is a disjoint union of
non-crossing cycles. Thus the assertion holds.

Second, we have to be careful of the following special case to prove Proposition 6.

Lemma 49. Suppose that δ = γ(pq) and n = 1. For A ∈ A(Tγ(pq)), τ1 ∈ Y (A) if and only
if τ1 ∈ I($(A)).

Proof. Since A−(Tγ(pq)) contains the angle between ξ1 and a boundary segment of Tγ(pq) ,
the assertion immediately follows from Proposition 5.
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Finally, we prove Proposition 6 and give an example for the results of this section.

Proof of Proposition 6. It is trivial that $ induce a bijection between Aex(Tδ) and the
set of boundary edges of Bδ. Therefore, for A ∈ A(Tδ) and τ ∈ Tδ, τ ∈ Y ′(A) if and
only if E−(Bδ)4$(A) contains at least one boundary edge of a square labeled by τ , thus
τ ∈ I($(A)). By Lemma 49, τ ∈ Y (A) if and only if τ ∈ I($(A)).

Example 50. For the tagged arc δ2 given in Subsection 1.2(2), we have

Bδ2

1 6
5

1 3 2 4
5

6

4
3

7 , E−(Bδ2) = .

Then there are nine perfect matchings of Bδ2 as follows:

It is easy to check that these correspond bijectively with maximal independent sets of
angles in Tδ2 given in Subsection 1.2(2). Moreover, for each E ∈ P(Bδ2), the subgraph
BE in Proposition 5 is given as follows:

By comparing with Subsection 1.4(2), we can check that Proposition 6 holds in this case.

5 Minimal cuts of quivers with potential

In this section, we show that maximal independent sets of angles in Tδ coincide with
minimal cuts of quiver with potential obtained from Tδ, that is the bijection between (1)
and (4) in Theorem 3.
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5.1 Quivers with potential and cuts

We recall the definitions of quivers with potential [DWZ] and of their cuts [BFPPT, HI].
We denote by ZQ the path algebra of a quiver Q over the ring Z of integers.

Definition 51. (1) A quiver with potential (QP for short) is a pair (Q,W ) of a quiver Q
and an element W ∈ ZQ which is a linear combination of cyclic paths.

(2) A cut of a QP (Q,W ) is a subset C of Q1 such that any cyclic path appearing in
W contains precisely one arrow in C.

We define a quiver Qδ as follows: the set of vertices consists of diagonals and boundary
segments of Tδ; the set of arrows consists of arrows from i to j, where i and j are in the
common triangle of Tδ and j follows i in the counterclockwise order. We denote by Qδ

the quiver obtained from Qδ by adding arrows from i to j, where i and j are boundary
segments which are not in the common triangle of Tδ and i is a predecessor of j with
respect to clockwise order.

To define a potential W δ of Qδ, we consider the following cycles of Qδ. A triangle
cycle is a cycle of length 3 inside a triangle of Tδ. An exterior cycle is a cycle winding
around a vertex (possibly a puncture) of Tδ. We define

W δ =
∑

(triangle cycles in Qδ)−
∑

(exterior cycles in Qδ).

Note that this extends QPs for triangulated polygons without punctures defined in [DL]
to QPs for triangulated polygons with punctures.

Lemma 52. The number of triangle cycles in Qδ and the number of exterior cycles in Qδ

coincide.

Proof. By construction, the number of triangle cycles in Qδ and the number of triangles
in Tδ coincide. Similarly, the number of exterior cycles in Qδ and the number of vertices
incident to at least one diagonal in Tδ. So all these numbers coincide.

We denote by n(δ) the number in Lemma 52.

5.2 Minimal cuts of QPs and Perfect matchings of angles

We have a natural injection ρ : A(Tδ)→ (Qδ)1 given by the following picture:

Tδ −→ Qδ
a

ρ(a)
oo

Cuts of (Qδ,W δ) have the following property using the map ρ.

Lemma 53. (a) Any cut C has the cardinality |C| > n(δ).
(b) The equality in (a) holds if and only if C is contained in ρ(A(Tδ)).
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Proof. Since there are n(δ) triangle cycles (resp., n(δ) exterior cycles) not sharing arrows
with each other, (a) holds. There is an exterior cycle sharing arrows with each triangle
cycle. Since the shared arrows are contained in ρ(A(Tδ)), the sufficiency of (b) holds.
Since ρ(A(Tδ)) is contained in the set of arrows appearing in a triangle cycle of Qδ, then
|C| 6 n(δ) for C ⊂ ρ(A(Tδ)). Thus the necessity of (b) holds.

Definition 54. A cut C of (Qδ,W δ) is called minimal if |C| = n(δ).

By Theorem 3, (Qδ,W δ) always has minimal cuts.

Proof of the bijection between (1) and (4) in Theorem 3. Let A ⊆ A(Tδ) and C := ρ(A)
⊆ (Qδ)1. Then there is exactly one element a of A in any triangle of Tδ (resp., incident
to any vertex of Tδ) if and only if the corresponding triangle cycle (resp., exterior cycle)
contains precisely one arrow ρ(a) in C. Thus A ∈ A(Tδ) if and only if C is a cut. Since
minimal cuts are precisely cuts contained in ρ(A(Tδ)) by Lemma 53(b), the assertion
follows.

Consequently, we can give another cluster expansion formula in terms of minimal cuts.

Corollary 55. We have

xδ = Φ

(
1

cross(T, δ)

∑
C

x(ρ−1(C))y(ρ−1(C))

)
,

where C runs over all minimal cuts of (Qδ,W δ) and cross(T, δ), x(ρ−1(C)) and y(ρ−1(C))
are defined in Theorems 2 and 4.

Proof. The assertion follows immediately from Theorems 3 and 4.

Example 56. For the tagged arc δ2 given in Subsection 1.2(2), we have

(Qδ2 ,W δ2) =


2 3

4

5

6

7

◦

◦
1

1

,

∑(
five triangle cycles

)

−
∑(

five exterior cycles
)


.

Then there are nine minimal cuts of (Qδ2 ,W δ2) as follows:
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It is easy to check that these correspond bijectively with maximal independent sets of
angles in Tδ2 given in Subsection 1.2(2).

6 Essential loops

Recall the definition of essential loops [MSW2]. Throughout this section, we suppose that
a marked surface (S,M) has no punctures. An essential loop ζ in (S,M) is a closed curve
in S, considered up to isotopy, such that: ζ is disjoint from M and the boundary of S; ζ
does not intersect itself; ζ is not a contractible loop.

Choose a triangle 4 of T that ζ crosses. Let p be a point in the interior of 4 that lies
on ζ. Let α and β be the two sides of 4 crossed ζ immediately before and following its
travel through p, and let τ be the third side of 4. Let ζ̃ be the curve whose starting and
ending points are p that exactly follows ζ. We can construct the triangulated polygon Tζ̃
associated with ζ̃ in the same way as for plain arcs. Also, we obtain the snake graph Gζ̃

from Tζ̃ . Let v (resp., w) be the endpoint of τ and α (resp., β) in the first triangle of Tζ̃
or Gζ̃ , and let v′ (resp., w′) be the endpoint of τ and β (resp., α) in the last triangle of
Tζ̃ or Gζ̃ (see Figure 10).

p ζ

α β
τ Tζ̃

v

w w′

v′
p p
α

τ β

β

τα

ζ

Gζ̃
v

v′

or· · ·
α

τ

β

β

τα

w

w′

v

v′

· · ·
α

τ

β

τ

βα

w′

w

p ζα β

τ

Tζ̃

v

w w′

v′
p p
τ

α β

τ

βα

ζ

Gζ̃
v

v′

or· · ·
τ

α

β

τ

βα

w′

w

v

v′

· · ·
τ

α

β

w

β

τα

w′

Figure 10: Tζ̃ and Gζ̃ associated with an essential loop ζ

Definition 57. [MSW2, Definition 3.4, 3.8] The band graph G̃ζ associated with the es-
sential loop ζ is the graph obtained from Gζ̃ by identifying the edges τ in the first and
last squares such that v corresponds to v′. That is, the band graph lies on an annulus or
a Möbius strip. A perfect matching P of G̃ζ is called good either if τ ∈ P or if both edges
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incident to v and incident to w in P lie on the same square. We denote by Pg(G̃ζ) the set

of good perfect matchings of G̃ζ .

Viewing P ∈ Pg(G̃ζ) as a subset of (Gζ̃)1, we can obtain P ∈ P(Gζ̃) from P by adding

either the edge τ in the first square or in the last square in G̃ζ . Then it is easy to show

that there is a bijection Pg(G̃ζ) and the set

Pg(Gζ̃) := {P ∈ P(Gζ̃) | P contains τ in the first or the last triangle of Gζ̃}

given by sending P to P. In particular, there is a unique good perfect matching P−(G̃ζ)

such that P−(G̃ζ) = P−(Gζ̃), called the minimal matching (see [MSW2, Remark 3.9]).

Definition 58. [MSW2, Definition 3.14] For an essential loop ζ in (S,M), we define a
Laurent polynomial

xζ :=
1

cross(T, ζ)

∑
P∈Pg(G̃ζ)

x(P )y(P ).

One reason to consider xζ is that they give rise to a base for the cluster algebra with
principal coefficients obtained from a triangulated surface without punctures. Let T be a
triangulation of (S,M). A collection of arcs and essential loops in (S,M) is C◦-compatible
if they do not intersect each other.

Theorem 59. [MSW2, Theorem 1.1, 4.1] Let (S,M) be a marked surface without punc-
tures and T be a triangulation of (S,M). Then the set{∏

c∈C

xc | C is a C◦-compatible collection of (S,M)
}

is a base of A(T ).

In this case, we study maximal independent sets of angles. For an essential loop ζ in
(S,M), we can construct a triangulated polygon Tζ in the same way as for plain arcs,
that is, it is a triangulated annulus (see Figure 11). In particular, it is not twisted unlike
band graphs. Since Tζ has the same numbers of triangles and of vertices, then A(Tζ) 6= ∅.

T

ζ

1 3

2

4

5 6

Tζ

65 1 3

2

4

Figure 11: Example of Tζ for an essential loop ζ

We define max-condition as the dual min-condition.
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Definition 60. Let ζ be an essential loop in (S,M). We say that a maximal independent
set of angles in Tζ is bad if all angles incident to one boundary component satisfy min-
condition and all angles incident to the other boundary component satisfy max-condition
(see Figure 12). A non-bad maximal independent set of angles in Tζ is called good. We
denote by Ag(Tζ) the set of good maximal independent sets of angles in Tζ .

C

C ′

C : max-condition

C ′ : min-condition
65 1 3

2

4

C

C ′

C : min-condition

C ′ : max-condition
65 1 3

2

4

Figure 12: Bad maximal independent sets of angles in the above Tζ with boundary com-
ponents C and C ′

Then we have the following result.

Theorem 61. Let ζ be an essential loop in (S,M). There is a bijection ψζ : Pg(G̃ζ) →
Ag(Tζ) satisfying x(P ) = x(ψζ(P )) and y(P ) = y(ψζ(P )) for P ∈ Pg(G̃ζ). In particular,
we have the equation

xζ =
1

cross(T, ζ)

∑
A∈Ag(Tζ)

x(A)y(A).

To prove Theorem 61, we need some preparations. By rotational symmetry of order
two, we can assume that Tζ̃ is the above case in Figure 10. Since there is a bijection

between Pg(G̃ζ) and Pg(Gζ̃), Theorem 29 induces a bijection between Pg(G̃ζ) and the set

Ag(Tζ̃) := {A ∈ A(Tζ̃) | A contains c or c′},

where c (resp., c′) is the angle between α and β in the first (resp., last) triangle of Tζ̃ (see
Figure 13). In particular, this bijection preserves the values of x(−) and y(−) by Theorem
29 and Proposition 31. We denote by cA an angle c or c′ contained in A ∈ Ag(Tζ̃). If
both c and c′ are contained in A, we define cA = c. We only need to construct a bijection
ψ′ζ : Ag(Tζ̃)→ Ag(Tζ) satisfying x(A \ {cA}) = x(ψ′ζ(A)) and y(A \ {cA}) = y(ψ′ζ(A)) for
A ∈ Ag(Tζ̃). Let a (resp., b) be the angle between α (resp., β) and τ in the first triangle
of Tζ̃ (see Figure 13). We denote by Ag(Tζ̃) ∈b (resp., Ag(Tζ̃) /∈b) the subset of elements in
Ag(Tζ̃) containing (resp., not containing) b, in particular, Ag(Tζ̃) = Ag(Tζ̃) ∈b tAg(Tζ̃) /∈b.

Let A ∈ Ag(Tζ̃) ∈b. Then c′ ∈ A follows from the definition of Ag(Tζ̃), that is cA = c′.
The triangulated annulus Tζ is obtained from Tζ̃ by removing the last triangle in Tζ̃ and
by identifying the edges α in the first triangle and in the last triangle. It is easy to show
that this construction induces a natural map ψ ∈bζ : Ag(Tζ̃) ∈b → A(Tζ). Abusing notation,
let a (resp., b, c) be the angle between τ and α (resp., τ and β, α and β) in Tζ . We denote
by u the common endpoint of α and β in Tζ . Let αs, . . . , α1 = α, α0 = β = β1, . . . , βt be
all arcs incident to u winding counter-clockwisely around u (see Figure 13).
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Figure 13: Tζ̃ and Tζ for an essential loop ζ

Lemma 62. For A ∈ Ag(Tζ̃) ∈b, then ψ ∈bζ (A) ∈ Ag(Tζ). Moreover, the map ψ ∈bζ induces
a bijection between Ag(Tζ̃) ∈b and the set

Ag(Tζ) ∈b := {A′ ∈ Ag(Tζ) | b ∈ A′}.

Proof. Since c′ ∈ A, then ψ ∈bζ (A) does not contain the angle between αs and a boundary

segment incident to u. Thus the angle incident to u in ψ ∈bζ (A) does not satisfy min-

condition. Since b ∈ ψ ∈bζ (A) satisfies max-condition, ψ ∈bζ (A) is good.
By construction, there is a bijection between Ag(Tζ̃) ∈b and the set

{A′ ∈ Ag(Tζ) ∈b | A′ contains the angle between βi and βi+1 for some i ∈ [1, t− 1]}.
(6.1)

Let A′ ∈ Ag(Tζ) ∈b. If A′ contains the angle between αj and αj+1 for some j ∈ [1, s− 1],
A′ must contain the angle between αj and the boundary segment of the triangle with
sides αj and αj−1. Continuing this process, A′ contains a, and it contradicts b ∈ A′. If
A′ contains the angle between αs and a boundary segment incident to u, then A′ must
contain the angle between αi and the boundary segment of the triangle with sides αi and
αi+1 for [1, s − 1]. Then by the same argument for the other endpoint u′ 6= u of αs, the
angle of A′ incident to u′ satisfies max-condition. Continuing this process, A′ consists only
of exterior angles whose angles incident to the boundary with u satisfy min-condition and
angles incident to the boundary with τ satisfy max-condition. It contradicts that A′ is
good. Therefore any A′ ∈ Ag(Tζ) ∈b satisfies the condition of (6.1), thus the set (6.1) and
Ag(Tζ) ∈b coincide.

Let A ∈ Ag(Tζ̃) /∈b. Then c ∈ A follows from the definition of maximal independent sets
of angles, that is cA = c. The triangulated annulus Tζ is obtained from Tζ̃ by removing
the first triangle in Tζ̃ and by identifying the edges β in the first triangle and in the
last triangle. In particular, c′ in Tζ̃ corresponds to c in Tζ . It is easy to show that this

construction induces a natural map ψ /∈b
ζ : Ag(Tζ̃) /∈b → A(Tζ).

Lemma 63. For A ∈ Ag(Tζ̃) /∈b, then ψ /∈b
ζ (A) ∈ Ag(Tζ). In particular, the map ψ /∈b

ζ

induces a bijection between Ag(Tζ̃) /∈b and the set

Ag(Tζ) /∈b := {A′ ∈ Ag(Tζ) | b /∈ A′}.
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Proof. Since c ∈ A, then ψ /∈b
ζ (A) does not contain the angle between βt and a boundary

segment incident to u. Thus ψ /∈b
ζ (A) is good since b /∈ ψ /∈b

ζ (A).
By construction, there is a bijection between Ag(Tζ̃) /∈b and the set{

A′ ∈ Ag(Tζ) /∈b| A
′ does not contain the angles between βi and βi+1

for all i ∈ [1, t− 1]

}
. (6.2)

Let A′ ∈ Ag(Tζ) /∈b. If c ∈ A′, it satisfies the condition of (6.2). Suppose that a ∈ A′.
Then, in the same way as the proof of Lemma 62, A′ satisfies the condition of (6.2).
Therefore, the set (6.2) and Ag(Tζ) /∈b coincide. Thus the assertion holds.

Proof of Theorem 61. We have decompositions Ag(Tζ̃) = Ag(Tζ̃) ∈btAg(Tζ̃) /∈b and Ag(Tζ)
= Ag(Tζ) ∈b t Ag(Tζ) /∈b. We define the map ψ′ζ : Ag(Tζ̃)→ Ag(Tζ) by

ψ′ζ(A) =

{
ψ ∈bζ (A) if A ∈ Ag(Tζ̃) ∈b,
ψ /∈b
ζ (A) if A ∈ Ag(Tζ̃) /∈b.

By Lemmas 6.1 and 6.2, ψ′ζ is bijective. It satisfies x(A \ {cA}) = x(ψ′ζ(A)) and y(A \
{cA}) = y(ψ′ζ(A)) for A ∈ Ag(Tζ̃) since ψ ∈bζ and ψ /∈b

ζ are natural maps. Therefore, we
have a bijection

ψζ : Pg(G̃ζ) // Pg(Gζ̃)
// Ag(Tζ̃)

// Ag(Tζ)

∈ ∈ ∈ ∈
P � // P � // ϕζ̃(P) � // ψ′ζφζ̃(P),

where ϕζ̃ is the bijection between Pg(Gζ̃) and Ag(Tζ̃) induced by Theorem 29, satisfying
x(P ) = x(ψζ(P )) and y(P ) = y(ψζ(P )).
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