Classification of the Hyperovals in PG(2, 64)

Peter Vandendriessche*

Department of Mathematics: (WE16)
Krijgslaan 281, gebouw S8
9000 Gent, Belgium

peter.vandendriessche@ugent .be

Submitted: Jan 4, 2018; Accepted: Mar 10, 2019; Published: May 31, 2019
(© The author.

Abstract

In this paper, we present a full classification of the hyperovals in the finite pro-
jective plane PG(2,64), showing that there are exactly 4 isomorphism classes. The
techniques developed to obtain this result can be applied more generally to classify
point sets with 0 or 2 points on every line, in a broad range of highly symmetric
incidence structures.

Mathematics Subject Classifications: 51E22

1 Background

Definition 1. The projective plane over a field F is the pair (P, L) where P is the set
of 1-dimensional subspaces of F? (called the points of the plane) and £ is the set of 2-
dimensional subspaces of F? (called the lines of the plane).

This structure has the property that every two points are contained in exactly one line,
and every two lines intersect in exactly one common point.

The projective plane over a finite field F, is also called the Desarguesian projective
plane of order q, denoted by PG(2,q). It is one of the most studied structures in finite
combinatorics. The % points of the plane are typically represented by the set

{(0,0, 1)y U{(0, Lt)[t € By} U{(L,2,y) |,y € Fy},
where the vector (a, b, ¢) is used to represent the 1-dimensional subspace ((a, b, c)).

Definition 2. An arc in a projective plane II is a set of points, no three of which lie on a
line. A k-arc is an arc of size k.

*The research of the author is supported by a postdoctoral grant of the FWO-Flanders.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 1

For any k-arc with k > 2, we can choose the coordinates in such a way that the first
two points are (0,0,1) and (0,1,0). Then, all remaining points are of the form (1, z,y)
where no value of x appears twice. This implies that k£ < g + 2.

When ¢ is odd, an additional counting argument shows that one even has k < ¢ + 1.
One well-known example of a large arc is a conic, i.e. a point set isomorphic to {(1,¢,t%)|t €
F,}U{(0.0,1)}.

For ¢ odd, Segre [20] showed that every (¢ + 1)-arc is a conic. For ¢ even, this is not
necessarily true, but it can be shown that every (¢+1)-arc is a subset of a (¢+2)-arc, which
we call a hyperoval. Hence, it is of interest to study these hyperovals. Using the coordinates
above, we can express every hyperoval as {(0,0,1), (0,1,0)}U{(1, z, f(z))|x € F,} for some
permutation f : F, — F,. This f is called the o-polynomial of the hyperoval.

Definition 3. A hyperoval is a (q + 2)-arc in PG(2,¢q); i.e. a set S of points for which
every line contains 0 or 2 points of S.

Conics and hyperovals are the most extensively studied objects in Desarguesian finite
projective planes; they are connected to a large variety of combinatorial structures and
practical applications. To name a few: hyperovals give rise to generalized quadrangles of
non-classical parameters [1]; hyperovals are the smallest code words in the projective plane
code (until today the only finite geometry code used in engineering applications [6, 7]);
hyperovals give rise to bent functions (a cryptographic function with desirable properties)
and linear codes with desirable parameters [10]; hyperovals play a crucial role in the study
of ovoids in PG(3, ¢) [13]; hyperovals are related to a-flocks [5]; etc.

The two main areas of research on hyperovals are construction and classification. Con-
cerning construction, 11 infinite classes are known: the regular hyperoval [2], the trans-
lation hyperovals [21], the Segre hyperovals [22], two classes of Glynn hyperovals [8], the
Payne hyperovals [14], the Cherowitzo hyperovals [3], three types of Subiaco hyperovals
[5, 15, 16] and the Adelaide hyperovals [4]. Next to these, O'Keefe and Penttila [12] found
one sporadic example in PG(2,32) that has not yet been embedded in an infinite class.

For the sake of completeness, a representative o-polynomial for each of the 11 classes
is given in Table 1, where o = 2(++1)/2,

2/(.4
P(JI) _ [Bl/ﬁ + $3/6 + $5/67 C’(x) — 2% + ZE0+2 + $30+4, 51(17) _ x:d_F(Zz;;? . 931/2

Y

62xt 4+ 6523 + 6%2% + 0% fa\1/2 (6% + 6%zt + 532 + §%x o\ 1/2
Sa() = rt +wa? + 1 (5) S3(@) = zt+w2a? +1 (5) ’
TE™)(X +1 T((BX ajm
A(z) = (F)(X +1) ((BX + 51)") ——+ X% with T(y) = y'+y, Vy € Fee.

T(p) T(B)(X +T(B)X2+1)

It should be noted that for ¢ even, since fields have prime power order, it follows that ¢ = 2"
for some positive integer h. The conditions on h restrict in which planes the contruction
can exist. For ¢ = 64, h = 6, and the regular and translation hyperovals coincide. Hence,
there are four known hyperovals up to isomorphism in this plane: the regular hyperoval,
the Adelaide hyperoval, and the first two types of Subiaco hyperovals.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 2

Name f(x) conditions

Regular x? -
Translation | % ged(h,i) =1
Segre 28 h odd
Glynn I | g3+ h odd

2mif h=4m —1
23+l if b = 4m 4+ 1
(x) h odd

@) I odd

Glynn II | 2t | hodd, A =

Payne P
Cherowitzo | C

Subiaco I | S;(z) h=2 (mod4), w+w+1=0
: h=2 (mod 4),§="14 ¢!
Subiaco I | 5() ¢ primitive element in [F 2
Subiaco I | S3(x) h# 2 (mod 4), Tr,(671) =1
h>4even, f€Fpe\ {1}, pitt =1

Adelaide | A(z)

m = +21 (mod ¢+ 1)

Table 1: Representative polynomials of the known families of hyperovals in PG(2, 2").

Concerning classification, a full classification of the hyperovals is known only for small q.
For ¢ < 8, Segre [21] showed in 1957 that all hyperovals consist of a conic plus its nucleus.
In 1975, Hall [9] showed that there are exactly two classes of hyperovals in PG(2,16),
which was later confirmed independently by O’Keefe and Penttila [11] without the use of
a computer. In 1994, Penttila and Royle [18] showed that there are exactly six classes of
hyperovals in PG(2, 32): five constructions listed in Table 1 and one sporadic construction
[12]. For PG(2,64) the number of classes has been a long standing open problem. Using
the same technique as for PG(2,32), the computer search would take thousands of years
to complete even on today’s hardware.

Attempts so far have however been able to classify specific cases. Penttila and Pinneri
[17] classified all hyperovals in PG(2, 64) admitting a collineation of prime order 5 or higher.
Later, Penttila and Royle [19] classified all hyperovals in PG(2, 64) admitting a collineation
of order 2 or 3. This leaves only the largest case open: the existence of a hyperoval in
PG(2,64) without any nontrivial automorphisms.

That such effort was put into finding even partial results on the classification of hyper-
ovals in PG(2,64), illustrates the importance of finding a full classification for PG(2,64),
despite it being a result for a single small projective plane. In this paper, we describe
an exhaustive search that leads to a negative answer to this question, summarized in the
following theorem.

Theorem 4 (Main Theorem). There are four isomorphism classes of hyperovals in
PG(2,64): the regular hyperoval, the Adelaide hyperoval, the Subiaco I hyperoval and the
Subiaco II hyperoval.

In Section 2, we introduce the necessary concepts and machinery to formally describe

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 3

the search. In Section 3 and 4, we will discuss the first and second part of the search,
respectively. In Section 5, we analyze the results and discuss some additional verification
mechanisms to ensure the correctness of our results.

2 QOutline of the Search

Notation 5. By H, we denote the lexicographically smallest 4-arc up to equivalence in
PT'L(3,64), i.e. Hy ={(0,0,1),(0,1,0),(1,0,0),(1,1,1)}.

Notation 6. The collineation group of PG(2, q) is denoted by PT'L(3, q); it is the group of
semilinear projective mappings. Each element in this group is of the form z Ax? where
A € PGL(3,q) and 6 is a Frobenius automorphism of F,, i.e. 2/ = 22 for some 4, since
q = 2"

Remark 7. Tt is well known that there are exactly h elements of PT'L(3,2") to map any
ordered 4-arc to a given ordering of Hy4, and those elements can easily be constructed.

Definition 8. Let S, H be point sets in PG(2,q) with S C H. The S-orbit of H is the
subset of HP™™ consisting of all images that contain S; we denote this by Rgs. The
standard orbit Ry of H is the Hy-orbit of H, i.e. Ry = Ry p,. The full PI'L-orbit of H is
then RH,Q).

Note that, in general, Ry g is not an orbit under the group action.

Definition 9. Let E, S be points sets in PG(2,¢q). A set H O S is S-disjoint from FE if all
elements in the S-orbit of H are disjoint from E. A set H O Hy is strongly disjoint from
E if it is Hy-disjoint from F.

Since Ry is not a group orbit, classical group techniques will not work here. We will
define an equivalence relationship =g as follows, to mimic the effect of group orbits.

Notation 10. Let S be an arc in PG(2,¢q). By A(S) we denote the set of points that can
be added to S without violating the arc constraint.

Notation 11. Let S be an arc in PG(2,q). Then S defines an equivalence relation =g on
A(S) as follows: two elements a,b € A(S) have a =g b if and only if SU{a} and SU{b} are
projectively equivalent. For any S’ C S, this property is equivalent to Rguge},s0 = Rsuqs},s-

Definition 12. A node is a pair (S,C) where S is a set of points in PG(2,¢q) and C is a
set of pairs (S;,C;) with S; € S and C; NS = ().

Definition 13. The solution set of a node (S,C), denoted by ¥(S,C), is the set of all
PI'L-orbits Ry g for which

e for all (S;,C;) € C one has C;NH' = for all H' € Ry g,, and

e at least one representative H’ contains S.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 4

Notation 14. We will write C; N Ry s, = () to denote C; N H' = () for all H' € Ry s,. While
this is clearly an abuse of the notation, it greatly improves the readability of statements
involving this condition for all C; with (S;, C;) € C.

Now we are ready to describe the search. We will iterate over the vertices of a particular
rooted tree, of which we will first define its essential properties.

Definition 15. Let 7 be a rooted tree with nodes as its vertices. A non-leaf node is called
good if its solution set is contained in the union of the solution sets of its children. A leaf
node (S,C) is called good if either S is a hyperoval meeting the disjointness conditions in
C, or the solution set of the node is empty. The tree T is good if all of its vertices are
good.

The aim of this paper is to find (0, ?). Given a good tree T with (0, () as the root, this
can be done as follows. We first compute the solution sets of all leaf nodes; this is easily
done as the leaves of a good tree either have empty solution set, or are nodes of the form
(S,C) with S a hyperoval already meeting the disjointness conditions C, hence the solution
set is always () or {Rgp}. For non-leaf nodes, repeatedly applying the property that the
solution set of a node is contained in the union of the solution sets of its children, one
obtains a superset for the solution set of the root. Verifying if all solutions are effectively
valid and distinct solutions for the root node, yields the exact value of (0},). Note that
the union computation is not trivial, as we represent orbits by a single representative,
and expensive calculations need to be performed to determine whether or not two given
hyperovals have the same orbit (i.e. are projectively equivalent).

Remark 16. Determining the S;-orbit of an arc S becomes computationally expensive
when S gets larger. Therefore, for larger S, it is beneficial to not explicitly verify that
CiNRpy.s, = 0 but instead only verify that C;N.S; = () and only perform the full verification
at the resulting leaf nodes. This way, we travel through more nodes than strictly necessary
for the tree, but since only () can appear as extra set in the union, this will not harm the
correctness of the algorithm. Skipping this check speeds up the computations significantly
and therefore makes up well for the few extra nodes to check.

We have now introduced all the machinery needed to describe the search tree 7. The
tree will have depth ¢ + 2, with depth 0 (the root) being the node ((, @), and depth ¢ + 2
being the leaf nodes with the desired hyperovals. Computing the union of all solution sets
of all leaves at depth ¢+2 (leaves at lower depth are guaranteed to have empty solution sets)
yields the desired classification. In Sections 3 and 4 we will describe the exact construction
of the tree.

3 The First Part

For arcs S with |S| < 3, the stabilizer of S acts transitively on A(S), hence there is trivially
only one node at this level. The smallest arc S not acting transitively on A(S) has size 4
and is projectively equivalent to Hy. There are 3782 points in A(H,), and =y, partitions
them in 11 classes of size 720, 720, 720, 360, 360, 360, 240, 180, 90, 30, 2 respectively.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35)

We could use this fact to create 11 nodes at depth 5 of the tree, all having (Hy, () as
their parent node. While this would make (Hy, () good, we can obtain the same result in
a much better way. To do this, we first consider the unique F4-subplane spanned by Hjy,
which we denote by PG(2,4). Three of these orbits are associated with PG(2,4) in the
following way.

Notation 17. The orbit of size 2 consists of the only two other points in PG(2,4) that can
still be added to the arc. We denote this orbit by O3 and we denote these two points in
PG(2,4) by p, and ps respectively.

Notation 18. The orbit of size 240 and one of the orbits of size 360 are associated to
PG(2,4) in the following way: their union has 600 points and consists of the following 10
disjoint substructures of size 60 each:

(a) the 8 lines spanned by a point of Hy and a point of {p,,ps}, each time minus the
intersection of that line with PG(2,4);

(b) the unique conic through Hy U {p,} in PG(2,64) minus its intersection with PG(2,4);
and

(c) the unique conic through Hy U {p,} in PG(2,64) minus its intersection with PG(2,4).
We denote this orbit of size 360 by O, and the orbit of size 240 by O;.

Lemma 19. Let H be any hyperoval in PG(2,64) containing Hy, let o1 be any element
of O1, 0y be any element of Oy and o3 be any element of Os. Then exactly one of the
following statements s true.

o Some element in Ry contains Hy and oy.
e Some element in Ry contains Hy and oo, and H s strongly disjoint from O.

e Some element in Ry contains Hy and o3, and H is strongly disjoint from Oy U Os.

Proof. The statements are clearly disjoint, so it is sufficient to prove that at least one of
them holds. We distinguish the following cases.

e If H is not strongly disjoint from O;, then by definition of strongly disjoint there
exists some g € PI'L(3,64) such that HY contains H, and some element o € O;.
Now, consider the mapping h that maps Hy U {0} to Hy U {o;}; such h exists by
definition of ©;. Then H9" contains o; and H,, which means the first statement is
true.

o [f H is strongly disjoint from O; but not strongly disjoint from Oy, then by definition
of strongly disjoint there exists some g € PI'L(3,64) such that HY contains some
element o € O,. Since being strongly disjoint is a property of the standard orbit and
HY still contains Hy, it follows that HY is still strongly disjoint from O;. Now, again
consider the mapping h that maps H, U {o} to HyU{0s}; such h exists by definition
of O,. Then H9" contains o, and Hy. Moreover, for the same reason as before, H9"
is still strongly disjoint from ;. Hence, the second statement is true.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 6

o [f H is strongly disjoint from both O; and Os, then it is strongly disjoint from O;UQ,.
Since ((0,0,1),p,) contains at least one point of H, it must contain a second point
of H. Since all points other than p, are either collinear with two points of H, or are
element of Oy Uy, it follows that H cannot be strongly disjoint from O3. Hence, we
can repeat the argument from the second bullet, replacing Oy by O3 and replacing
O; by Oy U Oy, to obtain the conclusion that the third statement is true. O

Corollary 20. In terms of node solution sets, Lemma 19 is equivalent to

Y(Hy,0) = (Hy U o1}, 0) Up(Hy U {0}, {(Hs, O1)}) Up(Hy U {os}, {(Hy, 01 UO9)}).

The above theorem gives us a very strong starting seed for the search (with only three
5-arcs to start from, two of which already exclude hundreds of points). We can formally
generalize the idea behind Lemma 19 in the following way.

Lemma 21. Let (S,C) be a node, and let L be a projective line tangent to S. Partition
the set A(S)\ Us;,c)ecCi into its =g-equivalence classes and let Wh, ..., W, be the classes
that have nonempty intersection with L and simultaneously have Rsufwy,s, N Ci = 0 for
all (S;,C;) € C. Pick arbitrary w; € W; NL fori=1,....m and let W = {wy, ..., wy}.
Then, regardless of the choice of the w; and regardless of the ordering of W1, ..., W,,,

m

Y(8,C) = Jv (SU{w},CU{(S, Wi U---UW,p)}).

=1

Proof. Let R € 1(S,C). For any representative H D S of R, the unique point w € LNH'\S
belongs to exactly one of Wy, ... W,,, we denote i(H) the unique value for which w €
Wiy Now, among all H € R with H' O S, select one for which 7 is minimal. Then clearly,
UpgerRN(W1U---UW,;_1) =) and w C W;. By definition of =g, we can find g € PT'L(3, q)
mapping S U {w} to S U {w;}, and hence H" is a representative of R containing S and
meeting all disjointness requirements, i.e. R € ¢ (SU{w;},CU{(S,WLU---UW;_1)}).

O

Remark 22. 1f S # () has no tangent lines, it is a hyperoval. If S has a tangent line where
W = (), then it cannot be completed to a hyperoval and ¢(S,C) = () regardless of C.

Remark 23. Lemma 19 is a direct corollary of Lemma 21, using L = ((0,0,1),p,) and
(Wla W27 W3) - (Ol) 027 03)

Lemma 21 is the core branching technique in the first part of the search. It can be very
potent, but its power depends entirely on the right choice of the line L and the right order
of the sets Wy, ..., W,,. While it is impossible to provably select the optimal choice for
these, it is also unnecessary: the lemma is mathematically correct for every choice, so it is
sufficient to find a ‘rather good’ choice.

We tried different heuristics to select these values, and selected the best among our
attempts (i.e. the one having the smallest number of nodes at early levels). The experi-
mentally best performing heuristic was the following one. For depth 4, manually pick the

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 7

choices from Remark 23. For depth 5 and above, compute A(S), remove those the points
would give an arc violating C, compute the =g-classes W' = {W7,..., W}, } on what re-

mains of A(S), and then select the line that minimizes ngew' % (as a compromise
between least children on one hand, and children with as large =-classes as possible on the
other hand). Now, let W C W’ be the subset of classes that intersect non-trivially with
L. Within W, we ordered the W; in non-increasing order of |W;| — |W; N L|, in order to
exclude as many points as possible in as many nodes as possible.

Clearly, computing L is a very computationally expensive operation. The main part
of the computational effort goes into computing the =g-classes and into verifying which
A(S)-elements violate C when added to S. The following observations are crucial in making

this computation feasible.

e For |S| > 7, the vast majority of the cases will have =g trivial, i.e. every point is its
own =g-class. This means we need to either compute (‘A(QS)|) projective equivalence
tests, or |A(S)| different S-orbits, while the result is that they are all different. This
is however relatively easy to detect using an invariant as follows. Associate integer
values to all points in PG(2,64), all starting at 0. For each of the (|i|) 4-subsets
of S, compute its unique skew line in the Fano plane spanned by these points, and
for each such line, increase all points on it by one. Then, replace all values by a
hashed value of them, using any (fixed) hash function one desires. Then sum up the
hashed values for all points in PG(2,¢). This hash value is a projective invariant,
and computing this hash value |A(S)| times is a very small cost. Any point a € A(S)
for which S U {a} has a unique hash value (i.e. one not appearing for any S U {b}
with b € A(S5)) is guaranteed to have a =g-orbit containing only this element.

e The required time to verify if the conditions in C are met, does not increase linearly
with |C|. If C = {(51,C1),...,(Sn, Cy)}, it is guaranteed that Sy C --- C S,,. Hence,
when computing the full standard orbit of S and filtering which elements contain S;,
once can first filter for S; and check disjointness from C7, then filter that set for S
and check disjointness from Cs, etc.

Despite the above efforts, this method quickly becomes unfeasible, especially in verifying
the conditions in C. The cost per arc is O(]S]?) and the number of nodes per level grows
exponentially in the beginning, so this approach quickly becomes unfeasible. Still, we
managed to pursue this approach to generate an optimal set of nodes at 9 with the aid of
a computing cluster, yielding 19 nodes at depth 6, 622 nodes at depth 7, 24230 nodes at
depth 8, and 777418 nodes at depth 9. Beyond depth 9, the computations become infeasible
and would take up a significant portion of the total computation time, far beyond what it
would save compared to less optimized approaches.

For this reason, we split the search in two parts. The first part is the method that we
just described, and generates a set of 997418 nodes with 9-arcs which are guaranteed to be
sufficient to generate all isomorphism classes of hyperovals when completed. The second
part will focus on completing each of them as quickly as possible. As an illustration of the
power of Lemma 19, out of these 997418 nodes, 997386 are child nodes of (H U {o;},0),

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 8

one is a child node of (HU{o02}, O1), and 31 are child nodes of (H U{o3}, O; UO;). Hence,
the latter two subtrees are almost eliminated at this point, showing that Lemma 19 gave
us one extra arc point almost for free.

4 The Second Part

Now, we need to complete each of our 997418 distinct 9-arcs to hyperovals. At this point,
group-based tricks like the =g-orbits provide no substantial benefits anymore. The dis-
jointness conditions in C only become stronger as |S| grows. .. but the computational cost
grows even faster. Hence, at this point we decided to go for a more straightforward ap-
proach, greatly reducing the cost per node rather than wanting the absolute minimum
number of nodes. For this purpose, we introduce the following weakening of Lemma 21.

Lemma 24. Let (S,C) be a node, and let L be a projective line tangent to S. Let W =
{w e (LN A(S)) \ Us,ciecCi} and remove from W all points for which there is some i
for which SU{w} NC; # 0. Then 1(S,C) € Uyew ¢(SU{w},C).

Proof. Let Ryg € ¢¥(S,C), and let H be a representative containing S. Since H is a
hyperoval and L is a tangent to S, H must contain exactly one other point w € (L N

A(S)) \ Ugs; c)ecCi. Hence, Ry € (S U{w},C). n

Equality in the solution sets is not guaranteed, because we have not explicitly checked
the disjointness requirements. However, as argued early, it is sufficient to find a superset
of ¥(0,0) and filter out unacceptable or duplicate solutions.

The basics of the search are still the same. We find the best tangent to branch from, and
for every possible second point on the secant, we recursively call the construction routine.
When no secants exist, a hyperoval is found. When a tangent line with no possible second
points is found, the arc can never be completed to a hyperoval and hence the solution set of
this node is empty. The best line, in this case, will be the line that gives the least number
of child nodes, i.e. the secant line with the least number of points that could not already
be excluded.

Practically, we will assign a number to each point, representing the number of conditions
that prevent that point from being added to the arc. Whenever a point is added, all points
on secant (previously tangent) lines through that point get this number increased by one;
when a point is removed, all points on tangent (previously secant) lines through it get their
number decreased by one. We start by assigning 0 to all points, raising the number by 1
for all points in U(5i.05)eC C;, and adding the points of S one by one according to the above
procedure. The points that can be added to S at any time, are then the points for which
this value is still 0.

To find the best line, one needs several nested loops. Therefore, it is advisable to keep
track of some intermediary values, such as whether a line is skew, tangent or secant; and
how many points with associated value 0 are left on each line. This way, the branching is
kept to a minimum, but the cost per node is still very low. For the same reason, it is also
advisable to precompute some properties of the incidence geometry, such as the points on

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 9

every line, the lines through every point, and the line spanned by two points. These can
be generated one time at the start, so they do not impact the total computing time.

In total, each 9-arc (i.e. each node at depth 9) has a subtree of about 4 - 10'° nodes,
where depth 14 has 0.5% of the nodes, depth 15 has 3.6%, depth 16 has 17.3%, depth
17 has 41.8%, depth 18 has 35.8% and depth 19 has 1.0%. Depths below 14 and depths
above 19 represent a negligible fraction of the total number of nodes in the subtree. We
managed to save some work by not selecting the best line at depths 17 and above, as here
the tree will complete soon anyway, but instead selecting a ‘rather good’ line that we could
find quickly. From these arc sizes onwards, selecting the best line becomes less and less
important, while the computational cost for finding the best line is at its largest here. This
way, we managed to get our implementation sufficiently fast to complete a single 9-arc in
only a few hours. This brings the total computation workload at a few million hours of
CPU time, which is within reach of today’s High Performance Computing clusters.

5 Results

In total, our search yielded 42530 hyperovals. We now need to find the equivalence class
of each hyperoval, and determine whether or not any new, previously unknown hyperovals
occur. This can be done very efficiently in the following way. For each of the known types
H, we explicitly compute the Hy-orbit of H, using Remark 7. This takes a few hours,
but it is a one-time effort. Now, it is sufficient to test for each hyperoval (which always
contains H, because of they way our search works) whether or not it belongs to one of
these four Hy-orbits. This takes less than 0.01 seconds per hyperoval, and hence does not
present a computational challenge even on a single computer. We find 2 regular hyperovals,
21262 Adelaide hyperovals, 17040 Subiaco I hyperovals, 4226 Subiaco II hyperovals, and
0 new hyperovals. Given that the automorphism group sizes are 1572480, 12, 15 and
60, the number of hyperovals found is roughly inversely proportional to the size of the
automorphism group, as one would indeed expect. When filtering out the hyperovals not
meeting the disjointness conditions of their nodes, we are left with 2 regular hyperovals,
862 Adelaide hyperovals, 695 Subiaco I hyperovals and 217 Subiaco II hyperovals.

As a final step, since this is a computer search with negative outcome, it is good practice
to perform extensive verifications that the results are correct. Since the main part of our
search consists of completing a set of 9-arcs to a set of hyperovals containing the 9-arc,
and since this is the most error prone part (happening on remote computer clusters with
little checks or additional output, and too large to keep a human eye on), we want some
verification that we have done this correctly.

Fortunately, a strong verification mechanism exists in this case: it is possible to compute
how many hyperovals of known types we should find for a given 9-arc. To determine these
expected numbers, we compute again the standard orbit Ry for each of the known types
H. Then, for each 9-arc S, we consider all elements of Ry that contain it, i.e. we compute
Ry s; this is relatively cheap in practice as Ry has already been computed and one usually
detects very early that a hyperoval of Ry is not in Ry . This way, we found exactly the

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 10

same output numbers for each 9-arc and for each hyperoval type as in the actual search
(both with and without C-filtering), providing strong evidence that the presented results
are indeed correct.

We conclude by again stating our main theorem and a short evaluation for the next
case.

Theorem 25 (Main Theorem). There are four isomorphism classes of hyperovals in
PG(2,64): the regular hyperoval, the Adelaide hyperoval, the Subiaco I hyperoval and the
Subiaco II hyperoval.

A natural next question is if the improved method in this paper is sufficient to handle the
next open case as well. Using the state of the art computer hardware, and by completing the
search for a large number of randomly selected subtrees, we estimate that the classification
of the hyperovals in PG(2,128) would take over 10% years of CPU time to complete. It is
therefore highly unlikely that we will see this classification anytime soon.

Remark 26. One of the motivations for classifying the hyperovals in PG(2,32) was that it
implies a classification of the ovoids (sets of ¢* + 1 points, no three collinear) in PG(3, 32).
The same could now be done for PG(3,64), revealing whether or not any examples exist
other than the elliptic quadric @*(3,¢). T. Penttila already solved this problem prior
to our research, under the assumption that no new hyperovals would be found, and will
publish this result soon.

Acknowledgment.

The author wants to thank T. Penttila for the interesting conversations on this topic.

References

[1] R.W. Ahrens and G. Szekeres, ‘On a combinatorial generalization of 27 lines associated
with a cubic surface’, J. Austral. Math. Soc. 10 (1969), 485-492.

[2] R.C. Bose, ‘Mathematical theory of the symmetrical factorial design’, Sankhya 8
(1947), 107-166.

[3] W.E. Cherowitzo, ‘a-flocks and hyperovals’, Geom. Dedicata 72 (1998), 221-246

[4] W.E. Cherowitzo, C.M. O’Keefe, and T. Penttila, ‘A unified construction of finite
geometries in characteristic 2, Adv. Geom. 3 (2003), 1-21.

[5] W.E. Cherowitzo, T. Penttila, I. Pinneri and G.F. Royle, ‘Flocks and ovals’, Geom.
Dedicata 60 (1996), 17-37.,

[6] I.B. Djordjevic and B.V. Vasic, ‘Projective geometry LDPC codes for ultralong-haul
WDM high-speed transmission’, IEEE Photonics Technology Letters 15 (2003), 784—
786.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 11

[7]

[.B. Djordjevic, S. Sankaranarayanan and B.V. Vasic, ‘Projective-Plane Iteratively
Decodable Block Codes for WDM High-Speed Long-Haul Transmission Systems’, J.
Lightwave Technol. 22 (2004), 695-702.

D.G. Glynn, ‘Two new sequences of ovals in finite Desarguesian planes of even order’,
Combinatorial Mathematics X (ed. L.R.A. Casse), Lecture Notes in Mathematics 1036,
Springer, 1983, 217-229.

M. Hall, ‘Ovals in the Desarguesian plane of order 16’, Ann. Mat. Pura Appl. 102
(1975), 159-176.

S. Mesnager, ‘Bent vectorial functions and linear codes from o-polynomials’, Des.
Codes Cryptogr. 77 (2015), 99-116.

C.M. O’Keefe and T. Penttila, ‘Hyperovals in PG(2, 16)’, Furopean J. Combin. 12
(1991), 51-59.

C.M. O’Keefe and T. Penttila, ‘A new hyperoval in PG(2,32)", J. Geom. 44 (1992),
117-139.

C.M. O’Keefe, T. Penttila, G.F. Royle, ‘Classification of ovoids in PG(3,32)’, J. Geom.
50 (1994), no. 1-2, 143-150.

S.E. Payne, ‘A new infinite family of generalized quadrangles’, Congr. Numer. 49
(1985), 115-128.

S.E. Payne, ‘A tensor product action on ¢-clan generalized quadrangles with g = 2¢°,
Linear Algebra Appl. 226-228 (1995), 115-137.

S.E. Payne, T. Penttila, and I. Pinneri, ‘Isomorphisms between Subiaco g-clan geome-
tries’, Bull. Belg. Math. Soc. 2 (1995), 197-222.

T. Penttila and I. Pinneri, ‘Irregular hyperovals in PG(2,64)’, J. Geom. 51 (1994),
89-100.

T. Penttila and G.F. Royle, ‘Classification of hyperovals in PG(2,32)’, J. Geom. 50
(1994), 151-158.

T. Penttila and G.F. Royle, ‘On hyperovals in small projective planes’, J. Geom. 54
(1995), 91-104.

B. Segre, ‘Ovals in a finite projective plane’, Canad. J. Math. 7 (1955), 414-416.

B. Segre, ‘Sui k-archi nei piani finiti di caratteristica due’, Rev. Math. Pures Appl. 2
(1957), 289-300.

B. Segre, ‘Ovali e curve ¢ nei piani di Galois di caratteristica due’, Atti dell’ Accad.
Naz. Lincei Rend. (8) 32 (1962), 785-790.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.35 12

	Background
	Outline of the Search
	The First Part
	The Second Part
	Results

