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Abstract

Extremal problems concerning the number of independent sets or complete sub-
graphs in a graph have been well studied in recent years. Cutler and Radcliffe
proved that among graphs with n vertices and maximum degree at most r, where
n = a(r + 1) + b and 0 6 b 6 r, aKr+1 ∪Kb has the maximum number of complete
subgraphs, answering a question of Galvin. Gan, Loh and Sudakov conjectured that
aKr+1∪Kb also maximizes the number of complete subgraphs Kt for each fixed size
t > 3, and proved this for a = 1. Cutler and Radcliffe proved this conjecture for
r 6 6.

We investigate a variant of this problem where we fix the number of edges instead
of the number of vertices. We prove that aKr+1∪C(b), where C(b) is the colex graph
on b edges, maximizes the number of triangles among graphs with m edges and any
fixed maximum degree r 6 8, where m = a

(
r+1
2

)
+ b and 0 6 b <

(
r+1
2

)
.

Mathematics Subject Classifications: 05

1 Introduction

The problem of determining which graphs contain the largest number of complete sub-
graphs of size t has a long history. One can think of it as starting with the Kruskal-Katona
theorem concerning the shadows of uniform hypergraphs. Here we should introduce the
colex order on finite subsets of N, defined by A <colex B if and only if max(A4B) ∈ B.
Thus the first few 2-sets in colex order are

{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 5}, . . . .

Theorem 1 (Kruskal [16], Katona [15]). Suppose that 1 6 ` 6 t. If H ⊆
(
[n]
t

)
has size

N , and we define

∂(`)H =
{
A ∈

(
[n]

`

)
: ∃B ∈ H such that A ⊆ B

}
,
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then ∂(`)H is at least as large as ∂(`)C, where C ⊆
(
[n]
t

)
consists of the first N t-sets in

colex order, and moreover ∂(`)C is an initial segment of `-sets in the colex order.

This immediately implies, by taking ` = 2 and H to be the set of complete subgraphs
of size t in G, that any graph containing N complete subgraphs of size t must have at least∣∣∂(2)C∣∣ edges, where C consists of the first N t-sets in colex order. This in turn implies an
upper bound on the number of copies of Kt in a graph on m edges. Similarly, since the
optimal graphs are the same for all t, the colex graph C(m), whose edges are the first m
pairs in colex order, has the largest number of complete subgraphs among all graphs with
m edges. Note that if

(
k
2

)
6 m <

(
k+1
2

)
then C(m) is a clique on {1, 2, . . . , k} together

with edges joining vertex k + 1 to vertices 1, 2, . . . ,m−
(
k
2

)
.

These results have been extended in a number of directions, usually by restricting the
class of graphs considered. If we write k(G) for the number of complete subgraphs in a
graph G, kt(G) for the number of complete subgraphs of size t, and Kt(G) for the set of
complete subgraphs of size t, we wish to find upper bounds on k(G) and kt(G) over the
class of graphs satisfying some constraints. One example is the following result due to
Zykov [20] (see also [7, 13, 17, 18]), which bounds the number of complete subgraphs in
graphs with bounded clique number, ω(G).

Theorem 2 (Zykov [20]). If t > 2 and G is a graph with n vertices and ω(G) 6 ω, then

kt(G) 6 kt(Tn,ω),

where Tn,ω is the Turán graph with ω parts. The extremal graph is unique except when
n < t or ω < t.

Galvin [11] made the following conjecture1, and proved it in a wide range of cases.

Conjecture 3 (Galvin [11]). If G is a graph on n vertices with maximum degree at most
r, where r > n/2− 1, then k(G) 6 k(Kr+1 ∪Kn−r−1), the union of two complete graphs.

Cutler and the second author [2] proved this conjecture (indeed, without the lower
bound on r) showing that the extremal graph is the union of complete graphs aKr+1∪Kb

where n = a(r + 1) + b and 0 6 b < r + 1. Soon thereafter Gan, Loh, and Sudakov [12]
considered the question of maximizing kt(G) over this same class of graphs. They made
substantial progress on the following conjecture.

Conjecture 4. For all t > 3 and n, r > 1, if G is a graph on n vertices with maximum
degree at most r, then

kt(G) 6 kt(aKr+1 ∪Kb),

where n = a(r + 1) + b and 0 6 b < r + 1.

Note that the conjecture is false for t = 2, since whenever n is not divisible by r + 1
the conjectured extremal graph has fewer edges than an r-regular graph on n vertices.
Gan, Loh, and Sudakov proved Conjecture 4 for a = 1, the case conjectured by Engbers
and Galvin [6], and also demonstrated that if the conjecture holds for t = 3, then it holds
for all t > 3. Cutler and Radcliffe [3] proved the conjecture for r 6 6.

1To be precise, Galvin’s conjecture was about maximizing the number of independent sets in a graph
of bounded minimum degree, but his conjecture is easily seen to be equivalent to the one here.
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1.1 The edge analogue of Conjecture 4

In this paper we work on the edge, or Kruskal-Katona, version of Conjecture 4. We fix the
number of edges of G (and allow the number of vertices to be arbitrary) and ask which
graphs maximize the number of complete subgraphs of size t.

Eckhoff [4, 5] (see also related work by Fisher and Ryan [8]) gave partial results on
the edge analogue of Zykov’s theorem (Theorem 2). The result is now known—it is an
immediate consequence of the ‘rainbow’ Kruskal-Katona theorem of Frankl, Füredi, and
Kalai [9] and a more recent theorem of Frohmader [10]. For convenience in stating the
theorems it is helpful to make a temporary definition.

Definition 5. A subset A ⊆ N is ω-rainbow if no two elements of A are congruent modulo
ω. We write Rω for the collection of all ω-rainbow subsets of N.

We first state the rainbow Kruskal-Katona theorem.

Theorem 6 (Frankl, Füredi, and Kalai [9]). Suppose that 1 6 ` 6 t. If H ⊆
(N
t

)
has size

N , and moreover H is ω-partite—i.e., we can partition N into ω subsets such that no set
in H contains more than one element from each part—then ∂(`)H is at least as large as
∂(`)C, where C consists of the first N t-sets in Rω in colex order, and moreover ∂(`)C is
an initial segment of Rω ∩

(N
`

)
in colex order.

Frohmader’s result exploits this theorem to extend its conclusion to flag complexes—
set systems defined by the set of complete subgraphs in a graph.

Theorem 7 (Frohmader [10]). Let G be a graph having ω(G) 6 ω. If we let H = Kt(G)
then ∂(`)H ⊆ K`(G) satisfies the inequality of the previous theorem (though H need not be
ω-partite).

Corollary 8. If G is a graph with m edges having ω(G) 6 ω then for all t > 2 we have
kt(G) 6 kt(Rω(m)), where Rω(m) is the graph whose edges are the first m 2-sets in Rω

in colex order.

Proof. Define C to be the first kt(G) t-sets from Rω in colex order, and set

m′ = |∂(2)C|.

We must have m > m′ since, from the fact that E(G) ⊇ ∂(2)Kt(G), we get

m = e(G) > |∂(2)Kt(G)| > |∂(2)C| = m′.

Thus
kt(Rω(m)) > kt(Rω(m′)) = kt(G),

where the last identity is the simple fact that Kt(∂
(2)C) = C; every edge of ∂(2)C is in a

copy of Kt.
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1.2 Results and Notation

We conjecture the following.

Conjecture 9. For any t > 3, if G is a graph with m edges and maximum degree at most
r, then

kt(G) 6 kt(aKr+1 ∪ C(b)),
where m = a

(
r+1
2

)
+ b and 0 6 b <

(
r+1
2

)
.

Conjecture 9 is the exact analogue of Conjecture 4: we build as many Kr+1’s as we
can, and then use our remaining resources optimally. Let’s define

ft(m, r) = max{kt(G) : G has m edges and ∆(G) 6 r}.

First note that the conjecture is easily seen to be true asymptotically as m → ∞.
Wood [19] used a similar proof to give an upper bound on the number of cliques in
n-vertex, m-edge graphs with given maximum degree.

Theorem 10. For all 3 6 t 6 r + 1,

ft(m, r) 6 m

(
r+1
t

)(
r+1
2

) ,
and moreover for fixed t and r,

ft(m, r) = (1− om(1))m

(
r+1
t

)(
r+1
2

) .
Proof. For the first bound, note that if G is a graph on m edges with ∆(G) 6 r then the
endpoints of an edge e of G have at most r−1 common neighbors, and complete subgraphs
of size t in G containing e correspond to Kt−2’s in this set of common neighbors. There are
at most

(
r−1
t−2

)
such Kt−2’s, so, counting pairs (e,K) with e an edge of G and K ∈ Kt(G)

containing e, we have (
t

2

)
kt(G) 6 m

(
r − 1

t− 2

)
.

Thus

kt(G) 6 m

(
r−1
t−2

)(
t
2

) = m

(
r+1
t

)(
r+1
2

) .
Now we have

m

(
r+1
t

)(
r+1
2

) 6 (1 + o(1))

( m(
r+1
2

) − 1
)(

r + 1

t

)
6 (1 + o(1))

⌊ m(
r+1
2

)⌋(r + 1

t

)
6 (1 + o(1))ft(m, r),

where the final inequality comes from considering the graph that is the disjoint union of⌊
m

(r+1
2 )

⌋
copies of Kr+1 and a matching to make the edge count up to m.
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We were not able to show that it is sufficient to prove Conjecture 9 only for t = 3.
Our main result is that the conjecture is true for triangles (t = 3) for r 6 8.

Main Theorem. If G is a graph with m edges and maximum degree at most r for any
fixed r 6 8, then

k3(G) 6 k3(aKr+1 ∪ C(b)),

where m = a
(
r+1
2

)
+ b and 0 6 b <

(
r+1
2

)
. That is, the graphs with the maximum number

of triangles consist of as many disjoint copies of Kr+1 as possible, with the remaining
edges formed into a colex graph.

Our proof does not show that the extremal example is unique, although we conjecture
that it is (up to the trivial changes of adding isolated vertices or disconnecting a pendant
edge of a colex component).

Most of our graph theory notation is standard; see for instance Bollobás [1] for a
reference. In particular we will write (as we have done above) G ∪ H for the disjoint
union of G and H, and also nG for the disjoint union of n copies of G.

We write G(m, r) for the set of graphs G with m edges and having ∆(G) 6 r. In this
class it will be handy to single out the connected ones; we write GC(m, r) for these.

In Section 2 we prove some general results saying that in proving the conjecture we may
restrict our attention to connected graphs that achieve maximum degree r. In Section 3
we introduce an approach parallel to the folding technique in [2], and in Section 4 we
discuss how this restricts the class of potentially extremal graphs. In Section 5 we give
constraints on the extremal graphs in terms of their degree multisets. In Section 6, we
combine these two approaches to prove the main theorem. The approaches from Sections 3
and 5 combine to cover all cases when r 6 8. A gap opens up for r > 9, and it seems
that a new approach is necessary for r substantially greater than 8. Finally, in Section 7
we briefly discuss some related open problems.

2 Disconnected graphs and graphs with small maximum degree

In this section, we prove two results that hold for all r and allow us to restrict our attention
to connected graphs with maximum degree equal to r. Both are corollaries of the following
lemma concerning colex graphs. The colex graph C(b) consists of a complete graph of size
c, where

(
c
2

)
6 b <

(
c+1
2

)
, and then potentially one more vertex, joined to d vertices of

the Kc, where d = b−
(
c
2

)
. Given this structure it is often useful to think of b as written

in the form b =
(
c
2

)
+ d where 0 6 d < c. We abbreviate this fact as b = [c, d], and write

C(c, d) for C([c, d]). It is easy to check that

kt(C(c, d)) =

(
c

t

)
+

(
d

t− 1

)
.

We in fact also allow d = c: we have [c, c] = [c + 1, 0], and the above formula for kt still
applies.
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Thus, the number of Kt’s in the conjectured extremal graph, which we denote by
gt(m, r), can be written as

gt(m, r) = kt(aKr+1 ∪ C(b)) = a

(
r + 1

t

)
+

(
c

t

)
+

(
d

t− 1

)
,

where m = a
(
r+1
2

)
+ b and b = [c, d].

Lemma 11. Suppose 1 6 bi 6
(
r+1
2

)
− 1 for i = 1, 2 and t > 3. Letting G be the graph

C(b1) ∪ C(b2) then kt(G) < gt(b1 + b2, r), unless b1 =
(
c1
2

)
for some c1 ∈ N and b2 = 1 (or

vice versa), in which case kt(G) = kt(C(b1 + b2)) = gt(b1 + b2, r) = ft(b1 + b2, r).

Proof. Let’s write bi = [ci, di] for i = 1, 2 with 0 6 di < ci and b1 > b2 (so c1 > c2). We
split into cases depending on the values of the di.

Case 11.1: d1, d2 > 1.

If d1 < d2, then since b1 > b2 we have c1 > c2, and d1 < d2 < c2 < c1. Then(
c1
2

)
+ d2 <

(
c1
2

)
+ c1 =

(
c1 + 1

2

)
(
c2
2

)
+ d1 <

(
c2
2

)
+ c2 =

(
c2 + 1

2

)
,

and we may swap d1 and d2 as kt(C(b1) ∪ C(b2)) = kt(C(c1, d2) ∪ C(c2, d1)), with [c1, d2] >
[c2, d1]. Therefore we may assume d1 > d2.

First note that C(b1 + 1) ∪ C(b2 − 1) ∈ G(m, r) since b1 6
(
r+1
2

)
− 1. We compare

the number of Kt’s in C(b1) ∪ C(b2) to those in C(b1 + 1) ∪ C(b2 − 1). Observe that
kt(C(b1 + 1)) = kt(C(b1)) +

(
d1
t−2

)
and kt(C(b2 − 1)) = kt(C(b2))−

(
d2−1
t−2

)
, so

kt(C(b1 + 1) ∪ C(b2 − 1)) = kt(C(b1) ∪ C(b2)) +

(
d1
t− 2

)
−
(
d2 − 1

t− 2

)
> kt(C(b1) ∪ C(b2))

since d1 > d2 − 1.

Case 11.2: Exactly one of d1, d2 is zero.

Subcase 11.2.1: d2 6= 0 or d1 < c2

If d2 = 0 and d1 < c2,

kt(C(c1, d1) ∪ C(c2, 0)) = kt(C(c1, 0) ∪ C(c2, d1)),

so we may assume that it is d1 that is zero, and d2 > 1.
We compare G to the graph

G′ = C(b1 + c2) ∪ C(b2 − c2) = C(c1, c2) ∪ C(c2 − 1, d2 − 1) ∈ G(b1 + b2, r).

Note first that there are enough edges in C(b2) to remove c2 of them because c2 > d2 +1 >
2, and d2 > 1, so if c2 = 2 then b2 = 2, and if c2 > 3 then b2 >

(
c2
2

)
> c2. Note also that
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∆(C(b1 + c2)) 6 r because d1 = 0 implies b1 + c2 6
(
r
2

)
+ r =

(
r+1
2

)
. To prove the second

equality above we have

[c2, d2]−c2 =

(
c2
2

)
+d2−c2 =

(
c2
2

)
−
(
c2 − 1

1

)
+d2−1 =

(
c2 − 1

2

)
+d2−1 = [c2−1, d2−1].

Note that in the representation C(c1, c2) ∪ C(c2 − 1, d2 − 1) we might have c2 = c1. The
net change in kt is

kt(G
′)− kt(G) =

(
c1
t

)
+

(
c2
t− 1

)
+

(
c2 − 1

t

)
+

(
d2 − 1

t− 1

)
−
((

c1
t

)
+

(
c2
t

)
+

(
d2
t− 1

))
=

(
c2
t− 1

)
+

(
c2 − 1

t

)
−
(
c2
t

)
+

(
d2 − 1

t− 1

)
−
(

d2
t− 1

)
=

(
c2
t− 1

)
−
(
c2 − 1

t− 1

)
−
((

d2
t− 1

)
−
(
d2 − 1

t− 1

))
=

(
c2 − 1

t− 2

)
−
(
d2 − 1

t− 2

)
> 0

because c2 > d2.

Subcase 11.2.2: d2 = 0 and d1 > c2

We compare G to the graph

G′ = C(b1 + 1) ∪ C(b2 − 1) = C(c1, d1 + 1) ∪ C(c2 − 1, c2 − 2) ∈ G(b1 + b2, r).

To prove the second equality, we have

b2 − 1 =

(
c2
2

)
− 1 =

(
c2 − 1

2

)
+

(
c2 − 1

1

)
− 1 =

(
c2 − 1

2

)
+ c2 − 2.

Note that we might have [c1, d1 + 1] = [c1 + 1, 0]. The net change in kt is

kt(G
′)− kt(G) =

(
c1
t

)
+

(
d1 + 1

t− 1

)
−
(
c1
t

)
−
(

d1
t− 1

)
+

(
c2 − 1

t

)
+

(
c2 − 2

t− 1

)
−
(
c2
t

)
=

(
d1 + 1

t− 1

)
−
(

d1
t− 1

)
−
((

c2
t

)
−
(
c2 − 1

t

))
+

(
c2 − 2

t− 1

)
=

(
d1
t− 2

)
−
((

c2 − 1

t− 1

)
−
(
c2 − 2

t− 1

))
=

(
d1
t− 2

)
−
(
c2 − 2

t− 2

)
> 0

because d1 > c2 − 2.
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Case 11.3: d1 = d2 = 0

If c2 = 2, then b2 = 1. In this case, C(b2) is a single edge, and C(b1) is a complete
graph, so

kt(C(b1) ∪ C(b2)) = kt(C(b1 + b2)) = ft(b1 + b2, r)

by the Kruskal-Katona theorem.
Otherwise, c2 > 3, so b2 =

(
c2
2

)
> c2, and we compare G to

G′ = C(b1 + c2) ∪ C(b2 − c2) = C(c1, c2) ∪ C(c2 − 2, c2 − 3) ∈ G(b1 + b2, r).

As in Subcase 11.2.1, ∆(C(b1 + c2)) 6 r. To prove the second equality, we have

b2 − c2 =

(
c2
2

)
− c2 =

((
c2 − 2

2

)
+

(
c2 − 2

1

))
+

(
c2 − 1

1

)
− c2 =

(
c2 − 2

2

)
+ c2 − 3.

This move yields a net gain of

kt(G
′)− kt(G) =

(
c1
t

)
+

(
c2
t− 1

)
+

(
c2 − 2

t

)
+

(
c2 − 3

t− 1

)
−
((

c1
t

)
+

(
c2
t

))
=

(
c2
t− 1

)
+

((
c2 − 2

t

)
−
(
c2
t

))
+

(
c2 − 3

t− 1

)
=

(
c2
t− 1

)
−
(
c2 − 1

t− 1

)
−
((

c2 − 2

t− 1

)
−
(
c2 − 3

t− 1

))
=

(
c2 − 1

t− 2

)
−
(
c2 − 3

t− 2

)
> 0.

In all cases except b1 =
(
c1
2

)
and b2 = 1 we have shown that there exists β > 1 such that

kt(C(b1)∪C(b2)) < kt(C(b1+β)∪C(b2−β)) and also that C(b1+β)∪C(b2−β) ∈ G(b1+b2, r).
We have that, except in the special case,

kt(C(b1) ∪ C(b2)) <

{
kt(C(b1 + b2)) if b1 + b2 6

(
r+1
2

)
kt(C(

(
r+1
2

)
) ∪ C(b1 + b2 −

(
r+1
2

)
)) otherwise

= gt(b1 + b2, r).

Corollary 12. For t > 3, if Conjecture 9 holds for numbers of edges up through m − 1,
and G ∈ G(m, r) is not connected, then kt(G) 6 gt(m, r).

Proof. Suppose G = N ∪M , where 0 6= e(N) = a1
(
r+1
2

)
+ b1, 0 6= e(M) = a2

(
r+1
2

)
+ b2,

and m = e(G) = e(M) + e(N) = a
(
r+1
2

)
+ b with 0 6 b1, b2, b 6

(
r+1
2

)
− 1. By Conjecture

9 for smaller values of m,

kt(G) = kt(N) + kt(M)

6 kt(a1Kr+1 ∪ C(b1)) + kt(a2Kr+1 ∪ C(b2))
= kt((a1 + a2)Kr+1) + kt(C(b1) ∪ C(b2)).
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If b1, b2 6 1, then a = a1+a2, b = b1+b2 6 2, and kt(C(b1)∪C(b2)) = 0 = kt(C(b1+b2)),
so we have shown kt(G) 6 kt(aKr+1 ∪ C(b)) = gt(m, r).

If b1 =
(
c1
2

)
and b2 = 1, then a = a1 + a2, b = b1 + b2, and kt(C(b1) ∪ C(b2)) =

kt(C(b1 + b2)), so we have shown kt(G) 6 kt(aKr+1 ∪ C(b)) = gt(m, r).
In all other cases, by Lemma 11 we have kt(C(b1) ∪ C(b2)) < gt(b1 + b2, r), so

kt(G) 6 kt((a1 + a2)Kr+1) + kt(C(b1) ∪ C(b2)) [shown above]

< kt((a1 + a2)Kr+1) + gt(b1 + b2, r)

= gt
(
(a1 + a2)

(
r + 1

2

)
+ b1 + b2, r

)
= gt(m, r).

Corollary 13. If t > 3, r > 2, m >
(
r+1
2

)
+ 1, G ∈ G(m, r) has kt(G) = ft(m, r), and

Conjecture 9 holds for maximum degree at most r−1 and for numbers of edges up through
m− 1, then ∆(G) = r.

Proof. The statement is trivial for r = 2, so assume r > 3. Suppose ∆(G) 6 r − 1,
so G ∈ G(m, r − 1). By Conjecture 9 for r − 1, we have kt(G) 6 kt(aKr ∪ C(b)) for
m = a

(
r
2

)
+ b and 0 6 b <

(
r
2

)
.

If b > 2, then kt(Kr ∪ C(b)) < ft(
(
r
2

)
+ b, r) by Lemma 11. Therefore

kt(aKr ∪ C(b)) = kt((a− 1)Kr) + kt(Kr ∪ C(b))

< kt((a− 1)Kr) + ft
((r

2

)
+ b, r

)
6 ft

(
(a− 1)

(
r

2

)
, r
)

+ ft
((r

2

)
+ b, r

)
6 ft

(
(a− 1)

(
r

2

)
+

(
r

2

)
+ b, r

)
= ft(m, r)

since ft is a superadditive function of m.
Otherwise, b 6 1, and m >

(
r+1
2

)
+1, so a > 2. Notice that kt(Kr∪C(b)) = kt(C(r, b)).

kt(aKr ∪ C(b)) = kt((a− 2)Kr) + kt(Kr) + kt(Kr ∪ C(b))
= kt((a− 2)Kr) + kt

(
C(r, 0)

)
+ kt(C(r, b))

= kt((a− 2)Kr) + kt(C(r, 0) ∪ C(r, b))

< kt((a− 2)Kr) + ft

(
2

(
r

2

)
+ b, r

)
[by Lemma 11 since r > 3]

6 ft

(
(a− 2)

(
r

2

)
, r
)

+ ft

(
2

(
r

2

)
+ b, r

)
6 ft

(
a

(
r

2

)
+ b, r

)
= ft(m, r),

since ft is a superadditive function of m. Therefore any G ∈ G(m, r − 1) is suboptimal,
and kt(G) = ft(m, r) implies ∆(G) = r.
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3 Edge Weights, Clusters, and Folding

In this section we introduce a ‘folding’ operation that acts on a graph containing a large
subset of vertices with as many common neighbors as is possible. To this end we define
the weight of a pair of vertices to be the number of common neighbors they have: w(xy) =
|N(x) ∩ N(y)| for any x, y ∈ V (G). In particular if xy is an edge this is the number of
triangles containing that edge. If xy is a non-edge this is the number of triangles we
would gain by adding that pair as an edge. The maximum possible weight of an edge xy
is w(xy) = r − 1, which occurs exactly when d(x) = d(y) = r and N [x] = N [y]. (Note
that a non-edge can have weight r. If x 6∼ y, d(x) = d(y) = r, and N(x) = N(y), then x
and y have r common neighbors, but we cannot add the edge xy to complete r triangles
as x and y already have the maximum degree.)

Definition 14. An edge xy ∈ E(G) is called tight if w(xy) = r−1. A complete subgraph
in G, all of whose edges are tight, is called a tight clique, and a maximal tight clique is
called a cluster.

For any cluster T , let ST =
⋂

v∈T N(v), the set of common neighbors of T . For v ∈ T ,
every other vertex x ∈ T has r− 1 neighbors in common with v. They must be the same
common neighbors for each x since d(v) 6 r, so |T ∪ ST | = r + 1. For any v ∈ T , the
closed neighborhood of v is N [v] = T ∪ ST .

If G contains a cluster of size r + 1, then it contains a copy of Kr+1, and it is discon-
nected. What we’ll investigate is the situation in which there is a cluster T with |T | < r+1,
and try to understand the edges missing from ST . Let RT = G[ST ]. Since T is maximal,
δ(RT ) > 1. The vertices in ST may have neighbors in T , ST , and V (G) \ (T ∪ ST ). Let
BT be the graph of edges uv such that u ∈ ST and v ∈ V (G) \ (T ∪ ST ).

We will consistently write t for |T |, S for ST , s for |ST |, R for RT , and B for BT . Thus
we will always have

t+ s = r + 1. (1)

We refer to R as the red graph and the edges of B as blue edges. We will also define a, b,
c, and d from m and r by m = a

(
r+1
2

)
+ b, 0 6 b <

(
r+1
2

)
, and b = [c, d].

The following simple bound on the weight of a blue edge will aid in determining effects
of local moves.

Lemma 15. Each blue edge has weight at most s− 2.

Proof. Let xy be a blue edge with x ∈ S. We will separately count the possible common
neighbors z in and out of S. There are at most s − 1 − dR(x) neighbors z of x that
are in S. For z /∈ S, xz is also a blue edge, and dB(x) 6 dR(x) to maintain dG(x) 6
r. The maximum number of such z’s then is dR(x) − 1. In total, xy is in at most
s− 1− dR(x) + dR(x)− 1 = s− 2 triangles.

We will often find it useful to delete all the blue edges from a cluster and add all the
red edges. We call this operation folding :
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Definition 16. For G ∈ G(m, r) with a cluster T and e(B) > e(R), we define a new
graph GT ∈ G(m, r) by converting T ∪ ST into a complete subgraph (of size r + 1) and
deleting all the edges in BT . In other words, we define the folding of G at T by

GT = G+

(
ST

2

)
− E(BT ).

The graph GT contains a Kr+1, has maximum degree at most r, and has at most m
edges since e(B) > e(R). If we can show that e(B) > e(R) and k3(GT ) > k3(G), then by
induction on m, we have, writing GT = Kr+1 ∪G′,

k3(GT ) =

(
r + 1

3

)
+ k3(G

′) 6

(
r + 1

3

)
+ g3

(
e(GT )−

(
r + 1

2

)
, r
)

= g3(e(GT ), r).

Thus
k3(G) 6 k3(GT ) 6 g3(e(GT ), r) 6 g3(m, r),

noting, for the final inequality, that g3 is weakly increasing in m.

4 Excluded Red Graphs R

In this section we identify several graphs that cannot occur as R in an extremal graph G
because folding (when e(B) > e(R)) or another local move (when e(B) < e(R)) would
increase the number of triangles. Our first step toward identifying when folding increases
the number of triangles in G will be to give an upper bound on the number of blue
triangles, or triangles containing two blue edges. We will use a compression argument, in
which we determine which configuration of blue edges is least helpful to us.

Definition 17. For vertices x 6∼G y, the compression of G from x to y, denoted Gx→y, is
the graph obtained from G by deleting all edges between x and N(x) \N(y) and adding
all edges from y to N(x) \N(y).

We define an auxiliary function to use in the compression argument.

Definition 18. For a graph G, let d2(G) :=
∑

v∈G(d(v))2.

We will use compressions to maximize the following function and bound the number
of blue triangles.

Definition 19. For a graph H and a bipartite graph B with bipartition (V (H), Y ), we
define

ψH(B) =
∑

v∈V (H)

(
dB(v)

2

)
+
∑
v∈Y

|{i, j ∈ V (H) : i 6= j, iv, jv ∈ E(B), ij /∈ E(H)}|.

This function counts the number of blue triangles when applied to the situation where
H is the red graph RT and

(⋃
e∈E(BT ) e

)
\ST induces a complete subgraph. Thus it serves

as an upper bound on the number of blue triangles for a given red graph.
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Lemma 20. For a graph H, a bipartite graph B with bipartition (V (H), Y ), and vertices
x, y ∈ Y with N(x) 6⊆ N(y) and N(y) 6⊆ N(x),

ψH(B) 6 ψH(Bx→y) and d2(B) < d2(Bx→y).

Proof. For all v ∈ V (H), we have dB(v) = dBx→y(v) and therefore
∑

v∈V (H)

(
dBx→y (v)

2

)
=∑

v∈V (H)

(
dB(v)

2

)
. H is fixed, and x is the only vertex of Y that loses neighbors, so any

decrease in
∑

v∈Y |{i, j ∈ V (H) : i 6= j, iv, jv ∈ E(B), xy /∈ E(H)}| would be from the x
term: pairs i, j ∈ H that are neighbors of x and not adjacent in H. If i, j ∈ N(y), then
the edges ix and jx remain after the compression, so the pair i, j is still counted in the x
term of the summation. If one or both of i, j /∈ N(y), then the pair i, j is counted in the
y term of the summation after the compression but not before, compensating for the loss
in the x term.

Let ` := |N(x) \N(y)| > 0. Then

d2(Bx→y)− d2(B) = (d(x)− `)2 + (d(y) + `)2 − d(x)2 − d(y)2 = 2`(`+ d(y)− d(x)) > 0.

Bipartite threshold graphs can be defined in different ways, but the following is the
one we will use.

Definition 21 (See [14]). A graph G is a bipartite threshold graph if and only if G is
bipartite and the neighborhoods of vertices in one of the partite sets are linearly ordered
by inclusion.

Lemma 22. Suppose that B is a family of bipartite graphs on a fixed vertex set (X, Y )
such that for any B′ ∈ B and x, y ∈ Y with NB′(x) 6⊆ NB′(y) and NB′(y) 6⊆ NB′(x), we
also have B′x→y ∈ B. If B ∈ B and d2(B) = max{d2(B′) : B′ ∈ B}, then B is a bipartite
threshold graph.

Proof. In B, suppose there are x, y ∈ Y , NB(x) 6⊆ NB(y), and NB(y) 6⊆ NB(x). Then
d2(B) < d2(Bx→y) by Lemma 20, but d2(B) > d2(Bx→y) because Bx→y ∈ B and d2(B) =
max{d2(B′) : B′ ∈ B}. Therefore every pair x, y ∈ Y has N(x) ⊆ N(y) or N(x) ⊇ N(y).
By Definition 21, B is a bipartite threshold graph.

Lemma 23. Given a graph H, among bipartite graphs B with bipartition (V (H), Y ) and
a fixed number of edges, some bipartite threshold graph B maximizes ψH(B).

Proof. Consider the family B of bipartite graphs on (V (H), Y ) with the specified number
of edges that maximize ψH(B). It is closed under compressions by Lemma 20. By Lemma
22, some B ∈ B is a bipartite threshold graph.

Corollary 24. For a given red graph R, the number of blue triangles intersecting V (R) =
S is at most ∑

v∈R

(
dR(v)

2

)
+

1

2

∑
v∈R

dR(v)(s− 1− dR(v)).
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Proof. Let Y = V (B) \ S. There are two types of blue triangles.

1. One vertex in R and two blue edges at that vertex: There are at most
∑

v∈R
(
dB(v)

2

)
triangles of this type.

2. Two adjacent vertices in S (non-adjacent in R) and one blue edge at each of these
vertices to the same third vertex outside S: There are∑
i,j∈R
i 6∼Rj
i 6=j

|{v ∈ Y : iv, jv ∈ E(B)}| =
∑
v∈Y

|{i, j ∈ R : i 6= j, iv, jv ∈ E(B), ij /∈ E(R)}|

triangles of this type.

The total number of blue triangles intersecting V (R) is exactly ψR(B), which by
Lemma 23 is maximized by some bipartite threshold blue graph B. The definition of R
and ∆(G) 6 r imply dB(v) 6 dR(v) for all v ∈ R. Adding edges can only increase the
number of blue triangles, so we may assume that dB(v) = dR(v) for all v ∈ R. These blue
degrees in R completely determine the graph B because the neighborhoods of vertices
in Y are nested. Any vertex i ∈ R has dR(i) neighbors in Y , and a pair i, j ∈ R has
min(dR(i), dR(j)) common neighbors in Y .

ψR(B) =
∑
v∈R

(
dB(v)

2

)
+
∑
i,j∈R
i 6∼Rj
i 6=j

|{v ∈ Y : i 6= j, iv, jv ∈ E(B)}|

6
∑
v∈R

(
dR(v)

2

)
+
∑
i,j∈R
i 6∼Rj
i 6=j

min(dR(i), dR(j))

6
∑
v∈R

(
dR(v)

2

)
+

1

2

∑
i,j∈R
i 6∼Rj
i 6=j

(dR(i) + dR(j))

=
∑
v∈R

(
dR(v)

2

)
+

1

2

∑
v∈R

dR(v)(s− 1− dR(v)).

Having given an upper bound on the number of blue triangles, we turn our attention
to a lower bound on the number of red triangles gained from folding G at T .

Definition 25. For a graph R with s vertices, we define

Q(R) = (r + 1− s)e(R) + k3(R)−
∑
v∈R

(
dR(v)

2

)
.

Lemma 26. If G has a cluster T with e(B) > e(R), then k3(GT )− k3(G) > Q(R).
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Proof. We will bound k3(GT )−k3(G) by counting the triangles gained and lost by folding
at T . Three types of triangles are gained by folding.

1. One red edge and one vertex in T : There are te(R) triangles of this type.

2. One or two red edges, and all vertices in S: Each triangle of this type contains
exactly two unordered pairs of an incident edge and non-edge, and each such pair
occurs in a triangle of this type. By counting these pairs and dividing by two, we
find there are 1

2

∑
v∈R dR(v)(s− 1− dR(v)) triangles of this type.

3. Three red edges: There are k3(R) triangles of this type.

Thus the total number of triangles gained from folding is

te(R) +
1

2

∑
v∈R

dR(v)(s− 1− dR(v)) + k3(R).

The total number of triangles lost from folding is at most∑
v∈R

(
dR(v)

2

)
+

1

2

∑
v∈R

dR(v)(s− 1− dR(v))

by Corollary 24.
The net gain from folding, k3(GT )− k3(G), is at least

te(R) +
1

2

∑
v∈R

dR(v)(s− 1− dR(v)) + k3(R)−
∑
v∈R

(
dR(v)

2

)
− 1

2

∑
v∈R

dR(v)(s− 1− dR(v))

= te(R) + k3(R)−
∑
v∈R

(
dR(v)

2

)
= Q(R).

Lemma 27. If s 6 r+2
2

, then Q(R) > 0, with equality if and only if R = Es.

Proof. Note Q(Es) = 0. We will show that Es is the unique minimizer of Q(R). If R
has an edge xy, then deleting it would strictly decrease Q(R). We will consider the net
change in Q(R) term by term. The change in the (r + 1 − s)e(R) term is −(r + 1 − s)
since we are losing one edge. The change in the k3(R) term is −|NR(x) ∩ NR(y)|. The
change in the final term is dR(x) + dr(y)− 2. Therefore

Q(R− xy)−Q(R) = −(r + 1− s)− |NR(x) ∩NR(y)|+ dR(x) + dR(y)− 2

= −r − 3 + s− |NR(x) ∩NR(y)|+ |NR(x)|+ |NR(y)|
= −r − 3 + s+ |NR(x) ∪NR(y)|
6 −r − 3 + 2s

6 −r − 3 + r + 2 = −1 < 0.

Theorem 28. If G ∈ GC(m, r) has a cluster T with s 6 r+2
2

, then k3(G) < f3(m, r).
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Proof. As G is connected and m >
(
r+1
2

)
, there is at least one blue edge.

Case 28.1: 0 < e(B) < e(R)

We will delete all of the blue edges and add e(B) of the red edges, which will maintain
the number of edges and the bound on the maximum degree. The loss from deleting the
blue edges is at most (s− 2)e(B) by Lemma 15. The gain from the red edges is at least
te(B), as each red edge has t common neighbors in T . Therefore the net gain is at least

te(B)− (s− 2)e(B) = (t− s+ 2)e(B)

= (r + 1− 2s+ 2)e(B) = (r + 3− 2s)e(B)

> (r + 3− (r + 2))e(B)

= e(B) > 0,

so the graph was not extremal.

Case 28.2: e(B) > e(R)

By Lemmas 26 and 27, since δ(R) > 1, folding G at T strictly increases the number
of triangles, so G is not extremal.

Lemma 29. If G ∈ GC(m, r) has a cluster T with ∆(R) 6 1, then k3(G) < f3(m, r).

Proof. Any red graph has δ(R) > 1, so R = s
2
K2.

Case 29.1: 0 < e(B) < e(R)

There is a red edge that is not incident to any blue edges. Add that red edge, and
delete a blue edge. The blue edge is in at most s−2 triangles by Lemma 15. The red edge
has weight r−1. The net gain in number of triangles is at least r−1−(s−2) = r+1−s > 1,
so k3(G) < f3(m, r).

Case 29.2: e(R) 6 e(B)

By Lemma 26, k3(GT ) − k3(G) > Q( s
2
K2) = (r + 1 − s)( s

2
) + 0 − 0 = st/2 > 0, so

k3(G) < f3(m, r).

Lemma 30. If ∆(R) 6 2, then Q(R) > 0, with equality only when t = 1 and R is a
disjoint union of non-triangle cycles.

Proof. Any red graph has δ(R) > 1. Let k be the number of vertices with red degree
2, so s − k is the number of vertices with red degree 1. By the degree sum formula,
2e(R) = 2k + (s− k) = s+ k.

Q(R) = (r + 1− s)e(R) + k3(R)−
∑
v∈R

(
dR(v)

2

)
> t

s+ k

2
+ k3(R)− k

= st/2 + k(t/2− 1) + k3(R).
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For t > 2, each term of this last expression is non-negative, and st/2 > 0, so Q(R) > 0.
For t = 1,

st/2 + k(t/2− 1) + k3(R) = s/2− k/2 + k3(R) = (s− k)/2 + k3(R) > 0,

with equality only when all vertices of R have red degree 2 and there are no triangles, i.e.
R is a disjoint union of non-triangle cycles.

Lemma 31. If G ∈ GC(m, r) has a cluster T with ∆(R) 6 2 and t > 2, then k3(G) <
f3(m, r).

Proof. There is at least one blue edge because G is connected and m >
(
r+1
2

)
. By Lemma

30, Q(R) > 0, so if e(B) > e(R), then k3(G) < f3(m, r). Now suppose 0 < e(B) < e(R).
We will show that there is a red edge that is incident to at most one blue edge. The

average number of blue edges at a given red edge is

1

e(R)

∑
f∈E(R)

|{g ∈ E(B) : f ∩ g 6= ∅}| = 1

e(R)

∑
g∈E(B)

|{f ∈ E(R) : f ∩ g 6= ∅}|

6
1

e(R)

∑
g∈E(B)

2

=
2e(B)

e(R)
< 2.

Thus there is a red edge xy incident to at most one blue edge. The vertices x and y
may each have one other neighbor in R. The remaining r + 1 − 2 − 2 = r − 3 vertices
in the cluster are neighbors of both x and y in G, so xy has weight at least r − 3. The
blue edge has weight at most s − 2 by Lemma 15. Deleting the blue edge (or any blue
edge, if there is none at xy) and adding the red edge xy yields a net gain of at least
r− 3− (s− 2) = r− s− 1 = t− 2 > 0 triangles since t > 2, a weak increase that reduces
the number of red edges. By induction on the number of red edges, we are done. (The
base case e(R) = 1 is done by Lemma 29.)

Theorem 32. If G ∈ GC(m, r) for r > 3 has a cluster with e(R) ∈ {1, 2}, then k3(G) <
f3(m, r).

Proof. If e(R) = 1, then R = K2, and by Lemma 29 we’re done. If e(R) = 2, then
R = 2K2 or R = P3. For R = 2K2, we are again done by Lemma 29.

Consider R = P3. G is connected and m >
(
r+1
2

)
, so e(B) > 1. Any blue edges have

weight at most s − 2 = 1 by Lemma 15. Each red edge has weight r − 2. If e(B) = 1,
delete the blue edge and add a red edge for a net gain of at least r−2−1 = r−3 triangles,
a weak increase for r > 3. This reduces to the case R = K2.

Otherwise, e(B) > 2 = e(R), so we may fold. Q(P3) = (r+1−3)2+0−1 = 2r−5 > 1
for r > 3, so k3(G) < f3(m, r) by Lemma 26.

Theorem 33. If G ∈ GC(m, r) for r > 7 has a cluster with e(R) = 3, then k3(G) <
f3(m, r).
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Proof. Suppose G is extremal. By Theorem 28, we may assume s > r+3
2

> 5. There are
two graphs R with 3 edges, at least 5 vertices, and δ(R) > 1: R = 3K2 and R = P3 ∪K2.
Both have ∆(R) 6 2 and t > 2, so by Lemma 31, k3(G) < f3(m, r).

Theorem 34. If G ∈ GC(m, r) for r > 8 has a cluster with e(R) = 4, then k3(G) <
f3(m, r).

Proof. Suppose G is extremal. By Theorem 28, we may assume s > r+3
2

> 5.5 so s > 6.
There are five graphs R with 4 edges, δ(R) > 1, and s > 6 vertices. The ones on 6

vertices are K1,3 ∪ K2, 2P3, and P4 ∪ K2. On 7 vertices, R can only be 2K2 ∪ P3, and
on 8 vertices, R can only be 4K2. All of these except K1,3 ∪K2 have either ∆(R) 6 1 or
∆(R) 6 2 and t > 2, so Lemmas 29 and 31 show G is not extremal.

Suppose R = K1,3 ∪ K2. Then Q(R) = (r + 1 − 6)4 + 0 − 3 = 4r − 23 > 0. If
e(B) > e(R), then folding will increase the number of triangles, and G was not extremal.
Otherwise, 1 6 e(B) 6 3. The isolated K2 in R has weight r− 1 > 7. Any blue edge has
weight at most s− 2 = 4. If there is only one blue edge incident to the red K2 (or none),
then delete it (or any blue edge) and add the edge corresponding to the red K2, which
increases the number of triangles by at least 7− 4 = 3. Otherwise, there are 2 blue edges
incident to the red K2, so 0 or 1 blue edges incident to the red K1,3. Deleting a blue edge
(from the K1,3 if needed) and adding one of the red K1,3 edges increases the number of
triangles by at least 5− 4 = 1. Therefore G was not extremal.

5 Degree Multiset Optimization

The number of triangles in a graph can be bounded easily (but crudely) as follows:

k3(G) =
1

3

∑
v∈V (G)

k3(v) =
1

3

∑
v∈V (G)

e(N(v)) 6
1

3

∑
v∈V (G)

(
d(v)

2

)
. (2)

We have shown, in Section 4, that vertices of degree r lie in clusters with certain red
graphs forbidden. In this section we consider the possible degree multisets to give an
upper bound on the number of triangles in graphs G that do not have any of the excluded
red graphs R considered in Section 4. We consider the constraints imposed by the trivial
bound above.

For instance, when r > 3, Theorem 32 shows that in an extremal connected graph,
every cluster is missing at least three edges. Similarly, for r = 7 and 8, Theorems 33 and
34 show that in an extremal connected graph, every cluster is missing at least four or five
edges, respectively. We define upper bounds for k3(G) based on the degree multiset of G.

Definition 35. For given k,m, r and for d ∈ {0} ∪ [r], let

w(d) =

{(
d
2

)
if d 6= r(

r
2

)
− k if d = r.
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Set

Mk(m, r) =
1

3
max

{∑
d∈D

w(d) :
∑
d∈D

d = 2m
}

and

M∗
k (m, r) =

1

3
max

{∑
d∈D

w(d) :
∑
d∈D

d = 2m, r ∈ D
}
,

where in both cases D is a multiset of arbitrary size from {0} ∪ [r].

Lemma 36. For any G ∈ G(m, r) such that every cluster has e(R) > k we have k3(G) 6
Mk(m, r). If in addition the Main Theorem holds for maximum degree at most r−1 and for
numbers of edges up through m−1, and m >

(
r+1
2

)
+1, then we have k3(G) 6 bM∗

k (m, r)c.
Proof. Apply (2), and observe that (in each case) the degree multiset of G is one of the
candidates in the maximization by Corollary 13.

We will show in many cases the lower bounds we have on the number of edges in red
graphs ensure that the upper bound from Lemma 36 is less than the number of triangles
in aKr+1 ∪ C(b), proving the Main Theorem in those cases. We say that a multiset D is
optimal if it achieves the maximum Mk(m, r) and has no 0 entries.

Lemma 37. An optimal multiset D contains at most one entry from [r − 2].

Proof. If an optimal multiset D had two elements in [r − 2], x 6 y, then changing these
two elements to x− 1 and y + 1 maintains the sum of 2m while increasing the weighted
sum

∑
d∈D w(d), contradicting the optimality of D. If x− 1 = 0, then the 0 is discarded,

and x = 1 and y are replaced by y + 1. The weighted sum is increased because

w(x− 1) + w(y + 1)− (w(x) + w(y)) =

(
x− 1

2

)
+

(
y + 1

2

)
−
(
x

2

)
−
(
y

2

)
= y − (x− 1) = y − x+ 1 > 1.

Lemma 38. For any m and r 6 2k + 1, if an optimal multiset D contains an entry
d ∈ [r− 2] and at least r− 1− d copies of r, then there is an optimal multiset containing
no entries from [r − 2].

Proof. We will change the r− 1− d copies of r and the d ∈ [r− 2] to r− d copies of r− 1.
The resulting multiset contains no entries from [r − 2] by Lemma 37.

This maintains the sum of D since d+ (r− 1− d)r = d+ r2− r− dr = (r− d)(r− 1).
The increase in the weighted sum is given by

(r − d)

(
r − 1

2

)
−
((

d

2

)
+ (r − 1− d)

((
r

2

)
− k
))

= −1

2

(
(r − d)(r − 1)(2) + d2 − d− r2 + r − 2kr + 2dk + 2k

)
= −1

2

(
d2 − 2dr + (1 + 2k)d+ r2 − (2k + 1)r + 2k

)
= −1

2
(d− (r − 1)) (d− (r − 2k))

> 0,
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for r − 2k 6 d 6 r − 1. Since r 6 2k + 1, we have r − 2k 6 1 6 d 6 r − 2 < r − 1, and
we weakly increased the weighted sum.

Lemma 39. If D is an optimal multiset containing only r − 1’s and r’s with k > r/2,
then there is an optimal multiset containing at most r−2 copies of r, and the rest r−1’s.

Proof. Changing r − 1 copies of r to r copies of r − 1 maintains the sum of D.
The weighted sum increases by

r

(
r − 1

2

)
− (r − 1)

((
r

2

)
− k
)

= (r − 1)

(
1

2
r(r − 2)−

(
r

2

)
+ k

)
= (r − 1) (k − r/2) > 0.

Change any r − 1 copies of r to r copies of r − 1 repeatedly to get an optimal multiset
with at most r − 2 copies of r.

The next few results consider the case where k = dr/2e.
Lemma 40. If m >

(
r+1
2

)
+ 1 and k = dr/2e then there is an optimal multiset containing

no elements of [r − 2].

Proof. Suppose D is an optimal multiset containing an entry d ∈ [r − 2].

Case 40.1: D contains at least r − 1− d copies of r.

Lemma 38 shows there is an optimal multiset containing no entries from [r − 2].

Case 40.2: D contains at least d copies of r − 1.

We will change the d copies of r − 1 and the d ∈ [r − 2] to d copies of r. The
resulting multiset contains no entries from [r− 2] by Lemma 37. This maintains the sum:
d + d(r − 1) = dr. It also increases the weighted sum: d

((
r
2

)
− k
)
−
((

d
2

)
+ d
(
r−1
2

))
=

−d
2
(d−2r+(2k+1)), which is positive between d = 0 and d = 2r− (2k+1). Since k < r,

we have 2r − (2k + 1) > 0.

Case 40.3: D contains at most r − 2− d copies of r and at most d− 1 copies of r − 1.

By Lemma 37, d is the only entry from [r − 2]. Then
∑

d′∈D d
′ 6 d + (r − 2 −

d)r + (d − 1)(r − 1) = d + r2 − 2r − dr + dr − r − d + 1 = r2 − 3r + 1. We also have
2m > 2

((
r+1
2

)
+ 1
)

= (r+1)r+2 = r2+r+2. Thus r2+r+2 6 2m =
∑

d∈D d 6 r2−3r+1,
which implies 4r + 1 6 0, i.e. r 6 −1

4
, a contradiction.

Theorem 41. If m >
(
r+1
2

)
+ 1 and k = dr/2e then 3Mk(m, r) 6 (r − 2)m.

Proof. By Lemma 40 we may assume an optimal multiset D consists only of x copies of
r and y copies of r− 1. By Lemma 39, we may further assume 0 6 x 6 r− 2. The degree
sum formula implies 2m = xr + y(r − 1), so y = 2m−xr

r−1 .
The weighted sum of D gives the value of 3Mk(m, r), which is

y

(
r − 1

2

)
+ x

((
r

2

)
− k
)

=
2m− xr
r − 1

(r − 1)(r − 2)/2− x
(
k − r(r − 1)

2

)
= (r − 2)m− x

2
(2k − r)

6 (r − 2)m
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since x > 0 and 2k > r.

Lemma 42. If 1 6 r 6 7 and a > 1, then (r − 2)m < 3g3(m, r).

Proof.

3k3(aKr+1 ∪ C(b))− (r − 2)m

= 3

(
a

(
r + 1

3

)
+

(
c

3

)
+

(
d

2

))
− (r − 2)

(
a

(
r + 1

2

)
+

(
c

2

)
+ d

)
= a

(
r + 1

2

)
+ (c− r)

(
c

2

)
+ d

(
3

2
(d− 1)− (r − 2)

)
>

(
r + 1

2

)
+ (c− r)

(
c

2

)
+ d

(
3

2
(d− 1)− (r − 2)

)

Define hr(c) = (c − r)
(
c
2

)
and qr(d) = d(3

2
(d − 1) − (r − 2)). By taking deriva-

tives, we find the minimum values for these functions are attained at c = 1
3
(r + 1 +√

r2 − r + 1) and d = 2r−1
6

, with minimum values qr(d) > − 1
24

(2r − 1)2 and hr(c) >
− 1

54

[
(2r − 1)(r + 1)(r − 2) + 2(r2 − r + 1)3/2

]
, resulting in

3g3(m)−(r−2)m >

(
r + 1

2

)
− 1

54

[
(2r − 1)(r + 1)(r − 2) + 2(r2 − r + 1)3/2

]
− 1

24
(2r−1)2.

This function of r is positive for 1 6 r 6 7 with positive roots at r ≈ 0.14 and r ≈ 7.21.

Theorem 43. If 1 6 r 6 7 and m >
(
r+1
2

)
+ 1, then Mk(m, r) < f3(m, r) for k = dr/2e.

Proof. Theorem 41 and Lemma 42 together show 3Mk(m, r) 6 (r − 2)m < 3g3(m, r) 6
3f3(m, r).

Lemma 44. For r = 8, m >
(
r+1
2

)
+1, if the Main Theorem holds for r 6 7 and numbers

of edges up through m− 1, and every cluster has e(R) > 5, then k3(G) 6 g3(m, r).

Proof. We will restrict the multiset optimization problem for r = 8, k = 5 to multisets
that contain at least one copy of r = 8, since we know from Lemma 13 that G must have
an 8 in its degree multiset. Let D be an optimal multiset that attains the maximum
M∗

5 (m, 8). It contains at most one element of [6] by Lemma 37.
First, D contains at least one 8, so we may assume there is no 6: If there were both

a 6 and an 8, then we could replace them with two 7’s, increasing the weighted sum:(
6
2

)
+
(
8
2

)
− 5 = 38, and 2

(
7
2

)
= 42. Therefore D contains only 8’s, 7’s, and at most one

element d ∈ [5].
Second, if there are d copies of 7, then we change them and the d ∈ [5] to d copies of

8. This maintains the sum of D. It also weakly increases the weighted sum:

d

((
8

2

)
− 5

)
−
((

d

2

)
+ d

(
7

2

))
= −d

2
(d− 5) > 0.
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Suppose d ∈ [5] is in an optimal multiset D. Since m >
(
9
2

)
+1, either there are at least

7− d copies of 8 in D, or there are at least d copies of 7 in D, but we have just handled
the second case. In the first case, Lemma 38 gives the result. We conclude that there is
an optimal multiset (among multisets containing an 8) that consists only of copies of 8
and copies of 7. By Lemma 39, changing seven 8’s to eight 7’s will increase

∑
d′∈D w(d′),

so we have x ∈ [7] copies of 7. By the degree sum formula, we have y = 2m−8x
7

copies of 8.
The weighted sum of D gives the value of 3M∗

5 (m, 8), which is

2m− 8x

7

(
7

2

)
+ x

((
8

2

)
− 5

)
= 6m− x < 6m.

By the proof of Lemma 42, 3f3(m, 8)− 6m > 36a+ (c− 8)
(
c
2

)
+ d

(
3
2
(d− 1)− 6

)
.

The minimum value of (c− 8)
(
c
2

)
for integer values of c between 0 and 8, inclusive, is

−30, at c = 5, 6. For c 6= 5, 6, the minimum value is −24.
The minimum value of d

(
3
2
(d− 1)− 6

)
for integer values of d between 0 and 7, in-

clusive, is −9, at d = 2, 3. For d 6= 2, 3, the minimum value is −6 at d = 1, 4. For
d 6= 1, 2, 3, 4, the minimum value is less than −6.

For a > 2, 3f3(m, 8)−6m > 72−30−9 > 0. For a = 1 and c 6= 5, 6, 3f3(m, 8)−6m >
36− 24− 9 > 0. For a = 1, c = 5, 6, and d 6= 1, 2, 3, 4, 3f3(m, 8)− 6m > 36− 30− 6 = 0.

For a = 1, c = 5, 6, and d = 1, 2, 3, 4, we calculate 3M∗
5 (m, 8) = 6m − x exactly and

compare it to 3k3(aKr+1∪C(b)). We can determine x for each m because 2m = 8x+7y ≡ x
mod 7 and x ∈ [7].

m x 3M∗
5 (m, 8) = 6m− x 3g3(m, r)

47 3 279 282
48 5 283 285
49 7 287 291
50 2 298 300
52 6 306 312
53 1 317 315
54 3 321 321
55 5 325 330

In all cases, by Lemma 36, k3(G) 6 bM∗
5 (m, 8)c 6 k3(aKr+1 ∪ C(b)).

6 Proof of Main Theorem

We now prove our main theorem.

Main Theorem. If G is a graph with m edges and maximum degree at most r for any
fixed r 6 8, then

k3(G) 6 k3(aKr+1 ∪ C(b)),

where m = a
(
r+1
2

)
+ b and 0 6 b <

(
r+1
2

)
. That is, the graphs with the maximum number

of triangles consist of as many disjoint copies of Kr+1 as possible, with the remaining
edges formed into a colex graph.
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Proof. We will induct on m and r. For m 6
(
r+1
2

)
, the Kruskal-Katona Theorem implies

the theorem, so we may assume m >
(
r+1
2

)
+ 1. Let G be an extremal graph.

Note 45. If G contains a Kr+1, then it is a connected component of G, as ∆(G) 6 r.
Then

k3(G) = k3(Kr+1) + k3(G \Kr+1)

6 k3(Kr+1) + f3(m−
(
r + 1

2

)
, r)

= k3(Kr+1) + k3((a− 1)Kr+1 ∪ C(b)) by induction

= k3(aKr+1 ∪ C(b)).

Thus we may assume G does not contain a Kr+1, and since a > 1, G 6= aKr+1 ∪ C(b).
By Corollary 12 and induction on m, if G is not connected, then k3(G) 6 k3(aKr+1 ∪

C(b)), so we assume G is connected. In particular, G does not contain a Kr+1. By
Corollary 13 and induction on m and r, G contains a vertex of degree r. Therefore G
contains a cluster, and every cluster has at least one red edge and at least one blue edge.

For r = 1, every G ∈ G(m, 1) has k3(G) = 0 = k3(aK2 ∪ C(b)). For r = 2, we have
assumed G does not contain a Kr+1 = K3, so there are no triangles, and G is not extremal.

For 3 6 r 6 7, Theorems 32 and 33 imply that every cluster of G has e(R) > dr/2e.
By Lemma 36 and Theorem 43, k3(G) < f3(m, r).

For r = 8, Theorems 32, 33, and 34 show that every cluster has e(R) > 5. Lemma 44
implies k3(G) 6 k3(aKr+1 ∪ C(b)).

7 Open Problems

The question “Which graphs with a fixed number of edges m and maximum degree at
most r maximize the number of Kt’s?” remains open for maximum degrees r > 9 and
remains open for complete subgraph sizes t > 4. Similarly, the corresponding question
when fixing the number of vertices n instead of the number of edges remains open for
r > 7 except when a = 1. Both are extremely natural questions.

The (probably very hard) problem of determining which n-vertex, m-edge graphs with
maximum degree at most r have the maximum number of triangles is also open for a range
of values of n, even if we know the value of f3(m, r). If we write N(m, r) for the number
of vertices in our extremal graphs in G(m, r), then our theorem answers this question for
r 6 8 for n > N(m, r). There are no n-vertex graphs in G(m, r) with n < 2m/r, so this
question is open in the range 2m/r 6 n < N(m, r).
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