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Abstract

Seymour’s Splitter Theorem is a basic inductive tool for dealing with 3-connected
matroids. This paper proves a generalization of that theorem for the class of 2-
polymatroids. Such structures include matroids, and they model both sets of points
and lines in a projective space and sets of edges in a graph. A series compression in
such a structure is an analogue of contracting an edge of a graph that is in a series
pair. A 2-polymatroid N is an s-minor of a 2-polymatroid M if N can be obtained
from M by a sequence of contractions, series compressions, and dual-contractions,
where the last are modified deletions. The main result proves that if M and N
are 3-connected 2-polymatroids such that N is an s-minor of M , then M has a
3-connected s-minor M ′ that has an s-minor isomorphic to N and has |E(M)| − 1
elements unless M is a whirl or the cycle matroid of a wheel. In the exceptional
case, such an M ′ can be found with |E(M)| − 2 elements.

Mathematics Subject Classifications: 05B35

1 Introduction

Let M be a 3-connected matroid other than a wheel or a whirl. Tutte [21] proved that M
has an element whose deletion or contraction is 3-connected. Seymour [19] extended this
theorem by showing that, for a proper 3-connected minor N of M , the matroid M has an
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element whose deletion or contraction is 3-connected and has an N -minor. These theorems
have been powerful inductive tools for working with 3-connected matroids. In [16], with a
view to attacking representability problems for 2-polymatroids, we generalized the Wheels-
and-Whirls Theorem to 2-polymatroids. In this paper, we prove a generalization of the
Splitter Theorem for 2-polymatroids.

A basic example of a matroid is a set of points in a projective space. If, instead,
we take a finite set of points and lines in a projective space, we get an example of a
2-polymatroid. Whereas each element of a matroid has rank zero or one, an individual
element in a 2-polymatroid can also have rank two. Formally, for a positive integer k, a
k-polymatroid M is a pair (E, r) consisting of a finite set E, called the ground set, and a
function r, called the rank function, from the power set of E into the integers satisfying
the following conditions:

(i) r(∅) = 0;

(ii) if X ⊆ Y ⊆ E, then r(X) 6 r(Y );

(iii) if X and Y are subsets of E, then r(X) + r(Y ) > r(X ∪ Y ) + r(X ∩ Y ); and

(iv) r({e}) 6 k for all e ∈ E.

A matroid is just a 1-polymatroid. Equivalently, it is a 2-polymatroid in which every
element has rank at most one. Our focus in this paper will be on 2-polymatroids. From a
graph G, in addition to its cycle matroid, we can derive a second 2-polymatroid on E(G),
which we denote by M2(G). The latter is defined by letting the rank of a set A of edges
be the number of vertices incident with edges in A. Observe that non-loop edges of G
have rank two in M2(G).

Matroid connectivity generalizes naturally to 2-polymatroids. In particular, 3-connec-
tivity for matroids extends routinely to a notion of 3-connectivity for 2-polymatroids. A
simple 3-connected graph G has a 3-connected cycle matroid. On the other hand, M2(G)
is 3-connected whenever G is a 2-connected loopless graph.

Deletion and contraction for matroids extend easily to 2-polymatroids. This gives
a notion of minor for 2-polymatroids that extends that of minor for matroids, and, via
cycle matroids, that of minor for graphs. But what happens when we consider the 2-
polymatroid M2(G)? If e is an edge of G, then deletion in M2(G) corresponds to deletion
in G, but it is not the same with contraction. However, there is an operation on M2(G)
that corresponds to contraction in G. Specifically, if e is an element of the 2-polymatroid
M and r({e}) > 0, then the compression of e from M , denoted M ↓ e, is obtained
by placing a rank-1 element x freely on e, contracting x, and then deleting e from the
resulting 2-polymatroid. In particular, M2(G) ↓ e = M2(G/e) for a non-loop edge e of
the graph G.

Representability of matroids extends easily to representability of polymatroids over
fields. Indeed, much of the motivation for this paper is derived from our desire to de-
velop tools for attacking representability problems for 2-polymatroids. The class of 2-
polymatroids representable over a field F is closed under both deletion and contraction.
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When F is finite, this is not the case for compression in general although it is the case
for a restricted type of compression. In [16], we defined a certain type of 3-separator,
which we called a ‘prickly’ 3-separator. A series pair in a graph G is a 2-element prickly
3-separator of M2(G). Larger prickly 3-separators do not arise from graphs, but do arise
in more general settings. Compressing elements from prickly 3-separators preserves rep-
resentability. We gave examples in [16] to show that, if we wish to generalize Tutte’s
Wheels-and-Whirls Theorem to 2-polymatroids, it is necessary to allow compression of
elements from prickly 3-separators. The main result of [16] proves such a generalization
by showing that a 3-connected non-empty 2-polymatroid that not a whirl or the cycle
matroid of a wheel has an element e such that either M\e or M/e is 3-connected, or e
belongs to a prickly 3-separator, and M ↓ e is 3-connected.

Geelen, Gerards, and Whittle [4] have announced that Rota’s Conjecture [20] is true,
that is, for every finite field, there is a finite set of minor-minimal matroids that are not
representable over that field. In [16], we showed that, for every field F, the set of minor-
minimal 2-polymatroids that are not representable over F is infinite, so one generalization
of Rota’s Conjecture for 2-polymatroids fails. We believe, however, that an alternative
generalization of the conjecture does hold. Specifically, we conjectured in [16] that, when F
is finite, there are only finitely many 2-polymatroids that are minimal with the property of
being non-representable over F where we allow, as reduction operations, not only deletion
and contaction but also compression of elements from prickly 3-separators.

Our main result appears at the end of this section. We now give the rest of the back-
ground needed to understand that result. The matroid terminology used here will follow
Oxley [14]. Lovász and Plummer [10, Chapter 11] have given an interesting discussion
of 2-polymatroids and some of their properties. We call (E, r) a polymatroid if it is a
k-polymatroid for some positive integer k. In a 2-polymatroid (E, r), an element x will
be called a line, a point, or a loop when its rank is 2, 1, or 0, respectively. For readers
accustomed to using the terms ‘point’ and ‘line’ for flats in a matroid of rank one and
two, respectively, this may create some potential confusion. However, in this paper, we
shall never use the terms ‘point’ and ‘line’ in this alternative way. Indeed, we will not
even define a flat of a 2-polymatroid.

Let M be a polymatroid (E, r). For a subset X of E, the deletion M\X and the
contraction M/X of X from M are the pairs (E −X, r1) and (E −X, r2) where, for all
subsets Y of E −X, we have r1(Y ) = r(Y ) and r2(Y ) = r(Y ∪X)− r(X). We shall also
write M |(E−X) for M\X. A minor of the polymatroid M is any polymatroid that can be
obtained from M by a sequence of operations each of which is a deletion or a contraction.
It is straightforward to check that every minor of a k-polymatroid is also a k-polymatroid.
The closure cl(X) of a set X in M is, as for matroids, the set {x ∈ E : r(X ∪x) = r(X)}.
Two polymatroids (E1, r1) and (E2, r2) are isomorphic if there is a bijection φ from E1

onto E2 such that r1(X) = r2(φ(X)) for all subsets X of E1.
One natural way to obtain a polymatroid is from a collection of flats of a matroid

M . Indeed, every polymatroid arises in this way [6, 9, 12]. More precisely, we have the
following.

Theorem 1. Let t be a function defined on the power set of a finite set E. Then (E, t)
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is a polymatroid if and only if, for some matroid M , there is a function ψ from E into
the set of flats of M such that t(X) = rM(∪x∈Xψ(x)) for all subsets X of E.

The key idea in proving this theorem is that of freely adding a point to an element of
a polymatroid. Let (E, r) be a polymatroid, let x be an element of E, and let x′ be an
element that is not in E. We can extend the domain of r to include all subsets of E ∪ x′
by letting

r(X ∪ x′) =

{
r(X), if r(X ∪ x) = r(X);

r(X) + 1, if r(X ∪ x) > r(X).

Then it is not difficult to check that (E ∪ x′, r) is a polymatroid. We say that it has been
obtained from (E, r) by freely adding x′ to x. If we repeat this construction by freely
adding a new element y′ to some element y of E, we can show that the order in which
these two operations is performed is irrelevant.

Using this idea, we can associate a matroid with every 2-polymatroid M as follows.
Let L be the set of lines of M . For each ` in L, freely add two points s` and t` to `. Let
M+ be the 2-polymatroid obtained after performing all of these 2|L| operations. Let M ′

be M+\L. We call M ′ the natural matroid derived from M .
Given a graph G with edge set E, as noted earlier, one can define a 2-polymatroid

M2(G) on E by, for each subset X of E, letting r(X) be |V (X)| where V (X) is the set
of vertices of G that have at least one endpoint in X. A polymatroid (E ′, r′) is Boolean
if is isomorphic to the 2-polymatroid that is obtained in this way from some graph. One
attractive feature of M2(G) is that, except for the possible presence of isolated vertices, it
uniquely determines G. More precisely, if G1 and G2 are graphs neither of which has any
isolated vertices and if M2(G1) = M2(G2), then there is a labelling of the vertices of G2

such that G1 = G2. This contrasts with the situation for matroids where quite different
graphs can have the same cycle matroids.

Let M be a polymatroid (E, r). The connectivity function, λM or λ, of M is defined,
for all subsets X of E, by λM(X) = r(X)+r(E−X)−r(M). Observe that λM(E−X) =
λM(X). It is routine to check, using the submodularity of the rank function, that the
connectivity function is submodular, that is, for all subsets Y and Z of E,

λM(Y ) + λM(Z) > λM(Y ∪ Z) + λM(Y ∩ Z).

Let M be a polymatroid. For a positive integer n, a subset X of E(M) is n-separating
if λM(X) 6 n − 1 and is exactly n-separating if λM(X) = n − 1 We say that M is 2-
connected if it has no proper non-empty 1-separating subset. We will also say that M is
disconnected if it is not 2-connected. We call M 3-connected if M is 2-connected and M
has no 2-separation, that is, M has no partition (X, Y ) with max{|X|, r(X)} > 1 and
max{|Y |, r(Y )} > 1 but λ(X) 6 1. When M is a 3-connected 2-polymatroid (E, r), a
3-separation of M is a partition (X, Y ) of E such that λ(X) = 2 and both r(X) and r(Y )
exceed 2.

Duality plays a fundamental role in matroid theory and will also be important in our
work with 2-polymatroids. Whereas there is a standard notion of what constitutes the dual
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of a matroid, for 2-polymatroids, there is more than one choice. Let M be a k-polymatroid
(E, r). The k-dual of M is the pair (E, r∗k) defined by r∗k(Y ) = k|Y |+ r(E − Y )− r(M).
This notion of duality was used, for example, in Oxley and Whittle’s treatment [17] of
Tutte invariants for 2-polymatroids. An involution on the class Mk of k-polymatroids is
a function ζ from Mk into Mk such that ζ(ζ(M)) = M for all M in Mk. Whittle [22]
showed that the k-dual is the only involution onMk under which deletion and contraction
are interchanged in the familiar way. However, a disadvantage of this duality operation
is that, for a matroid M , we can view M as a k-polymatroid for all k > 1. Hence M
has a 1-dual, which is its usual matroid dual. But it also has a 2-dual, a 3-dual, and
so on. In [16], we used a duality operation on the class of all polymatroids that, when
applied to a k-polymatroid, produces another k-polymatroid and that, when applied to
a matroid produces its usual matroid dual. In this paper, we will use a variant on that
operation that agrees with it when applied to 3-connected 2-polymatroids with at least
two elements.

Both of these versions of duality are members of a family of potential duals for a
polymatroid (E, r) that were defined by McDiarmid [12] and were based on assigning a
weight w(e) to each element e of E where w(e) > r({e}) for all e in E. For a set X,
we shall write ||X|| for the sum

∑
e∈X w(e). In [16], we took w(e) to be max{r({e}), 1}.

Here, instead, we will take w(e) = r({e}) and define the dual of a polymatroid (E, r) to
be the pair (E, r∗) where, for all subsets Y of E,

r∗(Y ) = ||Y ||+ r(E − Y )− r(E) =
∑
e∈Y

r({e}) + r(E − Y )− r(E).

It is straightforward to check that, when (E, r) is a k-polymatroid, so too is (E, r∗).
When M = (E, r), we shall write M∗ for (E, r∗). When the polymatroid M is a matroid,
its dual as just defined coincides with its usual matroid dual provided M has no loops.
However, if e is a loop of M , then e is a loop of M∗. The definition of dual used in
[16] (where we took ||Y || =

∑
e∈Y max{1, r({e})}) was chosen to ensure that, when M

is a matroid, its polymatroid dual coincides with its matroid dual. Here, however, we
are giving up on that, albeit in a rather specialized case. Note, however, that the two
definitions of dual coincide unless M has a loop so, in particular, they coincide when M is
3-connected having at least two elements. Moreover, as noted in [16], these two versions
of duality share a number of important properties, the proofs of which are very similar.
For example, λM(X) = λM∗(X). Next we discuss the reason for the use of the above
definition of duality, which follows [7, 8].

Consider the following example, which will guide how we proceed. Begin with the
matroid that is the direct sum of PG(r−1, q) and PG(k−2, q) viewing this as a restriction
of PG(r + k − 2, q). Let N be the restriction of PG(r − 1, q) to the complement of a
hyperplane H of it, so N ∼= AG(r − 1, q). Take k distinct points, x1, x2, . . . , xk, of

PG(r − 1, q) that are in H. Then k 6 qr−1−1
q−1 . Let {y1, y2, . . . , yk} be a spanning circuit

in PG(k − 2, q). For each i in {1, 2, . . . , k}, let `i be the rank-2 flat of PG(r + k − 2, q)
that is spanned by {xi, yi}. Let M be the 2-polymatroid whose elements are the points of
N along with the set L consisting of the lines `1, `2, . . . , `k. It is straightforward to check
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that M and N are 3-connected. The only way to obtain an N -minor of M is to delete
all the elements of L since contracting any member of L has the effect of reducing the
rank of E(N). But, in each of the 2-polymatroids M\L′, where L′ is a proper non-empty
subset of L− `k, the set `k is 2-separating. Since our goal is a splitter theorem, where we
can remove some bounded number of elements from M maintaining both 3-connectivity
and an N -minor, we will need a strategy for dealing with this example. One significant
feature of this example is the very constrained nature of the 2-separations in each M\L′
with one side of each such 2-separation consisting of a single line. This is reminiscent of
what happens in Bixby’s Lemma [2] for 3-connected matroids where, for every element e
of such a matroid N , either N\e is 3-connected except for some possible series pairs, or
N/e is 3-connected except for some possible parallel pairs. Indeed, in the matroid derived
from M\L′, each 2-separating line of M\L′ yields a series pair in the derived matroid.

The strategy that we will adopt is intimately linked to our choice of definition for
the dual of a polymatroid. It is well known that, under the familiar definition of duality
for matroids, taking the dual of the dual returns us to the original matroid. We now
consider the relationship between a polymatroid M and the polymatroid (M∗)∗. If M is
a 3-connected 2-polymatroid with at least two elements, then (M∗)∗ = M . To see what
happens in general, we follow [8]. Let M be the polymatroid (E, r). An element e of M
is compact if r({e}) = λM({e}) or, equivalently, if r(E−{e}) = r(E). We call M compact
if every element is compact. Thus, for example, a matroid is compact if it has no coloops.
In the example in the last paragraph, although M is compact, M\{`1} is not since, for
each i > 2, we have r({`i}) = 2 whereas λM\{`1}({`i}) = 1.

The compactification M [ of the polymatroid M is the pair (E, r[) where

r[(X) = r(X) +
∑
x∈X

[λ({x})− r({x})]

for all subsets X of E. It is shown in [8] that M [ is a compact polymatroid and it is clear
that if M is a 2-polymatroid, then so is M [. The next result [8] encapsulates some key
properties of this compactification operation and justifies the approach we take here.

Lemma 2. Let (E, r) be a polymatroid M and suppose X ⊆ E. Then

(i) M∗ is compact;

(ii) (M∗)∗ = M [;

(iii) λM = λM∗ = λM[;

(iv) (M/X)∗ = (M∗\X)[; and

(v) if M is compact, then M/X is compact.

Returning to our guiding example above, although M\{`1} is neither compact nor
3-connected, its compactification is both. Observe that this compactification can be ob-
tained from the restriction of the matroid PG(r − 1, q) to E(N) ∪ {x2, x3, . . . , xk} by
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relabelling each xi by `i noting that these `i are now points rather than lines. Thus
compactification here has an analogous effect to cosimplification in matroids. By in-
corporating compactification as part of the deletion operation, which is justified by (iv)
of the last lemma, we see that, after deleting a single element, we have both maintained
3-connectivity and kept an N -minor. This is precisely what we want in a splitter theorem.

In 2-polymatroids, the behaviour of contraction differs significantly from that for ma-
troids. In particular, consider the 2-polymatroid M2(G) obtained from a graph G, where
G has vertex set V and edge set E. Let e be an edge of G. Deleting e from G has an
unsurprising effect; specifically, M2(G)\e = M2(G\e). But, to find M2(G)/e, we cannot
simply look at M2(G/e). In particular, what do we do with elements whose rank is re-
duced to zero in the contraction? To deal with this situation, it is standard to extend the
definition of a graph to allow the presence of free loops, that is, edges with no endpoints.
This terminology is due to Zaslavsky [23]. For a graph G with free loops, the associated
2-polymatroid M2(G) is defined, as before, to have rank function r(X) = |V (X)|. The
deletion of a free loop f from a graph just removes f from the graph. We define the
contraction of f to be the same as its deletion. For an edge e that is not a free loop, to
obtain a graph H so that M2(G)/e = M2(H), we let H have edge set E − e and vertex
set V − V ({e}). An edge x of H is incident with the vertices in V ({x})− V ({e}).

The difference between M2(G)/e and M2(G/e) motivated us to introduce an operation
for 2-polymatroids in [16] that mimics the effect of the usual operation of contraction of
an edge from the graph.

Let (E, r) be a 2-polymatroid M , and let x be an element of E. We have described
already what it means to add an element x′ freely to x. Our new operation M ↓ x is
obtained from M by freely adding x′ to x in M , then contracting x′ from the resulting
extension, and finally deleting x. Because each of the steps in this process results in a
2-polymatroid, we have a well-defined operation on 2-polymatroids. When x has rank at
most one in M , one easily checks that M ↓ x = M/x. When x is a line in M , we see
that M ↓ x and M/x are different as their ranks are r(M)− 1 and r(M)− 2, respectively.
Combining the different parts of the definition, we see that M ↓ x is the 2-polymatroid
with ground set E − {x} and rank function given, for all subsets X of E − {x}, by

rM↓x(X) =

{
r(X), if r({x}) = 0, or r(X ∪ x) > r(X); and

r(X)− 1, otherwise.
(1)

We shall say that M ↓ x has been obtained from M by compressing x, and M ↓ x will
be called the compression of x. We showed in [16] that M2(G) ↓ e = M2(G/e). Songbao
Mo [13] established a number of properties of a generalization of this operation that he
defines for connectivity functions and calls elision.

Instead of treating arbitrary minors, much of graph theory restricts attention to topo-
logical minors in which the only allowed contractions involve edges that meet vertices of
degree two. When e and f are the only edges in a 2-connected graph G meeting a vertex
v, and G has at least four vertices, {e, f} is a 3-separating set in M2(G). This 3-separating
set is an example of a special type of 3-separating set that we introduced in [16]. In a
2-polymatroid M , a 3-separating set Z is prickly if it obeys the following conditions:
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(i) Each element of Z is a line;

(ii) |Z| > 2 and λ(Z) = 2;

(iii) r((E − Z) ∪ Z ′) = r(E − Z) + |Z ′| for all proper subsets Z ′ of Z; and

(iv) if Z ′ is a non-empty subset of Z, then

r(Z ′) =


2 if |Z ′| = 1;

|Z ′|+ 2 if 1 < |Z ′| < |Z|; and

|Z|+ 1 if |Z ′| = |Z|.

A prickly 3-separating set of M will also be called a prickly 3-separator of M . Observe
that, when Z is a prickly 3-separating set, for all distinct z and z′ in Z, the 2-polymatroid
M\z has ({z′}, E − {z, z′}) as a 2-separation.

We are now able to formally state the main result of [16]. Recall that a 2-polymatroid is
pure if every individual element has rank 2. It is non-empty if its ground set is non-empty.

Theorem 3. Let M be a 3-connected non-empty 2-polymatroid. Then one of the following
holds.

(i) M has an element e such that M\e or M/e is 3-connected;

(ii) M has rank at least three and is a whirl or the cycle matroid of a wheel; or

(iii) M is a pure 2-polymatroid having a prickly 3-separating set. Indeed, every minimal
3-separating set Z with at least two elements is prickly, and M ↓ z is 3-connected
and pure for all z in Z.

In [16], we gave a number of examples to show the need for the third part of the above
theorem. It is worth noting here, since it contrasts with what we have already mentioned
and what will feature in the main result of this paper, the operation of deletion used in the
last theorem does not incorporate compactification. In the main result of this paper, we
will incorporate compactification as part of deletion but we will no longer need to allow
arbitrary prickly compressions, only those that arise from a 2-element prickly 3-separator.
These are precisely the 2-element subsets Z of E such that, for all non-empty subsets Z ′

of Z, we have r(Z ′) = |Z ′|+ 1 and r(E − Z ′) = r(E)− |Z ′|+ 1. Let Z be such a set in a
2-polymatroid M . For z in Z, we will call M ↓ z a series compression of M .

For a compact 2-polymatroid M1, we call M2 an s-minor of M1 if M2 can be obtained
from M1 by a sequence of contractions, deletions followed by compactifications, and series
compressions. The next result is the main theorem of the paper. It concerns s-minors
of 3-connected 2-polymatroids. Such a 2-polymatroid is compact provided it has at least
three elements.

Theorem 4. Let M be a 3-connected 2-polymatroid and N be a 3-connected proper s-
minor of M having at least four elements. Then one of the following holds.
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(i) M has an element e such that M/e is 3-connected having an s-minor isomorphic to
N ; or

(ii) M has an element e such that (M\e)[ is 3-connected having an s-minor isomorphic
to N ; or

(iii) M has a two-element prickly 3-separating set Z such that, for each z in Z, the series
compression M ↓ z is 3-connected having an s-minor isomorphic to N ; or

(iv) r(M) > 3 and M is a whirl or the cycle matroid of a wheel.

For compact 2-polymatroids M1 and M2, we call M2 a c-minor of M1 if M2 can be
obtained from M1 by a sequence of operations each consisting of a contraction or of a
deletion followed by a compactification. As we shall show in Section 6, the last theorem
can be proved by establishing the following result.

Theorem 5. Let M be a 3-connected 2-polymatroid and N be a 3-connected proper c-
minor of M having at least four elements. Then one of the following holds.

(i) M has an element e such that M/e is 3-connected having a c-minor isomorphic to
N ; or

(ii) M has an element e such that (M\e)[ is 3-connected having a c-minor isomorphic
to N ; or

(iii) M has a prickly 3-separator {y, z} such that each of M ↓ y and M ↓ z is 3-connected
having a c-minor isomorphic to N ; or

(iv) r(M) > 3 and M is a whirl or the cycle matroid of a wheel.

The paper is structured as follows. The next section includes some basic preliminaries.
In Sections 3 and 4, we develop a number of results relating to connectivity and local
connectivity, and to parallel connection and 2-sums. In Section 5, we describe the strategy
for proving Theorem 4. That section serves as a guide to the remaining sections of the
paper, with the purpose of each of these sections being to complete an identified step in the
proof. Section 6 plays an important role in this proof by showing that the main theorem
can be proved by adding the assumption that all series compressions are performed last in
the production of an s-minor of M isomorphic to N . That result is helpful but it cannot
obscure the fact that the proof of Theorem 4 is complex with some subtleties in the logic
that need to be carefully negotiated.

2 Preliminaries

Much of the terminology for matroids carries over to 2-polymatroids. For example, sup-
pose x and y are distinct points of a 2-polymatroid M , that is, r({x}) = 1 = r({y}). If
r({x, y}) = 1, then x and y are parallel points of M . On the other hand, if r(E−{x, y}) =
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r(E) − 1 < r(E − x) = r(E − y), then {x, y} is a series pair of points of M . Evidently,
if {x, y} is a parallel or series pair of points, then λM({x, y}) 6 1. If x and y are distinct
lines of M and r({x, y}) = 2, then x and y are parallel lines of M . If x is a point and y
is a line of M , then x lies on y if r({x, y}) = 2.

One tool that is used repeatedly in our earlier work is the submodularity of the con-
nectivity function. Once again, this will play a vital role here. Partitions (X1, X2) and
(Y1, Y2) of a set E are said to cross if all four of the sets X1 ∩ Y1, X1 ∩ Y2, X2 ∩ Y1, and
X2 ∩ Y2 are non-empty. We shall frequently encounter crossing partitions of the ground
set of a 2-polymatroid.

In this paper, we shall frequently switch between considering the deletion M\X of a set
X of elements of a 2-polymatroid M and the compactification (M\X)[ of this deletion,
which we shall sometimes call the compactified deletion of X. We shall often use the
following abbreviated notation for the latter:

(M\X)[ = M\\X.

We shall often encounter the situation when we have a 2-polymatroid M such that
M [ is 3-connected although M itself is not. This occurs when M has a line ` such
that ({`}, E − `) is a 2-separation. We call such a 2-separation of M trivial. Thus, in
general, a partition (X, Y ) of E is a non-trivial 2-separation of M if λM(X) 6 1 and
min{|X|, |Y |} > 2.

For a 2-polymatroid M , we recall that a minor of M is any 2-polymatroid that can be
obtained from M by a sequence of contractions and deletions where, here, deletions are
not automatically accompanied by compactifications. When M and N are compact, we
defined N to be a c-minor of M if it can be obtained from M by a sequence of contractions
and deletions followed by compactifications. In the proof of Theorem 5, it is convenient
to be able to separate the compactifications from the deletions. Thus we define a c-minor
of an arbitrary 2-polymatroid M to be any 2-polymatroid that can be obtained from
M by a sequence of contractions, deletions, and compactifications. As we shall show in
Corollary 9, this extension of the definition is consistent with our original definition. For
a 2-polymatroid N , a special N-minor of M is any c-minor of M that is either equal to
N or differs from N by having a single point relabelled.

Lemma 6. Let P and Q be 2-polymatroids such that Q can be obtained from P by a
sequence of deletions, contractions, and compactifications with the last move being a com-
pactification. Then Q can be obtained from P by the same sequence of deletions and
contractions with none of the compactifications being done except for the last move.

To prove this lemma, we shall require a preliminary result.

Lemma 7. Let P be the 2-polymatroid (E, r). For A ⊆ E,

(i) (P [\A)[ = (P\A)[; and

(ii) (P [/A)[ = (P/A)[.
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Proof. Let P1 be a 2-polymatroid with ground set E and rank function r1. Then, for
X ⊆ E − A, we have

r(P1\A)[(X) = rP1\A(X) +
∑
x∈X

[λP1\A({x})− rP1\A({x})]

= r1(X) +
∑
x∈X

[r1(E − A− x)− r1(E − A)]. (2)

Thus
r(P\A)[(X) = r(X) +

∑
x∈X

[r(E − A− x)− r(E − A)]. (3)

Next we observe that, for x in X,

rP [(E − A− x)− rP [(E − A) = r(E − A− x) +
∑

y∈E−A−x

[λ({y})− r({y})]

− r(E − A)−
∑

y∈E−A

[λ({y})− r({y})]

= r(E − A− x)− r(E − A)− λ({x}) + r({x}). (4)

Thus, by (2), (4), and (3),

r(P [\A)[(X) = rP [(X) +
∑
x∈X

[rP [(E − A− x)− rP [(E − A)]

= r(X) +
∑
x∈X

[λ({x})− r({x}) + r(E − A− x)− r(E − A)

− λ({x}) + r({x})]

= r(X) +
∑
x∈X

[r(E − A− x)− r(E − A)]

= r(P\A)[(X).

We conclude that (i) holds.
Again, for X ⊆ E − A, we have

r(P1/A)[(X) = rP1/A(X) +
∑
x∈X

[λP1/A({x})− rP1/A({x})]

= r1(X ∪ A)− r1(A) +
∑
x∈X

[rP1/A(E − A− x)− rP1/A(E − A)]

= r1(X ∪ A)− r1(A) +
∑
x∈X

[r1(E − x)− r1(E)]. (5)

Thus
r(P/A)[(X) = r(X ∪ A)− r(A) +

∑
x∈X

[r(E − x)− r(E)]. (6)

the electronic journal of combinatorics 26(2) (2019), #P2.37 11



Therefore, by (5), (4), and (6)

r(P [/A)[(X) = rP [(X ∪ A)− rP [(A) +
∑
x∈X

[rP [(E − x)− rP [(E)]

= r(X ∪ A)− r(A) +
∑
x∈X

[λ({x})− r({x}) + r(E − x)− r(E)

− λ({x}) + r({x})]

= r(X ∪ A)− r(A) +
∑
x∈X

[r(E − x)− r(E)]

= r(P/A)[(X).

Hence (ii) holds.

Proof of Lemma 6. We may assume that there are disjoint subsets A1, A2, . . . , An of E
such that, in forming Q from P , these sets are removed in order via deletion or contraction
with the possibility that, after each such move, a compactification is performed. To prove
the lemma, we argue by induction on n. It follows immediately from Lemma 7 that the
lemma holds if n = 1. Assume the result holds for n < m and let n = m > 2. Then there
is a 2-polymatroid R such that Q is (R\An)[ or (R/An)[, so, by Lemma 7, Q is (R[\An)[

or (R[/An)[, respectively. In forming R, a certain sequence of deletions, contractions, and
compactifications is performed. Let R0 be the 2-polymatroid that is obtained from P
by performing the same sequence of operations except for the compactifications. Then,
by the induction assumption, R[ = R[

0. Since (R[\An)[ = (R[
0\An)[ = (R0\An)[ and

(R[/An)[ = (R[
0/An)[ = (R0/An)[, the lemma follows by induction.

The following are straightforward consequences of Lemma 6. We prove only the second
of these.

Corollary 8. Let P and Q be 2-polymatroids such that Q is compact. Then Q is a
c-minor of P if and only if Q can be obtained from P by a sequence of deletions and
contractions followed by a single compactification.

Corollary 9. Let P and Q be compact 2-polymatroids. Then Q is a c-minor of P if and
only if Q can be obtained from P by a sequence of operations each of which consists of
either a contraction or a deletion followed by a compactification.

Proof. We need to show that if Q is a c-minor of P , then Q can be obtained as described.
Now Q[ = Q. Thus, by Lemma 6, Q can be obtained from P by a sequence of deletions
and contractions with one compactification being done as the final move. By Lemma 7,
we can perform a compactification after each deletion and still obtain Q at the end of the
process. Since P is compact and each contraction of a compact 2-polymatroid is compact,
we retain compactness throughout this sequence of moves, so the result holds.

We will need some elementary properties of deletion, contraction, and series compres-
sion.
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Lemma 10. Let A and B be disjoint subsets of the ground set E of a 2-polymatroid P .
Then

(i) P/A/B = P/(A ∪B) = P/B/A;

(ii) P\\A\\B = P\\(A ∪B) = P\\B\\A; and

(iii) P/A\\B = P\\B/A.

Proof. Because the proofs of all three parts are routine, we only include a proof of (iii).
Suppose X ⊆ E − (A ∪B). Then

rP/A\\B(X) = r((P/A)\B)[(X)

= rP/A(X) +
∑
x∈X

[λP/A\B({x})− rP/A\B({x})]

= rP/A(X) +
∑
x∈X

[rP/A(E − A−B − x)− rP/A(E − A−B)]

= r(X ∪ A)− r(A) +
∑
x∈X

[r(E −B − x)− r(E −B)]

= r(X ∪ A)− r(A) +
∑
x∈X

[λP\B({x})− rP\B({x})]

= rP\\B(X ∪ A)− rP\\B(A)

= rP\\B/A(X).

We conclude that (iii) holds.

Lemma 11. Let M be a polymatroid. Then

(M [)∗ = M∗ = (M∗)[.

Proof. By Lemma 2(i), M∗ is compact, so M∗ = (M∗)[. Also, by Lemma 2(ii), (M [)∗ =
((M∗)∗)∗ = (M∗)[.

Lemma 12. Let P and Q be 2-polymatroids, where Q is compact. Then P has a c-minor
isomorphic to Q if and only if P ∗ has a c-minor isomorphic to Q∗.

Proof. Suppose P has a c-minor isomorphic to Q. By Corollary 8, Q can be obtained
from P by a sequence of deletions and contractions with one compactification being done
as the final move. By Lemma 7, we can perform a compactification after each deletion
and after each contraction and still obtain Q at the end of the process. Indeed, since
(P [\A)[ = (P\A)[ and (P [/A)[ = (P/A)[, we see that P [ has a c-minor isomorphic to
Q. Thus we may assume that, in forming Q from P [, we remove, in order, disjoint sets
A1, A2, . . . , An where each such removal is followed by a compactification. To prove that
P ∗ has a c-minor isomorphic to Q∗, we shall argue by induction on n.
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Suppose n = 1. Then Q is (P [\A1)
[ or (P [/A1)

[. Then, by Lemmas 2 and 11,

((P [\A1)
[)∗ = (((P ∗)∗\A1)

[)∗ = ((P ∗/A1)
∗)∗ = (P ∗/A1)

[ = P ∗/A1

and
((P [/A1)

[)∗ = (P [/A1)
∗ = ((P [)∗\A1)

[ = (P ∗\A1)
[.

Since Q is compact, we deduce that the result holds for n = 1. Assume it holds for n < k
and let n = k > 2. Then there is a compact 2-polymatroid R that is a c-minor of P such
that Q is (R\An)[ or (R/An)[. By the induction assumption, R∗ is a c-minor of P ∗, and
Q∗ is a c-minor of R∗. Hence Q∗ is a c-minor of P ∗.

For the converse, we note that, by what we have just proved, if Q∗ is a c-minor of P ∗,
then (Q∗)∗ is a c-minor of (P ∗)∗, that is, Q[ is a c-minor of P [. But Q is compact so Q
is a c-minor of P [. Hence Q is a c-minor of P .

When we compactify a 2-polymatroid, loosely speaking what we are doing is dealing
simultaneously with a number of 2-separations. It will be helpful to be able to treat these
2-separations one at a time. In the introduction, we defined the compression M ↓ x for
an element x of a 2-polymatroid M . Ultimately, that operation removes x. Let M↓x be
the 2-polymatroid that is obtained from M by freely adding an element x′ on x and then
contracting x′. Thus M↓x has ground set E and rank function given, for all subsets X of
E, by

rM↓x(X) =

{
r(X), if r({x}) = 0, or r(X ∪ x) > r(X); and

r(X)− 1, otherwise.
(7)

We shall say that M↓x has been obtained by compactifying x. Evidently

M ↓ x = (M↓x)\x.

Lemma 13. Let M be a 2-connected 2-polymatroid that is not compact. Let Z be the set
of lines z of M such that λ({z}) = 1. Then

M [ = ((. . . ((M↓z1)↓z2) . . .)↓zn)

where Z = {z1, z2, . . . , zn}.

Proof. We argue by induction on n. Suppose n = 1. Let X ⊆ E(M). Then

rM[(X) =

{
r(X), if z1 6∈ X; and

r(X)− 1, otherwise.

On the other hand,

rM↓z1(X) =

{
r(X), if r(X ∪ z1) > r(X); and

r(X)− 1, otherwise.

The result is easily checked in this case.
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Now assume that n > 2 and that the lemma holds if |Z| 6 n − 1. Let M1 = M↓z1.
Then M1 is easily shown to be 2-connected having {z2, z3, . . . , zn} as its set of lines z for
which λM1({z}) = 1. Thus, by the induction assumption,

M [
1 = ((. . . ((M1↓z2)↓z3) . . .)↓zn).

Since M1 = M↓z1, it suffices to show that M [
1 = M [.

Suppose X ⊆ E. Then

r[(X) = r(X) +
∑
x∈X

(λ({x})− r({x})).

Now

rM1(X) =

{
r(X), if r(X ∪ z1) > r(X); and

r(X)− 1, otherwise.

Thus

rM1(X) =

{
r(X), if z1 6∈ X; and

r(X)− 1, otherwise.

Hence

rM[
1
(X) = rM1(X) +

∑
x∈X

(λM1({x})− rM1({x}))

= rM1(X) +
∑

x∈X∩(Z−z1)

(λM({x})− rM({x}))

= rM(X) +
∑

x∈X∩Z

(λM({x})− rM({x}))

= r[(X).

We conclude, by induction, that the lemma holds.

The remainder of this section presents a number of basic properties of 2-element prickly
3-separators and of the compression operation.

Lemma 14. Let P be a 2-polymatroid having j and k as lines and with r({j, k}) = 3.
Suppose X ⊆ E(P )− k and j ∈ X. Then rP↓k(X) = r(X ∪ k)− 1.

Proof. By definition,

rP↓k(X) =

{
r(X), if r(X ∪ k) > r(X);

r(X)− 1, otherwise.

As j ∈ X and r({j, k}) = 3, by submodularity, r(X ∪ k) is r(X) or r(X) + 1. Thus
rP↓k(X) = r(X ∪ k)− 1.
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Lemma 15. Let P be a 2-polymatroid having j and k as lines and with r({j, k}) = 3.
Suppose ` is a line of P that is not in {j, k} and is not parallel to k. Then {`} is 2-
separating in P if and only if it is 2-separating in P ↓ k.

Proof. Clearly {`} is 2-separating in P if and only if r(E − `) 6 r(E)− 1. Since ` is not
parallel to k, we see that rP↓k(`) = r(`) = 2. Now {`} is 2-separating in P ↓ k if and only
if rP↓k(E−{k, `}) 6 rP↓k(E− k)− 1. By Lemma 14, the last inequality holds if and only
if r(E − `)− 1 6 r(E)− 1− 1. We conclude that the lemma holds.

Lemma 16. Let {j, k} be a prickly 3-separator in a 2-polymatroid P . Then P ↓ j can be
obtained from P ↓ k by relabelling j as k.

Proof. Suppose X ⊆ E − {j, k}. Then, since both r(X ∪ j) and r(X ∪ k) exceed r(X),

rP↓j(X) = rP (X) = rP↓k(X).

As r({j, k}) = 3, submodularity implies that either r(X ∪ j ∪ k) = r(X ∪ j) + 1, or
r(X∪j∪k) = r(X∪j). Thus rP↓k(X∪j) = r(X∪j∪k)−1. By symmetry, rP↓j(X∪k) =
r(X ∪ j ∪ k)− 1, and the lemma follows.

Lemma 17. Let P be a compact 2-polymatroid and {j, k} be a prickly 3-separator of P .
Then P ↓ k is compact.

Proof. We prove (ii). It suffices to show that rP↓k(E − k − y) = rP↓k(E − k) for all y in
E − k. Since P is compact, r(E − k) = r(E), so rP↓k(E − k) = r(E)− 1. Now

rP↓k(E − k − y) =

{
r(E − k − y), if r(E − y)− 1 > r(E − y − k); and

r(E − k − y)− 1, otherwise.

It follows that rP↓k(E−k−y) = r(E)−1 = rP↓k(E−k) unless r(E−k−y) = r(E−y)−2.
Consider the exceptional case. Evidently y 6= j as r(E − k − j) = r(E − j) − 1. Thus
j ∈ E − k − y. Since u({j}, {k}) = 1, it follows that r(E − y) 6 r(E − k − y) + 1. This
contradiction completes the proof of (ii).

Lemma 18. In a 2-polymatroid P , let k and y be distinct elements. Then

(i) P ↓ k\y = P\y ↓ k; and

(ii) P ↓ k/y = P/y ↓ k.

Proof. Part (i) is essentially immediate. We now prove (ii). If r({k}) 6 1, then P ↓ k =
P/k, so

P ↓ k/y = P/k/y = P/y/k = P/y ↓ k.

Thus we may assume that r({k}) = 2.
Suppose y is a line such that r({y, k}) = 2. Then

P/y ↓ k = P/y/k = P/k/y = P ↓ k/y
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where the last equality follows by considering how P ↓ k is constructed. Thus we may
assume that y is not a line that is parallel to k. Hence

r({y, k}) > r({y}).

Let X be a subset of E − k − y. Then

rP↓k/y(X) = rP↓k(X ∪ y)− rP↓k({y}) = rP↓k(X ∪ y)− r({y})

where the second equality follows because r({y, k}) > r({y}). We deduce that

rP↓k/y(X) =

{
r(X ∪ y)− r({y}), if r(X ∪ y ∪ k) > r(X ∪ y);

r(X ∪ y)− r({y})− 1, otherwise.

On the other hand, since rP/y(X ∪ k) = r(X ∪ k ∪ y)− r({y}) and rP/y(X) = r(X ∪ y)−
r({y}), we see that

rP/y↓k(X) =

{
r(X ∪ y)− r({y}), if r(X ∪ y ∪ k) > r(X ∪ y);

r(X ∪ y)− r({y})− 1, otherwise.

Thus
rP↓k/y(X) = rP/y↓k(X)

so the lemma holds.

Lemma 19. Let {j, k} be a prickly 3-separator in a 2-polymatroid P . If P ↓ k is 3-
connected, then so is P unless |E| = 4 and r(P ) = 3 where each of j and k has a single
point on it.

Proof. Let (X, Y ) be an exact m-separation of P for some m in {1, 2} where k ∈ X. Then
r(X) + r(Y )− r(P ) = m− 1. Now r(P ↓ k) = r(P )− 1.

Consider rP↓k(X − k) + rP↓k(Y ). Suppose first that j ∈ X − k. Then, by Lemma 14,
rP↓k(X − k) = r(X)− 1 and rP↓k(Y ) = r(Y ). Hence

rP↓k(X − k) + rP↓k(Y )− r(P ↓ k) = m− 1.

As P ↓ k is 2-connected, we cannot have m = 1 since both X − k and Y are non-empty.
Thus m = 2 so r(X) + r(Y )− r(P ) = 1. Now max{|X|, r(X)} > 2 and max{|Y |, r(Y )} >
2. Thus max{|Y |, rP↓k(Y )} > 2. If X = {j, k}, then, as {j, k} is a 3-separator of P , we
have r(X) + r(Y )− r(P ) = 2, a contradiction. We deduce that |X−k| > 2, so (X−k, Y )
is a 2-separation of P ↓ k, a contradiction.

We may now assume that j ∈ Y . Note that X − k is non-empty otherwise m − 1 =
r({k}) + r(E − k)− r(P ) = 2, a contradiction. We have

rP↓k(X − k) + rP↓k(Y )− r(P ↓ k) 6 (r(X)− 1) + r(Y )− (r(P )− 1) = m− 1.
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As P ↓ k is 2-connected, m = 2 and equality holds throughout. We deduce that

rP↓k(X − k) = r(X)− 1, (8)

and
rP↓k(Y ) = r(Y ). (9)

Moreover, max{rP↓k(X − k), |X − k|} 6 1. As X − k is non-empty,

max{rP↓k(X − k), |X − k|} = 1.

Let X − k = {x}. Then rP↓k({x}) 6 1. Now

rP↓k({x}) =

{
r({x}) if r({x, k}) > r({x});
r({x})− 1 if r({x, k}) = r({x}).

Suppose r({x, k}) = r({x}). Then x and k are parallel lines. Thus r(E) = r(E − j) =
r(E−{j, k}) = r(E)−1, a contradiction. We deduce that r({x, k}) > r({x}). Hence 1 >
rP↓k({x}) = r({x}). But, by (8), rP↓k({x}) = r({x, k})−1, so r({x, k}) = r({x})+1 > 2.
Thus r({x}) = 1 and r({x, k}) = 2, so r(Y ) = r(P )− 1. As r(Y ∪ x) = r(E − k) = r(P ),
we deduce that r({j, x}) = 3.

Now Y − j 6= ∅ otherwise E = {j, k, x} and r({j, k}) + r({x})− r(E) = 1, so {j, k} is
not a 3-separator, a contradiction. Since r({j, x, k}) = 3 = r({j, x}), we have

rP↓k({j, x}) = r({j, x})− 1 = 2.

By (9), rP↓k(Y ) = r(Y ). Thus r(Y ∪ k) > r(Y ), so r((Y − j) ∪ k) > r(Y − j) and
rP↓k(Y − j) = r(Y − j). Also r(Y − j) < r(Y ) so r(Y − j) 6 r(P )− 2. Thus

rP↓k({j, x}) + rP↓k(Y − j)− r(P ↓ k) = 2 + r(Y − j)− r(P ) + 1

6 2 + (r(P )− 2)− r(P ) + 1

= 1.

As P ↓ k is 3-connected and Y−j is non-empty, equality must hold here and max{rP↓k(Y−
j), |Y − j|} = 1.

Let Y − j = {y}. Then rP↓k({y}) = r({y}) = 1 and r({y}) = r(P )− 2, so r(P ) = 3.
Moreover, r({j, y}) = r(Y ) = r(P ) + 1− r(X) = 2. As P ↓ k is 3-connected, y and x are
not parallel points in P ↓ k, so y does not lie on k. We conclude that P has rank 3 and
consists of two lines, j and k, and two points, y and x, where y is on j but not k, and x
is on k but not j. Thus the lemma holds.

3 Some results for connectivity and local connectivity

This section notes a number of properties of the connectivity and local-connectivity func-
tions that will be used in the proof of the main theorem. First we show that compression
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is, in most situations, a self-dual operation. We proved this result in [16, Proposition 3.1]
for the variant of duality used there. By making the obvious replacements in that proof,
it is straightforward to check that the result holds with the modified definition of duality
used here. We omit the details.

Proposition 20. Let e be a line of a 2-polymatroid M and suppose that M contains no
line parallel to e. Then

M∗ ↓ e = (M ↓ e)∗.

The next proposition implies that Theorems 4 and 5 are self-dual results. Its proof
will use the following result.

Lemma 21. The set {j, k} is a prickly 3-separator of a 2-polymatroid M if and only if
it is a prickly 3-separator in M∗.

Proof. Suppose {j, k} is a prickly 3-separator of M . By Lemma 2,

λM∗({j, k}) = λM({j, k}) = 2.

Moreover, it is straightforward to check that rM∗({j}) = 2 = rM∗({k}), that rM∗({j, k}) =
3, and that uM∗({j}, E − {j, k}) = 1 = uM∗({k}, E − {j, k}). Hence {j, k} is a prickly
3-separator of M∗. Conversely, suppose that {j, k} is a prickly 3-separator of M∗. Then,
by what we have just shown, {j, k} is a prickly 3-separator of (M∗)∗, that is, of M [. Now
2 = λM[({j, k}) = λM({j, k}). Moreover, since rM[({j}) = 2, it follows that λ({j}) = 2,
so r({j}) = 2 and r(E− j) = r(E). Similarly, λ({k}) = 2 = r({k}) and r(E− k) = r(E).
It follows, since rM[({j, k}) = 3, that r({j, k}) = 3. By using the fact that uM[({j}, E −
{j, k}) = 1 = uM[({k}, E − {j, k}), it is not difficult to check that u({j}, E − {j, k}) =
1 = u({k}, E − {j, k}). We conclude that {j, k} is a prickly 3-separator of M , so the
lemma holds.

Proposition 22. Let P and Q be compact 2-polymatroids. Then

(i) Q is an c-minor of P if and only if Q∗ is an c-minor of P ∗; and

(ii) Q is an s-minor of P if and only if Q∗ is an s-minor of P ∗.

Proof. By Lemma 2, both P ∗ and Q∗ are compact. Moreover, (P ∗)∗ = P and (Q∗)∗ = Q.
By Lemma 2 again, for an element ` of P , we have that (P\\`)∗ = P ∗/` and (P/`)∗ = P ∗\\`.
Part (i) now follows by a straightforward induction argument. To prove (ii), assume Q
is an s-minor of P . It suffices to show that Q∗ is an s-minor of P ∗. If {j, k} is a prickly
3-separator of P , then, by Lemma 21, it is a prickly 3-separator of P ∗. By Lemma 17,
P ↓ k is compact and, by Proposition 20, (P ↓ k)∗ = P ∗ ↓ k. This and the argument
for (i) give that the dual of each allowable move on P produces a 2-polymatroid that is
obtained from P ∗ by an allowable move. Another straightforward induction argument
gives (ii).
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Let M be a polymatroid (E, r). If X and Y are subsets of E, the local connectivity
u(X, Y ) between X and Y is defined by u(X, Y ) = r(X) + r(Y )− r(X ∪ Y ). Sometimes
we will write uM for u, and u∗ for uM∗ . It is straightforward to prove the following.
Again this holds for both the version of duality used here and the variant used in [16].

Lemma 23. Let M be a polymatroid (E, r). For disjoint subsets X and Y of E,

uM∗(X, Y ) = uM/(E−(X∪Y ))(X, Y ).

The next lemma will be used repeatedly, often without explicit reference. Two sets X
and Y in a polymatroid M are skew if u(X, Y ) = 0.

Lemma 24. Let M be a 2-polymatroid and z be an element of M such that (A,B) is a
2-separation of M/z. Suppose z is skew to A. Then (A,B ∪ z) is a 2-separation of M .
Moreover, if M is 3-connected, then A is not a single line in M/z.

Proof. Clearly r(A ∪ z) − r({z}) = r(A), so (A,B ∪ z) is a 2-separation of M . If M is
3-connected and A consists of a single line a of M/z, then a is a line of M , so a and z are
skew, and we obtain the contradiction that M has a 2-separation.

Numerous properties of the connectivity function of a matroid are proved simply by
applying properties of the rank function; they do not rely on the requirement that r({e}) 6
1 for all elements e. Evidently, such properties also hold for the connectivity function of
a polymatroid. The next few lemmas note some of these properties.

The first two are proved in [14, Lemmas 8.2.3 and 8.2.4].

Lemma 25. Let (E, r) be a polymatroid and let X1, X2, Y1, and Y2 be subsets of E with
Y1 ⊆ X1 and Y2 ⊆ X2. Then

u(Y1, Y2) 6 u(X1, X2).

Lemma 26. Let (E, r) be a polymatroid M and let X,C, and D be disjoint subsets of E.
Then

λM\D/C(X) 6 λM(X).

Moreover, equality holds if and only if

r(X ∪ C) = r(X) + r(C)

and
r(E −X) + r(E −D) = r(E) + r(E − (X ∪D)).

The following [14, Corollary 8.7.6] is a straightforward consequence of the last lemma.

Corollary 27. Let X and D be disjoint subsets of the ground set E of a polymatroid M .
Suppose that r(M\D) = r(M). Then

(i) λM\D(X) = λM(X) if and only if D ⊆ clM(E − (X ∪D)); and
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(ii) λM\D(X) = λM(X ∪D) if and only if D ⊆ clM(X).

It is well known that, when M is a matroid, for all subsets X of E(M),

λM(X) = rM(X) + rM∗(X)− |X|.

It is easy to check that the following variant on this holds for polymatroids. Recall that
||X|| =

∑
x∈X r({x}).

Lemma 28. In a polymatroid M , for all subsets X of E(M),

λM(X) = rM(X) + rM∗(X)− ||X||.

In particular, if every element of X has rank one, then

λM(X) = rM(X) + rM∗(X)− |X|.

The next lemma contains another useful equation whose proof is straightforward.

Lemma 29. Let (X, Y ) be a partition of the ground set of a polymatroid M . Suppose
z ∈ Y . Then

u(X, {z}) + uM/z(X, Y − z) = u(X, {z}) + λM/z(X) = λM(X).

The next two lemmas are natural generalizations of matroid results that appear in
[15].

Lemma 30. Let (E, r) be a polymatroid and let X and Y be disjoint subsets of E. Then

λ(X ∪ Y ) = λ(X) + λ(Y )− u(X, Y )− u∗(X, Y ).

Lemma 31. Let A,B,C, and D be subsets of the ground set of a polymatroid. Then

(i) u(A∪B,C ∪D) +u(A,B) +u(C,D) = u(A∪C,B ∪D) +u(A,C) +u(B,D); and

(ii) u(A ∪B,C) + u(A,B) = u(A ∪ C,B) + u(A,C).

Lemma 32. Let M be a polymatroid and (A,B,Z) be a partition of its ground set into
possibly empty subsets. Then

λM/Z(A) = λM\Z(A)− uM(A,Z)− uM(B,Z) + λM(Z).

Proof. We have B = A ∪ Z and A = B ∪ Z. Then

λM/Z(A) = rM/Z(A) + rM/Z(B)− r(M/Z)

= r(A ∪ Z)− r(Z) + r(B ∪ Z)− r(Z)− r(M) + r(Z)

= r(B) + r(A)− r(M)− r(Z)

= r(A) + r(B)− r(M\Z) + r(M\Z)− r(M)− r(Z)

= λM\Z(A) + r(M\Z)− r(M)− r(Z).
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The required result holds if and only if

uM(A,Z) + uM(B,Z)− λM(Z) = r(M) + r(Z)− r(M\Z).

Now

u(A,Z) + u(B,Z)− λM(Z) = r(A) + r(Z)− r(A ∪ Z) + r(B) + r(Z)− r(B ∪ Z)

− r(Z)− r(M\Z) + r(M)

= r(A) + r(Z)− r(B) + r(B) + r(Z)− r(A)− r(Z)

− r(M\Z) + r(M)

= r(M) + r(Z)− r(M\Z),

as required.

Corollary 33. Let M be a polymatroid and (A,B,Z) be a partition of its ground set into
possibly empty subsets. Suppose r(M\Z) = r(M). Then

λM/Z(A) = λM\Z(A)− uM(A,Z)− uM(B,Z) + r(Z).

Proof. As λM(Z) = r(Z) + r(M\Z) − r(M) and r(M\Z) = r(M), the result is an
immediate consequence of the last lemma.

Lemma 34. Let M be a polymatroid and (A,B,C) be a partition of its ground set into
possibly empty subsets. Suppose λ(A) = 1 = λ(C) and λ(B) = 2. Then u(A,B) = 1.

Proof. We have
2 = r(B) + r(A ∪ C)− r(M)

and

r(M) = r(A ∪B) + r(C)− 1

= r(A) + r(B)− u(A,B) + r(C)− 1.

Thus
2 = r(B) + r(A ∪ C)− r(A)− r(B)− r(C) + 1 + u(A,B)

so u(A,B) = 1 +u(A,C) > 1. By Lemma 25, u(A,B) 6 u(A,B ∪C) = 1, so u(A,B) =
1.

Lemma 35. Let M be a polymatroid and (A,B,C) be a partition of its ground set into
possibly empty subsets. Then u∗(A,B) = λM/C(A).

Proof. By making repeated use of Lemma 2, we have

u∗(A,B) = uM∗(A,B) = λM∗\C(A) = λ(M∗\C)[(A) = λ(M/C)∗(A) = λM/C(A).

The following is a consequence of a result of Oxley and Whittle [18, Lemma 3.1].
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Lemma 36. Let M be a 2-connected 2-polymatroid with |E(M)| > 2. If e is a point of
M , then M\e or M/e is 2-connected.

Lemma 37. Let M be a 3-connected 2-polymatroid having a and ` as distinct elements.
Then (E(M)− {a, `}, {`}) is not a 2-separation of M/a.

Proof. Assume the contrary. Then ` is a line in M/a, so u(a, `) = 0. We have

rM/a(E(M)− {a, `}) + rM/a(`) = r(M/a) + 1.

As u(a, `) = 0, it follows that (E(M)−`, {`}) is a 2-separation of M , a contradiction.

The next result is another straightforward extension of a matroid result.

Lemma 38. Let M be a 2-connected 2-polymatroid having e and f as points. Then

(i) λM/f ({e}) = 0 if and only if e and f are parallel points; and

(ii) λM\f ({e}) = 0 if and only if e and f form a series pair.

Proof. We prove (i) omitting the similar proof of (ii). If e and f are parallel points of M ,
then λM/f ({e}) = 0. Now assume that λM/f ({e}) = 0. Let M ′ be the natural matroid
derived from M . Then M ′/f has {e} as a component. Hence {e, f} is a series or parallel
pair in M ′. But if {e, f} is a series pair, then M ′/f is 2-connected, a contradiction. We
conclude that {e, f} is a parallel pair of points in M , so (i) holds.

There is an attractive link between the connectivity of a 2-polymatroid M and the
connectivity of the natural matroid associated with M .

Lemma 39. Let M be a 2-polymatroid with at least two elements and let M ′ be the natural
matroid derived from M . Then

(i) M is 2-connected if and only if M ′ is 2-connected; and

(ii) M is 3-connected if and only if M ′ is 3-connected.

Proof. The result is immediate if M is a matroid or has a loop, so we may assume that
M is loopless and has at least one line. Let L be the set of lines of M and let M+ be
the matroid that is obtained from M by freely adding two points on each line in L. Then
M ′ = M+\L.

Suppose that M has a k-separation (X, Y ) for some k in {1, 2}. Replacing each line in
each of X and Y by two points freely placed on the line gives sets X ′ and Y ′ that partition
E(M ′) such that r(X ′) = r(X) and r(Y ′) = r(Y ). Hence (X ′, Y ′) is a k-separation of M ′.

Now suppose that M ′ has a k-separation for some k in {1, 2}. Choose such a k-
separation (X ′, Y ′) to minimize the number m of lines of M that have exactly one of
the corresponding points of M ′ in X ′. If m = 0, then there is a k-separation of M
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that corresponds naturally to (X ′, Y ′). Thus we may assume that M has a line ` whose
corresponding points, s` and t`, are in X ′ and Y ′, respectively. Now

r(X ′) + r(Y ′)− r(M ′) = k − 1. (10)

Suppose |E(M ′)| = 3. Then M consists of a point and a line. For each n in {2, 3},
both M and M ′ are n-connected if and only if the point lies on the line. Thus the
result holds if |E(M ′)| = 3. Now assume that |E(M ′)| = 4. Then M consists of either
two lines, or a line and two points. Again the result is easily checked. Thus we may
assume that |E(M ′)| > 5. We may also assume that |X ′| > |Y ′|. Then |X ′| > 3. Now
r(X ′− s`) + r(Y ′∪ s`)− r(M ′) > k, otherwise the choice of (X ′, Y ′) is contradicted. Thus
r(X ′ − s`) = r(X ′) and r(Y ′ ∪ s`) = r(Y ′) + 1. Hence, in M+, as s` and t` are freely
placed on `, we see that r((X ′ − s`) ∪ `) = r(X ′ − s`), so

r(X ′ − s`) = r((X ′ − s`) ∪ t`) = r(X ′ ∪ t`).

Hence (X ′ ∪ t`, Y ′ − t`) violates the choice of (X ′, Y ′) unless either k = 1 and Y ′ =
{t`}, or k = 2 and Y ′ consists of two points. In the first case, r(X ′) = r(M ′), so
r(X ′) + r(Y ′) − r(M ′) = 1, a contradiction to (10). In the second case, since one of the
points in Y ′ is t`, the points are not parallel so r(Y ′) = 2 and r(X ′) = r(M ′) − 1. Thus
r(X ′ ∪ t`) = r(M ′)− 1 and r(Y ′ − t`) = 1, a contradiction to (10).

The next result is a generalization of a lemma of Bixby [2] (see also [14, Lemma 8.7.3])
that is widely used when dealing with 3-connected matroids.

Lemma 40. Let M be a 3-connected 2-polymatroid and z be a point of M . Then either

(i) M/z is 2-connected having one side of every 2-separation being a pair of points of
M that are parallel in M/z; or

(ii) M\z is 2-connected having one side of every 2-separation being either a single line
of M , or a pair of points of M that form a series pair in M\z.

Proof. If z lies on a line in M , then M\z is 3-connected. Thus we may assume that z does
not lie on a line in M . Take the matroid M ′ that is naturally derived from M . Then, by
Bixby’s Lemma, either M ′/z is 2-connected having one side of every 2-separation being a
pair of parallel points of M ′, or M ′\z is 2-connected having one side of every 2-separation
being a series pair of points of M ′. In the first case, if {a, b} is a parallel pair of points
of M ′/z, then {a, b, z} is a circuit of M ′. Because the points added to M to form M ′ are
freely placed on lines, we cannot have a circuit containing just one of them. Since z is
not on a line of M , we deduce that a and b are points of M . We conclude that, in the
first case, (i) holds.

Now suppose that M ′\z is not 3-connected and has {u, v} as a series pair. Then either
u and v are both matroid points of M , or M has a line on which the points u and v are
freely placed in the formation of M ′. We deduce that (ii) holds.
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We recall from [16] that, when {a, b, c} is a set of three points in a 2-polymatroid Q,
we call {a, b, c} a triangle if every subset of {a, b, c} of size at least two has rank two.
If, instead, r(E − {a, b, c}) = r(Q) − 1 but r(X) = r(Q) for all proper supersets X of
E − {a, b, c}, then we call {a, b, c} a triad of Q. When Q is 3-connected, {a, b, c} is a
triad of Q if and only if {a, b, c} is a triangle of Q∗. It is straightforward to check that a
triangle and a triad of Q cannot have exactly one common element. Just as for matroids,
we call a sequence x1, x2, . . . , xk of distinct points of a 2-polymatroid Q a fan of length k
if k > 3 and the sets {x1, x2, x3}, {x2, x3, x4}, . . . , {xk−2, xk−1, xk} are alternately triangles
and triads beginning with either a triangle or a triad.

The next two results were proved in [16, Lemmas 4.1 and 4.2]. The second can also be
proved by applying Tutte’s Triangle Lemma for matroids (see, for example, [14, Lemma
8.7.7]) to the matroid M ′ that is naturally derived from M and using Lemma 39.

Lemma 41. Let M be a 3-connected 2-polymatroid having a point p such that neither
M\p nor M/p is 3-connected. Then M has points s and t such that {p, s, t} is a triangle
or a triad of M .

Lemma 42. Let M be a 3-connected 2-polymatroid having at least four elements.

(i) Let {e, f, g} be a triangle of M such that neither M\e nor M\f is 3-connected.
Then M has a triad containing e and exactly one of f and g.

(ii) Let {e, f, g} be a triad of M such that neither M/e nor M/f is 3-connected. Then
M has a triangle containing e and exactly one of f and g.

The following lemma will be helpful in proving our main result when fans arise in the
argument.

Lemma 43. Let M and N be 3-connected 2-polymatroids where |E(N)| > 4 and M is
not a whirl or the cycle matroid of a wheel. Suppose M has a fan x1, x2, x3, x4 where
{x1, x2, x3} is a triangle and M/x2 has a c-minor isomorphic to N . Then M has a point
z such that either M\z or M/z is 3-connected having a c-minor isomorphic to N , or both
M\z and M/z have c-minors isomorphic to N .

Proof. Assume that the lemma fails. Extend x1, x2, x3, x4 to a maximal fan x1, x2, . . . , xn.
Since M/x2 has a c-minor isomorphic to N and has x1 and x3 as a parallel pair of points,
it follows that each of M/x2\x1 and M/x2\x3 has a c-minor isomorphic to N . Thus
each of M\x1 and M\x3 has a c-minor isomorphic to N . Hence M/x4 has a c-minor
isomorphic to N . A straightforward induction argument establishes that M/xi has a c-
minor isomorphic to N for all even i, while M\xi has a c-minor isomorphic to N for all
odd i. Then M/xi is not 3-connected when i is even, while M\xi is not 3-connected when
i is odd.

Next we show that

43.1. M has no triangle that contains more than one element xi with i even; and M has
no triad that contains more than one element xi with i odd.
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Suppose M has a triangle that contains xi and xj where i and j are distinct even
integers. Since M/xi has xj in a parallel pair of points, M/xi\xj, and hence M\xj, has
a c-minor isomorphic to N . As M/xj also has a c-minor isomorphic to N , we have a
contradiction. Thus the first part of 43.1 holds. A similar argument proves the second
part.

Suppose n is odd. Then, since neitherM\xn norM\xn−2 is 3-connected, by Lemma 42,
M has a triad T ∗ containing xn and exactly one of xn−1 and xn−2. By 43.1, T ∗ contains
xn−1. Then, by the maximality of the fan, the third element of T ∗ lies in {x1, x2, . . . , xn−2}.
But, as each of the points in the last set is in a triangle that is contained in that set, we
obtain the contradiction that M has a triangle having a single element in common with
the triad T ∗.

We may now assume that n is even. As neither M/xn nor M/xn−2 is 3-connected,
by Lemma 42, M has a triangle T that contains xn and exactly one of xn−1 and xn−2.
By 43.1, xn−1 ∈ T . The maximality of the fan again implies that the third element of
T is in {x1, x2, x3, . . . , xn−2}. As every element of the last set, except x1, is in a triad
that is contained in the set, to avoid having T meet such a triad in a single element, we
must have that T = {xn, xn−1, x1}. If n = 4, then M |{x1, x2, x3, x4} ∼= U2,4 so {x2, x3, x4}
is a triangle, a contradiction to 43.1. We deduce that n > 4. Now neither M\x1 nor
M\xn−1 is 3-connected. Thus, by Lemma 42, M has a triad T ∗2 containing x1 and exactly
one of xn and xn−1. By 43.1, xn ∈ T ∗2 . The triangles {x1, x2, x3} and {x3, x4, x5} imply
that x2 ∈ T ∗2 . Let X = {x1, x2, . . . , xn}. Then, using the triangles we know, including
{xn, xn−1, x1}, we deduce that r(X) 6 n

2
. Similarly, the triads in M , which are triangles in

M∗, imply that r∗(X) 6 n
2
. Thus, by Lemma 28, λ(X) = 0. Hence X = E(M). As every

element of M is a point, M is a matroid. Since every point of M is in both a triangle and
a triad, by Tutte’s Wheels-and-Whirls-Theorem [21], we obtain the contradiction that M
is a whirl or the cycle matroid of a wheel.

4 Parallel connection and 2-sum

In this section, we follow Matúš [11] and Hall [5] in defining the parallel connection
and 2-sum of polymatroids. For a positive integer k, let M1 and M2 be k-polymatroids
(E1, r1) and (E2, r2). Suppose first that E1 ∩ E2 = ∅. The direct sum M1 ⊕M2 of M1

and M2 is the k-polymatroid (E1 ∪ E2, r) where, for all subsets A of E1 ∪ E2, we have
r(A) = r(A ∩ E1) + r(A ∩ E2). The following result is easily checked.

Lemma 44. For k-polymatroids M1 and M2 on disjoint sets,

(M1 ⊕M2)
∗ = M∗

1 ⊕M∗
2 .

Clearly a 2-polymatroid is 2-connected if and only if it cannot be written as the
direct sum of two non-empty 2-polymatroids. Now suppose that E1 ∩ E2 = {p} and
r1({p}) = r2({p}). Let P (M1,M2) be (E1 ∪ E2, r) where r is defined for all subsets A of
E1 ∪ E2 by

r(A) = min{r1(A ∩ E1) + r2(A ∩ E2), r1((A ∩ E1) ∪ p) + r2((A ∩ E2) ∪ p)− r1({p})}.
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As Hall notes, it is routine to check that P (M1,M2) is a k-polymatroid. We call it the
parallel connection of M1 and M2 with respect to the basepoint p. When M1 and M2 are
both matroids, this definition coincides with the usual definition of the parallel connection
of matroids. Hall extends the definition of parallel connection to deal with the case when
r1({p}) 6= r2({p}) but we shall not do that here.

Now suppose that M1 and M2 are 2-polymatroids having at least two elements, that
E(M1) ∩ E(M2) = {p}, that neither λM1({p}) nor λM2({p}) is 0, and that r1({p}) =
r2({p}) = 1. We define the 2-sum, M1 ⊕2 M2, of M1 and M2 to be P (M1,M2)\p. We
remark that this extends Hall’s definition since, to ensure that M1⊕2M2 has more elements
than each of M1 and M2, he requires that they each have at least three elements. He
imposes the same requirement in his Proposition 3.6. The next result is that result with
this restriction omitted. Hall’s proof [5] remains valid.

Proposition 45. Let M be a 2-polymatroid (E, r) having a partition (X1, X2) such that
r(X1) + r(X2) = r(E) + 1. Then there are 2-polymatroids M1 and M2 with ground sets
X1 ∪ p and X2 ∪ p, where p is a new element not in E, such that M = P (M1,M2)\p. In
particular, for all A ⊆ X1 ∪ p,

r1(A) =

{
r(A), if p 6∈ A;

r((A− p) ∪X2)− r(X2) + 1, if p ∈ A.

Lemma 46. Let (X, Y ) be a partition of the ground set of a 2-polymatroid M such that
λ(X) = 1. Then, for some element p not in E(M), there are 2-polymatroids MX and MY

on X ∪ p and Y ∪ p, respectively, such that M = MX ⊕2 MY . Moreover, for y ∈ Y ,

(i) λMY \y({p}) = u(X, Y − y);

(ii) λMY /y({p}) + u(X, {y}) = λ(X) = 1;

(iii) if u(X, Y − y) = 1, then M\y = MX ⊕2 (MY \y);

(iv) if u(X, {y}) = 0, then M/y = MX ⊕2 (MY /y); and

(v) if r({y}) 6 1, then

M ↓ y =

{
(MX/p)⊕ (MY \y/p), if u(X, {y}) = 1;

MX ⊕2 (MY ↓ y), if u(X, {y}) = 0.

(vi) if y is a line, then

M ↓ y =

{
(MX\p)⊕ (MY \y\p), if r(Y ) = r(Y − y) + 2;

MX ⊕2 (MY ↓ y) if r(Y ) 6 r(Y − y) + 1.

In particular, M ↓ y = MX ⊕2 (MY ↓ y) when uM↓y(X, Y − y) = 1.
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Proof. The existence of MX and MY such that M = P (MX ,MY )\p is an immediate
consequence of Proposition 45. To see that P (MX ,MY )\p = MX ⊕2 MY , one needs only
to check that rMX

({p}) = 1 = rMY
({p}) and λMX

({p}) = 1 = λMY
({p}).

The proof of (i) follows by a straightforward application of the rank formula in Propo-
sition 45. We omit the details. To see that (ii) holds, note that

λMY /y({p}) = rMY
({p, y})− r({y}) + rMY

(Y )− rMY
(Y ∪ p)

= r(y ∪X)− r(X) + 1− r({y}) + r(Y )− r(X ∪ Y ) + r(X)− 1

= r(y ∪X)− r({y}) + r(Y )− r(X ∪ Y )

= r(X)− u(X, {y}) + r(Y )− r(X ∪ Y )

= λM(X)− u(X, {y}).

By Hall [5, Proposition 3.1], M\y = P (MX ,MY \y)\p. If u(X, Y − y) = 1, then, by
(i), λMY \y({p}) = 1. Hence, by Hall [5, Proposition 3.1], M\y = MX ⊕2 (MY \y); that is,
(iii) holds.

To prove (iv), assume that u(X, {y}) = 0. We could again follow Hall [5, Proposition
3.1] to get that M/y = P (MX ,MY /y)\p. But since he omits a full proof of this fact, we
include it for completeness.

By Proposition 45, M/y = P (M1,M2)\p for some M1 and M2. For A ⊆ X ∪ p,

rM1(A) =

{
rM/y(A), if p 6∈ A;

rM/y((A− p) ∪ (Y − y))− rM/y(Y − y) + 1, if p ∈ A;

=

{
r(A ∪ y)− r({y}), if p 6∈ A;

r((A− p) ∪ Y )− r(Y ) + 1, if p ∈ A;

= rMX
(A).

Thus M1 = MX .
Now, for A ⊆ (Y − y) ∪ p,

rM2(A) =

{
rM/y(A), if p 6∈ A;

rM/y((A− p) ∪X)− rM/y(X) + 1, if p ∈ A;

=

{
r(A ∪ y)− r({y}), if p 6∈ A;

r((A− p) ∪X ∪ y)− r({y})− r(X ∪ y) + r({y}) + 1, if p ∈ A;

=

{
r(A ∪ y)− r({y}), if p 6∈ A;

r((A− p) ∪X ∪ y)− r({y})− r(X) + 1, if p ∈ A.

But

rMY /y(A) = rMY
(A ∪ y)− rMY

({y})

=

{
r(A ∪ y)− r({y}), if p 6∈ A;

r((A− p) ∪X ∪ y)− r({y})− r(X) + 1, if p ∈ A;

= rM2(A).
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Thus M2 = MY /y, so M/y = P (MX ,MY /y)\p. As u(X, {y}) = 0, we see, by (ii), that
λMY /y({p}) = 1. Hence M/y = MX ⊕2 (MY /y); that is, (iv) holds.

For (v), since r({y}) 6 1, we have M ↓ y = M/y. If u(X, {y}) = 1, then y is parallel
to p in MY , so, by [5, Proposition 3.1], M ↓ y = (MX/p) ⊕ (MY /p). If u(X, {y}) = 0,
then, as MY ↓ y = MY /y, it follows by (iv) that

M ↓ y = M/y = MX ⊕2 (MY /y) = MX ⊕2 (MY ↓ y).

To prove (vi), suppose first that r(Y ) = r(Y − y) + 2. We have

rMY
({y, p}) = r(y ∪X)− r(X) + 1 = 3− u(X, {y}).

Assume u(X, {y}) = 0. Then MY is the 2-sum, with basepoint q, say, of two 2-
polymatroids, one of which has ground set {q, y, p} and consists of two points and the
line y freely placed in the plane. Clearly, M ↓ y = (MX\p) ⊕ (MY \y\p). Now assume
that u(X, {y}) = 1. Then MY is the direct sum of two 2-polymatroids, one of which
has rank 2 and consists of the line y with the point p on it. Once again, we see that
M ↓ y = (MX\p)⊕ (MY \y\p).

We may now assume that r(Y ) 6 r(Y −y)+1. Hence rM↓y(Y −y) = r(Y )−1. Clearly
r(X ∪ y) > r(X). Thus

uM↓y (X, Y − y) = 1. (11)

By Proposition 45, M ↓ y = P (M1,M2)\p for some 2-polymatroids M1 and M2 with
ground sets X ∪ p and (Y − y) ∪ p, respectively. We shall show that M1 = MX and
M2 = MY ↓ y.

First observe that, for A ⊆ X, we have

rM1(A) =

{
rM↓y(A), if p 6∈ A;

rM↓y((A− p) ∪ (Y − y))− rM↓y(Y − y) + 1, if p ∈ A.

Since r(X ∪ y) > r(X), we see that if p 6∈ A, then rM1(A) = rM↓y(A) = rM(A) = rMX
(A).

Now suppose p ∈ A. Assume r((A− p) ∪ (Y − y)) = r((A− p) ∪ Y ). Then

rM↓y((A− p) ∪ (Y − y)) = r((A− p) ∪ (Y − y))− 1 = r((A− p) ∪ Y )− 1.

Moreover, rM↓y(Y − y) = r(Y )− 1. Hence

rM1(A) = rM((A− p) ∪ Y )− rM(Y ) + 1 = rMX
(A).

To show that M1 = MX , it remains to consider when p ∈ A and r((A−p)∪ (Y −y)) <
r((A − p) ∪ Y ). Then, as r(Y − y) > r(Y ) − 1, we deduce that r((A − p) ∪ (Y − y)) =
r((A− p) ∪ Y )− 1, so r(Y − y) = r(Y )− 1. Thus we have

rM1(A) = rM↓y((A− p) ∪ (Y − y))− rM↓y(Y − y) + 1

= r((A− p) ∪ (Y − y))− r(Y − y) + 1

= r((A− p) ∪ Y )− 1− r(Y ) + 1 + 1

= rMX
(A).
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We conclude that M1 = MX .
To show that M2 = MY ↓ y, suppose that A ⊆ (Y − y) ∪ p. Now

rM2(A) =

{
rM↓y(A), if p 6∈ A;

rM↓y((A− p) ∪X)− rM↓y(X) + 1, if p ∈ A.

Suppose p 6∈ A. Then

rM2(A) =

{
r(A), if r(A ∪ y) > r(A);

r(A)− 1, otherwise;

= rMY ↓y(A).

Now assume that p ∈ A. Then rM↓y(X) = r(X). Thus

rM2(A) =

{
r((A− p) ∪X)− r(X) + 1, if r((A− p) ∪X ∪ y) > r((A− p) ∪X);

r((A− p) ∪X)− 1− r(X) + 1, otherwise.

Moreover,

rMY ↓y(A) =

{
rMY

(A), if rMY
(A ∪ y) > rMY

(A);

rMY
(A)− 1, otherwise.

Now rMY
(A) = r((A− p) ∪X)− r(X) + 1. Thus

rMY
(A ∪ y)− rMY

(A) = r((A− p) ∪ y ∪X)− r(X) + 1− r((A− p) ∪X)

+ r(X)− 1

= r((A− p) ∪ y ∪X)− r((A− p) ∪X).

We conclude that, when p ∈ A, we have rMY ↓y(A) = rM2(A). Thus MY ↓ y = M2.
Hence M ↓ y = P (MX ,MY ↓ y)\p. Using (11), it is straightforward to show that
λMY ↓y({p}) = 1. It follows that M ↓ y = MX ⊕2 (MY ↓ y).

The following was shown by Hall [5, Corollary 3.5].

Proposition 47. Let M1 and M2 be 2-polymatroids (E1, r1) and (E2, r2) where E1∩E2 =
{p} and r1({p}) = r2({p}) = 1 and each of M1 and M2 has at least two elements. Then
the following are equivalent.

(i) M1 and M2 are both 2-connected;

(ii) M1 ⊕2 M2 is 2-connected;

(iii) P (M1,M2) is 2-connected.

One situation that will often occur will be when we have a certain 3-connected 2-
polymatroid N arising as a c-minor of a 2-polymatroid M that has a 2-separation. Recall
that a special N -minor of M is a c-minor of M that either equals N or differs from N by
having a single point relabelled.
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Lemma 48. Let M be a 2-polymatroid that can be written as the 2-sum MX ⊕2 MY of
2-polymatroids MX and MY with ground sets X ∪ p and Y ∪ p, respectively. Let N be
a 3-connected 2-polymatroid with |E(N)| > 4 and E(N) ⊆ E(M). If MX has a special
N-minor, then M has a special N-minor.

Proof. Since MX\p = M\Y and MX/p = M/Y , we may assume that the special N -minor
of MX uses p. Hence every other element of the special N -minor of MX is in E(N). For y
in Y , we will denote by MX(y) the 2-polymatroid that is obtained from MX by relabelling
p by y. We argue by induction on |Y |. Take y in Y .

Suppose |Y | = 1. If y is a point, then the result is immediate since M = MX(y). If y
is a line, then compactifying this line gives MX(y) and again the result holds.

Now suppose that |Y | > 1. Suppose u({y}, X) = 1. Then M |(X ∪ y) = MX(y) if
y is a point. If y is a line, then compactifying y in M |(X ∪ y) gives MX(y). In each
case, the result holds. We may now assume that u({y}, X) = 0. Then, by Lemma 46(iv),
M/y = MX ⊕2 (MY /y), so the result follows by induction.

Lemma 49. Let M be a 2-polymatroid that can be written as the 2-sum MX ⊕2 MY

of 2-polymatroids MX and MY with ground sets X ∪ p and Y ∪ p, respectively. Let N
be a 3-connected 2-polymatroid with |E(N)| > 4 such that N is a c-minor of M . If
|E(N) ∩X| > |E(N)| − 1, then MX has a special N-minor that uses E(N) ∩X.

Proof. As N is a c-minor of M , it follows by Corollary 8 that N can be obtained from M
by a sequence of deletions and contractions followed by one compactification at the end.
Let N1 be the 2-polymatroid that is obtained prior to the last compactification. We know
that we can shuffle these deletions and contractions at will. In producing N1 from M , let
CY and DY be the sets of elements of Y that are contracted and deleted, respectively.

Suppose u(X,CY ) = 1. Now M = P (MX ,MY )\p. Consider P (MX ,MY )/CY \DY .
This has p as a loop, so P (MX ,MY )\p/CY \DY = P (MX ,MY )/p/CY \DY . Because
P (MX ,MY )/p = (MX/p) ⊕ (MY /p), we deduce that Y = DY ∪ CY , so N1 is a c-minor
of MX/p. As we can perform a compactification whenever we want, N is a c-minor of
(MX/p)

[ and hence of MX .
We may now assume that u(X,CY ) = 0. Suppose Y ∩E(N) = ∅. Then M\DY /CY =

M\Y = MX\p. Hence N1 is a c-minor of MX , so N is a c-minor of (MX)[. It remains
to consider the case when Y ∩ E(N) consists of a single element, y. In M/CY \DY , we
must have u(X, {y}) = 1, otherwise u(X, {y}) = 0 and {y} is 1-separating in N1 and
hence in N , a contradiction. We deduce that, in MY /CY \DY , the element y is either a
point parallel to the basepoint p or a line through p. In the latter case, (M/CY \DY )[

is (MX(y))[ where MX(y) is obtained from MX by relabelling p by y. In both cases,
(MX(y))[ has N as a c-minor so (MX)[ and hence MX has a special N -minor.

Lemma 50. Let p be a point in a 2-polymatroid P having ground set E. If u(p, E−p) = 1,
then P has as a minor a 2-element 2-connected 2-polymatroid using p.

Proof. We argue by induction on |E − p|. the result is certainly true if |E − p| = 1.
Assume it true for |E − p| < n and let |E − p| = n. If E − p contains an element z
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such that u(p, z) = 1, then the result is immediate. Thus E − p contains an element z
such that u(p, z) = 0. Then uP/z(p, E − {p, z}) = r(p) + r(E − p) − r(P ) = 1. Thus,
by the induction assumption, P/z and hence P has, as a minor, a 2-element 2-connected
2-polymatroid using p.

Lemma 51. Let (X, Y ) be an exact 2-separation of a 2-polymatroid M and let N be a
3-connected 2-polymatroid that is a c-minor of M . Suppose that |E(N) − X| 6 1 and
y ∈ Y .

(i) If uM\y(X, Y − y) = 1, then M\y has a special N-minor.

(ii) If uM/y(X, Y − y) = 1, then M/y has a special N-minor.

(iii) If uM↓y(X, Y − y) = 1, then M ↓ y has a special N-minor.

Proof. By Lemma 46, M = MX ⊕2 MY where MX and MY have ground sets X ∪ p and
Y ∪ p, respectively. By Lemma 49, MX has a special N -minor using E(N)∩X. Suppose
uM\y(X, Y − y) = 1. Then uMY

({p}, Y − y) = 1. Thus, by Lemma 50, MY \y has as a
minor a 2-polymatroid with ground set {p, z} for some z in Y − y where either p and z
are parallel points, or z is a line and p is a point on this line. It follows that (M\y)[ has
as a c-minor the 2-polymatroid that is obtained from (MX)[ by relabelling p by z. Hence
M\y has a special N -minor and (i) holds.

Now suppose that uM/y(X, Y − y) = 1. Then, by Lemma 29, u(X, {y}) = 0. Thus,
by Lemma 46(iv), M/y = MX ⊕2 (MY /y). Moreover, uMY /y({p}, Y − y) = 1. Then, by
replacing MY \y by MY /y in the argument in the previous paragraph, we deduce that (ii)
holds.

Finally, suppose that uM↓y(X, Y − y) = 1. Assume first that r({y}) 6 1. Then
M ↓ y = M/y, so uM/y(X, Y − y) = 1, and the result follows by (ii). Now let y be a line
of M . Then, by Lemma 46(vi), M ↓ y = MX ⊕2 (MY ↓ y). Again, by replacing MY \y by
MY ↓ y in the argument in the first paragraph, we get that (iii) holds.

Lemma 52. Let Q be a 2-polymatroid having k and ` as distinct elements and suppose
that ` is a 2-separating line. Then

Q↓ ` ↓ k = Q ↓ k↓ `.

Proof. The result is easily checked if λ(`) = 0, so assume that λ(`) = 1. Then, by
Lemma 46, Q = P (Q1, Q2)\p for some 2-polymatroids Q1 and Q2 with ground sets
(E(Q) − `) ∪ p and {`, p} where Q2 consists of the line ` with the point freely placed
on it. Moreover, either

(i) k is a point that is parallel to p in Q1; or

(ii) Q ↓ k = P (Q1 ↓ k,Q2)\p.
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Consider the first case. Then Q ↓ k = Q/k and Q ↓ k↓ ` can be obtained from Q1/p
by adjoining ` as a loop. On the other hand, Q↓ ` can be obtained from Q1 by relabelling
p as `. Thus Q↓ ` ↓ k, which equals Q↓ `/k, can be obtained from Q1/p by adjoining ` as
a loop. Hence the result holds in case (i).

Now suppose (ii) holds. Then Q ↓ k↓ ` can be obtained from Q1 ↓ k by relabelling
p as `. On the other hand, Q↓ ` can be obtained from Q1 by relabelling p as `. Hence
Q↓ ` ↓ k can be obtained from Q1 ↓ k by relabelling p as `. Thus the lemma holds.

We end this section with three lemmas concerning 2-element prickly 3-separators.

Lemma 53. Let P be a compact 2-polymatroid (E, r) having {j, k} as a prickly 3-
separator. Suppose y ∈ E − {j, k}. If {j, k} is not a prickly 3-separator of P/y, then

(i) r({j, k, y}) = 3 and P/y has {j, k} as a 1-separating set; or

(ii) P ↓ k/y = P/y\\k; or

(iii) P ↓ k/y = P/y/k; or

(iv) P ↓ k/y can be obtained from P/y\\j by relabelling k as j.

Proof. Suppose first that rP/y({j, k}) = 1. Then y is a line of P that is in the closure of
{j, k}. Thus λP/y({j, k}) = 0 and (i) holds.

Next assume that rP/y({j, k}) = 2. Then λP/y({j, k}) = 1. Thus P/y can be written
as the 2-sum, with basepoint p of two polymatroids, one of which, P1, has ground set
{j, k, p} and has rank 2. As P is compact, so is P/y. Hence neither j nor k is parallel to
p. There are four choices for P1:

(a) j and k are parallel lines and p is a point lying on them both;

(b) P1 is isomorphic to the matroid U2,3;

(c) P1 has k as a line and has j and p as distinct points on this line; or

(d) P1 has j as a line and has k and p as distinct points on this line;

By Lemma 18, P ↓ k/y = P/y ↓ k. If P1 is one of the 2-polymatroids in (b) or (d),
then, as k is a point of P/y, it follows that P/y ↓ k = P/y/k, so (iii) holds. Next
suppose that P1 is the 2-polymatroid in (a). Then, as P/y is compact, it follows that
P/y ↓ k = P/y\\k, so (ii) holds. Finally, suppose that P1 is the 2-polymatroid in (c).
Then P ↓ j/y = P/y ↓ j = P/y\\j. By Lemma 16, P ↓ j can be obtained from P ↓ k by
relabelling j as k. Thus P ↓ j/y can be obtained from P/y\\j by relabelling k as j, that
is, (iv) holds.

We may now assume that rP/y({j, k}) = 3. Then u({y}, {j, k}) = 0 and one easily
checks that {j, k} is a prickly 3-separator of P/y, a contradiction.

Lemma 54. Let {j, k} be a prickly 3-separator in a 3-connected 2-polymatroid M . Then
M ↓ j and M ↓ k are 3-connected.
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Proof. It suffices to show that M ↓ j is 3-connected. We form M ↓ j by freely adding a
point j′ to j, deleting j, and contracting j′. As M is 3-connected, so is the 2-polymatroid
M ′ we get by adding j′. Now M ↓ j = M ′\j/j′. Assume this 2-polymatroid is not
3-connected, letting (U, V ) be an m-separation of it for some m in {1, 2}. Then

rM ′/j′(U) + rM ′/j′(V ) = r(M ′/j′) +m− 1.

Thus
rM ′(U ∪ j′) + rM ′(V ∪ j′) = r(M ′) +m.

Without loss of generality, k ∈ V . Then rM ′(V ∪ j′) = rM(V ∪ j) and rM ′(U ∪ j′) =
rM(U) + 1. Therefore

rM(U) + rM(V ∪ j) = r(M) +m− 1.

As M is 3-connected, we deduce that m = 2. Then max{|U |, rM ′/j′(U)} > 2. Hence
(U, V ∪ j) is a 2-separation of M , a contradiction.

Lemma 55. Let {j, k} be a prickly 3-separator in a 2-polymatroid P . Then

(i) P ↓ k\j = P\k, j; and

(ii) P ↓ k/j = P/k, j.

Proof. Suppose X ⊆ E(P ) − {j, k}. Then rP↓k(X) = rP (X) as r(X ∪ k) > r(X). Thus
(i) holds.

To see (ii), observe that rP↓k/j(X) = rP↓k(X∪j)−r({j}) since r({j, k}) > r({j}). Now,
by Lemma 14, rP↓k(X∪j) = r(X∪j∪k)−1. Thus rP↓k/j(X) = r(X∪j∪k)−3 = rP/k,j(X),
so (ii) holds.

5 The strategy of the proof

The proof of Theorem 4 is long and will occupy the rest of the paper. In this section,
we outline the steps in the proof. We shall assume that the theorem fails for M . Hence
|E(M)| > |E(N)|+ 2. As |E(N)| > 4, we deduce that |E(M)| > 6.

We know that M has N as an s-minor. This means, of course, that N can be obtained
from M by a sequence of contractions, deletions accompanied by compactifications, and
series compressions. Our first goal will be to prove the following.

Lemma 56. The 2-polymatroid M has an s-minor that is isomorphic to N such that, in
the production of this s-minor, all of the series compressions are done last in the process.

Next we focus on the c-minor N0 of M that is obtained in the above process after
all of the contractions and compactified deletions are done but before doing any of the
series compressions. By Lemma 19, N0 is 3-connected. In view of this, we see that, to
prove Theorem 4, it suffices to prove Theorem 5, which we restate here for the reader’s
convenience.
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Theorem 57. Let M and N be distinct 3-connected 2-polymatroids such that N is a
c-minor of M and |E(N)| > 4. Then

(i) r(M) > 3 and M is a whirl or the cycle matroid of a wheel; or

(ii) M has an element ` such that M\\` or M/` is 3-connected having a c-minor iso-
morphic to N ; or

(iii) M has a prickly 3-separator {y, z} such that M ↓ y is 3-connected having a c-minor
isomorphic to N .

Note that this restatement of Theorem 5 omits mention of M ↓ z in (iii) since, by
Lemma 16, M ↓ z ∼= M ↓ j. Our focus now becomes proving Theorem 57. For the rest of
this section, we assume that the pair (M,N) is a counterexample to that theorem. Note
that, by Lemma 22, this means that (M∗, N∗) is also a counterexample to Theorem 57.
The first two steps in the argument, whose proofs appear in Section 7, are as follows.

Lemma 58. M has no point z such that both M\\z and M/z have c-minors isomorphic
to N .

Lemma 59. M has no element ` such that M\` or M/` is disconnected having a c-minor
isomorphic to N .

Note that the use of ` above, and in what follows, does not imply that ` is a line,
although most of our attention will be focused on that case.

Now N occurs as a c-minor of M . Although we will often work with c-minors of M
that are isomorphic to N , at a certain point in the argument, we will settle on a particular
labelled c-minor of M that is isomorphic to N .

When M has N as a c-minor and has a 2-separation (X, Y ), either X or Y , say X,
contains at least |E(N)|− 1 elements of N . We call X the N-side of the 2-separation and
Y the non-N-side.

Suppose M\\` has N as a c-minor. As the theorem fails, M\\` is not 3-connected. Now,
by Lemma 2(iii), λM\\` = λM\`. Thus a partition (X, Y ) of E − ` with min{|X|, |Y |} > 2
is a 2-separation of M\\` if and only if it is a 2-separation of M\`. It follows that we
can label the N - and non-N -sides of a non-trivial 2-separation of M\` based on their
labels in the corresponding 2-separation of M\\`. Among all 2-separations of M\\`, let
the maximum cardinality of the non-N -side be µ(`). Similarly, if M/` has N as a c-minor,
let µ∗(`) be the maximum cardinality of the non-N -side of a 2-separation of M/`. We
observe that µ(`) and µ∗(`) are not defined unless M\\` and M/`, respectively, have N
as a c-minor.

The next step in the argument establishes the following.

60. M has no element ` for which µ(`) = 2 or µ∗(`) = 2.

The argument for 60 is quite long since it involves a detailed analysis of the various
structures that can arise on the non-N -side when µ(`) = 2. We then use duality to
eliminate the cases when µ∗(`) = 2. These arguments appear in Section 8.
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Recall that a special N -minor of M is any c-minor of M that is either equal to N or
differs from N by having a single point relabelled. The next major step in the argument,
which is dealt with in Lemma 93, proves the following.

61. If (X, Y ) is a 2-separation of M\` where X is the N -side and |Y | = µ(`), then Y
contains an element y such that both M\\y and M/y have special N -minors.

We say that an element ` of M is doubly labelled if both M\` and M/` have special
N -minors. In Lemma 96, we use the doubly labelled element found in the last step to
prove the following.

62. There is a c-minor N ′ of M that is isomorphic to N such that M has a 3-separator
(X, Y ) with |E(N ′) ∩ Y | 6 1 such that if |Y | = 2, then both elements of Y are lines.

The particular c-minor N ′ whose existence is proved in 62 is the one used throughout
the rest of the argument. From that point on in the argument, we use N to denote N ′.
An exactly 3-separating set Y is called a non-N-3-separator if |E(N)∩ Y | 6 1 and, when
|Y | = 2, both elements of Y are lines. By 62, a non-N -3-separator exists. Hence there is
a minimal such set.

At the beginning of Section 11, we prove that

63. M has a minimal non-N -3-separator with at least three elements.

The rest of Section 11 is devoted to showing the following.

64. A minimal non-N -3-separator of M with exactly three elements consists of three lines.

The purpose of Section 12 is to prove that

65. M has a minimal non-N -3-separator with at least four elements.

The argument to show 65 is quite long since it involves treating all non-N -3-separators
that consist of exactly three lines.

The next step, which is shown in Section 13, establishes the following.

66. If Y1 is a minimal non-N -3-separator of M with at least four elements, then Y1 contains
a doubly labelled element.

Next we take the doubly labelled element ` identified in the last step. We then take
non-trivial 2-separations (D1, D2) and (C1, C2) of M\` and M/`, respectively, having D1

and C1 as their N -sides. We show that these 2-separations can be chosen so that each of
D2 and C2 is contained in Y1 − `, and neither contains any points of M .

We then show that each of D1 ∩ C2, D2 ∩ C1, and D2 ∩ C2 consists of a single line of
M , that the union of these lines spans `, and these four lines together make up Y1.

The final contradiction is obtained by showing that M/`22 is 3-connected having a
c-minor isomorphic to N , where `22 is the unique element in D2 ∩ C2.

6 The reduction to c-minors

The goal of this section is to prove Lemma 56 and thereby show that Theorem 4 can be
proved by verifying Theorem 57.
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Proof of Lemma 56. Consider the s-minors of M that are isomorphic to N and are ob-
tained using the minimum number of series compressions. Suppose N1 is such an s-minor
and let the number of series compressions used in its production be m. If m = 0, then N1

is an s-minor of M satisfying the requirements of the lemma. Hence we may assume that
m > 0. Let n1 be the number of elements that are removed, via deletion or contraction,
after the last series compression has been completed. For 2 6 i 6 m, let ni be the number
of elements that are removed, via deletion or contraction, between the (m− i+ 1)st and
the (m − i + 2)nd series compressions. Consider the sequence (n1, n2, . . . , nm) and let
N0 be a choice for N1 for which the corresponding sequence is lexicographically minimal.
If each ni is zero, then we have found, as desired, an s-minor of M in which all of the
series compressions are performed after all of the contractions and compactified deletions.
Assume then that ni is the first non-zero nj. Let P be the 2-polymatroid that we have
immediately prior to the (m − i + 1)st series compression, with this series compression
involving compressing the line k from the prickly 3-separator {j, k} of P . Let Q be the
2-polymatroid we have immediately prior to the (m− i+ 2)nd series compression.

By Lemma 55, we may assume that j is neither deleted or contracted in producing N0

otherwise we can replace the compression of k by a deletion followed by a compactification
or by a contraction. By Lemma 10, we may assume that either

(a) all of the elements removed in producing Q from P ↓ k are done so by deletion
followed by compactification; or

(b) the next move in the production of Q is the contraction of an element, say y.

Assume that (b) holds. By Lemma 18, P ↓ k/y = P/y ↓ k. Assume that {j, k} is
not a prickly 3-separator of P/y. We now apply Lemma 53. If r({y, j, k}) = 3, then j
is a loop of P ↓ k/y so j must be deleted or contracted to produce N0, a contradiction.
If P ↓ k/y is P/y\\k or P/y/k, then we do not need to compress k in the production of
N0, so the choice of N0 is contradicted. We are left with the possibility that P ↓ k/y
can be obtained from P/y\\j by relabelling k as j. Again we obtain the contradiction
that we can reduce the number of series compressions where, if j ∈ E(N0), we replace N0

by the 2-polymatroid in which j is relabelled by k. We conclude that {j, k} is a prickly
3-separator of P/y. In that case, interchanging the compression of k and the contraction
of y in P produces a 2-polymatroid in which ni is reduced and so the choice of N0 is
contradicted. We deduce that (b) does not hold, so (a) holds.

In the construction of N0, let y be the first element that is deleted following the
compression of k. Now, by Lemma 18, P ↓ k\\y = (P ↓ k\y)[ = (P\y ↓ k)[. By
Lemmas 2 and 17, P is compact, so r(E − y) = r(E) where E is the ground set of
P . If r(E − {y, j, k}) = r(E) − 3, then P\y has {j, k} as a 1-separating set. This is a
contradiction as j cannot be deleted or contracted in the production of N0 from P . Hence

r(E − {y, j, k}) > r(E)− 2. (12)

Next we show that

66.1. rP\y↓k(E − {y, j, k}) = r(E − {y, j, k}).
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By Lemmas 55(i) and 18(i), P ↓ k\j = P\k, j and P ↓ k\y = P\y ↓ k. Thus

P\k\j\y = P ↓ k\j\y = P ↓ k\y\j = P\y ↓ k\j,

and 66.1 follows.
By definition,

rP\y↓k(E − {y, k}) =

{
r(E − {y, k}) if r(E − y) > r(E − {y, k});
r(E − {y, k})− 1 if r(E − y) = r(E − {y, k}).

But r(E) = r(E − y) and, by submodularity, r(E − {y, k}) > r(E − y) − 1. Thus, if
r(E− y) > r(E−{y, k}), then r(E−{y, k}) = r(E)− 1; and if r(E− y) = r(E−{y, k}),
then r(E − {y, k})− 1 = r(E)− 1. Hence

r(P\y ↓ k) = r(E)− 1. (13)

We now show that

66.2. λP\y({j, k}) = λP\y↓k({j}).
Using 66.1 and (13), we see that

λP\y({j, k}) = r({j, k}) + r(E − {y, j, k})− r(E − y)

= 3 + rP\y↓k(E − {y, j, k})− r(E)

= 2 + rP\y↓k(E − {y, j, k})− (r(E)− 1)

= rP\y↓k({j}) + rP\y↓k(E − {y, j, k})− r(P\y ↓ k)

= λP\y↓k({j}).

Thus 66.2 holds.
Let {`1, `2, . . . , `t} be the set S of 2-separating lines in P\y. Clearly no member of

S − k is parallel to k. We show next that

66.3. S ∩ {j, k} 6= ∅.
Suppose, instead, that neither j nor k is in S. Then, by Lemma 15, the set of 2-

separating lines of P\y ↓ k is either S or S ∪ j. Assume the latter. Then, by 66.2,
λP\y({j, k}) = 1. Thus P\y is the 2-sum with basepoint p of two 2-polymatroids P1 and
P2 having ground sets (E − {y, j, k}) ∪ p and {j, k, p}, respectively. Since neither j nor
k is 2-separating in P\y, it follows that, in the rank-three 2-polymatroid P2, the point p
does not lie on either of the lines j or k. By Lemma 46(vi), P\y ↓ k = P1 ⊕2 (P2 ↓ k).
Now P2 ↓ k consists of the line j with the point p lying on it. As S ∪ j is the set of
2-separating lines of P\y ↓ k, and P2 ↓ k↓ j = P2/k, we deduce that P\y ↓ k↓ j = P\y/k.
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It follows that S is the set of 2-separating lines of P\y/k. Thus

P ↓ k\\y = (P\y ↓ k)[

= P\y ↓ k↓ j↓ `1↓ `2↓ . . . ↓ `t
= (P\y ↓ k↓ j)↓ `1↓ `2↓ . . . ↓ `t
= P\y/k↓ `1↓ `2↓ . . . ↓ `t
= P/k\y↓ `1↓ `2↓ . . . ↓ `t
= P/k\\y.

We conclude that, instead of compressing k, we can contract it, which contradicts that
choice of N0.

We may now assume that S is the set of 2-separating lines of P\y ↓ k. Then, by 66.2,
λP\y({j, k}) = 2. Now

P\\y ↓ k = P\y↓ `1↓ `2↓ . . . ↓ `t ↓ k.
Thus, by repeated application of Lemma 52 and using Lemma 18, we see that

P\\y ↓ k = P\y ↓ k↓ `1↓ `2↓ . . . ↓ `t
= P ↓ k\y↓ `1↓ `2↓ . . . ↓ `t
= P ↓ k\\y.

Since neither j nor k is in S, we see that u({j}, E−{y, j, k}) = 1 = u({k}, E−{y, j, k}).
Thus {j, k} is a prickly 3-separator of P\y. It follows without difficulty that {j, k} is a
prickly 3-separator of P\\y. As P ↓ k\\y = P\\y ↓ k, we can reduce ni, a contradiction.
We conclude that 66.3 holds.

We now know that j or k is in S. Suppose next that both j and k are in S. Thus
r(E − {y, j}) = r(E) − 1 = r(E − {y, k}). By submodularity and (12), we deduce that
r(E−{y, j, k}) = r(E)−2. Hence P\y is the 2-sum with basepoint p of two 2-polymatroids
P1 and P2 having ground sets (E − {y, j, k}) ∪ p and {j, k, p}, respectively. Moreover, in
P2, the point p lies on both j and k. Now P\\y = P\y↓ `1↓ `2↓ . . . ↓ `t↓ j↓ k. Hence P\\y
has j and k as parallel points. Thus

P ↓ k\\y = (P\y ↓ k)[

= P\y ↓ k↓ `1↓ `2↓ . . . ↓ `t↓ j
= P\y↓ `1↓ `2↓ . . . ↓ `t↓ j ↓ k by Lemma 52;

= P\y↓ `1↓ `2↓ . . . ↓ `t↓ j↓ k\k as Q ↓ x = Q↓x\x when r({x}) = 2;

= P\\y\k
= P\\y\\k,

where the last step follows because P ↓ k\\y is compact and so P\\y\k is compact. Again
we have a contradiction since we have managed to remove k via deletion rather than by
series compression.
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Now assume that k is in S but j is not. Then

P ↓ k\\y = (P\y ↓ k)[

= P\y ↓ `1↓ `2↓ . . . ↓ `t ↓ k
= P\y↓ `1↓ `2↓ . . . ↓ `t↓ k\k
= P\\y\k
= P\\y\\k.

Once again we have managed to avoid the need to perform a series compression on k, a
contradiction.

Finally, suppose j is in S but k is not. Then we use the fact, established in Lemma 16,
that P ↓ j is P ↓ k with j relabelled as k. The argument in the last paragraph yields a
contradiction where, when j ∈ E(N0), we replace N0 by the 2-polymatroid in which j is
relabelled as k.

7 Eliminating doubly labelled points

In this section, we prove that, when (M,N) is a counterexample to Theorem 57, M has
no doubly labelled point and has no element whose deletion or contraction is disconnected
having a c-minor isomorphic to N .

The following elementary lemmas will be helpful.

Lemma 67. Let T be a set of three points in a 2-polymatroid Q and suppose x ∈ T .

(i) If T is a triangle of Q, then λQ/x(T − x) 6 1.

(ii) If T is a triad of Q, then λQ\x(T − x) 6 1.

Lemma 68. Let T1 and T2 be distinct triads in a 2-polymatroid Q. Then r(E(Q)− (T1 ∪
T2)) 6 r(Q)− 2.

Proof. We know that r(E(Q) − Ti) = r(Q) − 1 for each i. The lemma follows easily by
applying the submodularity of the rank function.

Proof of Lemma 58. Suppose M has a point z such that both M\\z and M/z have c-
minors isomorphic to N . Then neither M\z nor M/z is 3-connected. We may also
assume that M is neither a whirl nor the cycle matroid of a wheel. By Lemma 41, M
has points s and t such that {z, s, t} is a triangle or a triad of M . By replacing M by
M∗ if necessary, we may assume that {z, s, t} is a triangle of M . Then M/z has s and
t as a pair of parallel points. Thus both M/z\s and M/z\t have c-minors isomorphic to
N . As the theorem fails, neither M\s nor M\t is 3-connected. Thus, by Lemma 42, M
has a triad that contains z and exactly one of s and t. We may assume that the triad is
{z, s, u}. Then t, z, s, u is a fan in M .

Now take a fan x1, x2, . . . , xk in M of maximal length such that both M\x2 and M/x2
have c-minors isomorphic to N . Then k > 4. A straightforward induction argument,
whose details we omit, gives the following.
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68.1. For all i in {2, 3, . . . , k − 1}, both M\xi and M/xi have c-minors isomorphic to N .

Now consider {xk−2, xk−1, xk}. Suppose first that it is a triangle. As M/xk−1 has a
c-minor isomorphic to N , so do M/xk−1\xk and hence M\xk. As M\xk−1 also has a c-
minor isomorphic to N , neither M\xk nor M\xk−1 is 3-connected. Thus, by Lemma 42, it
follows that M has a triad T ∗ containing xk and exactly one of xk−2 and xk−1. Let its third
element be xk+1. By the choice of k, it follows that xk+1 ∈ {x1, x2, . . . , xk−3}. Suppose
k = 4. Then x1 ∈ T ∗. Then {x1, x2, x3, x4} contains two distinct triads so, by Lemma 68,
r(E − {x1, x2, x3, x4}) 6 r(M) − 2. Thus λ({x1, x2, x3, x4}) 6 1, a contradiction since
|E| > 6. We deduce that k > 5.

As M cannot have a triangle and a triad that meet in a single element, either

(i) xk+1 = x1 and {x1, x2, x3} is a triad; or

(ii) T ∗ contains {xk, xk−2}, and xk+1 ∈ {xk−3, xk−4}.

In the latter case, let X = {xk−4, xk−3, xk−2, xk−1, xk}. Then, by Lemma 68,

r(X) + r(E −X)− r(M) 6 3 + r(M)− 2− r(M) = 1.

Since M is 3-connected, we obtain a contradiction unless E −X is empty or contains a
single element, which must be a point. In the exceptional case, M is a 3-connected matroid
having 5 or 6 elements and containing a 5-element subset that contains two triangles and
two triads. But there is no 3-connected matroid with these properties. We deduce that
(ii) does not hold.

We now know that (i) holds and that T ∗ contains {xk, xk−1}. Then k is even. Let
X = {x1, x2, . . . , xk}. As M\x2 has a c-minor isomorphic to N and has {x1, x3} as a series
pair of points, it follows that M\x2/x1, and hence, M/x1 has a c-minor isomorphic to N .
Thus, by Lemma 42, M has a triangle containing x1 and exactly one of x2 and x3. This
triangle must also contain xk or xk−1. Hence r(X) 6 r({x2, x4, x6, . . . , xk}) 6 k

2
. Also

r∗(X) 6 r({x1, x3, x5, . . . , xk−1}) 6 k
2
. Thus, by Lemma 28, λ(X) = 0, so X = E(M).

Hence M is a 3-connected matroid in which every element is in both a triangle and a
triad, so M is a whirl or the cycle matroid of a wheel, a contradiction.

We still need to consider the case when {xk−2, xk−1, xk} is a triad of M . Then it is a
triangle of M∗ and the result follows by replacing M by M∗ in the argument above.

Proof of Lemma 59. Suppose M\` is disconnected having a c-minor isomorphic to N .
Then E(M\`) has a non-empty proper subset X such that λM\`(X) = 0 and M\`\X
has N as a c-minor. Then, by Lemma 58, every element of X must be a line. Let
Y = E(M\`)−X. Since r(M\`) = r(M), we deduce that

r(X) + r(Y ) = r(M). (14)

As r(X) > 2 and (X, Y ∪`) is not a 2-separation of M , we deduce that r(Y ∪`) = r(Y )+2.
It follows, since Y and ` are skew and M\X has N as a c-minor, that M/` has N as a
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c-minor. Since (M,N) is a counterexample to the theorem, M/` is not 3-connected. Thus
there is a partition (C1, C2) of E(M)− ` such that, for some k in {1, 2},

rM/`(C1) + rM/`(C2) 6 r(M/`) + k − 1 (15)

where, if k = 2, we may assume that min{|C1|, rM/`(C1), |C2|, rM/`(C2)} > 2. Hence

r(C1 ∪ `) + r(C2 ∪ `) 6 r(M) + 3. (16)

By (14), (16), and submodularity, r(X ∪C1∪ `) + r(X ∩C1) + r(Y ∪C2∪ `) + r(Y ∩C2) 6
2r(M) + 3. Then

r(X ∪ C1 ∪ `) + r(Y ∩ C2) 6 r(M) + 1 or

r(Y ∪ C2 ∪ `) + r(X ∩ C1) 6 r(M) + 1,

so
r(Y ∩ C2) 6 1 or r(X ∩ C1) 6 1.

By symmetry,
r(Y ∩ C1) 6 1 or r(X ∩ C2) 6 1.

Since X does not contain any points, either r(Y ∩ C2) 6 1 and r(Y ∩ C1) 6 1; or, for
some i in {1, 2},

X ∩ Ci = ∅ and r(Y ∩ Ci) 6 1.

In the former case, |Y | 6 2, a contradiction since Y contains E(N). In the latter case,
we may assume that C1 consists of a single point p. Then we deduce that k = 1 in (15).
Thus p is a point of M and {p} is a component of M/`. Hence both M\p and M/p have
N as c-minors, a contradiction to Lemma 58. We conclude that if M\` has a c-minor
isomorphic to N , then M\` is 2-connected.

Now suppose M/` is disconnected having a c-minor isomorphic to N . By Lemma 2,

λM/` = λ(M/`)∗ = λ(M∗\`)[ = λM∗\`.

Thus, by replacing M by M∗ in the argument above, we deduce that if M/` has a c-minor
isomorphic to N , then M/` is 2-connected.

8 If all 2-separations have a side with at most two elements

The purpose of this section is to treat 60. The argument here is long as it involves
analyzing numerous cases. The setup is that M and N are 3-connected 2-polymatroids
such that |E(N)| > 4. The pair (M,N) is a counterexample to Theorem 57 and M has an
element ` such that M\` has N as a c-minor. Thus M\\` is not 3-connected. We assume
that the non-N -side of every non-trivial 2-separation of M\` has exactly two elements.
Thus µ(`) = 2. Let (X, Y ) be a non-trivial 2-separation of M\` in which Y is the non-N -
side. Now M\` can be written as the 2-sum, with basepoint p, of 2-polymatroids MX and
MY having ground sets X∪p and Y ∪p. The first lemma identifies the various possibilities
for MY .
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Lemma 69. Let P be a 2-connected 2-polymatroid with three elements and rank at least
two. Suppose P has a distinguished point p. Then P is one of the nine 2-polymatroids,
P1, P2, . . . , P9, depicted in Figure 1.

p

P1

p

P2

p

P3

p

P4

p

P5

p

P6

P7

p p

P8 P9

p

Figure 1: The nine possible 3-element 2-polymatroids in Lemma 69.

Proof. As P is 2-connected having rank at least 2, we see that 2 6 r(P ) 6 4. If r(P ) = 2,
then P is one of P1, P2, P3, or P4; if r(P ) = 3, then P is one of P5, P6, P7, or P8; if r(P ) = 4,
then P is P9.

We shall systematically eliminate the various possibilities for MY . In each case, we
will label the two elements of MY other than p by a and b.

Lemma 70. MY is not isomorphic to P2 or P3.

Proof. Assume the contrary. Then MY and hence M has a point q on a line y where
q 6= p. Thus M\q is 3-connected, so M\q has no c-minor isomorphic to N . In particular,
q ∈ E(N). Thus y 6∈ E(N). As M\`/y has q as a loop, we must delete y from M\` in
constructing N . If P = P2, then M\`\y has {q} as a 1-separating set, a contradiction.
Thus P = P3. Then, in M\\`, we see that y and q are parallel points. Thus M\\`\q, and
hence M\q, has a c-minor isomorphic to N , a contradiction.
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Lemma 71. MY is not isomorphic to P4.

Proof. Assume the contrary. Let the two parallel lines in MY be y and y′ where we may
assume that y 6∈ E(N). Now M\y is 3-connected, so M\y does not have N as a c-minor.
Thus M/y has N as a c-minor. But y′ is a loop of M/y, so y′ 6∈ E(N) and M\y′ has N
as a c-minor. Since M\y′ is 3-connected, we have a contradiction.

The next lemma is designed to facilitate the elimination of the cases when MY is one
of P1, P7, or P9.

Lemma 72. Suppose both a and b are skew to p in MY , and both MY /a and MY /b
are 2-connected. Then M/a and M/b have 2-separations (Xa, Ya) and (Xb, Yb) such that
` ∈ Ya ∩ Yb. Moreover, both M/a and M/b have special N-minors, and

(i) b ∈ Xa and a ∈ Xb;

(ii) both Ya and Yb properly contain {`};

(iii) (Xa, Ya − `) and (Xb, Yb − `) are 2-separating partitions of M/a\` and M/b\`, re-
spectively, and ` ∈ clM/a(Ya − `) and ` ∈ clM/b(Yb − `);

(iv) (Xa ∪ a, Ya − `) and (Xb ∪ b, Yb − `) are 2-separating partitions of M\`;

(v) for c in {a, b}, provided a or b is a point, (Xc, Yc − `) is a 2-separation of M/c\`
and (Xc ∪ c, Yc − `) is a 2-separation of M\`;

(vi) either (Ya − `)∩ (Yb − `) 6= ∅; or each of Xb ∩ (Ya − `) and Xa ∩ (Yb − `) consists of
a single point, both a and b are lines of M , and, when r({a, b}) = 4, the element `
is a point of M .

Proof. Since both MY /a and MY /b are 2-connected, it follows by Lemma 51 that both
M\`/a and M\`/b have special N -minors. Hence so do both M/a and M/b. Since the
theorem fails, M/a and M/b have 2-separations (Xa, Ya) and (Xb, Yb) such that ` ∈ Ya∩Yb.

To see that (i) holds, it suffices to show that b ∈ Xa. Assume b ∈ Ya. Then

rM/a(Xa) + rM/a(Ya) = r(M/a) + 1,

so rM(Xa ∪ a) − rM({a}) + rM(Ya ∪ a) = r(M) + 1. As a is skew to p in MY , it follows
that a is skew to X in M . Since Xa ⊆ X, it follows that (Xa, Ya ∪ a) is a 2-separation of
M , a contradiction. Hence (i) holds.

Part (ii) is an immediate consequence of Lemma 37. To prove (iii), first observe that,
by Proposition 47, M/a\` is 2-connected. We show next that

r(M/a\`) = r(M/a). (17)

Suppose not. Then r(M/a\`) 6 r(M/a) − 1. Since M/a is 2-connected, it follows that
equality must hold here and ` is a line of M/a. This gives a contradiction to Lemma 37.
Hence (17) holds.
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Now

r(M/a\`) + 1 6 rM/a\`(Xa) + rM/a\`(Ya − `)
6 rM/a(Xa) + rM/a(Ya)

= r(M/a) + 1

= r(M/a\`) + 1,

where the last equality follows from (17). We see that equality must hold throughout the
last chain of inequalities. Hence (Xa, Ya − `) is a 2-separating partition of M/a\`, and
` ∈ clM/a(Ya − `). Using symmetry, we deduce that (iii) holds.

Since b ∈ Xa, we see that Ya − ` ⊆ X, so a is skew to Ya − `. It follows by (iii) that
(Xa ∪ a, Ya − `) is a 2-separating partition of M\`, and (iv) follows by symmetry.

To show (v), observe that, since Yc− ` avoids {a, b}, it follows that c is skew to Yc− `.
Thus it suffices to show that (Xc, Yc − `) is a 2-separation of M/c\`. Assume it is not.
Then Yc − ` consists of a single point e of M/c\`. Then e is a point of M and, by (iii),
rM/c({e, `}) = rM/c({e}) = 1, so

rM({c, e, `}) = rM({c, e}) = 1 + r({c}). (18)

Suppose c is a point. If ` is a line, then c and e are on `, so M\e is 3-connected. Since
M/c has e and ` as parallel points, M\e is 3-connected having a c-minor isomorphic to
N , a contradiction. Thus we may assume that ` is a point. Then {e, `, c} is a triangle in
M . Thus, for {c, d} = {a, b}, we see that (X ∪ ` ∪ c, {d}) is a 2-separation of M unless
d is a point of M . In the exceptional case, M has e, c, `, d as a fan with M/c having a
c-minor isomorphic to N . Thus, by Lemmas 43 and 58, we have a contradiction.

We may now assume that c is a line. Then r({c, e}) = 3, so, by (18), r({c, `}) = 3.
Thus (X, {c, `}) is a 2-separation of M\d where {c, d} = {a, b}. Moreover, by hypothesis,
d is a point. Thus, by Lemma 40, we obtain the contradiction that M/d is 3-connected
unless M/d has a parallel pair {z1, z2} of points. In the exceptional case, we deduce that
z1, say, is `. Hence (X ∪ ` ∪ d, {c}) is a 2-separation of M , a contradiction. We conclude
that (v) holds.

To prove (vi), assume that (Ya − `) ∩ (Yb − `) = ∅. Then Yb − ` ⊆ Xa ∪ a. But
` ∈ cl((Yb − `) ∪ b) and b ∈ Xa, so ` ∈ cl(Xa ∪ a). Because M is 3-connected, it follows
that Ya − ` consists of a single point a′. By symmetry, Yb − ` consists of a single point b′.
Then (Xa ∪ a, Ya − `) is not a 2-separation of M\`, so, by (v), each of a and b is a line of
M .

To finish the proof of (vi), it remains to show that, when r({a, b}) = 4, the element `
is a point of M . Assume ` is a line. Then, in M/a, we have a′ and ` as parallel points, so
M/a\a′, and hence M\a′, has a c-minor isomorphic to N . As ` ∈ clM/a({a′}), it follows
that ` ∈ clM(X ∪ a). By symmetry, ` ∈ clM(X ∪ b). Thus

r(X) + 2 + r(X) + 2 = r(X ∪ a) + r(X ∪ b)
= r(X ∪ a ∪ `) + r(X ∪ b ∪ `)
> r(X ∪ `) + r(M)

= r(X ∪ `) + r(X) + 3.
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Thus
r(X ∪ `) 6 r(X) + 1.

Then

3 + r(X) + 1 > r({a′, a, `}) + r(X ∪ `)
> r({a′, `}) + r(X ∪ {a′, a, `})
= r({a′, `}) + r(X ∪ a)

= r({a′, `}) + r(X) + 2.

We deduce that r({a′, `}) = 2, so a′ is a point on the line `. Thus M\a′ is 3-connected
having a c-minor isomorphic to N , a contradiction.

Next we eliminate the possibility that MY is P1.

Lemma 73. MY is not isomorphic to P1.

Proof. Assume MY is isomorphic to P1. Since {a, b} is a series pair in M\`, it follows
that both M/a and M/b have c-minors isomorphic to N . Hence neither M/a nor M/b is
3-connected.

We show next that

73.1. ` is a line of M .

Assume ` is a point. Then {`, a, b} is a triad of M . Since neither M/a nor M/b is
3-connected, it follows by Lemma 42 that M has a triangle containing a and exactly one
of b and `. If M has {a, b, c} as a triangle, then M/a has {b, c} as a parallel pair of points.
Thus M/a\b, and hence M\b, has a c-minor isomorphic to N . Thus b is a doubly labelled
point, a contradiction to Lemma 58. We deduce that M has {a, `} in a triangle with a
point d, say. Then M has d, a, `, b as a fan with M/a having a c-minor isomorphic to N .
Thus, by Lemmas 43 and 58, we have a contradiction. We conclude that 73.1 holds.

By Lemma 72, M/a and M/b have 2-separations (Xa, Ya) and (Xb, Yb) such that
` ∈ Ya ∩ Yb. Moreover, both M/a and M/b have special N -minors, and

(i) b ∈ Xa and a ∈ Xb;

(ii) both Ya and Yb properly contain {`};

(iii) (Xa, Ya − `) and (Xb, Yb − `) are 2-separating partitions of M/a\` and M/b\`, re-
spectively, and ` ∈ clM/a(Ya − `) and ` ∈ clM/b(Yb − `);

(iv) (Xa ∪ a, Ya − `) and (Xb ∪ b, Yb − `) are 2-separating partitions of M\`; and

(v) (Ya − `) ∩ (Yb − `) 6= ∅.

73.2. (Ya − `) ∪ (Yb − `) = E − {a, b, `}.
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We know that λM\`(Ya − `) = 1 = λM\`(Yb − `) and (Ya − `) ∩ (Yb − `) 6= ∅, so
λM\`((Ya − `) ∩ (Yb − `)) > 1. Thus, by applying the submodularity of the connectivity
function, we see that

1 + 1 = λM\`(Ya − `) + λM\`(Yb − `)
> λM\`((Ya − `) ∩ (Yb − `)) + λM\`((Ya − `) ∪ (Yb − `))
> 1 + λM\`((Ya − `) ∪ (Yb − `)).

Since M\` is 2-connected, we deduce that λM\`((Ya − `) ∪ (Yb − `)) = 1.
This application of the submodularity of the connectivity function is an example of

an ‘uncrossing’ argument. For the rest of the paper, we will omit the details of such
arguments and will follow the practice of using the abbreviation by uncrossing to mean
‘by applying the submodularity of the connectivity function.’

Now (Xa ∪ a, Ya) is not a 2-separation of M , so, as ` ∈ clM/a(Ya − `), we see that

r(Ya − `) < r(Ya) 6 r(Ya ∪ a) = r((Ya − `) ∪ a) 6 r(Ya − `) + 1.

Hence
r(Ya) = r(Ya ∪ a) = r((Ya − `) ∪ a) = r(Ya − `) + 1.

Thus r((Ya−`)∪(Yb−`)∪{a, b}) = r(Ya∪Yb∪{a, b}) = r(Ya∪Yb) 6 r((Ya−`)∪(Yb−`))+1.
Also, as {a, b} is a series pair of points in M\`, we see that r(Xa ∩Xb) 6 r((Xa ∩Xb) ∪
{a, b}) − 1. Therefore, λM(Ya ∪ Yb ∪ {a, b}) 6 1. Thus, we may assume that Xa ∩ Xb

consists of a single point, z, otherwise (Ya − `) ∪ (Yb − `) = E − {a, b, `} as desired.
Now λM\`(Xa ∩Xb) = λM\`({a, b, z}) = 1. If a /∈ cl({b, z}), then λM\`((Ya− `)∪ (Yb−

`)∪a) 6 1, so λM((Ya− `)∪ (Yb− `)∪a∪ `) = λM(Ya∪Yb∪a) 6 1, a contradiction. Thus
a ∈ cl({b, z}). Hence {a, b, z} is a triangle of M . It follows that the point b is doubly
labelled, a contradiction to Lemma 58. We conclude that 73.2 holds.

73.3. Ya − Yb 6= ∅ and Yb − Ya 6= ∅.
By symmetry, it suffices to prove the first of these. Assume Ya − Yb = ∅. Then, as

(Ya − `) ∪ (Yb − `) = E − {a, b, `}, we deduce that Xb = {a}, so (Xb, Yb − `) is not a
2-separation of M\`/b, a contradiction. Thus 73.3 holds.

By 73.3 and the fact that (Xa∪a)∩ (Xb∪ b) contains {a, b}, we see that each of Xa∪a
and Xb ∪ b has at least three elements. It follows by the definition of µ(`) that each of
Ya− ` and Yb− ` has exactly two elements. Since each of Ya−Yb, (Ya∩Yb)− `, and Yb−Ya
is non-empty, each of these sets has exactly one element. As the union of these sets is
E − {`, a, b}, we deduce that |E(M)| = 6 and |Xa ∪ a| = 3. Since at least one of a and b
is not in E(N), we deduce that each of Xa ∪ a and Ya − ` contains at most two elements
of N , a contradiction as one of these sets must contain at least three elements of E(N).
We conclude that Lemma 73 holds.

Lemma 74. MY is not isomorphic to P7.

Proof. Assume that MY is isomorphic to P7, letting a be the line. Then, by Lemma 72,
M/a and M/b have 2-separations (Xa, Ya) and (Xb, Yb) such that ` ∈ Ya ∩ Yb. Moreover,
both M/a and M/b have special N -minors, and
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(i) b ∈ Xa and a ∈ Xb;

(ii) both Ya and Yb properly contain {`};

(iii) (Xa, Ya − `) and (Xb, Yb − `) are 2-separating partitions of M/a\` and M/b\`, re-
spectively, and ` ∈ clM/a(Ya − `) and ` ∈ clM/b(Yb − `);

(iv) (Xa ∪ a, Ya − `) and (Xb ∪ b, Yb − `) are 2-separating partitions of M\`; and

(v) (Ya − `) ∩ (Yb − `) 6= ∅.

We show next that

74.1. Xa ∩Xb is empty or consists of a single point.

Suppose b 6∈ cl(Yb). Then r(Yb ∪ b) = r(Yb) + 1. Thus (Xb ∪ b, Yb) is a 2-separation of
M , a contradiction. Hence r(Yb ∪ b) = r(Yb). Now

r((Ya − `) ∪ (Yb − `)) + 2 > r((Ya − `) ∪ (Yb − `) ∪ a)

= r(Ya ∪ (Yb − `) ∪ a)

= r(Ya ∪ Yb ∪ a)

= r(Ya ∪ Yb ∪ a ∪ b).

Also r(Xa ∩Xb) 6 r((Xa ∪ a)∩ (Xb ∪ b))− 2 since Xa ∩Xb ⊆ X and uM(X, Y ) = 1 while
rM({a, b}) = 3. Thus

λM(Xa ∩Xb) = r(Ya ∪ Yb ∪ a ∪ b) + r(Xa ∩Xb)− r(M)

6 r((Ya − `) ∪ (Yb − `)) + 2 + r((Xa ∪ a) ∩ (Xb ∪ b))− 2− r(M\`)
= λM\`((Xa ∪ a) ∩ (Xb ∪ b))
= 1,

where the second-last step follows by uncrossing (Xa ∪ a, Ya− `) and (Xb ∪ b, Yb− `). We
deduce that 74.1 holds.

74.2. E(M)− {`, a, b} contains no point γ such that {a, b, γ} is 2-separating in M\`.
To see this, suppose that such a point γ exists. Recall that M\` has N as a c-minor

so at most one element of {a, b} is in E(N). Thus at most two elements of {a, b, γ} are
in E(N). But |E(N)| > 4. Hence {a, b, γ} is the non-N -side of a 2-separation of M\`
contradicting the fact that µ(`) = 2. We conclude that 74.2 holds.

An immediate consequence of 74.2 is that Xa ∩Xb does not consist of a single point.
Hence, by 74.1, Xa ∩ Xb = ∅. As (Xa, Ya) is a 2-separation of M/a, it follows that Xa

cannot contain just the element b. Thus (Xa ∪ a) ∩ (Yb − `) 6= ∅. We show next that

74.3. (Xb ∪ b) ∩ (Ya − `) 6= ∅.
Suppose (Xb ∪ b) ∩ (Ya − `) = ∅. Then Yb − ` = E(M)− {a, b, `} = X so r(Yb − `) =

r(M)−2. Hence r((Yb−`)∪b) 6 r(M)−1. But ` ∈ clM/b(Yb−`). Thus r(Yb∪b) 6 r(M)−1,
so {a} is 2-separating in M , a contradiction. We deduce that 74.3 holds.
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By uncrossing, λM\`((Xb ∪ b) ∩ (Ya − `)) = 1 = λM\`((Xa ∪ a) ∩ (Yb − `)). As ` is in
both cl((Ya − `) ∪ a) and cl((Yb − `) ∪ b), we deduce that each of (Xa ∪ a) ∩ (Yb − `) and
(Xb ∪ b) ∩ (Ya − `) consists of a single point. Thus we get a contradiction to 74.2 that
completes the proof of Lemma 74.

On combining Lemmas 70, 73, and 74, we immediately obtain the following.

Corollary 75. The non-N-side of every 2-separation of M\` does not contain any points.

Lemma 76. MY is not isomorphic to P9.

Proof. Assume MY is isomorphic to P9. Since each of MY \`/a and MY \`/b consists of a
line through p, it follows that both M/a and M/b have c-minors isomorphic to N . Hence
neither M/a nor M/b is 3-connected. Then M/a and M/b have 2-separations (Xa, Ya)
and (Xb, Yb) such that ` ∈ Ya ∩ Yb. Moreover, by Lemma 72,

(i) b ∈ Xa and a ∈ Xb;

(ii) both Ya and Yb properly contain {`};

(iii) (Xa, Ya − `) and (Xb, Yb − `) are 2-separating partitions of M/a\` and M/b\`, re-
spectively, and ` ∈ clM/a(Ya − `) and ` ∈ clM/b(Yb − `);

(iv) (Xa ∪ a, Ya − `) and (Xb ∪ b, Yb − `) are 2-separating partitions of M\`; and

(v) either (Ya − `) ∩ (Yb − `) 6= ∅; or each of Xb ∩ (Ya − `) and Xa ∩ (Yb − `) consists of
a single point, both a and b are lines of M , and ` is a point of M .

76.1. (Ya − `) ∩ (Yb − `) 6= ∅.
Assume the contrary. Then, by (v), Xb ∩ (Ya − `) consists of a point, a′, say. By (iii),

` ∈ clM/a({a′}), so ` ∈ cl({a′, a}). As r(M) − 3 = r(X), it follows that r(X ∪ a ∪ `) 6
r(M)− 1. Hence the line {b} is 2-separating in M , a contradiction. Thus 76.1 holds.

76.2. |(Ya − `) ∪ (Yb − `)| > 2.

Assume (Ya− `)∪ (Yb− `) contains a unique element, z. Then, by 76.1, z ∈ (Ya− `)∩
(Yb − `). Now ` ∈ clM/a({z}), so ` ∈ clM({z, a}). Thus

r(X ∪ a ∪ `) = r(X ∪ a) = r(X) + 2 = r(M)− 1,

so(X ∪ a ∪ `, {b}) is a 2-separation of M , a contradiction. Thus 76.2 holds.
By 76.1 and uncrossing, we see that λM\`((Xa ∪ a)∩ (Xb ∪ b)) = 1. Next we show the

following.

76.3. (Ya − `) ∪ (Yb − `) is the non-N -side of a 2-separation of M\` and it is a 2-element
set, both members of which are lines.
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By 76.2, ((Xa ∪ a) ∩ (Xb ∪ b), (Ya − `) ∪ (Yb − `)) is a 2-separation of M\`. Suppose
(Xa ∪ a) ∩ (Xb ∪ b) is the non-N -side of this 2-separation. Then, as µ(`) = 2, we deduce
that (Xa ∪ a) ∩ (Xb ∪ b) = {a, b}. Thus, as ` ∈ cl((Ya − `) ∪ a),

r(M) + 1 = r((Ya − `) ∪ (Yb − `)) + r({a, b})
= r((Ya − `) ∪ (Yb − `) ∪ a) + r({b})
= r(Ya ∪ Yb ∪ a) + r({b}).

Hence {b} is 2-separating in M , a contradiction. Thus (Ya−`)∪(Yb−`) must be the non-N -
side of a 2-separation of M\`, so this set has cardinality two. Moreover, by Corollary 75,
both elements of this set are lines. Thus 76.3 holds.

We deduce from 76.3 that Ya − ` and Yb − ` are the non-N -sides of 2-separations of
M\`. Thus, by symmetry, we may assume that Yb − ` ⊆ Ya − `. Hence

(Ya − `) ∪ (Yb − `) = Ya − `. (19)

76.4. (Ya ∪ {a, b}, Xa ∩Xb) is a 2-separation of M .

Since Ya − ` ⊇ Yb − `, we have

r(Ya ∪ a) = r((Ya − `) ∪ a) = r(Ya − `) + 2

and
r(Ya ∪ b) = r((Ya − `) ∪ b) = r(Ya − `) + 2.

Moreover,
r(Ya ∪ {a, b}) = r((Ya − `) ∪ {a, b}) > r(Ya − `) + 3.

Thus, by submodularity,

r(Ya − `) + 2 + r(Ya − `) + 2 = r(Ya ∪ a) + r(Ya ∪ b)
> r(Ya ∪ a ∪ b) + r(Ya)

> r(Ya − `) + 3 + r(Ya)

> r(Ya − `) + 3 + r(Ya − `) + 1,

where the last step follows because ` /∈ cl(Ya − `).
We see that equality must hold throughout the last chain of inequalities. Hence

r(Ya) = r(Ya− `) + 1 and r(Ya ∪{a, b}) = r(Ya− `) + 3 = r(Ya) + 2. As λM\`(Ya− `) = 1,
it follows that λM(Ya) = 2, that is,

r(Ya) + r((Xa ∪ a) ∩ (Xb ∪ b))− r(M) = 2.

Hence

r(Ya ∪ {a, b}) + r(Xa ∩Xb)− r(M) 6 r(Ya) + 2 + r((Xa ∪ a) ∩ (Xb ∪ b))
− 3− r(M)

= 1.
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Thus (Ya∪{a, b}, Xa∩Xb) is a 2-separating partition of M . Since (Xa∪a)∩(Xb∪b) is the
N -side of a 2-separation of M\`, it follows that Xa ∩ Xb contains at least two elements
of E(N) as {a, b} contains at most one element of E(N). Thus (Ya ∪ {a, b}, Xa ∩ Xb)
is a 2-separation of M , that is, 76.4 holds. But 76.4 gives a contradiction and thereby
completes the proof of Lemma 76.

We now know that there are only three possibilities for MY , namely P5, P6, or P8.
The next few lemmas will be useful in treating all three cases.

Lemma 77. Assume M\` has (X, {a, b}) as a 2-separation where r({a, b}) = 3 and each
of a and b is a line. Then r(X∪`) = r(X)+1 if and only if {a, b} is a prickly 3-separating
set in M .

Proof. If {a, b} is a 3-separating set in M , then r(X∪`) = r(M)−1. But r(X) = r(M)−2,
so r(X ∪ `) = r(X) + 1. Conversely, if r(X ∪ `) = r(X) + 1, then r(X ∪ `) = r(M)− 1, so
{a, b} is a 3-separating set in M . Now r(X ∪ `∪ a) = r(M) otherwise {b} is 2-separating
in M . By symmetry, r(X ∪ ` ∪ b) = r(M). Hence {a, b} is a prickly 3-separating set in
M .

Lemma 78. Assume M has {a, b} as a prickly 3-separating set that is 2-separating in
M\`. Then M ↓ a and M ↓ b are 3-connected having c-minors isomorphic to N .

Proof. By Lemma 54, M ↓ a and M ↓ b are 3-connected. Since MX and MY have ground
sets X ∪ p and {a, b, p}, we see that r(MY ) = 3. By Lemma 18, M ↓ a\` = M\` ↓ a. But
M\` ↓ a equals the 2-sum of MX and the 2-polymatroid consisting of a line b through
the point p. Compactifying b in M\` ↓ a gives the 2-polymatroid that is obtained from
MX by relabelling p by b. Hence M ↓ a\\` has a c-minor isomorphic to N . Thus, using
symmetry, so do M ↓ a and M ↓ b.

Lemma 79. If MY is P5, P6, or P8, then r(X ∪ `) = r(X) + 2, so ` is a line.

Proof. Assume r(X ∪ `) = r(X) + 1. Then, by Lemma 77, {a, b} is a prickly 3-separating
set in M . Then, by Lemma 78, M ↓ a and M ↓ b are 3-connected having c-minors isomor-
phic to N , a contradiction to the fact that (M,N) is a counterexample to Theorem 57.
Thus r(X ∪ `) 6= r(X) + 1. Since ` 6∈ cl(X), we deduce that r(X ∪ `) = r(X) + 2, so ` is
a line.

Next we deal with the case when M\` has (X, Y ) as its only 2-separation with |Y | = 2,
beginning with the possibility that MY = P6.

Lemma 80. Suppose MY = P6 and (X, Y ) is the only non-trivial 2-separation of M\`.
Then

(i) M\\a or M\\b is 3-connected having a special N-minor; or

(ii) each of {a, `} and {b, `} is a prickly 3-separator of M , and each of M ↓ a and M ↓ b
is 3-connected having a c-minor isomorphic to N .
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Proof. By Lemma 79, ` is a line of M and u(X, `) = 0. In M\\`, we see that a and b are
parallel points. Hence each of M\a or M\b has a special N -minor. But r(E−{a, b, `}) =
r(M)− 2 and r(E − {a, `}) = r(M)− 1, so {`} is 2-separating in M\a. Now both M\\a
or M\\b have special N -minors. Hence we may assume that neither of these polymatroids
is 3-connected.

Next we show that

80.1. r({a, `}) = 3 = r({b, `}).
We shall show that r({b, `}) = 3, which, by symmetry, will suffice. As M\\a is not

3-connected, M\a has a non-trivial 2-separation (A,B) in which A contains `. Then
(A − `, B) is a 2-separating partition of M\a\`. Observe that r(M\a\`) = r(M) − 1.
Suppose b ∈ B. Then r(B∪a) = r(B) + 1. Thus (A− `, B∪a) is a 2-separating partition
of M\`. Since B∪a 6= {a, b}, we deduce that A− ` contains a unique element. Moreover,
as u(X, `) = 0, it follows that r(A) = r(A− `) + 2. Thus (A− `, B ∪ a) is a 1-separating
partition of M\a, a contradiction to Lemma 59.

We may now assume that b ∈ A− `. Then ((A− `)∪a,B) is a non-trivial 2-separation
of M\`. Thus (A− `) ∪ a = {a, b}, so A = {b, `}. Hence B = X and r({b, `}) = 3. Thus
80.1 holds.

As r(X ∪ a) = r(M) − 1, we deduce that {b, `} is a prickly 3-separator of M . Now
M\` ↓ b, which, by Lemma 18, equals M ↓ b\`, has a c-minor isomorphic to N . Hence
so does M ↓ b and, by symmetry, M ↓ a. Thus, by Lemma 54, part (ii) of the lemma
holds.

Lemma 81. Suppose MY is P5 or P8. Let a be an element of Y for which u({a}, {p}) = 0.
Then

(i) M/a has a 2-separation; and

(ii) for every 2-separation (A,B) of M/a with ` in A,

(a) b ∈ B;

(b) (A− `, B ∪ a) is a 2-separation of M\` and |B − b| > 2;

(c) |A− `| 6 2 and if |A− `| = 1, then A− ` consists of a line of M/a;

(d) rM/a(A− `) = rM/a(A); and

(e) u({a, b}, A− `) = 0.

Moreover, if (X, Y ) is the unique non-trivial 2-separation of M\`, then M/a has a unique
2-separation (A,B) with ` in A. Further, A− ` consists of a line of M/a.

Proof. Certainly M\`/a and hence M/a has a c-minor isomorphic to N . By Lemma 79,
` is a line and u(X, `) = 0. As the theorem fails, M/a is not 3-connected, but, by
Lemma 59, it is 2-connected. Let (A,B) be a 2-separation of M/a with ` in A.

81.1. b ∈ B.

Suppose b ∈ A. Then a is skew to B in M , so (A ∪ a,B) is a 2-separation of M , a
contradiction. Thus 81.1 holds.
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81.2. M does not have a point c such that B = {b, c}.
Assume the contrary. We have rM/a(A) + rM/a(B)− r(M/a) = 1, that is, r(A ∪ a)−

2 + r({a, b, c}) − r(M) = 1. But r(A − `) 6 r(A ∪ a) − 2 and A − ` = X − c. Hence
r(X−c)+r({a, b, c})−r(M) 6 1. Since r(M) = r(M\`), this implies that (X−c, {a, b, c})
is a 2-separation of M\` that violates the fact that µ(`) = 2.

If such a point c exists, then A∪ a ⊇ X ∪ a, so r(A∪ a) = r(M). Hence r({a, b, c}) =
3 = r({a, b}), so (X − c, {a, b, c}) is a 2-separation of M\` that violates the choice of Y .
Thus 81.2 holds.

Next we show that

81.3. (A− `, B) is a 2-separation of M\`/a.

Certainly (A − `, B) is 2-separating in M\`/a. We need to show that max{|A −
`|, r(A− `)} > 2. By Lemma 24, A 6= {`}. Assume A = {`, c} where c is a point of M/a.
Then c is a point in M as a is skew to X. Moreover,

c ∈ clM(X − c) (20)

otherwise (X − c, {a, b, c}) is a 2-separation of M\` that violates the choice of Y .
By Lemma 24, a is not skew to {c, `}, so rM/a({c, `}) < rM({c, `}) 6 3. Suppose

rM/a({c, `}) = 2. Then rM(B ∪ a) = r(M)− 1, so ({c}, B ∪ a) is a 1-separation of M\`,
a contradiction. We conclude that

81.4. rM/a({c, `}) = 1, so rM({a, c, `}) = 3 and r(M\`/a) = r(M/a).

Since c and ` are parallel points in M/a, we deduce that M\c has a c-minor isomorphic
to N . Thus M\c has a 2-separation (U, V ) where we may assume that ` ∈ U and a ∈ V
otherwise M has a 2-separation.

Continuing with the proof of 81.3, next we show that

81.5. b ∈ U .

Suppose b ∈ V . Then, as a ∈ V , we see that r(V ∪ `) 6 r(V ) + 1 and r(U − `) =
r(U)− 2. Thus U = {`} otherwise (U − `, V ∪ `) is a 1-separation of M\c. But, by (20),
c ∈ cl(E − c − `). Hence (U, V ∪ c) is a 2-separation of M , a contradiction. Hence 81.5
holds.

81.6. U 6= {`, b}.
Assume U = {`, b}. Then V = (X − c) ∪ a. Thus r(V ) > r(X) + 1 = r(M)− 1. But

r(U) > 3 so (U, V ) is not a 2-separation of M\c. This contradiction completes the proof
of 81.6.

81.7. M does not have a point d such that U = {`, b, d}.
Assume the contrary. Then

r(V ) = r((X − {c, d}) ∪ a) > r(M)− 2 (21)

so, as r(U) + r(V ) = r(M) + 1, we must have that

r({`, b, d}) = r(U) 6 3. (22)
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Thus equality must hold in each of (21) and (22).
As r({a, c, `}) = 3, we have

r({b, d}) + r((X − d) ∪ {a, `}) = r({b, d}) + r((X − {c, d}) ∪ {a, `})
6 r({`, b, d}) + r((X − {c, d}) ∪ a) + 1

= r(M) + 2.

Now r({b, d}) = 3, otherwise {a, b, d} contradicts the choice of Y since at most one
of a and b is in E(N). Hence ({b, d}, (X − d) ∪ {a, `}) is a 3-separation of M . Thus
r((X−d)∪{a, `}) = r(M)−1, so r((X−d)∪a) 6 r(M)−1. Hence r(X−d) 6 r(M)−3,
while r(X) = r(M) − 2. Thus (X − d, {a, b, d}) is a 2-separation of M\` contradicting
the choice of Y . We conclude that 81.7 holds.

Now recall that {`, b} ⊆ U and a ∈ V . Moreover, r({a, c, `}) = 3 and u(a, b) = 1.
Thus

r(V ∪ {`, b}) 6 r(V ) + 2.

Also ` 6∈ cl(X ∪ b) otherwise {a} is 2-separating in M , a contradiction. Thus

r(U − {`, b}) 6 r(U)− 2.

It follows by 81.6 and 81.7 that (U − {`, b}, V ∪ {`, b}) is a 2-separation of M\c, so
(U −{`, b}, V ∪ {`, b} ∪ c) is a 2-separation of M . This contradiction completes the proof
of 81.3.

We deduce from 81.3 that (ii)(d) of the lemma holds, that is,

81.8. r((A− `) ∪ a) = r(A ∪ a).

Moreover, since a is skew to X, and A− ` ⊆ X, it follows, by Lemma 24, that

81.9. (A− `, B ∪ a) is a 2-separation of M\`.
Now (A,B) is a 2-separation of M/a and b ∈ B. Since b is a point of M/a, it follows

that |B| > 2, so |B ∪ a| > 3. Hence B ∪ a is the N -side of the 2-separation (A− `, B ∪ a)
of M\`. At most one member of {a, b} is in E(N). Since |E(N)| > 4, it follows that at
least two elements of N are in B − b, so |B − b| > 2. Thus (ii)(b) of the lemma holds.
Moreover, |A − `| 6 2. Since A − ` is one side of a 2-separation, if it contains a single
element, that element is a line of M/a. Thus (ii)(c) of the lemma holds.

Next we observe that

81.10. u({a, b}, A− `) = 0.

Since u({a, b}, X) = 1, we see that u({a, b}, A− `) 6 1. Assume u({a, b}, A− `) = 1.
Then r((A− `) ∪ {a, b}) = r(A− `) + 2. But r(A− `) + r(B ∪ a) = r(M\`) + 1. Thus

r((A− `) ∪ {a, b}) + r(B − b) 6 r(M\`) + 1. (23)

By 81.8, r((A−`)∪a) = r(A∪a). Hence we obtain the contradiction that (A∪{a, b}, B−b)
is a 2-separation of M . Thus 81.10 holds.

Now suppose that (X, Y ) is the unique non-trivial 2-separation of M\`. We complete
the proof of the lemma by showing that
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81.11. M/a has a unique 2-separation (A,B) with ` in A. Moreover, A− ` consists of a
line of M/a.

Let (A1, B1) and (A2, B2) be distinct 2-separations of M/a with ` in A1 ∩ A2. Then
b ∈ B1∩B2. By (ii)(c), |Ai−`| 6 2. Suppose |Ai−`| = 2. Then, by (ii)(b), (Ai−`, Bi∪a)
is a non-trivial 2-separation of M\`, so Ai − ` = Y , a contradiction as a 6∈ Ai − `. We
deduce that |Ai − `| = 1, so Ai − ` consists of a line mi of M/a.

Now ({m1}, B1∪a) and ({m2}, B2∪a) are 2-separations of M\`. Thus r({m1,m2}) = 4
otherwise one easily checks that ({m1,m2}, (B1 ∩ B2) ∪ a) is a 2-separation of M\` that
contradicts the uniqueness of (X, Y ). Now u(a,X) = 0, so u(a, {m1,m2}) = 0. Thus
rM/a({m1,m2}) = 4. But, by (ii)(d) of the lemma,

2 + 2 = rM/a({m1, `}) + rM/a({m2, `})
> rM/a({m1,m2, `}) + rM/a({`})
> 4 + 1.

This contradiction finishes the proof of 81.11 and thereby completes the proof of the
lemma.

Lemma 82. If MY = P8, then (X, Y ) is not the only non-trivial 2-separation of M\`.

Proof. Assume (X, Y ) is the unique such 2-separation. By Lemma 81, M/a and M/b
have unique 2-separations (A1, B1) and (A2, B2) with ` in A1 ∩A2. Moreover, A1− ` and
A2 − ` consist of lines `1 and `2 in M/a and M/b; and M\` has (A1 − `, B1 ∪ a) and
(A2 − `, B2 ∪ b) as 2-separations.

Assume `1 6= `2. Then {b, `2} ⊆ B1 ∪ a, so ` ∈ cl(B1 ∪ a). Hence (A1− `, B1 ∪ a∪ `) is
a 2-separation of M , a contradiction. Thus `1 = `2. Hence r({`1, b, `}) = r({`1, b}) = 4.
But we also know that r({`1, a, `}) = r({`1, a}) = 4. By Lemma 81(ii)(a) and (b), we see
that b /∈ clM/a(A1), so r({`1, `, b, a}) > 5. Thus

4 + 4 = r({`1, `, b}) + r({`1, `, a})
> r({`1, `, b, a}) + r({`1, `})
> 5 + r({`1, `}).

Therefore r({`1, `}) 6 3. As u({`1}, {`}) = 0, we deduce that r({`}) = 1, a contradiction
to Lemma 79.

Lemma 83. If MY = P5, then (X, Y ) is not the only non-trivial 2-separation of M\`.

Proof. Assume (X, Y ) is the unique such 2-separation. Label Y so that u(a,X) = 0 and
u(b,X) = 1.

83.1. u(a, `) = 0.

Suppose u(a, `) = 1. Then r({a, `}) = 3. Now r(E − `) = r(E) and r(E − {`, a}) =
r(E) − 1. Thus, by Lemma 77, {a, `} is a prickly 3-separator of M . Now M\` ↓ a has
a c-minor isomorphic to N since it is the 2-sum of MX and the 2-polymatroid consisting
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of the line b with the point p on it. But, by Lemma 18, M\` ↓ a = M ↓ a\`. Thus, by
Lemma 54, M ↓ a is 3-connected having a c-minor isomorphic to N , a contradiction. We
conclude that 83.1 holds.

By Lemma 81, M/a has a unique 2-separation and it has the form ({`1, `}, E −
{`1, `, a}) where `1 is a line of M/a. Moreover, r({`1, `, a}) = r({`1, `}). Now u(`, a) = 0
and, by Lemma 79, ` is a line of M . Thus

r({a, `}) = 4. (24)

Now M\`\a, and hence M\a, has a c-minor isomorphic to N . Thus M\a has a non-
trivial 2-separation (U, V ). Without loss of generality, we may assume that `1 ∈ U and
` ∈ V since r({`1, `}) = 4 = r({`1, `, a}).
83.2. b ∈ V .

Suppose b ∈ U . Then, as u(X, `) = 0, we see that, unless V = {`, c} for some point c,
the partition (U ∪ `, V − `) is a 2-separation of M\a, so (U ∪ `∪a, V − `) is a 2-separation
of M .

Consider the exceptional case. Then r(V − `) = r(V ) − 2 = 1. Now r(M\a, `) =
r(M)− 1 and r(U) + r(V ) = r(M) + 1. We see that r(U) = r(E − {a, `, c}) = r(M)− 2.
Hence λM\a,`({c}) = 0, a contradiction. We conclude that 83.2 holds.

We now have that V ⊇ {`, b}. Next observe that

83.3. (U, (V − `) ∪ a) is a 2-separation of M\`, and r((V − `) ∪ a) = r(V ).

To see this, first note that, since b ∈ V − `, we have

r((V − `) ∪ a) 6 r(V − `) + 1. (25)

We also have
r(V − `) 6 r(V )− 1 (26)

otherwise r(V − `) = r(V ) so ` ∈ cl(E − {a, `}). But r(E − {a, `}) = r(E) − 1, so
(E − a, {a}) is a 2-separation of M , a contradiction. Combining (25) and (26) gives 83.3.

Since (X, Y ) is the unique non-trivial 2-separation of M\`, we deduce that (V −`)∪a =
{a, b}. Moreover, by 83.3, r({a, b}) = 3 = r({b, `}). It follows using submodularity that
r({a, b, `}) = 4. Thus b ∈ clM/a({`}). Hence ({`1, `, b}, E − {`1, `, a, b}) is a 2-separation
of M/a, which contradicts the fact that ({`1, `}, E −{`1, `, a}) is the unique 2-separation
of M/a. This completes the proof of Lemma 83.

By Lemma 78, M\` has no 2-element 2-separating set that is a prickly 3-separating
set in M .

Lemma 84. Let {a, b} and {c, d} be disjoint 2-separating sets of M\` where each of a,
b, c, and d is a line, r({a, b}) = 3 = r({c, d}), and u({a}, E − {a, b, `}) = 0. Then either

(i) M/a is 3-connected having a c-minor isomorphic to N ; or

(ii) M/` has a c-minor isomorphic to N and ` ∈ clM/a({c, d}).
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Proof. Assume that the lemma fails. Let Z = E − {`, a, b, c, d}. Then, as neither {a, b}
nor {c, d} is a prickly 3-separating set of M , by Lemma 77, we see that

u(Z ∪ {c, d}, {`}) = 0 = u(Z ∪ {a, b}, {`}),

so u(Z, {`}) = 0 and u({a, b}, {`}) = 0. It follows, as u({a}, Z) = 0, that

uM/a (Z, {`}) = 0. (27)

Let X = E−{a, b, `} and Y = {a, b}. Then M\` = MX ⊕2MY where MY has ground
set {p, a, b}. Then MX has a c-minor isomorphic to N . As u({a}, X) = 0, it follows that
M\`/a, and hence M/a, has a c-minor isomorphic to N .

84.1. ` ∈ clM/a({c, d}).
Assume ` 6∈ clM/a({c, d}). Since M/a is not 3-connected, it has a 2-separation (A,B)

with ` ∈ A and b ∈ B. Moreover, by Lemma 81, we know that (A − `, B ∪ a) is a
2-separation of M\`, that |B − b| > 2, that |A− `| 6 2, and that ` ∈ clM/a(A− `).

Suppose |A− `| = 1. Then, by Lemma 81 again, A− ` consists of a line m of M/a and
` ∈ clM/a({m}). Thus m 6∈ {c, d}, so m ∈ Z and we have a contradiction to (27). Now
suppose that |A − `| = 2. Then ` ∈ clM/a(A − `). Thus {c, d} 6= A − `. If {c, d} avoids
A − `, then we again get a contradiction to (27). Thus A − ` meets {c, d} in a single
element. Then, by uncrossing the 2-separations (A − `, B ∪ a) and ({c, d}, E − {`, c, d})
of M\`, we see that (A− `)∪{c, d}) is a 3-element 2-separating set in M\`. At most one
element of {c, d} is in E(N). Thus (A− `) ∪ {c, d} is the non-N -side of a 2-separation of
M\`. This is a contradiction as this set has three elements. We conclude that 84.1 holds.

We shall complete the proof of Lemma 84 by showing that M/` has a c-minor iso-
morphic to N . In the argument that follows, it helps to think in terms of the ma-
troids that are naturally derived from the 2-polymatroids we are considering. We know
that M\` = MX ⊕2 MY where MY has ground set {a, b, p} with p being the basepoint
of the 2-sum. As {c, d} is 2-separating in M\`, it is also 2-separating in MX . Thus
MX = MZ⊕2MW where MW has ground set {c, d, q} with q being the basepoint of this 2-
sum. Now {c, d} does not span p otherwise {a, b, c, d} is 2-separating in M\` and contains
at most two elements of N , a contradiction to the definition of Y . By two applications of
Lemma 51, we see that MX , and hence MZ , has a c-minor isomorphic to N .

Now M\`/a equals MX after relabelling the element p of the latter by b. We will
call this relabelled 2-polymatroid M ′

X . By 84.1, M/a is obtained from M ′
X by adding

` to the closure of {c, d} as a point or a line. Thus M/a is the 2-sum with basepoint
q of M ′

Z and M ′
W where M ′

Z is obtained from MZ by relabelling p as b, while M ′
W is

obtained from MW by adding `. By (27), ` is skew to Z in M/a, so ` is skew to q in
M ′

W . Now ` is a not a line of M ′
W , otherwise at least one of c and d is parallel to the

basepoint q in M ′
W , so M/a/` and hence M/` has a c-minor isomorphic to N . Hence `

is a point of M ′
W , so M ′

W/` has rank 2. It has no point parallel to q otherwise M/a/`
has a c-minor isomorphic to N . Thus M ′

W/` can be obtained from one of P1, P2, or P4 by
relabelling the element p by q. In the first two cases, we can contract a point from M ′

W/`
to obtain a 2-polymatroid consisting of two parallel points, one of which is q, so we get
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the contradiction that M/a/` has a c-minor isomorphic to N . In the third case, deleting
one of the lines, say c, of M ′

W/` leaves d as a line through q. Thus {d} is 2-separating in
M/a\`\c. Compactifying d, we obtain a 2-polymatroid having a c-minor isomorphic to
N . Again we obtain the contradiction that M/a\` has a c-minor isomorphic to N .

Lemma 85. Let {a, b} and {c, d} be disjoint 2-separating sets of M\` where each of a,
b, c, and d is a line, r({a, b}) = 3 = r({c, d}). Assume M/` has a c-minor isomorphic to
N . Then at least one of u({a}, E−{`, a, b}) and u({b}, E−{`, a, b}) is not equal to one.

Proof. As before, let Z = E − {a, b, c, d, `}. Since the theorem fails, it follows by Lem-
mas 59 and 78 that M/` is 2-connected and neither {a, b} nor {c, d} is a prickly 3-
separating set of M . Moreover, by Lemma 79, ` is a line that is skew to each of Z ∪{a, b}
and Z∪{c, d}. Thus, if (R,B) is a 2-separation of M/`, then, by Lemma 24, u(R, {`}) > 1
and u(B, {`}) > 1.

By Lemma 32,

u(R, {`}) + u(B, {`}) + λM/`(R) = λM\`(R) + λM({`}),

so
u (R, {`}) + u(B, {`}) = λM\`(R) + 1. (28)

As u({`}, Z∪{a, b}) = 0 = u({`}, Z∪{c, d}), it follows by Lemma 25 that both R and
B meet both {a, b} and {c, d}. Without loss of generality, we may assume that {a, c} ⊆ R
and {b, d} ⊆ B.

Now suppose that u({a}, E − {`, a, b}) = 1 = u({b}, E − {`, a, b}). By Lemma 31(i),

u({a, c}, {b, d}) + u({a}, {c}) + u({b}, {d}) = u({a, b}, {c, d}) + u({a}, {b})
+ u({c}, {d}).

As µ(`) = 2, we see that u({a, b}, {c, d}) = 0, so u({a}, {c}) = 0 = u({b}, {d}). Thus

u({a, c}, {b, d}) = u({a}, {b}) + u({c}, {d}) = 2.

Hence u(R,B) > 2, that is, λM\`(R) > 2. Thus, by (28), u(R, {`}) = 2 or u(B, {`}) = 2.
By symmetry, we may assume the former. But, as u({c, d} ∪ Z, {`}) = 0 and u({c, d} ∪
Z, {a}) = 1, by Lemma 31(ii),

u({c, d} ∪ Z ∪ a, {`}) + 1 = u({c, d} ∪ Z ∪ a, {`}) + u({c, d} ∪ Z, {a})
= u({c, d} ∪ Z ∪ `, {a}) + u({c, d} ∪ Z, {`})
6 2 + 0.

Thus u({c, d}∪Z∪a, {`}) 6 1. But R ⊆ Z∪{a, c} so u(R, {`}) 6 1, a contradiction.

Lemma 86. The 2-polymatroid M\` does not have two disjoint 2-element 2-separating
sets.
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Proof. Assume that M\` has {a, b} and {c, d} as disjoint 2-separating sets. Then each of
a, b, c, and d is a line and r({a, b}) = 3 = r({c, d}). As before, let Z = E − {a, b, c, d, `}.
Suppose Y is {a, b} or {c, d}, and X = E − ` − Y . Then M\` = MX ⊕2 MY . By
Lemmas 70, 71, 73, 74, and 76, we know that MY is isomorphic to P5, P6, or P8. By
Lemma 79,

86.1. ` is skew to X, so ` is skew to each of a, b, c, and d.

When MY
∼= Pn, we shall say that Y is a type-n 2-separator of M\`.

86.2. Neither {a, b} nor {c, d} is of type-6.

Assume the contrary. Suppose {a, b} is of type-6. Then, by Lemma 85, M/` does not
have a c-minor isomorphic to N . Thus, by Lemma 84, neither u({c}, X) nor u({d}, X) is
0. Hence {c, d} is also of type-6. Suppose α ∈ {a, b} and γ ∈ {c, d}. Then r(Z∪{α, γ}) =
r(Z) + 2. Of course, r(M) = r(Z) + 4.

Suppose r(Z ∪ {α, γ} ∪ `) = r(M). Then u(Z ∪ {α, γ}, `) = 0. Let the elements of
{a, b, c, d} − {α, γ} be β and δ. In M\β\δ, the set {`} is 1-separating. Thus M\β\δ\` =
M\β\δ/`. As M\β\δ\` has a c-minor isomorphic to N , so does M/`. We then get a
contradiction to Lemma 85 since u(a,E − {`, a, b}) = 1 = u(b, E − {`, a, b}).

We may now assume that r(Z∪{α, γ}∪`) 6 r(M)−1. By 86.1, ` is skew to Z∪{a, b},
so r(Z ∪ a ∪ `) = r(M)− 1. Thus, using the submodularity of r, we have

2r(M)− 1 = r(Z ∪ a ∪ `) + r(M)

6 r(Z ∪ {a, c} ∪ `) + r(Z ∪ {a, d} ∪ `)
6 2r(M)− 2.

This contradiction establishes 86.2.
We now know that each of {a, b} and {c, d} is of type-5 or of type-8. In particular,

we may assume that u({a}, Z ∪ {c, d}) = 0 = u({c}, Z ∪ {a, b}). Since µ(`) = 2 and
{a, b, c, d} contains at most two elements of N , we see that

r({a, b, c, d}) = 6. (29)

By Lemma 84,

86.3. ` ∈ clM/a({c, d}) and ` ∈ clM/c({a, b}).
We deduce that r({a, c, d, `}) = r({a, c, d}) = 5 and r({a, b, c, `}) = r({a, b, c}) = 5.

By submodularity and (29),

10 = r({a, c, d, `}) + r({a, b, c, `})
> r({a, b, c, d, `}) + r({a, c, `})
> 6 + 4 = 10.

We conclude that
r({a, c, `}) = 4. (30)

Next we show the following.
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86.4. Both {a, b} and {c, d} are of type-5.

Suppose {a, b} is of type-8. Then u({b}, Z ∪ {c, d}) = 0. Thus we can replace a by b
in the argument used to prove (30) to get that r({b, c, `}) = 4. Hence

4 + 4 = r({a, c, `}) + r({b, c, `})
> r({a, b, c, `}) + r({c, `})
> 5 + 4.

This contradiction and symmetry implies that 86.4 holds.
Now, by Lemma 51, M\`\a, and hence M\a, has a c-minor isomorphic to N . Thus

M\a is not 3-connected. Let (U, V ) be a non-trivial 2-separation of M\a. Then we may
assume that ` ∈ U and c ∈ V otherwise M has a 2-separation.

Suppose d ∈ U . Then, by 86.1, (U∪c, V −c) is a 1-separation of M\a, a contradiction.
Thus d ∈ V . By 86.1 again, r(U − `) = r(U) − 2, so we obtain the contradiction that
(U−`, V ∪`∪a) is a 1- or 2-separation of M unless U−` consists of a single point, u, and
r(U) = 3. In the exceptional case, since M\a\` is 2-connected, we see that u ∈ cl(V ), so
(U − u, V ∪ u) is a 1-separation of M\a, a contradiction.

Lemma 87. Suppose that M has an element ` such that M\` has N as a c-minor. Then
the largest non-N-side in a 2-separation of M\` has size exceeding two.

Proof. Assume µ(`) = 2. Then M\` = MX ⊕2 MY where |Y | = 2. In Lemma 69, we
identified the nine possibilities for MY . We showed in Lemmas 70, 71, 73, 74, and 76
that MY must be isomorphic to P5, P6, or P8. In Lemmas 80, 82, and 83, we showed
that (X, Y ) cannot be the sole non-trivial 2-separation of M\`. Lemma 86 completes the
proof by showing that M\` cannot have a second non-trivial 2-separation.

Lemma 88. Suppose that M has an element ` such that M/` has N as a c-minor. Then
the largest non-N-side in a 2-separation of M/` has size exceeding two.

Proof. By Lemma 12, (M/`)∗ has a c-minor isomorphic to N∗. By Lemma 2, (M/`)∗ =
(M∗\`)[. Thus M∗\` has a c-minor isomorphic to N∗. Let Y be a largest non-N -side in
a 2-separation of M/`. By Lemma 2 again, Y is a largest non-N∗-side in a 2-separation
of M∗\`. Replacing (M,N) by (M∗, N∗) in Lemma 87, we deduce that |Y | > 2.

9 Finding a doubly labelled line

Recall that we are assuming that (M,N) is a counterexample to Theorem 57 where N
is a 3-connected 2-polymatroid that is a c-minor of M . In this section, we prove some
lemmas that will eventually enable us to deduce that M has a doubly labelled line. The
first step in this process is to prove the following elementary but useful lemma.

Lemma 89. Suppose y ∈ E(M)−E(N). If y is not a doubly labelled element of M , and
M ′ has a special N-minor for some M ′ in {M\y,M/y}, then M ′ has N as a c-minor.
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Proof. Since y ∈ E(M) − E(N), some M ′′ in {M\y,M/y} has N as a c-minor. Since y
is not doubly labelled, we see that M ′′ = M ′.

The next lemma identifies an important dichotomy.

Lemma 90. Let M ′ be a c-minor of M having N as a c-minor and let (X ′, Y ′) be a
2-separation of M ′ having X ′ as the N-side. Assume that, for all elements y of Y ′, at
least one of M ′\y and M ′/y does not have a special N-minor. Then either

(i) uM ′({y}, X ′) = 1 for all y in Y ′; or

(ii) uM ′(Y ′ − y,X ′) = 0 for all y in Y ′.

Proof. Suppose y ∈ Y ′. If uM ′({y}, X ′) = 0, then, by Lemma 29, uM ′/y(X
′, Y ′ − y) = 1,

so, by Lemma 51(ii), M ′/y has a special N -minor. If uM ′(Y ′ − y,X ′) = 1, then, by
Lemma 51(i), M ′\y has a special N -minor. By hypothesis, M ′\y or M ′/y has no special
N -minor. We deduce the following.

90.1. Either uM ′({y}, X ′) = 1 or uM ′(Y ′ − y,X ′) = 0.

Next we show that all the elements of Y ′ behave similarly.

90.2. If uM ′({y}, X ′) = 1, then uM ′({z}, X) = 1 for all z in Y ′.

To see this, note first that M ′ = M ′
X′ ⊕2 M

′
Y ′ . Since uM ′({y}, X ′) = 1, it follows that

p ∈ clM ′
Y ′

({y}). Suppose z ∈ Y ′ − y. Then p ∈ clM ′
Y ′

(Y ′ − z). Hence uM ′(X ′, Y ′ − z) = 1

so M ′\z has a special N -minor. Thus M ′/z does not have a special N -minor. Hence, by
Lemma 51(ii), uM ′/z(X ′, Y ′−z) = 0, so, by Lemma 29, uM ′(X ′, {z}) = 1, and 90.2 holds.

Now suppose that uM ′({y}, X ′) = 0. Then, for all z in Y ′, by 90.2, uM ′({z}, X ′) = 0
so, by 90.1, uM ′(Y ′ − z,X ′) = 0.

The next lemma describes what happens when (i) of Lemma 90 holds.

Lemma 91. Suppose M\\` has N as a c-minor. Let (X, Y ) be a 2-separation of M\` in
which X is the N-side and |Y | > 3. Then

(i) Y contains a doubly labelled element; or

(ii) u({y}, X) 6= 1 for some y in Y ; or

(iii) Y contains an element y such that M\\y has N as a c-minor and every non-trivial
2-separation of M\y has the form (Z1, Z2) where Z1 is the N-side and Z2 ⊆ Y − y.

Proof. Suppose that u({y}, X) = 1 for all y in Y and that Y does not contain any
doubly labelled elements. As usual, we write M\` as the 2-sum with basepoint p of the
2-polymatroids MX and MY having ground sets X ∪ p and Y ∪ p, respectively. First we
show that

91.1. Y does not contain a point.
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Assume that Y does contain a point, z. Then, since u({z}, X) = 1, we see that z is
parallel to p in MY . By Proposition 47, M\`\z is 2-connected. Hence M\z is 2-connected.
Also, in MX and MY , the sets X and Y − z span p, and hence span z. We show next that

91.2. M\z is 3-connected.

Suppose that M\z has a 2-separation (R,B) where ` ∈ R. Then (R − `, B) is 2-
separating in M\z\`. Note that r(M\`) = r(M), so r(M\`\z) = r(M). We have

r(R) + r(B) = r(M\z) + 1.

Thus
r(R− `) + r(B) 6 r(M\z, `) + 1.

Now R 6= {`} otherwise Y − z ⊆ B and we obtain the contradiction that (R,B ∪ z) is a
2-separation of M . Observe that, since M\`\z is 2-connected, r(R− `) = r(R). As M is
3-connected, neither B nor R − ` spans z. Thus neither X nor Y − z is contained in B
or R− `. Hence (X, Y − z) and (R− `, B) cross.

Now λM\`\z(Y − z) = λM\`(Y ) = 1 and λM\`\z(B) = 1. Thus, by uncrossing,
λM\`\z(B ∩ (Y − z)) = 1. Since ` ∈ cl(R− `) and z ∈ cl(X), we deduce that λM(B ∩ (Y −
z)) = 1. As M is 3-connected, it follows that B ∩ (Y − z) consists of a single point y.
Then, by assumption, u(X, {y}) = 1. But u(X, {z}) = 1. Thus y is parallel to p in MY .
Hence y and z are parallel points in M , a contradiction. We conclude that 91.2 holds.

To complete the proof of 91.1, we shall show that M\\z has a special N -minor. We
know that M\` = MX ⊕2 MY where z is parallel in MY to the basepoint p of the 2-sum.
Moreover, by Lemma 49, MX has a special N -minor. Now M\`\z is 2-connected and, by
[5, Proposition 3.1], M\`\z = MX ⊕2 (MY \z). Hence M\z has a special N -minor. Thus
M\\z is 3-connected having a c-minor isomorphic to N , a contradiction. We deduce that
91.1 holds.

We now know that every element of Y is a line y with u(X, {y}) = 1. Hence, in MY ,
the basepoint p lies on y. Thus, for all y in Y , we see that M\`\y is 2-connected. Then,
by Lemma 48 again, we deduce that

91.3. for all y in Y , both M\`\y and M\y have special N -minors.

Since every line in Y contains p, it follows that MY /p is a matroid. Next we show that

91.4. MY /p has a circuit.

Assume that MY /p has no circuits. Let y and y′ be two distinct elements of Y . Then
r(X ∪ (Y −{y, y′})) = r(X)+ |Y −{y, y′}| and r(X ∪Y ) = r(X)+ |Y |. As a step towards
91.4, we show that

91.5. u(X ∪ (Y − {y, y′}), {`}) = 0.

Suppose that u(X ∪ (Y − {y, y′}), {`}) > 1. Then, as r(Y ) = |Y |+ 1,

λM({y, y′}) = r(X ∪ (Y − {y, y′}) ∪ `) + r({y, y′})− r(M)

6 r(X) + |Y − {y, y′}|+ 1 + 3− r(M)

= r(X) + r(Y )− r(M\`) + 1 = 2.
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As M is 3-connected, we see that λM({y, y′}) = 2, so equality holds thoughout the last
chain of inequalities. Thus {y, y′} is a prickly 3-separator of M and λM\`({y, y′}) = 1.
By Lemma 54, M ↓ y is 3-connected. By Lemma 46(vi), (M\`) ↓ y = MX ⊕2 (MY ↓ y).
Thus uM\`↓y(X, Y − y) = 1 so, by Lemma 51(iii), (M ↓ y)\`, and hence M ↓ y, has a
special N -minor. This contradiction implies that 91.5 holds for all distinct y and y′ in Y .

As the next step towards proving 91.4, we now show that

91.6. M/` has a c-minor isomorphic to N .

In M\`, deleting all but one element, y, of Y leaves the 2-polymatroid that, when y
is compactified, equals MX with p relabelled as y. Hence M\`\(Y − y) has a c-minor
isomorphic to N . By 91.5, since |Y | > 3, we deduce that {`} is 1-separating in M\(Y −y).
Hence M\(Y − y)\` = M\(Y − y)/`, so, by 91.3, we deduce that 91.6 holds.

Still continuing towards the proof of 91.4, next we observe that

91.7. ` is a line of M .

Suppose ` is a point. By Lemma 40, M/` is 2-connected having one side of every
2-separation being a pair of points of M that are parallel in M/`. By 91.6, M must have
such a pair {u, v} of points. Then both M\u and M\v have c-minors isomorphic to N .
By Lemma 42, M has a triad of points containing ` and one of u and v, say u. Let w be
the third point in this triad. Then M\` has {u,w} as a series pair of points, so M\`/u,
and hence M/u, has a c-minor isomorphic to N . Thus the point u contradicts Lemma 58.

By 91.6, M/` has a 2-separation (U, V ). Thus r(U ∪ `) + r(V ∪ `) − r(M) = 3. By
symmetry, we may assume that U ⊆ (X ∪Y )−{y, y′} for some y′ in Y −y. Then, by 91.5
and 91.7, r(U ∪ `) = r(U)+2. Hence (U, V ∪ `) is a 2-separation of M . This contradiction
completes the proof of 91.4.

Choose y in Y such that y is in a circuit of MY /p and y ∈ E(M) − E(N). By
91.3, M\y has a special N -minor. Thus, by Lemma 89, M\y has N as a c-minor. Now
r(M\`\y) = r(M\`) = r(M) = r(M\y). Hence ` ∈ clM\y(X ∪ (Y − y)) and M\`\y is
2-connected. Next we show the following.

91.8. Every non-trivial 2-separation of M\y has the form (X ∪ Y ′ ∪ `, Y ′′) where Y ′ and
Y ′′ are disjoint and Y ′ ∪ Y ′′ = Y − y.

Let (A,B) be a non-trivial 2-separation of M\y that is not in the stated form. Without
loss of generality, ` ∈ A. Then X 6⊆ A. Since M\`\y is 2-connected having the same rank
as M\y, it follows that r(A−`) = r(A) and (A−`, B) is a 2-separation of M\`\y. We also
know that (X, Y − y) is a 2-separation of M\`\y. Now ` 6∈ cl(X) and ` 6∈ cl(Y − y). But
` ∈ cl(A− `), so (A− `)∩ (Y − y) 6= ∅ 6= (A− `)∩X. By uncrossing, λM\`\y(B ∩X) = 1.
As ` ∈ cl(A − `) and y ∈ cl(Y − y), we deduce that λM(B ∩ X) = 1. Thus B ∩ X
consists of a single point x of M . Then B ∩ (Y − y) 6= ∅. Therefore, by uncrossing again,
λM\`\y(X ∩ (A− `)) = 1, so λM\`(X ∩ (A− `)) = 1. Thus (X −x, Y ∪x) is a 2-separation
of M\`. If r(Y ∪ x) = r(Y ), then x is parallel to p in MX . Hence, we see that x lies on
y. Then M\x is 3-connected having a special N -minor, a contradiction. Thus we may
assume that r(Y ∪ x) = r(Y ) + 1. Then r(X − x) = r(X)− 1. Hence, in MX , the points
p and x are a series pair. Thus MX is the 2-sum with basepoint q of a 2-polymatroid
M ′

X , say, and a copy of U2,3 with ground set {q, p, x}. Moreover, every element of Y is a
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line through p in MY . Thus we see that both M\y and M/y have special N -minors, a
contradiction. We conclude that 91.8 holds, so (iii) of the lemma holds, and the proof of
the lemma is complete.

Next we determine what happens when (ii) of Lemma 90 holds.

Lemma 92. Suppose M\\` has N as a c-minor. Let (X, Y ) be a 2-separation of M\` in
which X is the N-side and |Y | > 3. Let MX⊕2MY be the associated 2-sum decomposition
of M\` with respect to the basepoint p. Then

(i) Y contains a doubly labelled element; or

(ii) u(Y − y,X) > 0 for some y in Y ; or

(iii) r(X ∪ ` ∪ y0) > r(X ∪ y0) for some y0 in Y , and M/y0 has a special N-minor.
Moreover, either

(a) every non-trivial 2-separation of M/y0 has the form (Z1, Z2) where Z1 is the
N-side and Z2 ⊆ Y − y0; or

(b) MX is the 2-sum with basepoint q of two 2-polymatroids, one of which is a copy
of U2,3 with ground set {p, z, q}.

Proof. Assume that neither (i) nor (ii) holds. Suppose y ∈ Y . As u(Y,X) = 1, it follows
that r(Y ) > r(Y − y) so

92.1. r(Y − y) 6 r(Y )− 1.

Next we show that

92.2. λMY
({y}) = λM\(X∪`)({y}) + 1.

We see that λMY
({y}) = rM({y}) + rMY

((Y − y)∪ p)− r(MY ). Since u(Y − y,X) = 0,
we deduce that rMY

((Y − y)∪ p) = rM(Y − y) + 1. As MY is 2-connected, r(Y ) = r(MY )
and 92.2 follows.

We now extend 92.1 as follows.

92.3. Let {y1, y2, . . . , yk} be a subset of Y . Then

r(Y − {y1, y2, . . . , yk}) 6 r(Y )− k.

By 92.1, r(Y − y1) 6 r(Y ) − 1 and r(Y − y2) 6 r(Y ) − 1. Thus, by submodularity,
r(Y − {y1, y2}) 6 r(Y )− 2. Repeating this argument gives 92.3.

Next we show the following.

92.4. For all y in Y , the 2-polymatroid M\`/y has a special N -minor and λM\`/y(X) = 1.

Let M ′ = M\`. By Corollary 33,

λM ′/y(X) = λM ′\y(X)− uM ′(X, y)− uM ′(Y − y, y) + r({y})
= λM ′\y(X)− rM ′(Y − y) + rM ′(Y ) as u(X, Y − y′) = 0 for all y′ in Y ;

= rM ′(Y )− rM ′(Y − y). (31)
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But

1 = λM ′(X)

= r(X) + r(Y )− r(M ′)

> r(X ∪ y)− r({y}) + r(Y )− r({y})− r(M ′) + r({y})
= λM ′/y(X).

We conclude, using (31) that, since r(Y ) 6= r(Y − y), we have λM ′/y(X) = 1 for all y in
Y . Then, by Lemma 51(ii), M ′/y has a special N -minor. Hence M\`/y has a special
N -minor, that is, 92.4 holds.

92.5. If y ∈ Y and ` is in a parallel pair of points in M/y, then r(X ∪ ` ∪ y) = r(X ∪ y).

To see this, observe that, as M is 3-connected, ` 6∈ clM(Y ). Thus ` is parallel to a
point of X in M/y, and 92.5 follows.

92.6. Let Y = {y1, y2, . . . , yn}. If r(X ∪ ` ∪ yi) = r(X ∪ yi) for all i in {1, 2, . . . , n},
then {yn−1, yn} is a prickly 3-separator of M , and M ↓ yn is 3-connected having a special
N -minor.

First observe that each yi in Y is a line for if yi is a point, then

r(X ∪ ` ∪ yi) = r(X ∪ yi) = r(X) + r({yi}) = r(X) + 1.

As r(Y − yi) 6 r(Y ) − 1, we deduce that (X ∪ ` ∪ yi, Y − yi) is a 2-separation of M , a
contradiction.

Continuing with the proof of 92.6, next we show the following.

92.7. For 1 6 k 6 n− 1,

r(X ∪ ` ∪ {y1, y2, . . . , yk}) = r(X) + 1 + k and

r(Y − {y1, y2, . . . , yk}) = r(Y )− k.

We argue by induction on k. By assumption, r(X∪`∪y1) = r(X)+r({y1}) = r(X)+2.
Moreover, r(Y − y1) 6 r(Y )− 1. Equality must hold otherwise we get the contradiction
that (X∪`∪y1, Y −y1) is a 2-separation of M . We deduce that the result holds for k = 1.
Assume it holds for k < m and let k = m > 2. Then

r(X ∪ {y1, y2, . . . , ym−1} ∪ `) + r(X ∪ {y2, y3, . . . , ym} ∪ `)
> r(X ∪ {y2, y3, . . . , ym−1} ∪ `) + r(X ∪ {y1, y2, . . . , ym} ∪ `).

If m = 2, then r(X ∪ {y2, y3, . . . , ym−1} ∪ `) = r(X ∪ `) > r(X) + 1. If m > 2, then
r(X ∪ {y2, y3, . . . , ym−1} ∪ `) = r(X) +m− 1 by the induction assumption. Thus

r(X ∪ {y1, y2, . . . , ym} ∪ `) 6 r(X) +m+ r(X) +m− (r(X) +m− 1)

= r(X) +m+ 1. (32)
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But
r(Y − {y1, y2, . . . , ym}) 6 r(Y )−m. (33)

It follows that equality must hold in (32) and (33). Thus, by induction, 92.7 holds.
By 92.7, r(Y − {y1, y2, . . . , yn−1}) = r(Y ) − (n − 1). But r(Y − {y1, y2, . . . , yn−1}) =

r({yn}) = 2. Thus r(Y ) = n + 1, and it follows by 92.7 that r({yn−1, yn}) = 3 and
{yn−1, yn} is a prickly 3-separating set in M . Hence, by Lemma 54, M ↓ yn is 3-connected.
Recall that

rM↓yn(Z) =

{
r(Z), if r(Z ∪ yn) > r(Z); and

r(Z)− 1, otherwise.

Thus

uM↓yn(X, Y − yn) = rM↓yn(X) + rM↓yn(Y − yn)− rM↓yn(X ∪ (Y − yn))

= r(X) + r(Y − yn)− r(M) + 1

= r(X) + r(Y )− r(M) by 92.7;

= 1.

It follows by Lemma 46(vi) that (M\`) ↓ yn = MX ⊕2MY ↓ yn. Then, by Lemma 51(iii),
(M\`) ↓ yn has a special N -minor. We deduce that M ↓ yn is 3-connected having a
special N -minor. Thus 92.6 holds.

Since we have assumed that the theorem fails, it follows, by 92.6, that, for some
element y0 of Y ,

r(X ∪ ` ∪ y0) > r(X ∪ y0).
By 92.4, M/y0 has a special N -minor. Thus M/y0 is not 3-connected. Moreover, by 92.5,
the element ` is not in a pair of parallel points of M/y0.

Let (A ∪ `, B) be a 2-separation of M/y0 with ` 6∈ A. Next we show that

92.8. (A,B) is an exact 2-separation of M/y0\`, and ` ∈ clM/y0(A).

If (A,B) is not exactly 2-separating in M/y0\`, then, by Proposition 47, MY /y0 is not
2-connected, so we obtain the contradiction that Y contains a doubly labelled element.
Thus rM/y0(A ∪ `) = rM/y0(A) and 92.8 holds.

We shall show that

92.9. either (iii)(b) holds, or (A,B) does not cross (X, Y − y0).
Assume each of A and B meets each of X and Y −y0. Then, by uncrossing, λM\`/y0(X∩

B) = 1. But u(X, {y0}) = 0, so rM(X∩B) = rM/y0(X∩B). Also rM((Y −y0)∪A∪`∪y0) =
rM/y0((Y − y0) ∪ A ∪ `) + r({y0}). Then

r(X ∩B)) + r((Y − y0) ∪ A ∪ ` ∪ y0)− r(M)

= rM/y0(X ∩B) + rM/y0((Y − y0) ∪ A ∪ `) + r({y0})− r(M/y0)− r({y0})
= λM/y0(X ∩B)

= λM/y0\`(X ∩B) as ` ∈ clM/y0(A);

= 1.
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Since M is 3-connected, it follows that X ∩B consists of a point z of M .
Now λM\`/y0((Y − y0) ∪ z) = 1, so

1 = rM/y0((Y − y0) ∪ z) + rM/y0(A ∩X)− r(M/y0)

= r(Y ∪ z)− r({y0}) + r((A ∩X) ∪ y0)− r({y0})− r(M) + r({y0})
= r(Y ∪ z)) + r(A ∩X)− r(M\`) since u(X, {y0}) = 0.

Thus Y ∪ z is 2-separating in M\`. If r(Y ∪ z) = r(Y ), then z is parallel to the basepoint
p of the 2-sum. Hence each element of Y is doubly labelled, a contradiction. Thus we may
assume that r(Y ∪ z) = r(Y ) + 1. Then r(X − z) = r(X)− 1. Now MX is 2-connected,
so r(MX) = r(X) and MX has {p, z} as a series pair of points. It follows that MX is
the 2-sum with basepoint q of a 2-polymatroid M ′

X and a copy of U2,3 with ground set
{q, z, p}. Thus (iii)(b) of the lemma holds. Hence so does 92.9.

We shall now assume that (iii)(b) does not hold.

92.10. A 6⊆ Y − y0 and B 6⊆ X and A 6⊆ X.

To see this, first suppose that A ⊆ Y − y0. Then, as ` ∈ clM/y0(A), we deduce that
` ∈ clM(Y ), a contradiction. Thus A 6⊆ Y − y0.

Now suppose that B ⊆ X. We have

1 = λM/y0(B)

= rM/y0(B) + rM/y0(A ∪ `)− r(M/y0)

= r(B ∪ y0)− r({y0}) + r(A ∪ ` ∪ y0)− r({y0})− r(M) + r({y0})
= r(B) + r(A ∪ ` ∪ y0)− r(M) as B ⊆ X.

Thus (A ∪ ` ∪ y0, B) is a 2-separation of M , a contradiction. Thus B 6⊆ X.
Next suppose that A ⊆ X. As (A ∪ `, B) is a 2-separation of M/y0, we have

1 = rM/y0(A ∪ `) + rM/y0(B)− r(M/y0)

= r(A ∪ ` ∪ y0)− r({y0}) + r(B ∪ y0)− r({y0})− r(M) + r({y0})
> r(A ∪ y0)− r({y0}) + r(B ∪ y0)− r(M)

> r(A) + r(B ∪ y0)− r(M\`) as A ⊆ X;

> 1 as M\` is 2-connected.

We deduce that equality holds throughout, so r(A ∪ ` ∪ y0) = r(A ∪ y0). But A ⊆ X, so
r(X ∪ ` ∪ y0) = r(X ∪ y0), contradicting the choice of y0. Hence A 6⊆ X, so 92.10 holds.

By 92.9, we deduce that B ⊆ Y − y0. Since, by 92.4, M/y0 has a special N -minor, we
see that (iii)(a) of the lemma holds, so the lemma is proved.

We now combine the above lemmas to prove the following result. This lemma and its
corollary are the main results of this section.

Lemma 93. Suppose M\` has N as a c-minor. Let (X, Y ) be a 2-separation of M\`
having X as the N-side and |Y | = µ(`). Then Y contains a doubly labelled element.
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Proof. By Lemma 87, |Y | > 3. Assume that Y does not contain a doubly labelled element.
Then, by Lemma 91,

(i)(a) u({y}, X) 6= 1 for some y in Y ; or

(i)(b) Y contains an element y such that M\\y has N as a c-minor and every non-trivial
2-separation of M\y has the form (Z1, Z2) where Z1 is the N -side and Z2 ⊆ Y − y.

Now, since |Y | = µ(`), outcome (iii)(b) of Lemma 92 does not arise. Thus, by that
lemma and Lemma 89,

(ii)(a) u(Y − y,X) > 0 for some y in Y ; or

(ii)(b) Y contains an element y such that M/y has N as a c-minor and every non-trivial
2-separation of M/y has the form (Z1, Z2) where Z1 is the N -side and Z2 ⊆ Y − y.

By Lemma 90, (i)(a) and (ii)(a) cannot both hold. Thus (i)(b) or (ii)(b) holds. There-
fore, for some y in Y , either M\\y has N as a c-minor and has a 2-separation (Z1, Z2) where
Z1 is the N -side, Z2 ⊆ Y −y, and |Z2| = µ(y) < µ(`), or M/y has N as a c-minor and has
a 2-separation (Z1, Z2) where Z1 is the N -side, Z2 ⊆ Y − y, and |Z2| = µ∗(y) < µ(`). We
can now repeat the argument above using (y, Z2) in place of (`, Y ) and, in the latter case,
M∗ in place of M . Since we have eliminated the possibility that µ(`) = 2 or µ∗(`) = 2,
after finitely many repetitions of this argument, we obtain a contradiction that completes
the proof.

Corollary 94. The 2-polymatroid M contains a doubly labelled line.

Proof. Take ` in E(M)− E(N). Then M\` or M/` has N as a c-minor, so applying the
last lemma to M or its dual gives that M has a doubly labelled element. By Lemma 58,
this element is a line.

10 Non-N -3-separators exist

The purpose of this section is prove the existence of a non-N -3-separating set in M where
we recall that such a set Y is exactly 3-separating, meets E(N) in at most one element,
and, when it has exactly two elements, both of these elements are lines. The following
lemma will be key in what follows.

Lemma 95. Let (X, Y ) be a 2-separation of M\` where X is the N-side, |Y | > 2, and
Y is not a series pair of points in M\`. Then Y contains no points.

Proof. Assume that Y contains a point y. Then, by Lemma 58, y is not doubly labelled.

95.1. M\y or M/y has a special N -minor.

To see this, consider the 2-connected 2-polymatroid MY . By Lemma 36, MY \y or
MY /y is 2-connected, so uM\y(X, Y −y) = 1 or uM/y(X, Y −y) = 1. As MX has a special
N -minor, so does M\y or M/y.
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95.2. M\y does not have a special N -minor.

Assume M\y does have a special N -minor. Then, as y is not doubly labelled, M/y
does not have a special N -minor. Then, by Lemma 51(ii), uM/y(X, Y − y) = 0, that is,
rM/y(X)+rM/y(Y −y)−r(M/y) = 0, so r(X∪y)+r(Y ) = r(M)+r({y}) = r(M)+1. But
r(X)+r(Y ) = r(M)+1, so r(X∪y) = r(X) and r(Y −y) = r(Y ) otherwise (X∪y, Y −y)
is a 1-separation of M\`, a contradiction to Lemma 59. Since y ∈ Y and r(X∪y) = r(X),
we see that u(X, {y}) = 1. But u(X, Y ) = 1. Thus, in MY , the point y is parallel to the
basepoint p of the 2-sum. Hence M\`\y is 2-connected and r(M\`\y) = r(M).

Let (A ∪ `, B) be a non-trivial 2-separation of M\y where ` 6∈ A. Now

1 6 r(A) + r(B)− r(M\`, y)

6 r(A ∪ `) + r(B)− r(M\y)

= 1.

Thus r(A) = r(A ∪ `). Hence ` ∈ cl(A) so r(A) > 2. Continuing with the proof of 95.2,
we now show the following.

95.3. (A,B) crosses (X, Y − y).

Because y ∈ cl(X)∩ cl(Y − y) but y /∈ cl(A)∪ cl(B), we deduce that neither A nor B
contains X or Y − y, so 95.3 holds.

By uncrossing, λM\`,y(B ∩ (Y − y)) = 1. But ` ∈ cl(A) and y ∈ cl(X) so λM(B ∩ (Y −
y)) = 1. Hence B ∩ (Y − y) consists of a single point, say z. As z is not parallel to y,
we deduce that u(X, {z}) = 0. Thus, by Lemma 29, uM/z(X, Y − z) = λM\`/z(X) = 1.
Hence, by Lemma 51(ii), M\`/z, and hence M/z, has a special N -minor. On the other
hand,

1 = u(X, {y}) 6 u(X, Y − z) 6 u(X, Y ) = 1.

Thus uM\z(X, Y − z) = 1 so M\z has a special N -minor. Since z is a point, we have a
contradiction to Lemma 58 that proves 95.2.

By combining 95.1 and 95.2, we deduce that M/y has a special N -minor but M\y
does not. Since (M,N) is a counterexample, M/y is not 3-connected. By Lemma 59,
M/y is 2-connected.

As M\y does not have a special N -minor, by Lemma 51(i), u(X, Y − y) = 0. But
u(X, Y ) = 1. As y is a point, it follows that

r(Y − y) = r(Y )− 1

and r(X ∪ (Y − y)) = r(X ∪ Y ). Moreover, as (X ∪ y, Y − y) is not a 1-separation of
M\`, we deduce that

95.4. r(X ∪ y) = r(X) + 1.

Now r(MY \p, y) = r(Y −y) = r(Y )−1. But r(MY \p) = r(Y ). If r(MY \y) = r(Y )−1,
then {y} is a 1-separating set in MY . We deduce that {p, y} is a series pair of points in
MY . Thus MY \y is not 2-connected but MY is, so, by Lemma 36, MY /y is 2-connected.
Hence, by Proposition 47, M\`/y is 2-connected.
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95.5. ({`}, X ∪ (Y − y)) is not a 2-separation of M/y.

Assume the contrary. Then r({`, y}) + r(X ∪ Y ) = r(M) + 2. But rM/y({`}) = 2
otherwise we do not have a 2-separation. Thus r({`, y}) = 3, so ({`}, X ∪ Y ) is a 2-
separation of M , a contradiction. Therefore 95.5 holds.

Let (A∪ `, B) be a 2-separation of M/y with ` not in A. By 95.5, A 6= ∅. Since M/y\`
is 2-connected, λM/y\`(A) > 0. Hence λM/y\`(A) = 1, so ` ∈ clM/y(A). Hence one easily
checks that

95.6. (i) r(A ∪ y ∪ `) = r(A ∪ y); and

(ii) r(A ∪ y) + r(B ∪ y) = r(M\`) + 2.

Next we show that

95.7. (A,B) crosses (X, Y − y).

Assume B∩(Y −y) = ∅ or B∩X = ∅. As r(X∪y) = r(X)+1 and r(Y ) = r(Y −y)+1,
we have r(B ∪ y) = r(B) + 1. Then, as r(A ∪ y ∪ `) = r(A ∪ y), we have, by 95.6,

r(A ∪ y ∪ `) + r(B) = r(M) + 1,

that is, (A∪y∪`, B) is a 2-separation of M , a contradiction. We deduce that B∩(Y −y) 6=
∅ 6= B ∩X.

Now assume thatA∩(Y−y) = ∅. ThenA ⊆ X and Y−y ⊆ B, so r(X∪y∪`) = r(X∪y).
As r(X ∪ y) = r(X) + 1 and r(Y − y) = r(Y )− 1, it follows that (X ∪ y ∪ `, Y − y) is 2-
separating in M . Hence Y −y consists of a single point z. Now r(X)+r(Y ) = r(M\`)+1,
so r(X) = r(M\`) − 1. As M\` is connected, neither y nor z is in cl(X) so {y, z} is a
series pair of points in M\`, a contradiction. Hence A ∩ (Y − y) 6= ∅.

Finally, assume that X ∩ A = ∅. Then A ⊆ Y − y, so, as r(A ∪ y ∪ `) = r(A ∪ y), it
follows that r(Y ∪ `) = r(Y ), so (X, Y ∪ `) is a 2-separation of M , a contradiction. We
conclude that 95.7 holds.

Next we determine the structure of the set B.

95.8. In M , the set B consists of two points, x′ and y′, that lie in B ∩X and B ∩ (Y − y),
respectively.

By uncrossing, λM\`/y(X ∩B) = 1, so

r((X ∩B) ∪ y) + r(A ∪ Y )− r(M\`) = 2.

As X ∩ B ⊆ X, we deduce that r((X ∩ B) ∪ y) = r(X ∩ B) + 1. Also y ∈ Y , so
r(A ∪ Y ) = r(A ∪ Y ∪ `). Thus (X ∩ B,A ∪ Y ∪ `) is 2-separating in M . Hence X ∩ B
consists of a point, say x′.

By uncrossing again, we see that λM\`/y((Y − y) ∩B) = 1, so

r(((Y − y) ∩B) ∪ y) + r(A ∪X ∪ y)− r(M\`) = 2.

Thus
r((Y − y) ∩B) + r(A ∪X ∪ y ∪ `) = r(M) + 1
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since r(((Y − y) ∩ B) ∪ y) = r((Y − y) ∩ B) + 1 and r(A ∪X ∪ y) = r(A ∪ X ∪ y ∪ `).
Hence ((Y −y)∩B,A∪X ∪y∪ `) is 2-separating in M , so (Y −y)∩B consists of a single
matroid point, y′. We deduce that 95.8 holds.

95.9. The element y′ is doubly labelled.

To see this, first observe that, in M/y, the set B is a 2-separating set consisting of
two matroid points, x′ and y′. Suppose rM/y(B) = 2. Then rM/y(A∪ `) = r(M/y)− 1, so
r(A∪ `∪y) = r(M)−1. Hence (A∪ `∪y, {x′, y′}) is a 2-separation of M , a contradiction.
We deduce that rM/y(B) = 1 so {x′, y′} is a pair of parallel points in M/y. Then M/y\y′,
and so M\y′, has a special N -minor.

Now rM/y({x′, y′}) = 1, so r({x′, y′, y}) = 2. Thus y ∈ clM/y′(X), so r(X ∪ y′ ∪ y) =
r(X ∪ y′). But, by 95.4, r(X ∪ y) > r(X), so r(X ∪ y′) > r(X). Hence u(X, {y′}) = 0.
Thus, by Lemma 29, uM/y′(X, Y − y′) = u(X, Y ) = 1. We conclude by Lemma 51 that
M/y′ has a special N -minor. Therefore 95.9 holds.

As 95.9 contradicts Lemma 58, we deduce that Lemma 95 holds.

Lemma 96. There is a c-minor N0 of M that is isomorphic to N such that M has a
non-N0-3-separating set.

Proof. By Corollary 94, M has a doubly labelled line `. Moreover, by Lemma 59, each of
M\` and M/` is 2-connected.

Assume the lemma fails. Let ND and NC be special N -minors of M\` and M/`,
respectively. We now apply what we have learned earlier using ND in place of N . Let
(X, Y ) be a 2-separation of M\` in which X is the ND-side and |Y | = µ(`). Then |Y | > 3.
Now u(X, {`}) ∈ {0, 1}.

We show next that

96.1. u(X, {`}) = 0 and u(Y, {`}) = 0.

Assume that u(X, {`}) = 1. Then r(X ∪ `) = r(X) + 1, so λM(Y ) = 2. Thus Y is a
non-ND-3-separating set, a contradiction. Thus u(X, {`}) = 0. Similarly, if u(Y, {`}) = 1,
then λM(X) = 2, so Y ∪ ` is a non-ND-3-separating set. This contradiction completes the
proof of 96.1.

We deduce that M\` has a 2-separation (D1, D2) where D1 is the ND-side, |D2| =
µ(`) > 3, and u(D1, `) = 0 = u(D2, `). A similar argument to that used to show 96.1
shows that M/` has a 2-separation (C1, C2) where C1 is the NC-side, |C2| = µ∗(`) > 3,
and u(C1, `) = 2 = u(C2, `). We observe here that the definition of µ∗(`) depends on NC

here rather than on ND.
By the local connectivity conditions between ` and each of D1, D2, C1, and C2,

96.2. (C1, C2) and (D1, D2) cross.

We have r(D1)+r(D2) = r(E−`)+1 and r(C1)+r(C2) = r(E−`)+3. By uncrossing,

λM\`(D2 ∩ C2) + λM\`(D1 ∩ C1) 6 4.

Suppose λM\`(D2 ∩ C2) 6 1. Since ` ∈ cl(D1 ∪ C1), it follows that λM(D2 ∩ C2) 6 1.
Thus D2 ∩ C2 consists of a single point, z. Then

2 = u(C2, {`}) 6 u(D1 ∪ z, {`}) 6 u(D1, {`}) + 1 = 1,
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a contradiction. We deduce that λM\`(D2 ∩C2) = 2 = λM\`(D1 ∩C1), so λM(D2 ∩C2) =
2 = λM(D1 ∩ C1). By symmetry, λM(D1 ∩ C2) = 2 = λM(D2 ∩ C1).

Clearly each of D2∩C1 and D2∩C2 contains at most one element of ND. As |D2| > 3,
we deduce from Lemma 95 thatD2 contains no points. Hence, some Z in {D2∩C1, D2∩C2}
contains at least two elements. Then Z is a non-ND-3-separator of M .

For the rest of the proof of Theorem 57, we will use the c-minor N0 of M found in the
last lemma. To avoid cluttering the notation, we will relabel N0 as N .

Lemma 97. Let Y1 be a minimal non-N-3-separating set in M with |Y1| > 3, and let
X1 = E(M)− Y1. Suppose ` is an element of Y1 such that M\` has N as a c-minor. Let
(A,B) be a 2-separation of M\` where A is the N-side and |B| = µ(`). Then one of the
following holds.

(i) λM\`(Y1 − `) = 1; or

(ii) B ⊆ Y1 − `; or

(iii) (A,B) crosses (X1, Y1 − `) and λM\`(A ∩ (Y1 − `)) = 1 = λM\`(B ∩ (Y1 − `)), while
λM\`(A ∩X1) = 2 = λM\`(B ∩X1) = λM\`(Y1 − `).

Proof. Assume neither (i) nor (ii) holds. Then ` ∈ cl(Y1 − `) and B 6⊆ Y1 − `. If B ⊆ X1,
then λM(B) = 1, a contradiction. If B ⊇ Y1 − `, then λM(A) = 1, a contradiction.
Finally, observe that |X1 ∩ A| > 2 since |E(N)| > 4 and X1 and A are the N -sides of
their separations. We conclude that (A,B) crosses (X1, Y1 − `).

By Lemma 87, |B| > 3. By Lemma 95, B contains no points. Now λM\`(B ∩X1) > 2
otherwise, as ` ∈ cl(Y1−`), we get the contradiction that λM(B∩X1) = 1. By uncrossing,
we deduce that λM\`(A ∩ (Y1 − `)) 6 1. Since |X1 ∩ A| > 2, we get, similarly, that
λM\`(A ∩ X1) > 2, so λM\`(B ∩ (Y1 − `)) 6 1. As M\` is 2-connected, we deduce that
λM\`(A ∩ (Y1 − `)) = 1 = λM\`(B ∩ (Y1 − `)). Hence λM\`(A ∩X1) = 2 = λM\`(B ∩X1).
We conclude that (iii) holds. Hence so does the lemma.

11 Finding big enough 3-separators

In this section, we first establish 63, which is restated in the next lemma. We also start
the proof of 65. That proof will be completed in Section 12.

Lemma 98. M has a minimal non-N-3-separator with at least three elements.

Proof. Assume every minimal non-N -3-separating set has exactly two elements. Let {a, b}
be such a set, Z. Then both of its members are lines. We may assume that b 6∈ E(N).
Suppose first that r(Z) = 2. Then a and b are parallel lines. Suppose that N is a c-minor
of M/b. Since a is a loop of M/b, we deduce that a /∈ E(N) so M\a has N as a c-minor.
Since M\a is 3-connected, this is a contradiction. We may now assume that M\b has N
as a c-minor. Since it is 3-connected, we have a contradiction that implies that r(Z) > 2.
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Suppose next that r(Z) = 4. Then r∗(Z) = ||Z||+r(E−Z)−r(M) = 4−2 = 2. Hence
Z consists of a pair of parallel lines in M∗, so we obtain a contradiction as above. We
may now assume that r(Z) = 3. Then Z is a prickly 3-separating set and, by Lemma 54,
M ↓ b is 3-connected. Hence M ↓ b has no c-minor isomorphic to N .

Now M\b or M/b has N as a c-minor. We begin by assuming the former. Let (S∪a, T )
be a non-trivial 2-separation of M\b with a 6∈ S. Suppose the non-N -side of (S ∪ a, T )
has µ(b) elements. By Lemma 87, µ(b) > 3. We have r(S ∪ a) + r(T ) − r(M) = 1. As
u({a}, {b}) = 1 and M is 3-connected, r(S ∪ a ∪ b) = r(S ∪ a) + 1, so

λM(T ) = 2. (34)

Moreover,
r(S ∪ a) > r(S) + 1

otherwise r(S ∪ a) = r(S) so r(E − b) = r(E − {a, b}), a contradiction.
Next we show the following.

98.1. Suppose M\b has a 2-separation (S1, S2) where S1 is the N -side and S2 contains a
prickly 3-separator {u, v} where u /∈ E(N). Then M\b ↓ u is not 2-connected.

Suppose M\b ↓ u is 2-connected. Now M\b = M1 ⊕2 M2 where Mi has ground set
Si ∪ p. Since M\b ↓ u is 2-connected, uM\b↓u(S1, S2 − u) = 1. Then, by Lemma‘51(iii),
M\b ↓ u has a special N -minor. By Lemma 54, M ↓ u is 3-connected. Since it has a
c-minor isomorphic to N , we have a contradiction. Thus 98.1 holds.

Now suppose that T is the N -side of (S ∪ a, T ). Then, by Lemma 95, S ∪ a contains
no points. Assume that r(S ∪ a) = r(S) + 1. As r(S ∪ a) + r(T ) − r(M\b) = 1, we see
that

[r(S) + 1] + r(T )− [r(M\b, a) + 1] = 1.

Hence u(S, T ) = 1, so, by Lemma 51(i), M\b\a has a special N -minor. As {a, b} is a
prickly 3-separating set, we see that M\b\a = M ↓ b\a so M ↓ b has a c-minor isomorphic
to N , a contradiction.

Next we consider the case when T is the N -side of (S ∪a, T ), and r(S ∪a) = r(S) + 2.
Then r(S) + r(T ∪ a ∪ b) = r(M) + 2. Thus S is a non-N -3-separator and so contains a
minimal such set, {u, v} where u /∈ E(N). From above, we know that {u, v} is a prickly
3-separator of M . By 98.1, M\b ↓ u is not 2-connected. Now M\b ↓ u = M ↓ u\b. Let
(J,K) be a 1-separation of M ↓ u\b with a ∈ J . Then rM↓u(J ∪ b) 6 rM↓u(J) + 1. Thus

rM↓u(J ∪ b) + rM↓u(K)− r(M ↓ u) 6 [rM↓u(J) + rM↓u(K)− r(M ↓ u\b)]
+ [1 + r(M ↓ u\b)− r(M ↓ u)]

= 1 + r(M ↓ u\b)− r(M ↓ u).

By Lemma 54, M ↓ u is 3-connected, so r(M ↓ u\b) = r(M ↓ u), and K consists of a
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single point, k, of M ↓ u. Then

1 = rM↓u(J) + rM↓u({k})− r(M ↓ u\b)
= rM↓u(E − {b, u, k}) + rM↓u({k})− r(M ↓ u)

= r(E − {b, k})− 1 + r({k})− r(M) + 1

= r(E − {b, k}) + r({k})− r(M\b).

Hence {k} is 1-separating in M\b. Thus k contradicts Lemma 58.
When M\b has N as a c-minor, it remains to consider the case when S∪a is the N -side

of (S ∪ a, T ). As µ(b) > 3, it follows that |T | > 3. By (34), λM(T ) = 2. By assumption,
T contains a minimal non-N -3-separating set T ′. The latter consists of a pair, {u, v}, of
lines that form a prickly 3-separating set. We may assume that u 6∈ E(N). Now M\b is
certainly 2-connected. By Lemma 54, M ↓ u is 3-connected. Since u({a}, {b}) = 1, it
follows that M ↓ u\b is 2-connected, a contradiction. We conclude that M\b does not
have a c-minor isomorphic to N .

We now know that M/b has N as a c-minor. Moreover, M∗ has N∗ as a c-minor and
has {a, b} as a prickly 3-separating set; and (M/b)∗ = (M∗\b)[. This means we can use
(M∗, N∗,M∗\b) in place of (M,N,M\b) in the argument above to complete the proof of
the lemma.

The argument to establish that M has a minimal non-N -3-separator with at least four
elements is much longer than that just given since it involves analyzing a number of cases.
We shall use three preliminary results. In each, we denote E(M)− Y1 by X1.

Lemma 99. Let Y1 be a minimal non-N-3-separator with exactly three elements. Suppose
` ∈ Y1 and M\` has N as a c-minor. Let (A,B) be a 2-separation of M\` where A is
the N-side and |B| > 3. Suppose ` ∈ cl(Y1 − `). Then (A,B) crosses (X1, Y1 − `) and
λM\`(X1 ∩ A) > 2. Moreover, Y1 ∩B consists of a single line.

Proof. As ` ∈ cl(Y1 − `), we see that λM1\`(Y1 − `) = 2. To see that (A,B) crosses
(X1, Y1− `), note first that, as |Y1− `| = 2 and |A|, |B| > 3, neither A nor B is contained
in Y1 − `. Moreover, Y1 − ` is not contained in A or B otherwise (A ∪ `, B) or (A,B ∪ `)
is a 2-separation of M , a contradiction. Hence (A,B) crosses (X1, Y1 − `).

As |E(N)| > 4, we see that |X1 ∩ A| > 2. Then

λM\`(X1 ∩ A) > 2

otherwise, as ` ∈ cl(Y1−`), we get the contradiction that λM(X1∩A) 6 1. By uncrossing,
λM\`(Y1 ∩B) 6 1. By Lemma 95, B contains no points, so Y1 ∩B contains no points. As
|Y1 − `| = 2, we see that Y1 ∩B consists of a single line.

Lemma 100. Let Y1 be a minimal non-N-3-separator with exactly three elements. If Y1
contains a line ` such that M\` has N as a c-minor, then Y1 consists of three lines.

Proof. Assume that the lemma fails. Let (A,B) be a 2-separation of M\` where A is the
N -side and |B| > 3. First we show that
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100.1. ` ∈ cl(Y1 − `).
Assume that ` 6∈ cl(Y1−`). Then (X1, Y1−`) is a 2-separation of M\` with |Y1−`| = 2.

By Lemma 95, we may assume that Y1− ` consists of a series pair {y1, y2} of points. Now
r(M\`) = r(M) = r(X1) + 1, so r({`, y1, y2}) = 3. Moreover, for each i in {1, 2}, we see
that M\`/yi, and hence M/yi, has a special N -minor.

As the theorem fails for M , we know that M/yi is not 3-connected. Now M/yi is
certainly 2-connected. Let (J,K) be a 2-separation of it where we may assume that
` ∈ J . Now rM/yi({`, yj}) = 2 where {i, j} = {1, 2}.

Suppose rM/yi({`}) = 2. Assume yj ∈ K. Then (J ∪ yj, K − yj) is a 2-separation of
M/yi unless K−yj consists of a single point. In the exceptional case, yj is in a parallel pair
of points in M/yi. Hence M\yj has a special N -minor. As M/yj also has such a minor,
we contradict Lemma 58. We deduce that we may assume that J contains {`, yj}. Then
r(J ∪ yi) + r(K ∪ yi) = r(M) + 2, so r(J ∪ yi, K) is a 2-separation of M , a contradiction.

We may now assume that rM/yi({`}) = 1. Then yi lies on the line `. Since this must
be true for each i in {1, 2}, we see that r({`, y1, y2}) = 2, a contradiction. We deduce
that 100.1 holds.

By Lemma 99, we know that (A,B) crosses (X1, Y1), that λM\`(X1 ∩ A) > 2, and
that Y1 ∩ B consists of a single line. As the lemma fails, A ∩ (Y1 − `) consists of a single
point, a. As λM\`(X1 ∩ A) > 2 and λM\`(A) = 1, we deduce that r(A − a) = r(A) and
r(B ∪ a) = r(B) + 1. Hence a ∈ cl(X1). Thus Y1 − a is a minimal non-N -3-separator, a
contradiction.

The next lemma verifies 64.

Lemma 101. Let Y1 be a minimal non-N-3-separator having exactly three elements. Then
Y1 consists of three lines.

Proof. As |Y1 ∩ E(N)| 6 1, at least two of the elements of Y1 are not in E(N). Let ` be
one of these elements. Suppose ` is a line. If M\` has N as a c-minor, then the result
follows by Lemma 100. If M/` has N as a c-minor, then (M∗\`)[, and hence M∗\` has
N∗ as a c-minor and again the result follows by Lemma 100.

We may now assume that ` is a point. By switching to the dual if necessary, we may
assume that M\` has N as a c-minor. Let (A,B) be a 2-separation of M\` where A is
the N -side and |B| > 3. Next we show that

101.1. ` /∈ cl(Y1 − `).
Assume ` ∈ cl(Y1− `). Then, by Lemma 99, we know that (A,B) crosses (X1, Y1− `),

that λM\`(X1∩A) > 2, and that Y1∩B consists of a single line, say m. Now |B∩X1| > 2
since |B| > 3. Then

λM\`(B ∩X1) > 2

otherwise, since ` ∈ cl(Y1 − `), we deduce that λM(B ∩ X1) > 1, a contradiction. By
uncrossing, λM\`(Y1 ∩ A) 6 1.

Since |Y1| = 3 and Y1 ∩B consists of the line m, we deduce that A ∩ (Y1 − `) consists
of a single point, say a, otherwise one of the elements of Y1 − ` is a line that is not in

the electronic journal of combinatorics 26(2) (2019), #P2.37 75



E(N) and we have already dealt with that case. As λM\`(X1 ∩A) > 2 and λM\`(A) = 1,
we deduce that

r(A− a) = r(A) and r(B ∪ a) = r(B) + 1. (35)

Hence
a ∈ cl(X1). (36)

We may assume that m ∈ E(N) otherwise m is removed in forming N and that case was
dealt with in the first paragraph.

Now Y1 = {a, `,m}. As m ∈ B, it follows by (35) that r({m, a}) = 3. Moreover, as
{m, a} = Y1− ` and ` ∈ cl(Y1− `), we deduce that r(Y1) = 3. By (36), r(X1∪a) = r(X1).
We deduce that

r({a, `,m}) = r({`,m}) = 3 and r(X1 ∪ a) = r(M)− 1. (37)

Since m ∈ E(N), it follows that a 6∈ E(N). Suppose that M\`/a has N as a c-minor.
Still as part of the proof of 101.1, we show next that

101.2. M/a is the 2-sum with basepoint q of two 2-polymatroids, one of which consists of
the line m having non-parallel points q and ` on it.

By (37), ({`,m}, X1) is a 2-separation of M/a. Thus M/a is the 2-sum with basepoint
q of two 2-polymatroids, one of which, Q say, consists of the line m having points q and
` on it. Suppose q and ` are parallel points in Q. Then ({m}, X1 ∪ `) is a 2-separation
of M/a. It follows that ({m}, X1 ∪ ` ∪ a) is a 2-separation of M , a contradiction. Thus
101.2 holds.

By 101.2, both M/` and M\` have N as a c-minor, a contradiction to Lemma 58.
We now know that N is a c-minor of M\`\a. In that 2-polymatroid, {m} is 2-

separating so, in the formation of N , the element m is compactified. As the next step
towards showing 101.1, we now show that

101.3. M↓m is 3-connected.

To see this, it will be helpful to consider the 2-polymatroid M1 that is obtained from
M by freely adding the point m′ on m. By definition, M↓m = M1/m1. Certainly M1 is
3-connected, so M1/m

′ is 2-connected. Assume it has a 2-separation (U, V ) where m ∈ U .
Then

r(U ∪m′) + r(V ∪m′)− r(M1) = 2.

But r(U ∪ m′) = r(U). Hence r(V ∪ m′) = r(V ) otherwise M1 has a 2-separation, a
contradiction. But, as m′ was freely placed on m, we deduce that r(V ∪ m′ ∪ m) =
r(V ∪ m′) = r(V ). Now, in M1\m, we see that {`,m′} is a series pair of points. As
m′ ∈ cl(V ), it follows that ` ∈ V . Then r(U −m) < r(U) since {m} is 2-separating in
M\`. Now r(U−m) = r(U)−1 otherwise r(U−m) = r(U)−2 and (U−m,V ∪{m′,m}) is
a 1-separation of M1. As (U −m,V ∪{m′,m}) is not a 2-separation of M1, it follows that
U −m consists of a single point u and r({u,m}) = 2. Thus, in M\`, when we compactify
m, we find that u and m are parallel. Since m ∈ E(N), we see that u 6∈ E(N). Moreover,
M\u has N as a c-minor. Since u lies on m in M , we deduce that M\u is 3-connected
having N as a c-minor. This contradiction completes the proof of 101.3.
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Now, in M1/m
′, the elements a, `, and m form a triangle of points. We know that

M1/m
′\` is not 3-connected otherwise (M\`)[ is 3-connected having N as a c-minor.

Because M\a has N as a c-minor, M\a is not 3-connected, so M1\a is not 3-connected.
Still continuing with the proof of 101.1, we show next that

101.4. M1\a/m′ is not 3-connected.

Let (G,H) be a 2-separation of M1\a with m in G. Then (G ∪ m′, H − m′) is a
2-separation of M1\a unless H consists of two points. In the exceptional case, r(H) = 2
so r(G) = r(M) − 1. But then a ∪ (H −m′) is a series pair in M , a contradiction. We
conclude that we may assume that m′ ∈ G. Then ` ∈ H, otherwise, by (37), (G ∪ a,H)
is a 2-separation of M1, a contradiction.

Observe that G 6= {m,m′} otherwise {m} is 2-separating in M\a and so, as a ∈ cl(X1),
we obtain the contradiction that {m} is 2-separating in M .

Now

rM1\a/m′(G−m′) + rM1\a/m′(H)− r(M1\a/m′) = r(G) + r(H ∪m′)− 1− r(M1\a). (38)

Suppose that r(H ∪m′) = r(H). Then r(H ∪m′ ∪m) = r(H) as m′ is freely placed
on m. Thus, as G % {m,m′} and {m} is 2-separating in M\`\a, we see that (G −m −
m′, H ∪ {m,m′}) is a 1-separation of M1\a. Therefore (G − m − m′, H ∪ {m, a}) is a
1-separation of M , a contradiction.

We now know that r(H ∪m′) = r(H) + 1. Then, as (G,H) is a 2-separation of M1\a,
it follows by (38) that (G − m′, H) is a 2-separation of M1\a/m′ unless either |H| = 1
and rM1/m′(H) = 1, or |G −m′| = 1 and rM1/m′(G −m′) = 1. Consider the exceptional
cases. The first of these cannot occur since m′ is freely placed on m; the second cannot
occur since it implies that G = {m,m′}, which we eliminated above. As neither of the
exceptional cases occurs, M1\a/m′ has a 2-separation and so 101.4 holds.

Recall that M1/m
′ = M↓m. In this 2-polymatroid, we have {a, `,m} as a triangle

such that the deletion of either a or ` destroys 3-connectedness. Hence, by Lemma 42,
there is a triad of M1/m

′ that contains a and exactly one of ` and m. Assume this triad
contains `. Thus, in M\`↓m, we have that a is in a series pair with some element b.
Then M\`/a has N as a c-minor, so a is a doubly labelled point of M , a contradiction
to Lemma 58. We deduce that M1/m

′ has a triad containing {a,m} but not `. Then
M1/m

′\`, which equals M\`↓m, either has a triad containing {a,m} or has a in a series
pair. This is straightforward to see by considering the matroid that is naturally derived
from M\`↓m and using properties of the cocircuits in this matroid. Now a is not in
a series pair in M\`↓m otherwise we again obtain the contradiction that a is a doubly
labelled point. We deduce that M\`↓m has a triad containing {a,m}. Since m ∈ B and,
by (35), r(A− a) = r(A), we must have that the third point, b, of this triad is in A− a.

Now M\`↓m has (A,B) as a 2-separation and has {a, b,m} as a triad with {a, b} ⊆ A.
Thus (A ∪m,B −m) is a 2-separation of M\`↓m. Since ` is in the triangle {a,m, `} in
M↓m, it follows that (A ∪m ∪ `, B −m) is a 2-separation of M↓m. This contradiction
to 101.3 completes the proof of 101.1.

Since ` 6∈ cl(Y1 − `), we deduce that (X1 ∪ `, Y1 − `) is 3-separating in M . By the
argument in the first paragraph of the proof of the lemma, Y1 − ` does not consist of
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two lines; and, if it contains one line, that line is in E(N). Moreover, (X1, Y1 − `) is a
2-separation in M\`.
101.5. Y1 − ` does not consist of a point and a line.

Assume that Y1 − ` consists of a line k and a point y. Then k ∈ E(N), so y 6∈ E(N).
If r(Y1 − `) = 2, then M\`\y, and hence M\y, has N as a c-minor. Since y is on the line
k, we see that M\y is 3-connected, a contradiction. We deduce that r(Y1− `) = 3. Hence

r(X1) = r(M)− 2 and r(X1 ∪ `) = r(M)− 1. (39)

Now M\` is the 2-sum with basepoint p, say, of two 2-polymatroids, MX and MY ,
with ground sets X1∪p and (Y1− `)∪p, respectively. Then r(MY ) = 3. Moreover, y does
not lie on k in MY , otherwise MY is not 2-connected, a contradiction to Proposition 47.
Thus M∗\y has N∗ as a c-minor. Then, by applying 101.1 to M∗\y, we deduce that
y 6∈ clM∗(Y1− y). Thus r∗(Y1− y) = r∗(Y1)− 1. It follows that r(X1 ∪ `∪ y) = r(X1 ∪ `).
But r(X1 ∪ ` ∪ y) = r(M\k) = r(M) yet r(X1 ∪ `) = r(M) − 1. This contradiction
completes the proof of 101.5

We now know that Y1 − ` consists of a series pair of points, say y1 and y2. Now
r(M\`) = r(M) = r(X1) + 1. Also r({`, y1, y2}) = 3. Thus {`, y1, y2} is a triad of M .
Moreover, both M/y1 and M/y2 have special N -minors. Thus neither is 3-connected. By
Lemma 42, M has a triangle that contains y1 and exactly one of y2 and `. Likewise, M
has a triangle that contains y2 and exactly one of y1 and `. Thus either

(i) M has a triangle {y1, y2, z}; or

(ii) M has triangles {y1, `, z1} and {y2, `, z2} but no triangle containing {y1, y2}.

In the first case, M/y1 has {y2, z} as a pair of parallel points. Hence M\y2 has a special
N -minor. Thus y2 is doubly labelled, a contradiction. We deduce that (ii) holds. Thus M
contains a fan x1, x2, . . . , xn where (x1, x2, x3, x4, x5) = (z2, y2, `, y1, z1). Hence M/x2 has
a c-minor isomorphic to N . Then, by Lemmas 43 and 58, we obtain a contradiction.

We complete the proof of 65 by analyzing the various possibilities for a minimal non-
N -3-separator consisting of exactly three lines.

12 Finding a minimal non-N -3-separator with at least four ele-
ments

In this section, we finish the proof of 65. We begin by restating that assertion.

Lemma 102. M has a minimal non-N-3-separator with at least four elements.

By Lemma 101, a minimal non-N -3-separator of M with exactly three elements con-
sists of three lines. To prove Lemma 102, we look at the number of these lines that
have local connectivity one with the other side of the 3-separator and then systematically
eliminate all possibilities.
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We have (X1, Y1) as a 3-separation of the 3-connected 2-polymatroid M . We shall
consider the extension M + z of M that is obtained by adjoining the line z to M so that
z is in the closure of each of X1 and Y1 in M + z. To see that this extension exists,
we note that, by building on a result of Geelen, Gerards, and Whittle [3], Beavers [1,
Proposition 2.2.2] showed that, when (A,B) is a 3-separation in a 3-connected matroid
Q, we can extend Q by an independent set {z1, z2} of size two so that these two points are
clones, and each lies in the closure of both A and B in the extension Q′. By working in
the matroid naturally derived from M , we can add z1 and z2. This corresponds to adding
the line z to M to form M + z where z = {z1, z2}.

More formally, recall that the natural matroid M ′ derived from M is obtained from
M by freely adding two points, s` and t`, on each line ` of M and then deleting all
such lines `. After we have extended M ′ by z1 and z2, we have a matroid with points
{z1, z2} ∪ {p : p is a point of M} ∪ {s`, t` : ` is a line of M}. Taking z = {z1, z2}, we
see that M + z is the 2-polymatroid with elements {z} ∪ {p : p is a point of M} ∪ {` :
` is a line of M} = {z}∪E(M). We call M + z the 2-polymatroid that is obtained from
M by adding the guts line z of (X1, Y1).

When we have Y1 as a minimal non-N -3-separator of M consisting of three lines, we
look at (M + z)|(Y1 ∪ z). This 2-polymatroid consists of exactly four lines.

Lemma 103. (M + z)|(Y1 ∪ z) has no parallel lines, so rM+z(Y1 ∪ z) > 3.

Proof. Suppose a and b are parallel lines in Y1. Then we may assume that b 6∈ E(N).
Now M\b or M/b has N as a c-minor. In the latter case, as a is a loop of M/b, it follows
that a 6∈ E(N) and M\a has N as a c-minor. We conclude that M\b or M\a has N as
a c-minor. Since each of M\b and M\a is 3-connected, we obtain the contradiction that
the theorem holds. Thus Y1 contains no pair of parallel lines.

Suppose z is parallel to some element y of Y1. Then (X1 ∪ y, Y1 − y) is a non-N -3-
separator of M contradicting the minimality of Y1. Thus (M + z)|(Y1 ∪ z) has no parallel
lines and the lemma holds.

Lemma 104. r(Y1) > 3.

Proof. Assume that r(Y1) = 3. Then rM+z(Y1 ∪ z) = 3, so u({z}, {y}) = 1 for all y in Y1.
Moreover, r(Y1 − y) = 3 = r(Y1) for all y in Y1.

Suppose that y ∈ Y1 − E(N) and N is a c-minor of M/y. Then the remaining two
elements, y1 and y2, of Y are parallel points in M/y. We may assume that y1 6∈ E(N).
Thus M\y1 has N as a c-minor. We conclude that N is a c-minor of M\y for some
element y of Y1. We now focus on this element y.

Let (R,G) be a non-trivial 2-separation of M\y, that is, λM\y(R) = 1 and both R and
G have at least two elements. We show next that

104.1. (R,G) crosses (X1, Y1 − y).

If R ⊆ X1, then G ⊇ Y1− y so y ∈ clM(G) and (R,G∪ y) is a 2-separation of M . This
contradiction implies, using symmetry, that both R and G meet Y1 − y.

Suppose R∩X1 = ∅. Then R consists of single line, so (R,G) is a trivial 2-separation.
This contradiction, combined with symmetry, completes the proof of 104.1.
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Let Y1 − y = {a, b}. We may assume that a ∈ R and b ∈ G. Now, as y ∈ cl(Y1 − y),
we see that λM\y(Y1 − y) = 2. Thus

1 + 2 = λM\y(R) + λM\y(Y1 − y)

> λM\y({a}) + λM\y(R ∪ (Y1 − y))

= λM\y({a}) + λM\y(G ∩X1).

We know r(E − Y1) = r(X1) = r(M) − 1 since r(Y1) = 3. Thus r(E − {y, a}) =
r(X1 ∪ b) = r(M). Hence

λM\y({a}) = r({a}) + r(E − {y, a})− r(E − y) = r({a}) = 2,

so λM\y(G∩X1) 6 1. But y ∈ cl({a, b}) so λM(G∩X1) 6 1. By symmetry, λM(R∩X1) 6
1. We conclude that |G ∩X1| 6 1 and |R ∩X1| 6 1, so |X1| 6 2. This is a contradiction
since |E(N)| > 4. We conclude that the lemma holds.

Lemma 105. rM+z(Y1 ∪ z) = rM(Y1) = 4.

Proof. We know that rM+z(Y1 ∪ z) = rM(Y1) > 4. Suppose rM(Y1) > 5. Then rM(X1) 6
r(M)− 3, so

rM∗(Y1) =
∑
y∈Y1

rM({y}) + rM(X1)− r(M) 6 6 + r(M)− 3− r(M) = 3.

By using M∗ in place of M , we get a contradiction to Lemma 104. We conclude that the
lemma holds.

We will now work with the 2-polymatroid (M + z)|(Y1 ∪ z), which we rename P . This
has rank 4 and consists of four lines.

Lemma 106. If B ⊆ Y1 and A = Y1 −B, then

uP (A ∪ z,B) = uM+z(A ∪X1 ∪ z, B).

Proof. Since P = (M + z)|(Y1 ∪ z), we can do all of these local connectivity calculations
in M + z. Now u(A ∪ z,X1) = u(A ∪ z,X1 ∪ z), so

2 = u(Y1 ∪ z,X1) > u(A ∪ z,X1) = u(A ∪ z,X1 ∪ z) > 2.

Thus
r(A ∪ z)− 2 = r(A ∪ z ∪X1)− r(X1).

Hence

u(A ∪ z, B) = r(A ∪ z) + r(B)− r(A ∪ z ∪B)

= r(A ∪ z ∪X1)− r(X1) + 2 + r(B)− r(Y1)
= r(A ∪ z ∪X1) + r(B)− [r(X1) + r(Y1)− 2]

= r(A ∪ z ∪X1) + r(B)− r(M)

= u(A ∪X1 ∪ z, B).
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Lemma 107. P is 3-connected.

Proof. From the last lemma, if (A,B) is a k-separation of P for some k in {1, 2} and
z ∈ A, then (A ∪X1 ∪ z,B) is a k-separation of M + z, a contradiction.

Lemma 108. If y ∈ Y1 and u(X1, {y}) = 1, then r(Y1 − y) = 4.

Proof. By Lemma 103, r(Y1−y) > 2. If r(Y1−y) = 3, then (X1∪y, Y1−y) is a 3-separation
violating the choice of (X1, Y1).

Lemma 109. Suppose y ∈ Y1 and r(Y1 − y) = 4. If m is a line such that {m} is
2-separating in M\y, then m ∈ Y1 − y.

Proof. We have 1 = r({m}) + r(E −{y,m})− r(M\y). Thus r(E −{y,m}) = r(M)− 1.
Suppose m 6∈ Y1−y. Then E−{y,m} contains Y1−y and so spans y. Thus r(E−{y,m}) =
r(M\m) = r(M), a contradiction.

The next four lemmas will help eliminate many of the possibilities for P . Let a, b, and
c be the lines in P other than z.

Lemma 110. If c is skew to X1 in M , and M/c has a and b as parallel lines, then M/c
is 3-connected.

Proof. Assume (A,B) is a k-separation of M/c for some k in {1, 2} where |A| 6 |B|. If
{a, b} ⊆ Z for some Z in {A,B}, and {Z,W} = {A,B}, then r(Z∪c)+r(W ∪c)−r(M) =
k + 1. But c is skew to W since W ⊆ X1, so (Z ∪ c,W ) is a k-separation of M , a
contradiction. We may now assume that a ∈ A and b ∈ B. Then (A ∪ b, B − b) is a k-
separation of M/c with {a, b} ⊆ A∪b and this possibility has already been eliminated.

Lemma 111. If c is skew to each of a, b, and X1 in M , then M/c has no c-minor
isomorphic to N .

Proof. We see that M/c has a and b as parallel lines. Since (M,N) is a counterexample
to the theorem, we obtain this lemma as a direct consequence of the last one.

Lemma 112. Assume that M\b has a c-minor isomorphic to N and that P\b has rank
4, has c skew to each of a and z, and has u({a}, {z}) = 1. Then M/c has a c-minor
isomorphic to N .

Proof. Let (A,C) be a non-trivial 2-separation of M\b. If {a, c} is contained in A or C,
then M has a 2-separation, a contradiction. Thus we may assume that a ∈ A and c ∈ C.
Because c is skew to z in P , and C − c ⊆ X1 in M\b, we see that c is skew to C − c in
M\b. Thus (A∪ c, C − c) is 2-separating in M\b. Hence (A∪ c∪ b, C − c) is 2-separating
in M . Thus C − c consists of a point d of M . Now, by Lemma 109, the only 2-separating
lines in M\b can be a and c. But a is not 2-separating. Thus (M\b)[ = M\b↓ c, so c
is a point of M\b↓ c. The rank of this 2-polymatroid is r(M) − 1, and it has {c, d} as a
series pair since A has rank r(M)−2 in it. Thus M\b↓ c/c, and hence M/c, has a c-minor
isomorphic to N .
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Lemma 113. If u({a}, {z}) = 1 and both b and c are skew to each other and to z, then
M\a has no c-minor isomorphic to N .

Proof. Assume that M\a has a c-minor isomorphic to N . Let (B,C) be a k-separation
of M\a for some k in {1, 2}. If B or C contains {b, c}, then M has a k-separation. Thus
we may assume that b ∈ B, that c ∈ C, and that |B| > |C|. As b is skew to z in P , we
deduce that b is skew to B − b in M\a. The partition (B − b, C ∪ b ∪ a) of E(M) now
shows that M is not 3-connected, a contradiction.

By Lemma 103, for all y in Y1, we have u({y}, {z}) ∈ {0, 1}. We shall treat the
possibilities for P based on the number θ of members y of Y1 for which u({y}, {z}) = 1.
The most difficult case is when θ = 3 and we will treat that after we deal with the cases
when θ = 2 and when θ = 1.

Lemma 114. θ 6= 2.

Proof. Suppose that u({a}, {z}) = 1 = u({b}, {z}) and u({c}, {z}) = 0. Then, by
Lemma 108, r({b, c}) = 4 = r({a, c}). Thus, by Lemma 111, M/c has no c-minor
isomorphic to N . By Lemma 112, neither M\a nor M\b has a c-minor isomorphic to N .
Thus, without loss of generality, we may assume that M/a has a c-minor isomorphic to
N . Now, in M/a, we have {b, c} as a 2-separating set where c is a line and b is either a
point on that line or is a parallel line. Thus, by Lemma 51, M/a\b, and hence M\b, has
a c-minor isomorphic to N , a contradiction.

We can exploit duality to eliminate the case when θ = 1.

Lemma 115. θ 6= 1.

Proof. Suppose that u({a}, {z}) = 1 and u({b}, {z}) = 0 = u({c}, {z}). Then, by
Lemma 108, r({b, c}) = 4. By Lemma 35, u∗({y}, X1) = λM/(Y1−y)({y}) for y in Y1. Since
{b, c} spans a in M , we deduce that u∗({a}, X1) = 0. If u∗({b}, X1) = 1 = u∗({c}, X1),
then θ = 2 in M∗ so the result follows by Lemma 114. Thus, we may assume, by symmetry,
that u∗({b}, X1) = 0. Hence {a, c} spans b in M , so r({a, c}) = 4. Thus, by Lemma 111,
M/c does not have a c-minor isomorphic to N . By Lemma 112, M\b has no c-minor
isomorphic to N . If u({a}, {b}) = 0, then, by symmetry, the argument of the last two
sentences shows that neither M/b nor M\c has a c-minor isomorphic to N . Thus both b
and c must be in every c-minor of M isomorphic to N , a contradiction. We deduce that
u({a}, {b}) = 1.

By Lemma 113, M\a has no c-minor isomorphic to N . Suppose M/a has a c-minor
isomorphic to N . In M/a, we see that {c, b} is a 2-separating set with c as a line and b
as a point on it. Hence, by Lemma 51, M/a\b, and so M\b, has a c-minor isomorphic to
N , a contradiction. We conclude that M/a has no c-minor isomorphic to N . It follows
that a is in every c-minor of M isomorphic to N . Thus M/b has N as a c-minor. In M/b,
we see that a is a point on the line c. Suppose that a is parallel to some point e, say.
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Then e ∈ X1. Moreover, M/b\e, and hence M\e, has a c-minor isomorphic to N . Now
r(X1 ∪ {a, b}) = r(X1) + 2. Thus

r(X1) + 1 + 3 = r(X1 ∪ a) + r({a, b, e})
> r({a, e}) + r(X1 ∪ {a, b})
= r({a, e}) + r(X1) + 2.

Hence r({a, e}) = 2, so e lies on a in M . Thus M\e is 3-connected having a c-minor
isomorphic to N , a contradiction. We deduce that, in M/b, the point a is not parallel to
another point, so M/b is simple.

We complete the proof by showing that M/b is 3-connected. Suppose it has (A,C) as
a 2-separation. If A or C, say A, contains {a, c}, then b is skew to C, so (A ∪ b, C) is a
2-separation of M , a contradiction. Thus, we may assume that a ∈ A and c ∈ C. Then,
as a is a point on the line c in M/b, we see that (A− a, C ∪ a) is 2-separating in M/b. It
is not a 2-separation otherwise we obtain a contradiction as before. It follows that A is a
parallel pair of points in M/b, contradicting the fact that M/b is simple.

Next we eliminate the case when θ = 3. The core of the argument in this case mimics
the argument used to prove Tutte’s Triangle Lemma for matroids (see, for example, [14,
Lemma 8.7.7]).

Lemma 116. θ 6= 3.

Proof. Assume that u({a}, {z}) = u({b}, {z}) = u({c}, {z}) = 1. Then, by Lemma 108,
r({a, b}) = r({b, c}) = r({a, c}) = 4. First we show the following.

116.1. Y1 has at least two members y such that M\y has a c-minor isomorphic to N .

Assume that this fails. Since |Y1−E(N)| > 2, there is an element, say a, of Y1−E(N)
such that M/a has N as a c-minor. In M/a, we see that b and c are parallel lines and {b, c}
is 2-separating. Thus, by Lemma 51, each of M/a\b and M/a\c have special N -minors.
This contradiction implies that 116.1 holds.

We now assume that both M\a and M\b have special N -minors. Clearly, M\a has b
and c as 2-separating lines, and, by Lemma 109, these are the only 2-separating lines in
M\a. Thus (M\a)[ = M\a↓ b↓ c. Symmetrically, (M\b)[ = M\b↓ a↓ c. As the theorem

fails, neither (M\a)[ nor (M\b)[ is 3-connected. Thus each of M↓ c\a and M↓ c\b have
non-trivial 2-separations. It will be convenient to work in the 2-polymatroid M↓ c, which
we shall rename Mc. Let (Xa, Ya) and (Xb, Yb) be non-trivial 2-separations of Mc\a and
Mc\b, respectively, with b in Ya and a in Yb.

Now it is straightforward to check the following.

116.2. If Z ⊆ X1 and e ∈ {a, b}, then uM(Z, {e}) = uMc(Z, {e}).
We deduce that

116.3. uMc(X1, {a}) = 1 = uMc(X1, {b}).
Next we show that

116.4. c ∈ Xa ∩Xb.
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Suppose c in Ya. Since {c, b} spans a in Mc, it follows that (Xa, Ya∪a) is a 2-separation
of Mc and hence of M , a contradiction. Thus c ∈ Xa and, by symmetry, 116.4 holds.

116.5. For Z ⊆ X1, if uM(Z, {a}) = 1 = uM(Z, {b}), then uM(Z, {a, b}) = 2.

Assume uM(Z, {a, b}) < 2. Then uM(Z, {a, b}) = uM(Z, {a}) = 1. Thus

r(Z) + r({a, b})− r(Z ∪ {a, b}) = r(Z) + r({a})− r(Z ∪ a),

so r({a, b})− r({a}) = r(Z ∪ {a, b})− r(Z ∪ a). Hence b is skew to Z ∪ a, so b is skew to
Z, a contradiction. We deduce that 116.5 holds.

116.6. For Z ⊆ X1, if uMc(Z, {a}) = 1 = uMc(Z, {b}), then uMc(Z, {a, b}) = 2.

By 116.2, uMc(Z, {a}) = uM(Z, {a}). Moreover,

uMc(Z, {a, b}) = rMc(Z) + rMc({a, b})− rMc(Z ∪ {a, b})
= rM(Z) + [rM({a, b})− 1]− [rM(Z ∪ {a, b})− 1]

= uM(Z, {a, b}).

Thus 116.6 follows immediately from 116.5.

116.7. Assume Z ⊆ X1 and uMc(Z, {a, b}) = 2. Then c ∈ clMc(Z).

To see this, note that

rMc(Z ∪ {a, b, c}) = rMc(Z ∪ {a, b}) = rMc(Z) + rMc({a, b})− 2 = rMc(Z) + 1.

By submodularity,

rMc(E − {a, b}) + rMc(Z ∪ {a, b, c}) > r(Mc) + rMc(Z ∪ c).

Thus
r(Mc)− 1 + rMc(Z) + 1 > r(Mc) + rMc(Z ∪ c).

Hence rMc(Z) > rMc(Z ∪ c) and 116.7 holds.

116.8. Neither a nor b has a point on it in either M or Mc.

Assume there is a point e on a in M . Then M\e is 3-connected. Moreover, in (M\b)[,
we see that e is parallel to a so (M\b)[\e, and hence M\e, has a c-minor isomorphic to
N , a contradiction. We conclude that 116.8 holds.

The next step in the proof of Lemma 116 is to show that

116.9. Mc\a, b is 2-connected.

Suppose (A,B) is a 1-separation of Mc\a, b having c in A. Then

rMc(A) + rMc(B) = r(Mc\a, b) = r(Mc)− 1 = r(M)− 2. (40)

Thus

rMc(A ∪ a) + rMc(B)− r(Mc)

= rMc(A) + rMc({a})− uMc(A, {a}) + rMc(B)− r(Mc)

= [rMc(A) + rMc(B)− r(Mc) + 1]− 1 + rMc({a})− uMc(A, {a})
= 0 − 1 + 2 − uMc(A, {a}) = 1 − uMc(A, {a}).
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If uMc(A, {a}) = 1, then (A ∪ a ∪ b, B) is a 1-separation of Mc and hence of M , a
contradiction. We deduce that uMc(A, {a}) = 0 and (A ∪ a ∪ b, B) is 2-separating in Mc

and hence in M . Thus B consists of a point, say d, of M . Moreover, rMc(A∪ a) = r(Mc).
Thus, as uMc(A, {a}) = 0, we see that

rMc(A) = r(Mc)− 2. (41)

Still working towards proving 116.9, we show next that

116.10. {b, d} is a series pair of points in (M\a)[.

Recall that (M\a)[ = Mc\a↓ b. Now

rMc({d, b}) + rMc(A)− r(Mc\a) 6 3 + r(Mc)− 2− r(Mc) = 1.

Thus {d, b} is 2-separating in Mc\a. It follows that it is also 2-separating in Mc\a↓ b, that

is, in (M\a)[. But d and b are points in (M\a)[, which is 2-connected. We deduce by
116.8 that 116.10 holds.

By 116.10, (M\a)[/d, and hence M/d, has a c-minor isomorphic to N . Next we show
that

116.11. (A− c, {a, b, c}) is a 2-separation of M\d.

By (41), rMc(A− c) 6 r(Mc)− 2 = r(M)− 3 and 116.11 follows.
It follows from 116.11 and Lemma 40 that M/d is 3-connected unless M has a pair

{e, f} of points such that e and f are parallel in M/d. Consider the exceptional case. Then
M has {d, e, f} as a triangle. Then {e, f} ⊆ A− c. Thus, by 116.11, ((A− c)∪d, {a, b, c})
is a 2-separation of M , a contradiction. We conclude that 116.9 holds.

By 116.9, we deduce that

116.12. λMc\a,b(Xa) = 1 = λMc\a(Xa) and λMc\a,b(Xb) = 1 = λMc\b(Xb).

Since r(Mc\a, b) = r(Mc\a)− 1, it follows from 116.12 and symmetry that

116.13. rMc(Ya − b) = rMc(Ya)− 1 and rMc(Yb − a) = rMc(Yb)− 1.

It follows from this, symmetry, and the fact that rM(Ya ∪ c) > rM(Ya) that

116.14. rM(Ya − b) = rM(Ya)− 1 and rM(Yb − a) = rM(Yb)− 1.

By uncrossing,

2 = λMc\a,b(Xa) + λMc\a,b(Yb − a)

> λMc\a,b(Xa ∩ (Yb − a)) + λMc\a,b(Xa ∪ (Yb − a)). (42)

116.15. Xa ∩ Yb 6= ∅ 6= Xb ∩ Ya.
Suppose Xa ∩ Yb = ∅. Then Yb − a ⊆ Ya − b. Thus, by 116.13, uMc(Ya − b, {b}) = 1 =

uMc(Ya−b, {a}). Hence, by 116.6, uMc(Ya−b, {a, b}) = 2. Thus, by 116.7, c ∈ clMc(Ya−b).
It follows that (Ya ∪ c,Xa − c) is 2-separating in Mc\a. Thus (Ya ∪ c ∪ a,Xa − c) is 2-
separating in M . As M is 3-connected, we deduce that Xa consists of exactly two points,
c and x, say. If rMc({x, c}) = 1, then, in M , we see that x is a point that lies on the
line c. Thus M\x is 3-connected. As (M\a)[ has a c-minor isomorphic to N and has x

the electronic journal of combinatorics 26(2) (2019), #P2.37 85



and c as a parallel pair of points, we deduce that M\x has a c-minor isomorphic to N ,
a contradiction. We conclude that rMc({x, c}) = 2. Thus {x} is 1-separating in Mc, a
contradiction. We deduce that Xa ∩ Yb 6= ∅ and 116.15 follows by symmetry.

We now choose the non-trivial 2-separation (Xa, Ya) of Mc\a such that |Xa| is a mini-
mum subject to the condition that b ∈ Ya. Since Xa∩Yb and Xb∩Ya are both non-empty,
we deduce from (42) and symmetry that

λMc\a,b(Xa ∩ Yb) = 1 = λMc\a,b(Xb ∩ Ya).

We show next that

116.16. λMc\a(Xa ∩ Yb) = 1 = λMc\b(Xb ∩ Ya).
We have that 1 = rMc(Xa ∩ Yb) + rMc((Ya − b) ∪Xb) − r(Mc\a, b). But r(Mc\a, b) =

r(Mc\a) − 1 and, by 116.13, rMc(Ya − b) = rMc(Ya) − 1. Hence rMc((Ya − b) ∪ Xb) =
rMc(Ya ∪Xb)− 1. Thus 116.16 follows by symmetry.

By the choice of Xa and the fact that b and c are the only 2-separating lines of M\a,
we deduce that Xa ∩ Yb consists of a single point, say w.

116.17. Xa consists of a series pair {w, c} in Mc\a.

Suppose w /∈ clMc(Xa − w). Then (Xa − w, Ya ∪ w) violates the choice of (Xa, Ya)
unless |Xa − w| = 1. In the exceptional case, {w, c} is a series pair in Mc\a.

Now suppose that w ∈ clMc(Xa −w). Then w ∈ clMc(Xb). Thus (Xb ∪w, Yb −w) is a
2-separation of Mc\b. But Yb − w avoids Xa so we have a contradiction to 116.15 when
we replace (Xb, Yb) by (Xb ∪ w, Yb − w) unless Yb = {a, w}. In the exceptional case, by
116.13, r(Yb) = 2 and we have a contradiction to 116.8. We conclude that 116.17 holds.

Since Mc\a has {w, c} as a series pair, it follows that Mc\a/w has a c-minor isomorphic
to N . Thus so do (M\a)[/w and M/w. In M\a, we have {c, w} and {b} as 2-separating
sets. Now w /∈ clMc\a(X1 − w). Hence rM(X1 − w) = rM(X1) − 1 = r(M) − 3. As
r(Y1) = 4, we deduce that (X1 − w, Y1) is a 2-separation in M\w. Thus, by Lemma 40,
M/w is 3-connected unless M has a triangle T of points including w. In the exceptional
case, T − w ⊆ X1 − w, so (X1, Y1) is a 2-separation of M . This contradiction completes
the proof of Lemma 116.

Lemma 117. θ 6= 0.

Proof. Assume that θ = 0. Thus u(X1, {y}) = 0 for all y in Y1. We may assume that
u∗(X1, {y}) = 0 for all y in Y1 otherwise, in M∗, we have θ ∈ {1, 2, 3}. Thus, for all y in
Y1, we have r(Y1 − y) = r(Y1) = 4. Then, by Lemma 111, none of M/a, M/b, nor M/c
has a c-minor isomorphic to N . Hence we may assume that a and b are deleted to get
N . But, in M\a, b, we see that {c} is a component, so c can be contracted to get N , a
contradiction.

Proof of Lemma 102. By Lemma 101, a minimal non-N -3-separator Y1 of M having ex-
actly three elements consists of three lines. Above, we looked at the number θ of members
y of Y1 for which u(X1, {y}) = 1. In Lemmas 114 and 115, we showed that θ 6= 2 and
θ 6= 1, while Lemmas 116 and 117 showed that θ 6= 3 and θ 6= 0. There are no remaining
possibilities for θ, so Lemma 102 holds.
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13 Finishing the proof of Theorem 57

By 65, we may now assume that M has a minimal non-N -3-separator Y1 having at least
four elements. As before, we write X1 for E(M)−Y1. Our next goal is to prove 66, which
we restate here for convenience.

Lemma 118. Let Y1 be a minimal non-N-3-separating set having at least four elements.
Then Y1 contains a doubly labelled element.

Proof. Assume that the lemma fails. For each e in Y1 − E(N), let ν(e) be equal to the
unique member of {µ(e), µ∗(e)} that is defined. Choose ` in Y1−E(N) to minimize ν(`).
By switching to the dual if necessary, we may suppose that ν(`) = µ(`). Let (A,B) be
a 2-separation of M\` where A is the N -side and |B| = µ(`). We now apply Lemma 97.
Part (ii) of that lemma does not hold otherwise, by Lemma 93, Y1 − ` contains a doubly
labelled element.

Assume next that (iii) of Lemma 97 holds. Then λM\`(Y1− `) = 2 and λM\`(A∩ (Y1−
`)) = 1 = λM\`(B ∩ (Y1 − `)), while λM\`(A ∩X1) = 2 = λM\`(B ∩X1). Then using the
partitions (A∩(Y1−`), A∩X1, B) and (B∩(Y1−`), B∩X1, A) as (A,B,C) in Lemma 34,
we deduce that u(A ∩ (Y1 − `), A ∩X1) = 1 and u(B ∩ (Y1 − `), B ∩X1) = 1.

Now M\` is the 2-sum of 2-polymatroids MA and MB having ground sets A ∪ q and
B ∪ q, respectively. Since M\` is 2-connected, it follows by Proposition 47, that each of
MA and MB is 2-connected. Now λM\`(B∩(Y1−`)) = uM\`(B∩(Y1−`), (B∩X1)∪A) = 1
and uMB

(B ∩ (Y1 − `), B ∩X1) = 1. Noting that M\` = P (MA,MB)\q, we see that, in
P (MA,MB), we have u(B∩ (Y1− `), (B∩X1)∪A∪ q) = 1. Hence uMB

(B∩ (Y1− `), (B∩
X1) ∪ q) = 1. Thus MB is the 2-sum of two 2-connected 2-polymatroids MB,Y and MB,X

having ground sets (B∩(Y1−`))∪s and (B∩X1)∪q∪s. Note thatMB = P (MB,X ,MB,Y )\s.
Let M ′

B = P (MB,X ,MB,Y ) and consider P (MA,M
′
B) noting that deleting q and s from

this 2-polymatroid gives M\`.
By Lemma 31(ii),

u(A,B) + u(B ∩X1, B ∩ (Y1 − `)) = u(A ∪ (B ∩X1), B ∩ (Y1 − `)) + u(A,B ∩X1).

Since the first three terms in this equation equal one,

u (A,B ∩X1) = 1. (43)

We deduce, by Lemma 51(i) that if y ∈ B ∩ (Y1− `), then M\`\y has a special N -minor.
Now MB,X has q and s as points. We show next that

118.1. λMB,X/s({q}) = 0.

Assume that λMB,X/s({q}) 6= 0. When we contract s in M ′
B, the set B ∩ (Y1 − `)

becomes 1-separating. Moreover, in M ′
B/(B ∩ (Y1 − `)), the element s is a loop, so

M ′
B\s/(B∩(Y1−`)) = M ′

B/s/(B∩(Y1−`)). It follows that uM\`/(B∩(Y1−`)(A,B∩X1) = 1.
Hence, by Lemma 51(ii), if y ∈ B ∩ (Y1 − `), then M\`/y has a special N -minor. Thus
each y in B ∩ (Y1− `) is doubly labelled. This contradiction completes the proof of 118.1.
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By 118.1, {q, s} is a parallel pair of points in MB,X . From considering P (MA,M
′
B),

we deduce that λM\`(B∩X1) = 1. This contradiction implies that (iii) of Lemma 97 does
not hold.

It remains to consider when (i) of Lemma 97 holds, that is, (X1, Y1−`) is a 2-separation
of M\`. We now apply Lemma 91. By assumption, (i) of that lemma does not hold; if
(iii) holds, then µ(y) < µ(`), contradicting the choice of `. Thus (ii) of Lemma 91 holds,
that is, u({y}, X1) 6= 1 for some y in Y1 − `. Then, by Lemma 90, u(Y1 − y,X1) = 0 for
all y in Y1− `. Thus, by Lemma 92 and the choice of `, (iii)(b) rather than (iii)(a) of that
lemma holds. Then, with z as in (iii)(b), (X1 − z, (Y1 − `) ∪ z) is a 2-separation of M\`
having X1−z as the N -side. Since z is a point, we have a contradiction to Lemma 95.

The doubly labelled element found in the last lemma will be crucial in completing the
proof of Theorem 57. We shall need another preliminary lemma.

Lemma 119. Let ` be a doubly labelled element of M . Then M\` does not have a series
pair of points {a, b} such that r({a, b, `}) = 3.

Proof. Assume that M\` does have such a series pair {a, b}. By Lemma 58, ` is a line.
Thus M/` has {a, b} as a parallel pair of points or has a or b as a loop. In each case, M
has a or b as a doubly labelled point, a contradiction.

We will now take ` to be a doubly labelled element of Y1, a minimal non-N -3-separating
set having at least four elements.

Lemma 120. There is a 2-separating set Q in M\` such that Q ⊆ Y1 − ` and |Q| > 2
and contains no points.

Proof. Suppose ` 6∈ cl(Y1 − `). Then (X1, Y1 − `) is a 2-separation of M\` and r(Y1) =
r(Y1 − `) + 1. Then, by Lemma 119, Y1 − ` does not consist of a series pair of points.
Hence, by Lemma 95, Y1 − ` contains no points so the result holds by taking Q = Y1 − `.

We may now assume that ` ∈ cl(Y1 − `). Let (A,B) be a 2-separation of M\` where
A is the N -side and |B| = µ(`). Since |B| > 3, it follows by Lemma 95 that B contains
no points. If B ⊆ Y1 − `, then the lemma holds by taking Q = B. Thus we may assume
that B ∩X1 6= ∅.

Since X1 and A are the N -sides of their respective separations and |E(N)| > 4, we
see that |A ∩ X1| > 2. If A ⊆ X1, then B ⊇ Y1 − `, so (A,B ∪ `) is a 2-separation
of M , a contradiction. Likewise, if B ⊆ X1, then (A ∪ `, B) is a 2-separation of M , a
contradiction. We conclude that (A,B) crosses (X1, Y1 − `).

Since |A ∩ X1| > 2 and ` ∈ cl(Y1 − `), it follows that λM\`(A ∩ X1) > 2 otherwise
(A∩X1, B ∪ Y1) is a 2-separation of M , a contradiction. Then, by uncrossing, we deduce
that λM\`(B ∩ Y1) 6 1. Since B contains no points, the lemma holds with Q = B ∩ Y1
unless this set contains a single line.

Consider the exceptional case. As |B| > 3, we deduce that |B∩X1| > 2. Now λM\`(B∩
X1) > 2 otherwise, as ` ∈ cl(Y1 − `), we obtain the contradiction that (B ∩X1, A∪ Y1) is
a 2-separation of M . Hence, by uncrossing, λM\`(A ∩ Y1) = 1 and, as |Y1| > 4, it follows
using Lemma 95 that the lemma holds by taking Q = A ∩ Y1.
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Lemma 121. The 2-polymatroid M\` has a 2-separation (D1, D2) where D2 has at least
two elements, is contained in Y1 − `, and contains no points. Moreover, either

(i) D2 ∪ ` = Y1; and u(D1, {`}) = 0 and u(D2, {`}) = 1; or

(ii) Y1 − `−D2 6= ∅ and u(D1, {`}) = 0 = u(D2, {`}).

Proof. Let D2 be the set Q found in Lemma 120 and let D1 = E(M\`) − D2. Now
(D1, D2) is a 2-separation of M\`. Thus, there are the following four possibilities.

(I) u(D1, {`}) = 1 = u(D2, {`});

(II) u(D1, {`}) = 1 and u(D2, {`}) = 0;

(III) u(D1, {`}) = 0 and u(D2, {`}) = 1; and

(IV) u(D1, {`}) = 0 = u(D2, {`}).

121.1. Neither (I) nor (II) holds.

Suppose (I) or (II) holds. Then λM(D1 ∪ `) = 2, so λM(D2) = 2 and |D2| > 2. Since
D2 contains no points and D2 ⊆ Y1 − `, we get a contradiction to the minimality of Y1.
Thus 121.1 holds.

121.2. If (III) holds, then D2 ∪ ` = Y1.

As λM(D2 ∪ `) = 2, we must have that D1 ∩ Y1 = ∅ otherwise D2 ∪ ` violates the
minimality of Y1. Thus 121.2 holds.

121.3. If (IV) holds, then D2 ∪ ` = Y1.

Suppose D1 ∩ Y1 = ∅. Then D1 = X1 and D2 = Y1 − `. Thus λM(X1) > 2 as
u(D2, {`}) = 0. This contradiction establishes that 121.3 holds and thereby completes
the proof of the lemma.

Lemma 122. The 2-polymatroid M/` has a 2-separation (C1, C2) where C2 contains at
least two elements and is contained in Y1 − `, and contains no points of M . Moreover,
either

(i) C2 ∪ ` = Y1; and u(C1, {`}) = 1 and u(C2, {`}) = 2; or

(ii) Y1 − `− C2 6= ∅ and u(C1, {`}) = 2 = u(C2, {`}).

Proof. We apply the preceding lemma to M∗\` recalling that (M∗\`)[ = (M/`)∗ and that
the connectivity functions of M∗\` and M/` are equal. Thus M/` does indeed have a
2-separation (C1, C2) where C2 contains at least two elements, is contained in Y1− `, and
contains no points of M∗. Thus C2 contains no points of M . Since r(E − `) = r(M),
one easily checks that u∗(Ci, {`}) +u(Cj, {`}) = 2 where {i, j} = {1, 2}. The lemma now
follows from the preceding one.
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Lemma 123. There are 2-separations (D1, D2) and (C1, C2) of M\` and M/`, respec-
tively, such that each of D2 and C2 contains at least two elements, both D2 and C2 are con-
tained in Y1−`, and neither D2 nor C2 contains any points of M . Moreover, Y1−`−D2 6=
∅ 6= Y1 − `− C2 and u(D1, {`}) = 0 = u(D2, {`}) while u(C1, {`}) = 2 = u(C2, {`}).

Proof. Assume that (i) of Lemma 121 holds. Then, as D2 = Y1 − `, we see that u(Y1 −
`, {`}) = 1. Thus (i) of Lemma 122 cannot hold. Moreover, if (ii) of Lemma 122 holds,
then u(C2, {`}) = 2. This is a contradiction as u(D2, {`}) = 1 and C2 ⊆ D2. We
conclude that (ii) of Lemma 121 holds. If (i) of Lemma 122 holds, then u(X1, {`}) = 1.
But X1 ⊆ D1 and u(D1, {`}) = 0, a contradiction.

We now use the 2-separations (D1, D2) and (C1, C2) of M\` and M/`, respectively,
found in the last lemma.

Lemma 124. The partitions (D1, D2) and (C1, C2) have the following properties.

(i) λM\`(C1) = 3 = λM\`(C2);

(ii) (D1, D2) and (C1, C2) cross;

(iii) each of D1∩C2, D2∩C2, and D2∩C1 consists of a single line, and C2∪D2 = Y1−`;
and

(iv) λM\`(D1 ∩ C1) = λM(D1 ∩ C1) = 2.

Proof. We have u(D1, {`}) = 0 = u(D2, {`}) and u(C1, {`}) = 2 = u(C2, {`}). Thus
neither C1 nor C2 is contained in D1 or D2, so (ii) holds. Moreover, as r(C1 ∪ `) +
r(C2 ∪ `)− r(M) = 3, we see that (i) holds. To prove (iii) and (iv), we use an uncrossing
argument. We have, for each i in {1, 2},

1 + 3 = λM\`(D2) + λM\`(Ci)

> λM\`(D2 ∩ Ci) + λM\`(D2 ∪ Ci).

Since D2 ∩ Ci 6= ∅ and contains no points and ` ∈ cl(Cj) where j 6= i, we deduce that
λM\`(D2 ∩Ci) = λM(D2 ∩Ci) > 2. Thus λM\`(D2 ∪Ci) 6 2. Hence, as ` ∈ cl(Ci), we see
that

2 > λM\`(D2 ∪ Ci) = λM(D2 ∪ Ci ∪ `). (44)

But D2 ∪ C2 ⊆ Y1 − `, so, by the definition of Y1, we deduce that

D2 ∪ C2 = Y1 − ` and D1 ∩ C1 = X1. (45)

Moreover, as λM\`(D2 ∪ Ci) = 2, we see that λM\`(D2 ∩ Ci) = 2. Hence

λM(D2 ∩ Ci) = 2. (46)

Since D1 ∩ C1 = X1 and D1 ∩ C2 is non-empty containing no points, it follows from
(44) that

2 = λM\`(D2 ∪ Ci) = λM(D2 ∪ Ci ∪ `) = λM\`(D1 ∩ Cj) = λM(D1 ∩ Cj). (47)

Thus (iv) holds. By that and (46), it follows, using the minimality of Y1, that each of
D1 ∩ C2, D2 ∩ C2, and D2 ∩ C1 consist of a single line in M . Hence (iii) holds.
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For each (i, j) in {(1, 2), (2, 2), (2, 1)}, let Ci ∩Dj = {`ij}.

Lemma 125. The following hold.

(i) r(D2) = 3 so r(D1) = r(M)− 2;

(ii) r(D1) = r(X1) + 1;

(iii) r(Y1) = 5; and

(iv) r(C2) = 4.

Proof. Now D2 consists of two lines, `12 and `22. Suppose first that r(D2) = 2. Then both
M\`12 and M\`22 are 3-connected. Without loss of generality, M/`12 has N as a c-minor.
But M/`12 has `22 as a loop, so M\`22 is 3-connected having a c-minor isomorphic to N .
Thus r(D2) > 3.

Now suppose that r(D2) = 4. Then r(D1) = r(M)−3. Clearly r(D1∪`22) 6 r(M)−1.
Now D1 ∪ `22 ⊇ C2 so r(D1 ∪ `22 ∪ `) 6 r(M) − 1. Hence {`12} is 2-separating in M , a
contradiction. Hence (i) holds.

Since C2 ∪ D2 = Y1 − `, we see that D1 = X1 ∪ `21. Suppose r(D1) = r(X1). As
X1 ⊆ C1, we deduce that `21 ∈ cl(C1). But ` ∈ cl(C1). Hence

r(M) + 3 = r(C1) + r(C2)

= r(C1 ∪ `) + r(C2 ∪ `)
= r(C1 ∪ ` ∪ `21) + r(C2 ∪ `)
> r(C1 ∪ C2 ∪ `) + r({`, `21}).

Thus r({`, `21}) 6 3, so u(D1, {`}) > 1, a contradiction. Hence r(D1) > r(X1) + 1.
Suppose r(D1) = r(X1) + 2. Then

r(M) + 1 = r(D1) + r(D2) = r(X1) + 2 + 3,

so r(X1) = r(M)−4. Thus r(Y1) = 6. Now r(C2) = r(C2∪`). Thus 6 = r(Y1) = r(Y1−`).
Since Y1 − ` consists of three lines, two of which are in D2, we deduce that r(D2) = 4, a
contradiction to (i). We conclude that r(D1) = r(X1) + 1, that is, (ii) holds.

Finally, as r(D2) = 3, we see that r(M) = r(D1) + r(D2) − 1 = [r(X1) + 1] + 3 − 1.
But r(M) = r(X1) + r(Y1) − 2. Thus r(Y1) = 5, so (iii) holds. Moreover, r(Y1 − `) = 5,
that is, r(C2 ∪D2) = 5. Now C2 consists of two lines so r(C2) 6 4. Thus

4 + 3 > r(C2) + 3

= r(C2) + r(D2)

> r(C2 ∪D2) + r(C2 ∩D2)

= 5 + r({`22})
= 5 + 2.

We deduce that r(C2) = 4 so (iv) holds.
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By proving the following lemma, we will establish the final contradiction that com-
pletes the proof of Theorem 57.

Lemma 126. The 2-polymatroid M/`22 is 3-connected having a c-minor isomorphic to
N .

Proof. First we show the following.

126.1. u(D1, {`i2}) = 0 for each i in {1, 2}.
Suppose u(D1, {`i2}) > 1. Then r(D1∪`i2) 6 r(D1)+1. But ` ∈ cl(Ci) ⊆ cl(D1∪`i2),

so r(D1 ∪ ` ∪ `i2) 6 r(D1) + 1. Also r({`j2}) = 2 where {i, j} = {1, 2}. Thus

r(D1 ∪ ` ∪ `i2) + r({`j2}) 6 r(D1) + 1 + 2

= r(M)− 2 + 1 + 2

= r(M) + 1.

Hence {`j2} is 2-separating in M , a contradiction. Hence 126.1 holds.
Now M\` has a c-minor isomorphic to N and u(D1, D2) = 1. As u(D1, {`i2}) = 0,

Lemma 29 implies that uM/`i2(D1, D2−`i2) = 1 for each i in {1, 2}. Thus, by Lemma 51(ii),

126.2. M\`/`i2 has a c-minor isomorphic to N for each i in {1, 2}.
It remains to show that M/`22 is 3-connected. By Lemma 59, this polymatroid is

certainly 2-connected. Next we show that

126.3. ` and `21 are parallel lines in M/`22.

To see this, note that, by Lemma 125(iv),

r(C2 ∪ `) = r(C2) = r({`21, `22}).

Also, for each i in {1, 2}, we have u({`}, {`2i}) 6 u({`}, Di) = 0, so 126.3 holds.
Now take a fixed c-minor of M\`/`22 isomorphic to N ; call it N1. Let (A′ ∪ `, B′)

be a 2-separation of M/`22 in which the non-N1-side has maximum size and ` 6∈ A′. By
Lemma 88, both A′ ∪ ` and B′ have at least three elements.

126.4. `21 ∈ A′.
To see this, note that, since ` and `21 are parallel lines in M/`22, if `21 ∈ B′, then

` ∈ clM/`22(B
′), so uM/`22(A

′ ∪ `, B′) > 2, a contradiction.

126.5. rM(D1 ∩ C1) = r(M)− 3 = rM/`22(D1 ∩ C1).

By Lemma 124(iii), D1 ∩C1 = X1. By Lemma 125(i) and (ii), r(D1) = r(M)− 2 and
r(D1) = r(D1 ∩C1) + 1, so rM(D1 ∩C1) = r(M)− 3. By 126.1, u(D1 ∩C1, {`22}) = 0, so
rM(D1 ∩ C1) = rM/`22(D1 ∩ C1).

126.6. rM/`22((D1 ∩ C1) ∪ `12) = r(M)− 2.
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To see this, observe that

rM/`22((D1 ∩ C1) ∪ `12) = r((D1 ∩ C1) ∪ `12 ∪ `22)− 2

= r((D1 ∩ C1) ∪ `12 ∪ ` ∪ `22)− 2 as ` ∈ cl(C1);

= r(M\`21)− 2

= r(M)− 2.

By combining 126.5 and 126.6, we deduce that

126.7. rM/`22(D1 ∩ C1) = rM/`22((D1 ∩ C1) ∪ `12)− 1.

Next we show that

126.8. λM/`22({`12, `21, `}) = 1 or λM/`22({`21, `}) = 1.

Recall that X1 = D1 ∩ C1 and Y1 = {`, `12, `21, `22}. By uncrossing, we have

1 + 2 = λM/`22(B
′) + λM/`22(X1)

> λM/`22(B
′ ∪X1) + λM/`22(B

′ ∩X1).

As |B′| > 3, it follows by 126.4 that |B′∩X1| > 2. Suppose λM/`22(B
′∩X1) = 1. Now

B′∩X1 ⊆ D1, so u(B′∩X1, {`22}) 6 u(D1, {`22}) 6 0. Thus, by Lemma 29, λM(B′∩X1) =
1. This contradiction implies that λM/`22(B

′ ∩X1) = 2, so 1 = λM/`22(B
′ ∪X1). Now, by

126.4, `21 ∈ A′, so E − `22 − (B′ ∪X1) is {`12, `21, `} or {`21, `}. Thus 126.8 holds.
Suppose λM/`22({`12, `21, `}) = 1. Then, as `22 is skew to X1 in M , we deduce

that λM({`12, `21, `, `22}) = 1, that is, λM(Y1) = 1, a contradiction. We conclude that
λM/`22({`21, `}) = 1.

By Lemma 29, as λM(D1∩C1) = 2 and u(D1∩C1, {`22}) = 0, we see that λM/`22(D1∩
C1) = 2. Thus, by 126.7 and Lemma 125,

2 = rM/`22(D1 ∩ C1) + rM/`22({`12, `21, `})− r(M/`22)

= [rM/`22(D1 ∩ C1) + 1] + [rM/`22({`12, `21, `})− 1]− r(M/`22)

= rM/`22((D1 ∩ C1) ∪ `12) + [r(Y1)− 2− 1]− r(M/`22)

= rM/`22((D1 ∩ C1) ∪ `12) + [r(C2)− 2]− r(M/`22)

= rM/`22((D1 ∩ C1) ∪ `12) + rM/`22({`21, `})− r(M/`22)

= λM/`22({`21, `}).

This contradiction to 126.8 completes the proof of the lemma and thereby finishes the
proof of Theorem 57.
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