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Abstract

Tutte initiated the study of nowhere-zero flows and proved the following funda-
mental theorem: For every graph G there is a polynomial f so that for every abelian
group Γ of order n, the number of nowhere-zero Γ-flows in G is f(n). For signed
graphs (which have bidirected orientations), the situation is more subtle. For a fi-
nite group Γ, let ε2(Γ) be the largest integer d so that Γ has a subgroup isomorphic
to Zd2. We prove that for every signed graph G and d > 0 there is a polynomial fd
so that fd(n) is the number of nowhere-zero Γ-flows in G for every abelian group Γ
with ε2(Γ) = d and |Γ| = 2dn. Beck and Zaslavsky [JCTB 2006] had previously
established the special case of this result when d = 0 (i.e., when Γ has odd order).

Mathematics Subject Classifications: 05C21, 05C22, 05C30

1 Introduction

Throughout the paper we permit graphs to have both multiple edges and loops. Let G be
a graph equipped with an orientation of its edges and let Γ be an abelian group written
additively. We say that a function ϕ : E(G) → Γ is a Γ-flow if it satisfies the following
equation (Kirchhoff’s law) for every vertex v ∈ V (G).∑

e∈δ+(v)

ϕ(e)−
∑

e∈δ−(v)

ϕ(e) = 0,

where δ+(v) (δ−(v)) denote the set of edges directed away from (toward) the vertex v. We
say that ϕ is nowhere-zero if 0 6∈ ϕ(E(G)). If ϕ is a Γ-flow and we switch the direction
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of an edge e of G, we may obtain a new flow by replacing ϕ(e) by its additive inverse.
Note that this does not affect the property of being nowhere-zero. So, in particular,
whenever some orientation of G has a nowhere-zero Γ-flow, the same will be true for
every orientation. More generally, the number of nowhere-zero Γ-flows in two different
orientations of G will always be equal, and we denote this important quantity by Φ(G,Γ).
Tutte [8] introduced the concept of a nowhere-zero Γ-flow and proved the following key
theorem about counting them.

Theorem 1 (Tutte [8]). Let G be a graph.

1. If Γand Γ′ are abelian groups with |Γ| = |Γ′|, then Φ(G,Γ) = Φ(G,Γ′).

2. There exists a polynomial f so that Φ(G,Γ) = f(n) for every abelian group Γ with
|Γ| = n.

Our interest in this paper is in counting nowhere-zero Γ-flows in signed graphs, so
we proceed with an introduction to this setting. A signature of a graph G is a function
σ : E(G) → {−1, 1}. We say that a subgraph H is positive if

∏
e∈E(H) σ(e) = 1 and

negative if this product is −1, in particular we call an edge e positive (negative) if the
graph e induces is positive (negative). We say that two signatures σ and σ′ are equivalent
if the symmetric difference of the negative edges of σ and the negative edges of σ′ is an
edge-cut of G. Let us note that two signatures are equivalent if and only if they give rise
to the same set of negative cycles; this instructive exercise was observed by Zaslavsky [9].
Observe that if σ is a signature and C is an edge-cut of G, then we may form a new
signature σ′ equivalent to σ by the following rule:

σ′(e) =

{
σ(e) if e 6∈ C
−σ(e) if e ∈ C.

So, in particular, for any signature σ and a non-loop edge e, there is a signature σ′

equivalent to σ with σ′(e) = 1. We define a signed graph to consist of a graph G together
with a signature σG. As suggested by our terminology, we will only be interested in
properties of signed graphs which are invariant under changing to an equivalent signature.

Following Bouchet [2] we now introduce a notion of a half-edge so as to orient a signed
graph. For every graph G we let H(G) be a set of half edges obtained from the set of edges
E(G) as follows. Each edge e = uv contains two distinct half edges h and h′ incident
with u and v, respectively. Note that if u = v, e is a loop containing two half-edges both
incident with u. For a half-edge h ∈ H(G), we let eh denote the edge of G that contains h.
To orient a signed graph G we will equip each half edge with an arrow and direct it either
toward or away from its incident vertex. Formally, we define an orientation of a signed
graph G to be a function τ : H(G) → {−1, 1} with the property that for every edge e
containing the half edges h, h′ we have

τ(h)τ(h′) = −σG(e).

We think of a half edge h with τ(h) = 1 (τ(h) = −1) to be directed toward (away from)
its endpoint. Note that in the case when σG is identically 1, both arrows on every half
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edge are oriented consistently, and this aligns with the usual notion of orientation of an
(ordinary) graph.

positive negative

Figure 1: Orientations of edges in a signed graph

We define a Γ-flow in such an orientation of a signed graph G to be a function ϕ :
E(G)→ Γ which obeys the following rule at every vertex v∑

{h∈H(G)|h∼v}

τ(h)ϕ(eh) = 0.

As before, we call ϕ nowhere-zero if 0 6∈ ϕ(E(G)). Note that in the case when σG is
identically 1, this notion agrees with our earlier notion of a (nowhere-zero) flow in an
orientation of a graph. Also note that, as before, we may obtain a new flow by reversing
the orientation of an edge e (i.e., by changing the sign of τ(h) for both half edges contained
in e) and then replacing ϕ(e) by its additive inverse. This new flow is nowhere-zero if and
only if the original flow had this property. In light of this, we may now define Φ(G,Γ) to
be the number of nowhere-zero Γ-flows in some (and thus every) orientation of the signed
graph G.

As we remarked, we are only interested in properties of signed graphs which are in-
variant under changing to an equivalent signature, and this is indeed the case for Φ(G,Γ).
To see this, suppose that τ is an orientation of the signed graph G and that ϕ is a
nowhere-zero Γ-flow for this orientation. Assume that the signature σ′G is obtained from
σG by flipping the sign of every edge in the edge-cut δ(X) (here X ⊆ V (G) and δ(X) is
the set of edges with exactly one end in X). Modify the orientation τ to obtain a new
orientation τ ′ by switching the sign of h for every half edge incident with a vertex of X.
It is straightforward to verify that τ ′ is now an orientation of the signed graph given by
G and σ′G, and ϕ is still a Γ-flow for this new oriented signed graph.

Beck and Zaslavsky [1] considered the problem of counting nowhere-zero flows in signed
graphs and proved the following analogue of Tutte’s Theorem 1 for groups of odd order.

Theorem 2 (Beck and Zaslavsky [1]). Let G be a signed graph.

1. If Γ,Γ′ are abelian groups and |Γ| = |Γ′| is odd, then Φ(G,Γ) = Φ(G,Γ′).

2. There exists a polynomial f so that for every odd integer n, every abelian group Γ
with |Γ| = n satisfies f(n) = Φ(G,Γ).

The purpose of this note is to extend the above theorem to allow for groups of even
order by incorporating another parameter. For any finite group Γ we define ε2(Γ) to be
the largest integer d so that Γ contains a subgroup isomorphic to Zd2 (here Z2 = Z/2Z).

Theorem 3. Let G be a signed graph and let d > 0.
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1. If Γ and Γ′ are abelian groups with |Γ| = |Γ′| and ε2(Γ) = ε2(Γ′), then Φ(G,Γ) =
Φ(G,Γ′).

2. For every nonnegative integer d, there exists a polynomial fd so that Φ(G,Γ) = fd(n)
for every abelian group Γ with ε2(Γ) = d and |Γ| = 2dn.

The proof of the above theorem is a straightforward adaptation of Tutte’s original
method, so it may seem surprising it was not proved earlier. The cause of this may be some
confusion over whether or not it was already done. The paper by Beck and Zaslavsky [1]
includes a footnote with the following comment: “Counting of flows in groups of even order
has been completely resolved by Cameron et al.”. This refers to an interesting paper of
Cameron, Jackson, and Rudd [3] which concerns problems such as counting the number of
orbits of nowhere-zero flows under a group action. However, the methods developed in this
paper only apply to counting nowhere-zero flows in (ordinary) graphs for the reason that
the incidence matrix of an oriented graph is totally unimodular. Since the corresponding
incidence matrices of oriented signed graphs are generally not totally unimodular (and
not equivalent to such matrices under elementary row and column operations), our result
does not follow from Cameron et al.

Before giving the proof of our theorem, let us pause to make one further comment
about nowhere-zero flows in signed graphs which consist of a single loop edge e. For a
loop edge e with signature 1 we may obtain a nowhere-zero flow by assigning any nonzero
value x to the edge e. So, two groups Γ and Γ′ will have the same number of nowhere-zero
flows for this graph if and only if |Γ| = |Γ′|. If, on the other hand, our graph consists of
a single loop edge e which is negative, then the number of nowhere-zero Γ-flows in this
graph will be precisely the number of nonzero group elements y for which 2y = 0 (i.e.,
the number of elements of order 2). All elements of order 2 form (together with the zero

element) a subgroup isomorphic to Zε2(Γ)
2 , thus this number is precisely 2ε2(Γ) − 1. So,

in order for two groups Γ and Γ′ to have the same number of nowhere-zero flows on this
graph, they must satisfy ε2(Γ) = ε2(Γ′). By our main theorem, two groups Γ and Γ′ will
satisfy Φ(G,Γ) = Φ(G,Γ′) for every signed graph G if and only if this holds for every one
edge graph. This statement is in precise analogy with the situation for flows in ordinary
graphs.

x y

Figure 2: Two graphs that determine Φ(G,Γ) for every other graph G.

We close the introduction by mentioning related results about the number of integer
flows. Tutte [7] defined a nowhere-zero n-flow to be a Z-valued flow that only uses values k
with 0 < |k| < n. Surprisingly, a graph has a nowhere-zero n-flow if and only if it has a
nowhere-zero Zn-flow. Let us use Φ(G, n) to denote the number of nowhere-zero n-flows
on G. While Φ(G, n) and Φ(G,Zn) are either both zero or both nonzero, the actual
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values differ. An analogical statement to the second part of Theorem 1 is again true, by
a result of Kochol [5]; that is, Φ(G, n) is a polynomial in n. His result has already been
extended for bidirected graphs. Beck and Zaslavsky [1] prove that for a signed graph G,
Φ(G, n) is a quasipolynomial of period 1 or 2; that is, there are polynomials p0 and p1

such that Φ(G, n) is equal to p0(n) for even n and to p1(n) for odd n. Both the Kochol’s
and the Beck and Zaslavsky’s result is proved by an illustrative application of Ehrhart’s
theorem [4, 6].

2 The proof

The proof of our main theorem requires the following lemma about counting certain
solutions to an equation in an abelian group.

Lemma 4. Let Γ be an abelian group with ε2(Γ) = d and |Γ| = 2dn. Then the number of
solutions to 2x1 + · · ·+ 2xt = 0 with x1, . . . , xt ∈ Γ \ {0} is given by the formula

t∑
s=0

(2d)s(2d − 1)t−s
(
t

s

) s−1∑
i=1

(−1)i−1(n− 1)s−i .

Proof. We claim that for every abelian group of order m, the number of solutions to
x1 + · · ·+ xt = 0 with x1, . . . , xt 6= 0 is given by the formula

t−1∑
i=1

(−1)i−1(m− 1)t−i .

We prove this by induction on t. The base case t = 1 holds trivially, as the formula
evaluates to 0. For the inductive step, we may assume t > 2. The total number of
solutions to the given equation for which x1, . . . , xt−1 are nonzero, but xt is permitted to
have any value is exactly (m− 1)t−1 since we may choose the nonzero terms x1, . . . , xt−1

arbitrarily and then set xt = −
∑t−1

i=1 xi to obtain a solution. By induction, there are
exactly

∑t−2
i=1(−1)i−1(m − 1)t−1−i of these solutions for which xt = 0. We conclude that

the number of solutions with all variables nonzero is

(m− 1)t−1 −
t−2∑
i=1

(−1)i−1(m− 1)t−1−i =
t−1∑
i=1

(−1)i−1(m− 1)t−i

as claimed.
Now, to prove the lemma, we consider the group homomorphism ψ : Γ → Γ given

by the rule ψ(x) = x + x. Note that the kernel of ψ, denoted ker(ψ), is isomorphic
to Zd2. Now x1, . . . , xt satisfy 2x1 + · · · + 2xt = 0 if and only if ψ(x1), . . . , ψ(xt) satisfy
ψ(x1) + · · ·+ ψ(xt) = 0. So, to count the number of solutions to 2x1 + · · ·+ 2xt = 0 in Γ
with all variables nonzero, we may count all possible solutions to y1 + · · ·+ yt = 0 within
the group ψ(Γ) and then, for each such solution, count the number of nonzero sequences
x1, . . . , xt in Γ with ψ(xi) = yi. For every yi ∈ ψ(Γ), the pre-image ψ−1(yi) is a coset
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of ker(ψ). So the number of nonzero elements xi with ψ(xi) = yi will equal 2d if yi 6= 0
and 2d − 1 if yi = 0. Now we will combine this with the claim proved above. For every
0 6 s 6 t, the number of solutions to y1 + · · · + yt = 0 in the group ψ(Γ) with exactly s
nonzero terms is given by (

t

s

) s−1∑
i=1

(−1)i−1(n− 1)s−i .

Each such solution will be the image of (2d)s(2d− 1)t−s nonzero sequences x1, . . . , xt ∈ Γ.
Summing over all s gives the desired formula.

We also require the usual contraction-deletion formula for counting nowhere-zero flows.

Observation 5. Let G be an oriented signed graph and let e ∈ E(G) satisfy σG(e) = 1.

1. If e is a loop edge, then Φ(G,Γ) = (|Γ| − 1)Φ(G \ e,Γ).

2. If e is not a loop edge, then Φ(G,Γ) = Φ(G/e,Γ)− Φ(G \ e,Γ).

Proof. The first part follows from the observation that every nowhere-zero flow in G is
obtained from a nowhere-zero flow in G \ e by choosing an arbitrary nonzero value for e.
The second part follows from the usual contraction-deletion formula for flows. Suppose
ϕ is a nowhere-zero flow in G/e, and return to the original graph G by uncontracting
e. It follows from elementary considerations that there is a unique value ϕ(e) we can
assign to e so that ϕ is a flow. It follows that Φ(G/e,Γ) is precisely the number of Γ-
flows in G for which all edges except possibly e are nonzero. This latter count is exactly
Φ(G,Γ) + Φ(G \ e,Γ) and this completes the proof.

Equipped with these lemmas, we are ready to prove our main theorem about counting
group-valued flows.

Proof of Theorem 3. For the first part, we proceed by induction on |E(G)|. Our base
cases will consist of one vertex graphs G for which every edge has signature −1. In this
case we may orient G so that every half-edge is directed toward its endpoint. If the edges
are e1, . . . , et, then to find a nowhere-zero flow we need to assign each edge ei a nonzero
value xi so that 2x1 + · · · + 2xt = 0. By Lemma 4, the number of ways to do this is the
same for Γ and Γ′.

For the inductive step, we may assume G is connected, as otherwise the result follows
by applying induction to each component. If G has a loop edge e with σG(e) = 1, then
the result follows from the previous lemma and induction on G \ e. Otherwise G must
have a non-loop edge e. By possibly switching to an equivalent signature, we may assume
that σG(e) = 1. Now our result follows from the previous lemma and induction on G \ e
and G/e.

The second part of the theorem follows by a very similar argument. In the base case
when G is a one vertex graph in which every edge has signature −1, the desired polynomial
is given by Lemma 4. For the inductive step, we may assume G is connected, as otherwise
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the result follows by applying induction to each component and taking the product of
these polynomials. If we are not in the base case, then G must either have a loop edge
with signature 1 or a non-loop edge e which we may assume has signature 1. In either
case, Observation 5 and induction yield the desired result.
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