
Fractional L-intersecting families

Niranjan Balachandran∗

Department of Mathematics
Indian Institute of Technology, Bombay

400076, India

niranj@iitb.ac.in

Rogers Mathew
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
721302, India

rogers@cse.iitkgp.ac.in

Tapas Kumar Mishra†

Department of Computer Science and Engineering
National Institute of Technology, Rourkela

769008, India

mishrat@nitrkl.ac.in

Submitted: May 4, 2018; Accepted: May 23, 2019; Published: Jun 21, 2019

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let L = {a1b1 , . . . ,
as
bs
}, where for every i ∈ [s], aibi ∈ [0, 1) is an irreducible fraction.

Let F = {A1, . . . , Am} be a family of subsets of [n]. We say F is a fractional L-
intersecting family if for every distinct i, j ∈ [m], there exists an a

b ∈ L such that
|Ai ∩ Aj | ∈ {ab |Ai|,

a
b |Aj |}. In this paper, we introduce and study the notion of

fractional L-intersecting families.

Mathematics Subject Classifications: 05D05, 05C50, 05C65

1 Introduction

Let [n] denote {1, . . . , n} and let L = {l1, . . . , ls} be a set of s non-negative integers.
A family F = {A1, . . . , Am} of subsets of [n] is L-intersecting if for every Ai, Aj ∈ F
∗The research of the author is supported by grant 12IRCCSG016, IRCC, IIT Bombay.
†The research of the author is supported by the doctoral fellowship program of Ministry of Human

Resources and Development, Govt. of India.
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with Ai 6= Aj, we have |Ai ∩ Aj| ∈ L. In 1975, it was shown by Ray-Chaudhuri and
Wilson in [13] that if F is t-uniform, then |F| 6

(
n
s

)
. Setting L = {0, . . . , s − 1}, the

family F =
(

[n]
s

)
is a tight example to the above bound, where

(
[n]
s

)
denotes the set of

all s-sized subsets of [n]. In the non-uniform case, it was shown by Frankl and Wilson in
1981 (see [7]) that if we don’t put any restrictions on the cardinalities of the sets in F ,
then |F | 6

(
n
s

)
+
(
n
s−1

)
+ · · ·+

(
n
0

)
. This bound is tight as demonstrated by the set of all

subsets of [n] of size at most s with L = {0, . . . s− 1}. The proof of this bound was using
the method of higher incidence matrices. Later, in 1991, Alon, Babai, and Suzuki in [2]
gave an elegant linear algebraic proof of this bound. They showed that if the cardinalities
of the sets in F belong to the set of integers K = {k1, . . . , kr} with every ki > s − r,
then |F| is at most

(
n
s

)
+
(
n
s−1

)
+ · · ·+

(
n

s−r+1

)
. The collection of all the subsets of [n] of

size at least s− r + 1 and at most s with K = {s− r + 1, . . . , s} and L = {0, . . . , s− 1}
forms a tight example to this bound. In 2002, this result was extended by Grolmusz and
Sudakov [8] to k-wise L-intersecting families. In 2003, Snevily showed in [14] that if L is
a collection of s positive integers then |F| 6

(
n−1
s

)
+
(
n−1
s−1

)
+ · · · +

(
n−1

0

)
. See [11] for a

survey on L-intersecting families and their variants.
In this paper, we introduce a new variant of L-intersecting families called the fractional

L-intersecting families. Let L = {a1
b1
, . . . , as

bs
}, where for every i ∈ [s], ai

bi
∈ [0, 1) is an

irreducible fraction. Let F = {A1, . . . , Am} be a family of subsets of [n]. We say F is
a fractional L-intersecting family if for every distinct i, j ∈ [m], there exists an a

b
∈ L

such that |Ai ∩ Aj| ∈ {ab |Ai|,
a
b
|Aj|}. When F is t-uniform, it is an L′-intersecting family

where L′ = {ba1t
b1
c, . . . , bast

bs
c} and therefore (using the result in [13]), |F| 6

(
n
s

)
. A tight

example to this bound is given by the family F =
(

[n]
t

)
where L = {0

t
, . . . , t−1

t
}. So what

is interesting is finding a good upper bound for |F| in the non-uniform case. Unlike in
the case of the classical L-intersecting families, it is clear from the above definition that
if A and B are two sets in a fractional L-intersecting family, then the cardinality of their
intersection is a function of |A| or |B| (or both).

In Section 2.1, we prove the following theorem which gives an upper bound for the car-
dinality of a fractional L-intersecting family in the general case. We follow the convention
that

(
a
b

)
is 0, when b > a.

Theorem 1. Let n be a positive integer. Let L = {a1
b1
, . . . , as

bs
}, where for every i ∈ [s],

ai
bi
∈ [0, 1) is an irreducible fraction. Let F be a fractional L-intersecting family of subsets

of [n]. Then, |F| 6 2
(
n
s

)
g2(t, n) ln(g(t, n)) +

(∑s−1
i=1

(
n
i

))
g(t, n), where g(t, n) = 2(2t+lnn)

ln(2t+lnn)

and t = max(s,max(bi : i ∈ [s]) ). Further,

(a) if s 6 n+ 1− 2g(t, n) ln(g(t, n)), then |F| 6 2
(
n
s

)
g2(t, n) ln(g(t, n)), and

(b) if t > n− c1, where c1 is a positive integer constant, then
|F| 6 2c1

(
n
s

)
g(t, n) ln(g(t, n)) + c1

∑s−1
i=1

(
n
i

)
.

Consider the following examples for a fractional L-intersecting family.

Example 2. Let L = {0
1
, 1

2
, 1

3
, 2

3
, 1

4
, 3

4
, . . . , 1

n
, . . . , n−1

n
}, where we omit fractions, like 2

4
,

which are not irreducible. The collection of all the non-empty subsets of [n] is a fractional
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L-intersecting family of cardinality 2n − 1. Here, |L| = s = Θ(n2). Since t > s, we
can apply Statement (b) of Theorem 1 to get an upper bound of c1(2n − 1) which is
asymptotically tight. In general, when L = {0

1
, 1

2
, 1

3
, 2

3
, 1

4
, 3

4
, . . . , 1

n−c , . . . ,
n−c−1
n−c }, where

c > 0 is a constant, the set of all the non-empty subsets of [n] of cardinality at most n− c
is an example which demonstrates that the bound given in Statement (b) of Theorem 1
is asymptotically tight.

Example 3. Let us now consider another example where s (= |L|) is a constant. Let L =
{0
s
, 1
s
, . . . , s−1

s
}. The collection of all the s-sized subsets of [n] is a fractional L-intersecting

family of cardinality
(
n
s

)
. In this case, the bound given by Theorem 1 is asymptotically

tight up to a factor of ln2 n
ln lnn

. We believe that if F is a fractional L-intersecting family of
maximum cardinality, where s (= |L|) is a constant, then |F| ∈ Θ(ns).

Coming back to the classical L-intersecting families, it is known that when F is an
L-intersecting family where |L| = s = 1, the Fisher’s Inequality (see Theorem 7.5 in [9])
yields |F| 6 n. Study of such intersecting families was initiated by Ronald Fisher in 1940
(see [5]). This fundamental result of design theory is among the first results in the field
of L-intersecting families. Analogously, consider the scenario when L = {a

b
} is a singleton

set. Can we get a tighter bound (compared to Theorem 1) in this case? We show in
Theorem 4 that if b is a constant prime we do have a tighter bound.

Theorem 4. Let n be a positive integer. Let G be a fractional L-intersecting families of
subsets of [n], where L = {a

b
}, a

b
∈ [0, 1), and b is a prime. Then, |G| 6 (b − 1)(n +

1)d lnn
ln b
e+ 1.

Assuming L = {1
2
}, Examples 11 and 12 in Section 3 give fractional L-intersecting

families on [n] of cardinality 3n
2
−2 thereby implying that the bound obtained in Theorem

4 is asymptotically tight up to a factor of lnn when b is a constant prime. We believe
that the cardinality of such families is at most cn, where c > 0 is a constant.

The rest of the paper is organized in the following way: In Section 2.1, we give the proof
of Theorem 1 after introducing some necessary lemmas in the beginning. In Theorem 9
in Section 2.2, we demonstrate that any fractional L-intersecting families on [n] whose
member sets are ‘large enough’ has size at most n. In Section 3, we consider the case when
L is a singleton set and give the proof of Theorem 4. Later in this section, in Theorem
14, we consider the case when the cardinalities of the sets in the fractional L-intersecting
family are restricted. Finally, we conclude with some remarks, some open questions, and
a conjecture.

2 The general case

2.1 Proof of Theorem 1

Before we move to the proof of Theorem 1, we introduce a few lemmas that will be used
in the proof.
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2.1.1 A few auxiliary lemmas

The following lemma is popularly known as the ‘Independence Criterion’ or ‘Triangular
Criterion’.

Lemma 5 (Lemma 13.11 in [9], Proposition 2.5 in [3]). For i = 1, . . . ,m let fi : Ω → F
be functions and vi ∈ Ω elements such that

(a) fi(vi) 6= 0 for all 1 6 i 6 m;

(b) fi(vj) = 0 for all 1 6 j < i 6 m.

Then f1, . . . , fm are linearly independent members of the space FΩ.

Lemma 6. Let p be a prime; Ω = {0, 1}n. Let f ∈ FΩ
p and let i ∈ Fp. For any A ⊆ [n], let

VA ∈ {0, 1}n denote its 0-1 incidence vector and let xA = Πj∈Axj. Assume f(VA) 6= 0, for
every |A| 6≡ i (mod p). Then, the set of functions {xAf : |A| 6≡ i (mod p) and |A| < p}
is linearly independent in the vector space F{0,1}

n

p over Fp.

Proof. Arrange every subset of [n] of cardinality less than p in a linear order, say ≺, such
that A ≺ B implies |A| 6 |B|. For any two distinct sets A and B with |B| 6 |A|, we
know that xA(VB)f(VB) = 0, where xA(VB) denote the evaluation of the function xA at
VB. Suppose

∑
A:|A|6≡i (mod p), |A|<p λAxAf = 0 has a non-trivial solution. Then, identify

the first set, say A0, in the linear order ≺ for which λA0 is non-zero. Evaluate the functions
on either side of the above equation at VA0 to get λA0 = 0 which is a contradiction to our
assumption.

The following lemma is from [3] (see Lemma 5.38).

Lemma 7 (Lemma 5.38 in [3]). Let p be a prime; Ω = {0, 1}n. Let f ∈ FΩ
p be defined

as f(x) =
∑n

i=1 xi − k. For any A ⊆ [n], let VA ∈ {0, 1}n denote its 0-1 incidence vector
and let xA = Πj∈Axj. Assume 0 6 s, k 6 p− 1 and s+ k 6 n. Then, the set of functions
{xAf : |A| 6 s− 1} is linearly independent in the vector space FΩ

p over Fp.

2.1.2 The proof

Proof of Theorem 1. Let p be a prime with p > t. We partition F into p parts, namely
F0, . . . ,Fp−1, where Fi = {A ∈ F : |A| ≡ i (mod p)}.

Estimating |Fi|, when i > 0.

Let Fi = {A1, . . . , Am} and let V1, . . . , Vm denote their corresponding 0-1 incidence vec-

tors. Define m functions f1 to fm, where each fj ∈ F{0,1}
n

p , in the following way.

fj(x) = (〈Vj, x〉 −
a1

b1

i)(〈Vj, x〉 −
a2

b2

i) · · · (〈Vj, x〉 −
as
bs
i).
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Note that since |Aj| ≡ i (mod p), 〈Vj, Vj〉 ≡ i (mod p). Since p > t, for every l ∈ [s],
i 6≡ al

bl
i (mod p) unless i ≡ 0 (mod p). So,

fj(x)

{
6= 0, if x = Vj

= 0, otherwise.
(1)

So, fj’s are linearly independent in the vector space Fp{0,1}
n

over Fp (by Lemma 5).
Since x = (x1, x2, . . . , xn) ∈ {0, 1}n, xri = xi, for any positive integer r. Each fj is thus
an appropriate linear combination of distinct monomials of degree at most s. Therefore,
|Fi| = m 6

∑s
j=0

(
n
j

)
. We can improve this bound by using the “swallowing trick” in

a way similar to the way it is used in the proof of Theorem 1.1 in [2]. Let f ∈ F{0,1}
n

p

be defined as f(x) =
∑

j∈[n] xj − i. From Lemma 6, we know that the set of functions

{xAf : |A| 6≡ i (mod p) and |A| < s} is linearly independent in the vector space F{0,1}
n

p

over Fp.

Claim 8. {fj : 1 6 j 6 m} ∪ {xAf : |A| 6≡ i (mod p) and |A| < s} is a collection of

functions that is linearly independent in the vector space F{0,1}
n

p over Fp.

In order to prove the claim, assume
∑m

j=1 λjfj +
∑

A:|A|6s−1, |A|6≡i (mod p) µAxAf = 0 for

some λj, µA ∈ Fp. Evaluating at Vj, all terms in the second sum vanish (since f(Vj) = 0)
and by Equation 1, only the term with subscript j remains of the first sum. We infer that
λj = 0, for every j. It then follows from Lemma 6 that every µA is zero thus proving the
claim.

Since each function in the collection of functions in Claim 8 can be obtained as a
linear combination of distinct monomials of degree at most s, we can infer that m +∑s−1

j 6=i,j=0

(
n
j

)
6
∑s

j=0

(
n
j

)
. We thus have

|Fi| 6

{ (
n
s

)
+
(
n
i

)
, if i < s(

n
s

)
, otherwise

(2)

Observe that i 6 p − 1. We will shortly see that the prime p we choose is always at
most 2g(t, n) ln(g(t, n)), where g(t, n) = (2t+lnn)

ln(2t+lnn)
. So if s 6 n + 1 − 2g(t, n) ln(g(t, n)),

the condition s+ i 6 n (here i stands for the symbol k in Lemma 7) given in Lemma 7 is
satisfied and therefore the more powerful Lemma 7 can be used instead of Lemma 6 while
applying the swallowing trick. We can then claim that (proof of this claim is similar to
the proof of Claim 8 and is therefore omitted) {fj : 1 6 j 6 m} ∪ {xAf : |A| < s}
(where f(x) =

∑n
j=1 xj − i) is a collection of functions that is linearly independent in

the vector space F{0,1}
n

p over Fp which can be obtained as a linear combination of distinct
monomials of degree at most s. It then follows that |Fi| 6

(
n
s

)
.

In the rest of the proof, we shall assume the general bound for |Fi| given by Inequality
2. (Using the

(
n
s

)
upper bound for |Fi| in place of Inequality 2 when s 6 n + 1 −

2g(t, n) ln(g(t, n)) in the rest of the proof will yield the tighter bound for |F| given in
Statement (a) in the theorem.)
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Observe that we still do not have an estimate on |A0| since i ≡ al
bl
i (mod p) when

i ≡ 0 (mod p). To overcome this problem, consider the collection P = {pq+1, . . . , pr}
of r − q smallest primes with pq 6 t < pq+1 < · · · < pr (pj denotes the j-th prime;
p1 = 2, p2 = 3, and so on) such that for every A ∈ F , there exists a prime p ∈ P with
p - |A|. Note that if we repeat the steps done above for each p ∈ P , we obtain the
following upper bound.

|F| 6 (pq+1 + · · ·+ pr − (r − q))
(
n

s

)
+ (r − q)

s−1∑
j=1

(
n

j

)

< (r − q)

(
pr

(
n

s

)
+

s−1∑
j=1

(
n

j

))

To obtain a small cardinality set P of the desired requirement, we choose the minimum
r such that pq+1pq+2 · · · pr > n. If t > n− c1, for some positive integer constant c1, then
P = {pq+1, . . . , pq+c1} satisfies the desired requirements of P . We thus have,

|F| <

 c1

(
pr
(
n
s

)
+
∑s−1

j=1

(
n
j

))
, if t > n− c1 (here c1 is a +ve integer constant)

r
(
pr
(
n
s

)
+
∑s−1

j=1

(
n
j

))
, otherwise

(3)

The product of the first k primes is the primorial function pk# and it is known
that pk# = e(1+o(1))k ln k. Given a natural number N , let N# denote the product of
all the primes less than or equal to N (some call this the primorial function). It is

known that N# = e(1+o(1))N . Since pr#
t#

= pk+1pk+2 · · · pr, setting e(1+o(1))r ln r

e(1+o(1))t
> n, we get,

r 6 2(2t+lnn)
ln(2t+lnn)

= g(t, n). Using the prime number theorem (see Section 5.1 of [15]), the rth

prime pr is at most 2r ln r. Thus, we have pr 6 2g(t, n) ln(g(t, n)). Substituting for r and
pr in Inequality 3 gives the theorem.

2.2 When the sets in F are ‘large enough’

In the following theorem, we show that when the sets in a fractional L-intersecting F are
‘large enough’, then |F| is at most n.

Theorem 9. Let n be a positive integer. Let L = {a1
b1
, . . . , as

bs
}, where for every i ∈ [s],

ai
bi
∈ [0, 1) is an irreducible fraction. Let a

b
= max(a1

b1
, . . . , as

bs
). Let F be a fractional

L-intersecting family of subsets of [n] such that for every A ∈ F , |A| > αn, where
α = max(1

2
, 4a−b

2b
). Then, |F| 6 n.

Proof. Let F = {A1, A2, . . . , Am}. For every Ai ∈ F , we define its (+1,−1)-incidence
vector as:

XAi(j) =

{
+1, if j ∈ Ai
−1, if j 6∈ Ai.

(4)

We prove the theorem by proving the following claim.
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Claim 10. XA1 , . . . , XAm are linearly independent in the vector space Rn over R.

Assume for contradiction that XA1 , . . . , XAm are linearly dependent in the vector space
Rn over R. Then, we have some reals λA1 , . . . , λAm where not all of them are zeroes such
that

λA1XA1 + · · ·+ λAmXAm = 0. (5)

It is given that, for every Ai ∈ F , |Ai| > n
2
. Let u = (1, 1, . . . , 1) ∈ Rn be the all ones

vector. Then, 〈XAi , u〉 > 0, for every Ai ∈ F . Therefore, if all non-zero λAis in Equation
(5) are of the same sign, say positive, then the inner product of u with the L.H.S of
Equation (5) would be non-zero which is a contradiction. Hence, we can assume that not
all λAis are of the same sign. We rewrite Equation (5) by moving all negative λAis to the
R.H.S. Without loss of generality, assume λA1 , . . . , λAk are non-negative and the rest are
negative. Thus, we have

v = λA1XA1 + · · ·+ λAkXAk = −(λAk+1
XAk+1

+ · · ·+ λAmXAm),

where v is a non-zero vector.
For any two distinct sets A,B ∈ F , ∃ai

bi
∈ L such that

〈XA, XB〉 =

{
n− 2|A|+ 4ai−2bi

bi
|B|, if |A ∩B| = ai

bi
|B|,

n− 2|B|+ 4ai−2bi
bi
|A|, otherwise (that is, if |A ∩B| = ai

bi
|A|).

(6)

Since a
b

= max(a1
b1
, . . . , as

bs
), we have 〈XA, XB〉 6 n − 2|A| + 4a−2b

b
|B| or 〈XA, XB〉 6

n − 2|B| + 4a−2b
b
|A|. Applying the fact that the cardinality of every set S in F satisfies

αn < |S| 6 n, where α = max(1
2
, 4a−b

2b
), we get 〈XA, XB〉 < 0. This implies that 〈v, v〉 =

〈λA1XA1 + · · · + λAkXAk ,−(λAk+1
XAk+1

+ · · · + λAmXAm)〉 < 0 which is a contradiction.
This proves the claim and thereby the theorem.

3 L is a singleton set

As explained in Section 1, Fisher’s Inequality is a special case of the classical L-intersecting
families, where |L| = 1. In this section, we study fractional L-intersecting families with
|L| = 1; a fractional variant of the Fisher’s inequality.

3.1 Proof of Theorem 4

Statement of Theorem 4: Let n be a positive integer. Let G be a fractional L-intersecting
families of subsets of [n], where L = {a

b
}, a

b
∈ [0, 1), and b is a prime. Then, |G| 6

(b− 1)(n+ 1)d lnn
ln b
e+ 1.

Proof. It is easy to see that if a = 0, then |G| 6 n with the set of all singleton subsets
of [n] forming a tight example to this bound. So assume a 6= 0. Let F = G \ H, where
H = {A ∈ G : b - |A|}. From the definition of a fractional a

b
-intersecting family it is

clear that |H| 6 1. The rest of the proof is to show that |F| 6 (b − 1)(n + 1)d lnn
ln b
e. We
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do this by partitioning F into (b− 1)dlogb ne parts and then showing that each part is of
size at most n+ 1. We define F j

i as

F ji = {A ∈ F||A| ≡ j (mod i)}.

Since b divides |A|, for every A ∈ F , under this definition F can be partitioned into
families F ibk−1

bk
, where 2 6 k 6 dlogb ne and 1 6 i 6 b − 1. We show that, for every

i ∈ [b− 1] and for every 2 6 k 6 dlogb ne, |F ib
k−1

bk
| 6 n+ 1.

In order to estimate |F ibk−1

bk
|, for each A ∈ F ibk−1

bk
, create a vector XA as follows:

XA(j) =

{
1√
bk−2

, if j ∈ A;

0, otherwise.

Note that, for A,B ∈ F ibk−1

bk

〈XA, XB〉 ≡

{
b (mod b2), if A = B,

ai (mod b), if A 6= B,
(7)

Let |F ibk−1

bk
| = m. Let Mk,i denote the m × n matrix formed by taking XAs as rows for

each A ∈ F ibk−1

bk
. Then, |F ibk−1

bk
| 6 n+1 can be proved by considering B = Mk,i×MT

k,i and
showing that B − aiJ (, where J is the m×m all 1 matrix, ) has full rank; determinant
of B − aiJ is non-zero since the only term not divisible by the prime b in the expansion
of its determinant comes from the product of all the diagonals (note that a < b, i < b,
and since b is a prime, we have b - ai).

We shall call F a bisection closed family if F is a fractional L-intersecting family where
L = {1

2
}. We have two different constructions of families that are bisection closed and

are of cardinality 3n
2
− 2 on [n].

Example 11. Let n be an even positive integer. Let B denote the collection of 2-sized
sets that contain only 1 as a common element in any two sets, i.e. {1, 2}, {1, 3}, . . . , {1, n};
and let C denote collection of 4-sized sets that contain only {1, 2} as common elements,
i.e. {1, 2, 3, 4}, {1, 2, 5, 6}, . . . , {1, 2, n − 1, n}. It is not hard to see that B ∪ C is indeed
bisection closed.

Example 12. The second example of a bisection closed family of cardinality 3n
2
−2 comes

from Recursive Hadamard matrices. A Recursive Hadamard matrix H(k) of size 2k × 2k

can be obtained from H(k − 1) of size 2k−1 × 2k−1 as follows

H(k) =

[
H(k − 1) H(k − 1)
H(k − 1) −H(k − 1)

]
,

where H(0) = 1. Now consider the matrix:

M(k) =

H(k − 1) H(k − 1)
H(k − 1) −H(k − 1)
H(k − 1) J(k − 1)

 ,
the electronic journal of combinatorics 26(2) (2019), #P2.40 8



where J(k− 1) denotes the 2k−1 × 2k−1 all 1s’ matrix. Let M ′(k) be the matrix obtained
from M(k) by removing the first and the (2k + 1)th rows and replacing the -1’s by 1’s and
1’s by 0’s. M ′(k) is clearly bisection closed and has cardinality 3n

2
− 2, where n = 2k.

3.2 Restricting the cardinalities of the sets in F

When L = {a
b
}, where b is a prime, Theorem 4 yields an upper bound of O( b

log b
n log n)

for |F|. However, we believe that when |L| = 1, the cardinality of any fractional L-
intersecting family on [n] would be at most cn, where c > 0 is a constant. To this end,
we show in Theorem 14 that when the sizes of the sets in F are restricted, we can achieve
this.

The following lemma is crucial to the proof of Theorem 14.

Lemma 13. [1, 4] Let A be an m×m real symmetric matrix with ai,i = 1 and |ai,j| 6 ε
for all i 6= j. Let tr(A) denote the trace of A, i.e., the sum of the diagonal entries of A.
Let rk(A) denote the rank of A. Then,

rk(A) >
(tr(A))2

tr(A2)
>

m

1 + (m− 1)ε2
.

Proof. Let λ1, . . . , λm denote the eigenvalues of A. Since only rk(A) eigenvalues of A

are non-zero, (tr(A))2 = (
∑m

i=1 λi)
2 = (

∑rk(A)
i=1 λi)

2 6 rk(A)
∑rk(A)

i=1 λ2
i = rk(A)tr(A2),

where the inequality follows from the Cauchy-Schwartz Inequality. Thus, rk(A) > (tr(A))2

tr(A2)
.

Substituting tr(A) = m and tr(A2) = m+m(m− 1)ε2 in the above inequality proves the
theorem.

Theorem 14. Let n be a positive integer and let δ > 1. Let F be a fractional L-
intersecting family of subsets of [n], where L = {a

b
}, a

b
∈ [0, 1) is an irreducible fraction

and for every A ∈ F , |A| in an integer in the range
[

b
4(b−a)

n− b
4aδ

√
n, b

4(b−a)
n+ b

4aδ

√
n
]
.

Then, |F| < δ2

δ2−1
n.

Proof. For any A ∈ F , let YA ∈ Rn be a vector defined as:

YA(j) =

{
+ 1√

n
, if j ∈ A

− 1√
n
, if j 6∈ A.

Clearly, 〈YA, YA〉 = 1. For any two distinct sets A,B ∈ F , we have

〈YA, YB〉 =

{
n−2|A|+ 4a−2b

b
|B|

n
, if |A ∩B| = a

b
|B|,

n−2|B|+ 4a−2b
b
|A|

n
, otherwise (that is, if |A ∩B| = a

b
|A|).

(8)

Suppose F = {A1, . . . , Am}. Let B be the m × n matrix with YA1 , . . . , YAm as its rows.
Then, from Equation 8, it follows that BBT is an m × m real symmetric matrix with
the diagonal entries being 1 and the absolute value of any other entry being at most 1

δ
√
n
.

Applying Lemma 13, we have n > rk(BBT ) > m
1+m−1

δ2n

> m
1+ m

δ2n

. Thus, n + m
δ2
> m or

m < δ2

δ2−1
n.
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4 Discussion

In Theorem 1, we gave a general upper bound for |F|, where F is a fractional L-
intersecting family. In Section 1, we also gave an example to show that this bound is
asymptotically tight up to a factor of ln2 n

ln lnn
, when s (= |L|) is a constant. However, when

s is a constant, we believe that |F| ∈ Θ(ns).
Consider the following special case for a fractional L-intersecting family F , where

L = {1
2
}. We call such a family a bisection-closed family (see definition in Section 3).

Conjecture 15. If F is a bisection-closed family, then |F| 6 cn, where c > 0 is a
constant.

We have not been able to find an example of a bisection-closed family of size 2n or
more.

The problem of determining a linear sized upper bound for the size of any bisection-
closed family leads us to pose the following question:

Open Problem 16. Suppose 0 < a1 6 · · · 6 an are n distinct reals. LetMn(a1, . . . , an)
denote the set of all symmetric matrices M satisfying mij ∈ {ai, aj} for i 6= j and
mii = 0 for all i. Then, does there exist an absolute constant c > 0 such that rk(M) >
cn, for all M ∈Mn(a1, . . . , an)?

To see how this question ties in with our problem, suppose that a family F ⊂ P([n]) is
a bisection closed family, i.e., for A,B ∈ F and A 6= B then |A∩B| ∈ {|A|/2, |B|/2}. For
simplicity, let us write F = {A1, . . . , Am} and denote |Ai| = ai where the ai are arranged
in ascending order. We say A bisects B if |A ∩B| = |B|/2. For each A ∈ F , let uA ∈ Rn

where uA(i) = 1 if i ∈ A and −1 if i 6∈ A. Then note that

〈uA,uB〉 = n− 2|A| if A bisects B,

= n− 2|B| if B bisects A,

‖ uA ‖2 = n.

Consider the m × m matrix M whose rows and columns are indexed by the members
of F , with MA,B = 〈uA,uB〉. Then, since M is a Gram matrix of vectors in Rn, it
follows that rk(M) 6 n. If X = 1

2
(nJ −M), where J is the all ones matrix of order

m, then rk(X ) 6 n + 1. But note that X ∈ M(a1, . . . , am). So, if the answer to the
aforementioned open problem is ‘yes’, then rk(X ) > cm. This gives cm 6 r(X ) 6
n+ 1 which in turn gives m 6 c−1(n+ 1).

The problem of determining the maximum size of a fractional L-intersecting family is
far from robust in the following sense. Suppose L = {1/2} and we consider the problem
of determining the size of an ‘ε-approximately fractional L-intersecting family,’ i.e., for
any A 6= B we have that at least one of |A∩B||A| ,

|A∩B|
|B| ∈ (1/2− ε, 1/2 + ε) for small ε > 0,

then such families can in fact be exponentially large in size. Let each set Ai be chosen
uniformly and independently at random from P([n]). Then since each |Ai| and |Ai ∩ Aj|
are independent binomial B(n, 1/2) and B(n, 1/4) respectively, by standard Chernoff
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bounds (see [12], chapter 5), it follows (by straightforward computations) that one can
get such a family of cardinality at least e2ε2n/75. In fact this same construction gives
super-polynomial sized families even if ε = n−1/2+δ for any fixed δ > 0.

Another interesting facet of the fractional intersection notion is the following extension
of l-avoiding families [6, 10] 1. A set B bisects another set A if |A ∩ B| = |A|

2
. A family

F of even subsets of [n] is called fractional (1
2
)-avoiding (or bisection-free) if for every

A,B ∈ F , neither B bisects A nor A bisects B (if we allow odd subsets in the definition
of a fractional (1

2
)-avoiding family, then the set of all the odd-sized subsets on [n] is an

example of one such family). Let ϑ̄(n) denote the maximum cardinality of a fractional
(1

2
)-avoiding family on [n]. Let A,B ⊆ [n] such that |A| > 2n

3
and |B| > 2n

3
. It is not very

hard to see that |A∩B| > n/3 whereas |A∩([n]\B)| < n/3. So, neither A can bisect B nor
B can bisect A. Therefore, if we construct a family F = {A ⊆ [n]||A| > 2n

3
, |A| is even.},

F is fractional (1
2
)-avoiding. Moreover, |F| =

∑n
3
−1

2|i,i=0

(
n
i

)
> 1.88n, for sufficiently large n

(using Stirling’s formula). Let us now try to find an upper bound to the cardinality of a
fractional (1

2
)-avoiding family. An application of a result of Frankl and Rödl [6, Corollary

1.6] gives the following theorem for the cardinalities of l-avoiding families as a corollary
(see [10, Theorem 1.1]).

Theorem 17. [6, 10] Let α, ε ∈ (0, 1) with ε 6 α
2

. Let k = bαnc and l ∈ [max(0, 2k −
n) + εn, k − εn]. Then any l-avoiding family A ⊆

(
[n]
k

)
satisfies |A| 6 (1 − δ)n

(
n
k

)
where

δ = δ(α, ε) > 0.

For any fractional (1
2
)-avoiding family F , any F ′ ⊆ F consisting of sets of cardinality

l is l
2
-avoiding. So, given any fractional (1

2
)-avoiding family F , split F into families

F6n
3
−1,Fn

3
, . . . , F2n

3
,F> 2n

3
+1. From Theorem 17, we know that each Fi has a cardinality

at most (1 − δi)
n
(
n
i

)
for n

3
6 i 6 2n

3
. Let δ = min(δn

3
, . . . , δ 2n

3
). Then

∑ 2n
3

i=n
3
|Fi| 6

((1 − δ)2)n. Further, |F6n
3
−1| 6

∑n
3
−1

i=0

(
n
i

)
and |F> 2n

3
+1| 6

∑n
3
−1

i=0

(
n
i

)
< 2nH( 1

3
) < 1.89n,

where H(ν) = −ν log2 ν − (1 − ν) log2(1 − ν) is the binary entropy function. Thus, for
sufficiently large values of n, 1.88n 6 ϑ̄(n) 6 ((1− ε)2)n, for some 0 < ε 6 0.06.
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[6] Peter Frankl and Vojtěch Rödl. Forbidden intersections. Trans. Amer. Math. Soc.,
300(1):259–286, 1987.

[7] Peter Frankl and Richard M. Wilson. Intersection theorems with geometric conse-
quences. Combinatorica, 1(4):357–368, 1981.

[8] Vince Grolmusz and Benny Sudakov. On k-wise set-intersections and k-wise
hamming-distances. Journal of Combinatorial Theory, Series A, 99(1):180–190, 2002.

[9] Stasys Jukna. Extremal combinatorics: with applications in computer science.
Springer Science & Business Media, 2011.

[10] Peter Keevash and Eoin Long. Frankl-Rödl-type theorems for codes and permuta-
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