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Abstract

In 2017, Qiao and Koolen showed that for any fixed integer D > 3, there are
only finitely many non-bipartite distance-regular graphs with θmin 6 −αk, where
0 < α < 1 is any fixed number. In this paper, we will study non-bipartite distance-
regular graphs with relatively small θmin compared with k. In particular, we will
show that if θmin is relatively close to −k, then the odd girth g must be large. Also
we will classify the non-bipartite distance-regular graphs with θmin 6 −D−1

D k for
D = 4, 5.
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1 Introduction

The odd girth of a non-bipartite graph is the length of its shortest odd cycle. Let Γ be a
non-bipartite distance-regular graph with valency k, diameter D, odd girth g and smallest
eigenvalue θmin. In [6], Qiao and Koolen showed that for any fixed integer D > 3, there are
only finitely many such graphs with θmin 6 −αk, where 0 < α < 1 is any fixed number.
In this paper, we will study non-bipartite distance-regular graphs with relatively small
θmin compared with k. In the next result, we will show that if θmin is relatively close to
−k, then the odd girth g must be large.

Theorem 1. Let Γ be a non-bipartite distance-regular graph with valency k and odd
girth g, having smallest eigenvalue θmin. Then there exists a constant ε(g) > 0 such that
θmin > −(1− ε(g))k.

Remark 2. The positive constant ε(g) goes to 0 as the odd girth g goes to ∞. For
example, the (2t+ 1)-gon has valency k = 2, odd girth g = 2t+ 1 and smallest eigenvalue
θmin = 2 cos( 2tπ

2t+1
). Thus, ε(g) 6 1 + θmin

k
= 2 cos2( tπ

2t+1
).

In [6], Qiao and Koolen classified non-bipartite distance-regular graphs with valency k,
diameter D 6 3 and smallest eigenvalue θmin 6 −k/2. Using Theorem 1, we will classify
non-bipartite distance-regular graphs with valency k, diameter D and smallest eigenvalue
θmin 6 −D−1

D
k, when D = 4 or 5.

Theorem 3. Let Γ be a non-bipartite distance-regular graph with valency k, diameter D
and smallest eigenvalue θmin 6 −D−1

D
k.

i) If D = 4, then Γ is one of the following graph

a) the Coxeter graph with intersection array {3, 2, 2, 1; 1, 1, 1, 2},
b) the 9-gon with intersection array {2, 1, 1, 1; 1, 1, 1, 1},
c) the Odd graph O5 with intersection array {5, 4, 4, 3; 1, 1, 2, 2},
d) the folded 9-cube with intersection array {9, 8, 7, 6; 1, 2, 3, 4}.

ii) If D = 5, then Γ is one of the following graph

a) the 11-gon with intersection array {2, 1, 1, 1, 1; 1, 1, 1, 1, 1},
b) the Odd graph O6 with intersection array {6, 5, 5, 4, 4; 1, 1, 2, 2, 3},
c) the folded 11-cube with intersection array {11, 10, 9, 8, 7; 1, 2, 3, 4, 5}.

This paper is organized as follows. In the next section, we give the definitions and
some preliminary results. In Section 3, we give a proof of Theorem 1. In the last section,
we give a proof of Theorem 3.
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2 Preliminaries

For more background, see [4] and [7].
All the graphs considered in this paper are finite, undirected and simple. Let Γ be a

graph with vertex set V = V (Γ) and edge set E = E(Γ). Denote x ∼ y if the vertices
x, y ∈ V are adjacent. The distance d(x, y) = dΓ(x, y) between two vertices x, y ∈ V (Γ)
is the length of a shortest path connecting x and y. The maximum distance between two
vertices in Γ is the diameter D = D(Γ). We use Γi(x) for the set of vertices at distance i
from x and write, for the sake of simplicity, Γ(x) := Γ1(x). The degree of x is the number
|Γ(x)| of vertices adjacent to it. A graph is regular with valency k if the degree of each of
its vertices is k. The girth and odd girth of a graph is the length of its shortest cycle, and
shortest odd cycle, respectively. A graph Γ is called bipartite if it has no odd cycle.

A connected graph Γ with diameter D is called distance-regular if there are integers
bi, ci (i = 0, 1, . . . , D) such that for any two vertices x, y ∈ V (Γ) with d(x, y) = i, there
are exactly ci neighbors of y in Γi−1(x) and bi neighbors of y in Γi+1(x), where we define
bD = c0 = 0. In particular, Γ is a regular graph with valency k := b0. We define
ai := k− bi− ci (i = 0, 1, . . . , D) for notational convenience. Note that ai = |Γ(y)∩Γi(x)|
holds for any two vertices x, y with d(x, y) = i (i = 0, 1, . . . , D).

For a distance-regular graph Γ and a vertex x ∈ V (Γ), we denote ki := |Γi(x)|
and phij := |{w | w ∈ Γi(x) ∩ Γj(y)}| for any y ∈ Γh(x). It is easy to see that ki =
b0b1 · · · bi−1/(c1c2 · · · ci) and hence it does not depend on x. The numbers ai, bi and ci (i =
0, 1, . . . , D) are called the intersection numbers, and the array {b0, b1, . . . , bD−1; c1, c2, . . . ,
cD} is called the intersection array of Γ. The matrix L is called the intersection matrix
of Γ, where

L =


a0 b0 0
c1 a1 b1 0

c2 a2 ·
· · ·

0 · · bD−1

cD aD

 .

Let Γ be a distance-regular graph with v vertices and diameter D. Let Ai (i =
0, 1, . . . , D) be the (0, 1)-matrix whose rows and columns are indexed by the vertices of Γ
and the (x, y)-entry is 1 whenever d(x, y) = i and 0 otherwise. We call Ai the distance-i
matrix and A := A1 the adjacency matrix of Γ. The eigenvalues θ0 > θ1 > · · · > θD of the
graph Γ are just the eigenvalues of its adjacency matrix A. We denote mi the multiplicity
of θi. Note that the D+ 1 distinct eigenvalues of Γ are precisely the eigenvalues of L (see
[7, Proposition 2.7]).

For each eigenvalue θi of Γ, let Ui be a matrix with its columns forming an orthonor-
mal basis for the eigenspace associated with θi. And Ei := UiU

T
i is called the minimal

idempotent associated with θi, satisfying EiEj = δijEj and AEi = θiEi, where δij is the
Kronecker delta. Note that vE0 is the all-ones matrix J .

The set of distance matrices {A0 = I, A1, A2, . . . , AD} forms a basis of a commutative
R-algebra A, known as the Bose-Mesner algebra. The set of minimal idempotents {E0 =
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1
v
J,E1, E2, . . . , ED} is another basis of A. There exist (D + 1)× (D + 1) matrices P and
Q (see [4, p.45]), such that the following relations hold

Ai =
D∑
j=0

PjiEj and Ei =
1

v

D∑
j=0

QjiAj (i = 0, 1, . . . , D). (1)

Note that Q0i = mi (see [4, Lemma 2.2.1]).
Let Ei = UiU

T
i be the minimal idempotent associated with θi, where the columns of

Ui form an orthonormal basis of the eigenspace associated with θi. We denote the x-th
row of

√
v/miUi by x̂. Note that Ei ◦ Aj = 1

v
QjiAj, hence all the vectors x̂ are unit

vectors and the cosine of the angle between two vectors x̂ and ŷ is uj(θi) :=
Qji

Q0i
, where

d(x, y) = j. The map x 7→ x̂ is called a normalized representation and the sequence
(uj(θi))

D
j=0 is called the standard sequence of Γ, associated with θi. As AUi = θiUi, we

have θix̂ =
∑

y∼x ŷ, and hence the following holds:{
cjuj−1(θi) + ajuj(θi) + bjuj+1(θi) = θiuj(θi) (j = 1, 2, . . . , D − 1),

cDuD−1(θi) + aDuD(θi) = θiuD(θi),
(2)

with u0(θi) = 1 and u1(θi) = θi
k

.

Lemma 4. (c.f. [7, Theorem 2.8]) Let Γ be a distance-regular graph with diameter D and
v vertices. Let θ be an eigenvalue of Γ and (ui)

D
i=0 be the standard sequence associated

with θ. Then the multiplicity m(θ) of θ as an eigenvalue of Γ satisfies

m(θ) =
v∑D

i=0 kiu
2
i

, (3)

6 max

{
1

u2
1

, . . . ,
1

u2
j−1

,

∑D
i=j ki

kju2
j

}
(j = 1, 2, . . . , D). (4)

Proof. Equation (3) follows from [7, Theorem 2.8]. We only give a proof of Equation (4).

v∑D
i=0 kiu

2
i

=

∑D
i=0 ki∑D

i=0 kiu
2
i

6 max

{ ∑j−1
i=0 ki∑j−1

i=0 kiu
2
i

,

∑D
i=j ki∑D

i=j kiu
2
i

}
,∑j−1

i=0 ki∑j−1
i=0 kiu

2
i

6 max

{
1

u2
1

, . . . ,
1

u2
j−1

}
,∑D

i=j ki∑D
i=j kiu

2
i

6

∑D
i=j ki

kju2
j

.
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Lemma 5. ([4, Proposition 4.1.6]) Let Γ be a distance-regular graph with valency k and
diameter D. Then the following conditions hold

i) 1 = c1 6 c2 6 · · · 6 cD,

ii) k = b0 > b1 > · · · > bD−1,

iii) ki’s (i = 1, 2, . . . , D) are positive integers,

iv) the multiplicities are positive integers.

Lemma 6. (c.f. [2, Proposition 3.1]) Let Γ be a non-bipartite distance-regular graph with
valency k and odd girth g = 2t+ 1. Then

t∑
i=0

pi(η)ui > 0, (5)

where (ui)
D
i=0 is the standard sequence associated with the smallest eigenvalue θmin, η is

any eigenvalue of the g-gon, and pi(x) is defined as the following

p0(x) = 1,

p1(x) = x,

p2(x) = x2 − 2,

pi(x) = xpi−1(x)− pi−2(x) (i = 3, 4, . . . , t).

(6)

Proof. Let ∆ be any g-gon in Γ. Let Bi (i = 0, 1, . . . , t) be the matrix with rows and
columns indexed by V (∆), where the (v, w)-entry is 1 whenever dΓ(v, w) = i and 0
otherwise. Note that d∆(v, w) = dΓ(v, w) for any two vertices v, w ∈ V (∆), and we have
Bi = pi(B1) with pi(x) as Equation (6). By [2, Proposition 3.1], for any eigenvalue η of
∆, we have Equation (5).

Lemma 7. (c.f. [6, Lemma 5.2]) Let Γ be a distance-regular graph with valency k and
smallest eigenvalue θmin. If a1 = 0 and θmin <

12−5k
7

, then c2 6 2.

Proof. Choose two vertices x, y ∈ V (Γ) with d(x, y) = 2. As a1 = 0, the subgraph induced
on {x, y} ∪ (Γ(x)∩ Γ(y)) is a K2,c2 . Let x 7→ x̂ be a normalized representation associated
with θ = θmin. Consider the Gram matrix of the image of the K2,c2 with the bipartition,
we see that

Q =

(
1
2
(1 + u2) u1

u1
1
c2

(1 + (c2 − 1)u2)

)
is positive semidefinite, by [4, Proposition 3.7.1 (iii)]. Then (1, 1)Q(1, 1)t > 0, which in

turn implies (u1 +u2)((2 + c2) 1−u2
u1+u2

+ 4c2) > 0. As a1 = 0, we see u1 +u2 = (θ+k)(θ−1)
k(k−1)

< 0,

that is 4c2
2+c2

6 − 1−u2
u1+u2

= k−θ
1−θ . When k > 1, we have θ < 12−5k

7
< 4−k

3
and c2 6 2k−2θ

4−3θ−k <
3.
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Lemma 8. Let Γ be a distance-regular graph with valency k and diameter D, having
smallest eigenvalue θmin with associated standard sequence (ui)

D
i=0. Then

|ui+1| >
|(θmin − ai)ui| − ci|ui−1|

bi
(i = 1, . . . , D − 1). (7)

Proof. By Equation (2) we see that ui+1 = (θmin−ai)ui−ciui−1

bi
(i = 1, . . . , D−1). As θmin < 0

is the smallest eigenvalue, by [4, Corollary 4.1.2], we see that ui+1, −ui and ui−1 has the
same sign. The result follows.

3 Main Theorem

In this section we will prove our main result.

Proof of Theorem 1. If g = 3, then θmin > −k
2

by [7, Proposition 2.11]. So we may assume

g > 5. Let t = g−1
2

and ∆ be a g-gon in Γ. Let (ui)
D
i=0 be the standard sequence associated

with the smallest eigenvalue θ = θmin.
Assume ct 6 ζk for some ζ 6 1

2
. By Lemma 6, we have

∑t
i=0 pi(η)ui > 0, where pi(x)

is as Equation (6).
We claim that there exist constants Ni such that∣∣∣∣∣ui −

(
θ

k

)i∣∣∣∣∣ 6 Niζ (i = 0, 1, . . . , t), (8)

with

Ni =

{
0, i = 0, 1,

2Ni−1 + 4, i = 2, 3 . . . , t.

Note that |u0 − 1| = |u1 − θ
k
| = 0. Assume |ui −

(
θ
k

)i | 6 Niζ for some 1 6 i 6 t− 1. As
ct 6 ζk, we see that ci 6 ct 6 ζk and bi = k − ci > (1− ζ)k. Then∣∣∣∣∣ui+1 −

(
θ

k

)i+1
∣∣∣∣∣ =

∣∣∣∣∣θui − ciui−1

bi
−
(
θ

k

)i+1
∣∣∣∣∣

6

∣∣∣∣∣ θbiui − θ

bi

(
θ

k

)i∣∣∣∣∣+

∣∣∣∣∣ θbi
(
θ

k

)i
−
(
θ

k

)i+1
∣∣∣∣∣+

ci
bi
· |ui−1|

=

∣∣∣∣ θbi
∣∣∣∣ ·
∣∣∣∣∣ui −

(
θ

k

)i∣∣∣∣∣+
ci
bi
·

∣∣∣∣∣
(
θ

k

)i+1
∣∣∣∣∣+

ci
bi
· |ui−1|

6
k

bi
·Niζ +

ci
bi

+
ci
bi

6 Ni+1ζ,

where k
bi
6 1

1−ζ 6 2 and ci
bi
6 ζ

1−ζ 6 2ζ (ζ 6 1
2
).
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Note that pi(η) is an eigenvalue of the distance-i graph of ∆. Hence |pi(η)| 6 2
(i = 0, 1, . . . , t), and by Equation (8), we have

t∑
i=0

pi(η)ui 6
t∑
i=0

pi(η)

(
θ

k

)i
+

t∑
i=0

|pi(η)| · |ui −
(
θ

k

)i
|

6
t∑
i=0

pi(η)

(
θ

k

)i
+M1ζ, (9)

where M1 =
∑t

i=0 2Ni.
By Equation (6), we see that pi(x) = λi1 +λi2 (i = 1, 2, . . . , t), with λi = 1

2
(x±
√
x2 − 4)

(i = 1, 2). Define f(x, y) =
∑t

i=0 pi(x)yi = 1−(λ1y)t+1

1−λ1y + 1−(λ2y)t+1

1−λ2y − 1. Note that the

eigenvalues of ∆ are 2 cos 2πj
g

(i = 0, 1, . . . , g − 1). Take η = 2 cos 2π(t−1)
g

, then we see

f(η,−1) = −M2, (10)

where M2 = 1/ cos (t−1)π
g

. In fact,

f

(
2 cos

2πj

g
,−1

)
=

1−
(
− e2πi· j

g
)t+1

1−
(
− e2πi· j

g
) +

1−
(
− e−2πi· j

g
)t+1

1−
(
− e−2πi· j

g
) − 1

= (−1)t · e
2πi· j(t+1)

g + e−2πi· jt
g

1 + e2πi· j
g

= (−1)t+j/ cos
jπ

g
.

Take ζ = min{ M2

2M1
, 1

2
}. Note that M1, M2, and hence ζ is determined by g. By

Equation (10), we see f(η,−1) + M1ζ 6 −M2

2
< 0. We also have f(η, 0) + M1ζ =

1 +M1ζ > 0. By Equation (5) and (9), we have 0 6 f(η, θ
k
) +M1ζ. Take −(1− ε1(ζ)) as

the smallest root y of the equation f(η, y) + M1ζ = 0 in the interval (−1, 0). It follows
that θ > −(1− ε1(ζ))k.

Now we consider the case ct > ζk.
If ct > 1, then we claim that the diameter D 6 4t

ζ2
and θmin > −(1− ε2(ζ))k for some

constant ε2(ζ) > 0. Without loss of generality, we may assume 4it 6 D 6 4i+1t for some
integer i > 1. If c2t−1+j = c2t−1 6= 1, by [7, Theorem 7.1], we see j 6 2t − 1, that is
c4t−1 > c2t−1. Then c4t−1 = c2t+j > c2t−1+j for some 0 6 j 6 2t − 1, and c4t−1 > 2ct by
[7, Proposition 7.2]. This implies k > c4it > 2ict, that is D 6 4t( k

ct
)2 6 4t

ζ2
. Then by

[6, Theorem 1.1], the set S of distance-regular graphs with valency k, diameter D 6 4t
ζ2

,

smallest eigenvalue θmin 6 −(1− ε1(ζ))k and odd girth g is finite. Take

ε2(ζ) =

 min
Γ∈S

k + θmin

k
, if S 6= ∅,

ε1(ζ), otherwise.
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If ct = 1, then k < 1
ζ
. The set S ′ of distance-regular graphs with valency k < 1

ζ
and

odd girth g is finite, by [1, Theorem 1.1]. Take

ε3(ζ) =

 min
Γ∈S′

k + θmin

k
, if S ′ 6= ∅,

ε1(ζ), otherwise.

Take ε = min{ε1(ζ), ε2(ζ), ε3(ζ)} and the result follows.

Remark 9. When the odd girth g = 5 and c2 6 ζk, we may take N2 = 2
1−ζ . Then

f(x, y)+M1ζ = 1+xy+(x2−2)y2+ 4ζ
1−ζ . By substituting η = 2 cos 2π

5
into f(η, θ

k
)+M1ζ >

0, we find an inequality between ζ and θ
k
. For example, if ζ = 0.1, then θ > −0.78k.

4 Distance-regular graphs with relatively small θmin

In this section we study distance-regular graphs with relatively small θmin. In the rest of
this section we will give a proof of Theorem 3.

Proof of Theorem 3. Assume Γ has odd girth g = 2t + 1. Let (ui)
D
i=0 be the standard

sequence associated with the smallest eigenvalue θ = θmin.
We first consider the case D = 4. We may assume k > 5, otherwise Γ is the 9-gon or

the Coxeter graph by [3] and [5, Theorem 1.1].
As θ < −k

2
, by [7, Proposition 2.11], we have a1 = 0. If a2 6= 0, that is t = 2, then

substitute η = 2 cos 2π(t−1)
g

into Equation (5) and we get (k−t)(2k+
√

5t+t+
√

5−1)
2k(k−1)

> 0, which

implies that θ > −2k−
√

5+1√
5+1

. Combine it with θ 6 −3
4
k, we see that k 6 2. Hence a2 = 0.

Note that θ 6 −3
4
k < 12−5k

7
, by Lemma 7, we see c2 6 2.

If a3 6= 0, then consider 
t∑
i=0

pi(η)ui > 0

−D − 1

D
k > θ

(11)

with η = 2, we obtain that k 6 4 if c2 = 1, and k 6 8 if c2 = 2. No intersection arrays
satisfy Lemma 5, with 5 6 k 6 8, D = 4, a1 = a2 = 0 6= a3, c2 = 2 and θmin 6 −3

4
k.

Hence a3 = 0.
Assume k > 36. Since k > 36, c2 6 2 and θ 6 −3

4
k, by Equation (7), we obtain

|u2| > 0.5500 and |u3| > 0.3926. Now we consider the intersection matrix L of Γ, where

L =


0 k 0 0 0
1 0 k − 1 0 0
0 c2 0 k − c2 0
0 0 c3 0 k − c3

0 0 0 c4 k − c4

 .
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We see that k2 + θ2 6 tr(L2) 6 k2 + 6k + c4(2k − c4), where c2 6 2 and c3 6 c4.
Since k > 36 and θ 6 −3

4
k, we obtain that c4

k
> 0.2227. By Lemma 4, we see that

m 6 max{ 1
u21
, 1
u22
, k3+k4
k3u23
}. Since k3b3 = k4c4, we see k3+k4

k3u23
6 1

u23
(1 + k

c4
). With |u1| > 3

4
,

|u2| > 0.5500, |u3| > 0.3926 and c4
k
> 0.2227, we obtain m < 36. By [4, Theorem 4.4.4],

we see that k 6 m < 36, a contradiction. It follows that k 6 35. Then we check the
intersection arrays satisfy Lemma 5, with 5 6 k 6 35, D = 4, a1 = a2 = a3 = 0 6= a4,
c2 = 1 or 2 and θmin 6 −3

4
k, and we get the folded 9-cube and odd graph O5. This shows

the case D = 4.
Now we consider the case D = 5. Similar to the case D = 4, we may assume k > 5,

otherwise Γ is the 11-gon, by [3] and [5, Theorem 1.1]. As θ < −k
2
, by [7, Proposition

2.11], we have a1 = 0. Substitute η = 2 cos 2π(t−1)
g

with t = 2 into Equation (5), we

obtain θ > −2k−
√

5+1√
5+1

. Together with θ 6 −4
5
k, we see k 6 2, and hence a2 = 0. Since

θ 6 −4
5
k < 12−5k

7
, by Lemma 7, we have and c2 6 2.

If a3 6= 0, then consider Equation (11) with η = 2, we obtain that k 6 3 if c2 = 1,
and k 6 5 if c2 = 2. By [4, Theorem 1.13.2], no such graphs exist with k = 5 and c2 = 2.
Hence a3 = 0.

We consider a4 6= 0. If c3 6 0.3750k, combine it with Equation (11), where η = −1
(g = 9), we see that k 6 24. Assume k > 24, then c3 > 0.3750k. By Equation (7), we
obtain |u2| > 0.6243 and |u3| > 0.4721. Note k4

k3
= b3

c4
6 1−c3

c3
and k5

k3
= b3b4

c4c5
6 (1−c3

c3
)2. By

Lemma 4, we see that

m 6 max

{
1

u2
1

,
1

u2
2

,
1

u2
3

(1 +
1− c3

c3

+ (
1− c3

c3

)2)

}
, (12)

that is k 6 m 6 24 by [4, Theorem 4.4.4]. No intersection arrays satisfy Lemma 5 with
5 6 k 6 24, D = 5, a1 = a2 = a3 = 0 6= a4, c2 = 1 or 2 and θ 6 −4

5
k. Hence a4 = 0.

Assume k > 71. Then by Equation (7), we see that |u2| > 0.6348 and |u3| > 0.4994,
where θ1 6 −4

5
k, c2 = 1 or 2. Then as m > k > 71, by Equation (12), we obtain

c3 6 0.2166k. It implies |u4| > 0.3344 by Equation (7). Consider the intersection matrix
L, and we see that k2 + θ2 6 tr(L2) 6 k2 + 6k + 4c5k − c2

5, which implies c5 > 0.1440k.
And we see k 6 m 6 min{ 1

u21
, 1
u22
, 1
u23
, 1
u24

(1 + k
c5

)} 6 71. It follows that k 6 71. Then we

check all intersection arrays satisfying Lemma 5 with 5 6 k 6 71, D = 5, a1 = a2 = a3 =
a4 = 0 6= a5, c2 = 1 or 2 and θ 6 −4

5
k and we obtain the odd graph O6 and the folded

11-cube. This shows the case D = 5.
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