# The second eigenvalue of some normal Cayley graphs of highly transitive groups 

Xueyi Huang*<br>School of Mathematics and Statistics<br>Zhengzhou University<br>Zhengzhou, China<br>huangxymath@gmail.com

Qiongxiang Huang ${ }^{\dagger}$<br>College of Mathematics and Systems Science<br>Xinjiang University<br>Urumqi, China<br>huangqx@xju.edu.cn

Sebastian M. Cioabă ${ }^{\ddagger}$<br>Department of Mathematical Sciences<br>University of Delaware<br>Newark, USA<br>cioaba@udel.edu

Submitted: Aug 3, 2018; Accepted: May 21, 2019; Published: Jun 21, 2019
(c) The authors. Released under the CC BY-ND license (International 4.0).


#### Abstract

Let $G$ be a finite group acting transitively on $[n]=\{1,2, \ldots, n\}$, and let $\Gamma=$ $\operatorname{Cay}(G, T)$ be a Cayley graph of $G$. The graph $\Gamma$ is called normal if $T$ is closed under conjugation. In this paper, we obtain an upper bound for the second (largest) eigenvalue of the adjacency matrix of the graph $\Gamma$ in terms of the second eigenvalues of certain subgraphs of $\Gamma$. Using this result, we develop a recursive method to determine the second eigenvalues of certain Cayley graphs of $S_{n}$, and we determine the second eigenvalues of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $S_{n}$ with $\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$, where $\operatorname{supp}(\tau)$ is the set of points in $[n]$ non-fixed by $\tau$.


Mathematics Subject Classifications: 05C50

## 1 Introduction

Let $\Gamma=(V(\Gamma), E(\Gamma))$ be a simple undirected graph of order $n$ with adjacency matrix $A(\Gamma)$. The eigenvalues of $A(\Gamma)$, denoted by $\lambda_{1}(\Gamma) \geqslant \lambda_{2}(\Gamma) \geqslant \cdots \geqslant \lambda_{n}(\Gamma)$, are also called

[^0]the eigenvalues of $\Gamma$. For a $k$-regular graph $\Gamma$, the spectral gap $\lambda_{1}(\Gamma)-\lambda_{2}(\Gamma)=k-\lambda_{2}(\Gamma)$ is closely related to the connectivity and expansion properties of $\Gamma[2,3,16,17,30,31,23]$.

Let $G$ be a finite group, and let $T$ be a subset of $G$ such that $e \notin T$ ( $e$ is the identity element of $G$ ) and $T=T^{-1}$. The Cayley graph $\operatorname{Cay}(G, T)$ of $G$ with respect to $T$ (called connection set) is defined as the undirected graph with vertex set $G$ and edge set $\{\{g, \tau g\} \mid g \in G, \tau \in T\}$. Clearly, $\operatorname{Cay}(G, T)$ is a regular graph which is connected if and only if $T$ is a generating subset of $G$. A Cayley graph Cay $(G, T)$ is called normal if $T$ is closed under conjugation.

Let $S_{n}$ be the symmetric group on $[n]=\{1,2, \ldots, n\}$ with $n \geqslant 3$, and $T$ a subset of $S_{n}$ consisting of transpositions. The transposition graph $\operatorname{Tra}(T)$ of $T$ is defined as the graph with vertex set $\{1,2, \ldots, n\}$ and with an edge connecting two vertices $i$ and $j$ if and only if $(i, j) \in T$. It is known that $T$ can generate $S_{n}$ if and only if $\operatorname{Tra}(T)$ is connected [21]. In 1992, Aldous [1] (see also [19, 9]) conjectured that the spectral gap of Cay $\left(S_{n}, T\right)$ is equal to the algebraic connectivity (second least Laplacian eigenvalue) of $\operatorname{Tra}(T)$. Earlier efforts of several researchers solved various special cases of Aldous' conjecture. For instance, Diaconis and Shahshahani [15], and Flatto, Odlyzko and Wales [18] confirmed the conjecture for $\operatorname{Tra}(T)$ being a complete graph and a star, respectively; Handjani and Jungreis [22] confirmed the conjecture for $\operatorname{Tra}(T)$ being a tree; Friedman [19] proved that if $\operatorname{Tra}(T)$ is a bipartite graph then the spectral gap of Cay $\left(S_{n}, T\right)$ is at most the algebraic connectivity of $\operatorname{Tra}(T)$; Cesi [9] confirmed the conjecture for $\operatorname{Tra}(T)$ being a complete multipartite graph. At last, Caputo, Liggett and Richthammer [7] completely confirmed the conjecture in 2010, their proof is an ingenious combination of two ingredients: a nonlinear mapping in the group algebra $\mathbb{C} S_{n}$ which permits a proof by induction on $n$, and a quite complicated estimate named the octopus inequality (see also [10] for a self-contained algebraic proof). Very recently, Cesi [11] proved an analogous result of Aldous' conjecture (now theorem) for the Weyl group $W\left(B_{n}\right)$. Most of the above results rely heavily on the representation theory of the symmetric group $S_{n}$.

The second eigenvalues of Cayley graphs of the symmetric group $S_{n}$ or the alternating groups $A_{n}$ have been determined also for some special generators that are not transpositions. For $1 \leqslant i<j \leqslant n$, let $r_{i, j} \in S_{n}$ be defined as

$$
r_{i, j}=\left(\begin{array}{lllllll}
1 & \cdots & i-1 & i & i+1 & \cdots & j-1 \\
1 & j & j+1 & \cdots & n \\
1 & \cdots & i-1 & j & j-1 & \cdots & i+1
\end{array} \quad i \quad j+1 \cdots n\right) .
$$

In [8], Cesi proved that the second eigenvalue of the pancake graph $\mathcal{P}_{n}=\operatorname{Cay}\left(S_{n},\left\{r_{1, j} \mid\right.\right.$ $2 \leqslant j \leqslant n\}$ ) is equal to $n-2$. In [12], Chung and Tobin determined the second eigenvalues of the reversal graph $R_{n}=\operatorname{Cay}\left(S_{n},\left\{r_{i, j} \mid 1 \leqslant i<j \leqslant n\right\}\right)$ and a family of graphs that generalize the pancake graph $\mathcal{P}_{n}$. In [33], Parzanchevski and Puder proved that, for large enough $n$, if $S \subseteq S_{n}$ is a full conjugacy class generating $S_{n}$ then the second eigenvalue of Cay $\left(S_{n}, S\right)$ is always associated with one of eight low-dimensional representations of $S_{n}$. In [25], the authors determined the second eigenvalues of the alternating group graph $A G_{n}=\operatorname{Cay}\left(A_{n},\{(1,2, i),(1, i, 2) \mid 3 \leqslant i \leqslant n\}\right)$ (introduced by Jwo, Lakshmivarahan and Dhall [28]), the extended alternating group graph $E A G_{n}=\operatorname{Cay}\left(A_{n},\{(1, i, j),(1, j, i) \mid 2 \leqslant\right.$ $i<j \leqslant n\})$ and the complete alternating group graph $C A G_{n}=\operatorname{Cay}\left(A_{n},\{(i, j, k),(i, k, j) \mid\right.$
$1 \leqslant i<j<k \leqslant n\}$ ) (defined by Huang and Huang [24]).
Suppose that $G$ is a finite group acting transitively on $[n]$ and let $\Gamma=\operatorname{Cay}(G, T)$. In the present paper, we first show that, for each $i \in[n]$, the left coset decomposition of $G$ with respect to the stabilizer subgroup $G_{i}$ is an equitable partition of $\Gamma$, and all these equitable partitions share the same quotient matrix $B_{\Pi}$. Based on this fact, we also prove that those eigenvalues of $\Gamma$ not belonging to $B_{\Pi}$ can be bounded above by the sum of second eigenvalues of some subgraphs of $\Gamma$. Now suppose further that $\Gamma$ is connected and normal, and that the action of $G$ on $[n]$ is of high transitivity. Using the previous result, we reduce the problem of proving $\lambda_{2}(\Gamma)=\lambda_{2}\left(B_{\Pi}\right)$ to that of verifying the result for some smaller graphs. This leads to a recursive procedure for determining the second eigenvalue of $\Gamma$. As applications, we determine the second eigenvalues of a majority of connected normal Cayley graphs of $S_{n}$ with $\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$ (see Theorem 15 and Table 2), where $\operatorname{supp}(\tau)$ is the set of points in $[n]$ non-fixed by $\tau$. There are 56 families of such graphs, and we determine the second eigenvalues for 41 families of them. In the process, we also determine the second eigenvalues of some subgraphs (over one hundred families) of these 41 families of normal Cayley graphs. From these results we can determine the spectral gap of $\operatorname{Cay}\left(S_{n},\{(p, q) \mid 1 \leqslant p, q \leqslant n\}\right)$ (previously done by Diaconis and Shahshahani [15]) and $\operatorname{Cay}\left(S_{n},\{(1, q) \mid 2 \leqslant q \leqslant n\}\right)$ (previously obtained by Flatto, Odlyzko and Wales [18, Theorem 3.7]). We show that a recent conjecture of Dai [14] is true as a consequence of Aldous' theorem and we discuss some related questions and open problems.

## 2 Main tools

Let $\Gamma$ be a graph on $n$ vertices. The vertex partition $\Pi: V(\Gamma)=V_{1} \cup V_{2} \cup \cdots \cup V_{q}$ is said to be an equitable partition of $\Gamma$ if every vertex of $V_{i}$ has the same number (denoted by $b_{i j}$ ) of neighbors in $V_{j}$, for all $i, j \in\{1,2, \ldots, q\}$. The matrix $B_{\Pi}=\left(b_{i j}\right)_{q \times q}$ is the quotient matrix of $\Gamma$ with respect to $\Pi$, and the $n \times q$ matrix $\chi_{\Pi}$ whose columns are the characteristic vectors of $V_{1}, \ldots, V_{q}$ is the characteristic matrix of $\Pi$.

Lemma 1 (Brouwer and Haemers [5], p. 30; Godsil and Royle [21], pp. 196-198). Let $\Gamma$ be a graph with adjacency matrix $A(\Gamma)$, and let $\Pi: V(\Gamma)=V_{1} \cup V_{2} \cup \cdots \cup V_{q}$ be an equitable partition of $\Gamma$ with quotient matrix $B_{\Pi}$. Then the eigenvalues of $B_{\Pi}$ are also eigenvalues of $A(\Gamma)$. Furthermore, $A(\Gamma)$ has the following two kinds of eigenvectors:
(i) the eigenvectors in the column space of $\chi_{\Pi}$, and the corresponding eigenvalues coincide with the eigenvalues of $B_{\Pi}$;
(ii) the eigenvectors orthogonal to the columns of $\chi_{\Pi}$, i.e., those eigenvectors that sum to zero on each block $V_{i}$ for $1 \leqslant i \leqslant q$.

If $S$ is a subset of vertices of a graph $\Gamma$, let $\Gamma[S]$ denote the subgraph of $\Gamma$ induced by $S$. For regular graphs, we have the following useful result.

Theorem 2. Let $\Gamma$ be a r-regular graph, and let $\lambda(\lambda \neq r)$ be an eigenvalue of $\Gamma$. If $\Gamma$ has an eigenvector $f$ with respect to $\lambda$ and a vertex partition $\Pi: V(\Gamma)=V_{1} \cup V_{2} \cup \cdots \cup V_{q}$ such that $\Gamma\left[V_{i}\right]$ is $r_{1}$-regular $\left(r_{1} \leqslant r\right)$ and $f$ sums to zero on $V_{i}$ for all $i \in\{1,2, \ldots, q\}$, then

$$
\lambda \leqslant \max _{1 \leqslant i \leqslant q} \lambda_{2}\left(\Gamma\left[V_{i}\right]\right)+\lambda_{2}\left(\Gamma_{1}\right),
$$

where $\Gamma_{1}$ is the $\left(r-r_{1}\right)$-regular graph obtained from $\Gamma$ by removing all edges in $\cup_{i=1}^{q} E\left(\Gamma\left[V_{i}\right]\right)$. Proof. By assumption, the induced subgraphs $\Gamma\left[V_{i}\right]$ share the same degree $r_{1}$, so $\Gamma_{1}$ is $\left(r-r_{1}\right)$-regular because $\Gamma$ is $r$-regular. Also, the eigenvector $f$ of $\lambda$ sums to zero on $V_{i}$ for each $i$. Set $E_{1}=\cup_{i=1}^{q} E\left(\Gamma\left[V_{i}\right]\right)$ and $E_{2}=E(\Gamma) \backslash E_{1}=E\left(\Gamma_{1}\right)$. By the Rayleigh quotient, we obtain

$$
\begin{array}{rl}
\lambda & =\frac{f^{T} A(\Gamma) f}{f^{T} f} \\
& =\frac{2 \sum_{\{x, y\} \in E(\Gamma)} f(x) f(y)}{\sum_{x \in V(\Gamma)} f(x)^{2}}  \tag{1}\\
& 2 \sum_{\{x, y\} \in E_{1}} f(x) f(y) \quad 2 \sum_{\{x, y\} \in E_{2}} f(x) f(y) \\
\sum_{x \in V(\Gamma)} f(x)^{2} & f(x)^{2}
\end{array}
$$

For the first term, we have

$$
\begin{align*}
\frac{2 \sum_{\{x, y\} \in E_{1}} f(x) f(y)}{\sum_{x \in V(\Gamma)} f(x)^{2}} & =\frac{\sum_{i=1}^{q} 2 \sum_{\{x, y\} \in E\left(\Gamma\left[V_{i}\right]\right)} f(x) f(y)}{\sum_{i=1}^{q} \sum_{x \in V_{i}} f(x)^{2}} \\
& \leqslant \max _{\substack{1 \leqslant i \leqslant q \\
f \mid V_{i} \neq 0}} \frac{2 \sum_{\{x, y\} \in E\left(\Gamma\left[V_{i}\right]\right)} f(x) f(y)}{\sum_{x \in V_{i}} f(x)^{2}} \\
& =\max _{\substack{1 \leqslant i \leqslant q \\
f \mid V_{i} \neq 0}} \frac{\left.\left.f\right|_{V_{i}} ^{T} A\left(\Gamma\left[V_{i}\right]\right) f\right|_{V_{i}}}{\left.\left.f\right|_{V_{i}} ^{T} f\right|_{V_{i}}}  \tag{2}\\
& \leqslant \max _{\substack{1 \leqslant i \leqslant q \\
f \mid V_{i} \neq 0}} \max _{g \perp V_{i}} \frac{g^{T} A\left(\Gamma\left[V_{i}\right]\right) g}{g^{T} g} \\
& =\max _{\substack{1 \leq i \leqslant q \\
f \mid V_{i} \neq 0}} \lambda_{2}\left(\Gamma\left[V_{i}\right]\right) \\
& \leqslant \max _{1 \leqslant i \leqslant q} \lambda_{2}\left(\Gamma\left[V_{i}\right]\right)
\end{align*}
$$

where $\left.f\right|_{V_{i}}$ is the restriction of $f$ on $V_{i}, \mathbf{1}_{V_{i}}$ is the all ones vector on $V_{i}$, and the second inequality follows from $\sum_{x \in V_{i}} f(x)=0(1 \leqslant i \leqslant q)$. For the second term, since $\Gamma_{1}$ is regular and $f$ is orthogonal to the all ones vector $\mathbf{1}$, we have

$$
\begin{equation*}
\frac{2 \sum_{\{x, y\} \in E_{2}} f(x) f(y)}{\sum_{x \in V(\Gamma)} f(x)^{2}}=\frac{f^{T} A\left(\Gamma_{1}\right) f}{f^{T} f} \leqslant \max _{h \perp 1} \frac{h^{T} A\left(\Gamma_{1}\right) h}{h^{T} h}=\lambda_{2}\left(\Gamma_{1}\right) . \tag{3}
\end{equation*}
$$

Combining (1), (2) and (3), we conclude that

$$
\lambda \leqslant \max _{1 \leqslant i \leqslant q} \lambda_{2}\left(\Gamma\left[V_{i}\right]\right)+\lambda_{2}\left(\Gamma_{1}\right),
$$

and the result follows.
If the partition $\Pi: V(\Gamma)=V_{1} \cup V_{2} \cup \cdots \cup V_{q}$ is exactly an equitable partition of $\Gamma$ with quotient matrix $B_{\Pi}$, then the eigenvectors of $\Gamma$ with respect to those eigenvalues other than that of $B_{\Pi}$ must sum to zero on each $V_{i}$ by Lemma 1. From Theorem 2 one can immediately deduce the following result.

Corollary 3. Let $\Gamma$ be a $r$-regular graph. Assume that $\Pi$ : $V(\Gamma)=V_{1} \cup V_{2} \cup \cdots \cup V_{q}$ is an equitable partition of $\Gamma$ whose quotient matrix $B_{\Pi}$ has constant diagonal entries. Then, for any eigenvalue $\lambda$ of $\Gamma$ that is not that of $B_{\Pi}$, we have

$$
\lambda \leqslant \max _{1 \leqslant i \leqslant q} \lambda_{2}\left(\Gamma\left[V_{i}\right]\right)+\lambda_{2}\left(\Gamma_{1}\right),
$$

where $\Gamma_{1}$ is the graph obtained from $\Gamma$ by removing all edges in $\cup_{i=1}^{q} E\left(\Gamma\left[V_{i}\right]\right)$.
Here we give an example to show how to use the result of Corollary 3 .
Example 4. Let $\Theta_{1}, \Theta_{2}$ be two connected $k$-regular graphs on $n$ vertices. Let $\Gamma$ be the graph (not unique) obtained from $\Theta_{1} \cup \Theta_{2}$ by adding some new edges between $\Theta_{1}$ and $\Theta_{2}$ such that these edges form a $r$-regular bipartite graph $\Gamma_{1}$ ( $\Gamma_{1}$ is easy to construct, cf. [26], Lemma 3.2). Clearly, $\Gamma$ is a connected $(k+r)$-regular graph. Let $V_{1}$ and $V_{2}$ be the vertex subsets of $\Gamma$ corresponding to $\Theta_{1}$ and $\Theta_{2}$, respectively. Then $V(\Gamma)=V_{1} \cup V_{2}$ is clearly an equitable partition of $\Gamma$ with quotient matrix

$$
B_{\Pi}=\left[\begin{array}{ll}
k & r \\
r & k
\end{array}\right] .
$$

Since $\lambda_{2}\left(\Gamma_{1}\right) \leqslant r$, each eigenvalue of $\Gamma$ not belonging to $B_{\Pi}$ is bounded above by

$$
\max \left\{\lambda_{2}\left(\Theta_{1}\right), \lambda_{2}\left(\Theta_{2}\right)\right\}+r
$$

according to Corollary 3 . As $\lambda_{2}\left(B_{\Pi}\right)=k-r$, we conclude that

$$
k-r \leqslant \lambda_{2}(\Gamma) \leqslant \max \left\{\max \left\{\lambda_{2}\left(\Theta_{1}\right), \lambda_{2}\left(\Theta_{2}\right)\right\}+r, k-r\right\} .
$$

Note that the above bounds could be tight. Take $\Theta_{1}=\Theta_{2}=Q_{n}$, the $n$-dimensional hypercube, and let $\Gamma$ be the graph (not unique) obtained from $\Theta_{1} \cup \Theta_{2}$ by adding a perfect matching between $\Theta_{1}$ and $\Theta_{2}$ (such graphs contain the ( $n+1$ )-dimensional locally twisted cubes, cf. [34]). Since $\lambda_{2}\left(Q_{n}\right)=n-2$ (cf. [5], p. 19), we have

$$
n-1 \leqslant \lambda_{2}(\Gamma) \leqslant \max \left\{\lambda_{2}\left(Q_{n}\right)+1, n-1\right\}=n-1,
$$

and thus $\lambda_{2}(\Gamma)=n-1$, which attains the lower bound. Also, the Cartesian product $C_{n} \square K_{2}$, which can be regarded as the graph obtained by adding a perfect matching between two copies of $C_{n}$, has second eigenvalue $2 \cos \frac{2 \pi}{n}+1=\lambda_{2}\left(C_{n}\right)+1$, and so attains the upper bound.

By using Theorem 2, in what follows, we focus on providing upper bounds for some special eigenvalues of Cayley graphs. Before doing this, we need to do some preparatory work. First of all, we give the following useful result, which suggests that each Cayley graph has an equitable partition derived from left coset decomposition.

Lemma 5. Let $G$ be a finite group, and let $\Gamma=\operatorname{Cay}(G, T)$ be a Cayley graph of $G$. Then the set of left cosets of any subgroup $H$ of $G$ gives an equitable partition of $\Gamma$.

Proof. Suppose that $\Pi: G=g_{1} H \cup g_{2} H \cup \cdots \cup g_{k} H$ is the left coset decomposition of $G$ with respect to $H$, where $k=|G| /|H|$ and $g_{1}, \ldots, g_{k}$ are the representation elements. Clearly, $\Pi$ is a vertex partition of $\Gamma$. For any $g \in g_{i} H$, we have $g=g_{i} h$ for some $h \in H$. Let $N(g)$ denote the set of neighbors of $g$ in $\Gamma$. Then

$$
\left|N(g) \cap g_{j} H\right|=\left|N\left(g_{i} h\right) \cap g_{j} H\right|=\left|\left(T g_{i} h\right) \cap g_{j} H\right|=\left|T \cap\left(g_{j} H h^{-1} g_{i}^{-1}\right)\right|=\left|T \cap\left(g_{j} H g_{i}^{-1}\right)\right|,
$$

which is independent on the choice of $g \in g_{i} H$. Thus $\Pi$ is exactly an equitable partition of $\Gamma$, and the result follows.

Let $\Omega$ be a nonempty set, and let $G$ be a group acting on $\Omega$. We say that the action of $G$ on $\Omega(|\Omega| \geqslant s)$ is $s$-transitive if for all pairwise distinct $x_{1}, \ldots, x_{s} \in \Omega$ and pairwise distinct $y_{1}, \ldots, y_{s} \in \Omega$ there exists some $g \in G$ such that $x_{i}^{g}=y_{i}$ for $1 \leqslant i \leqslant s$. Clearly, a $s$-transitive action is always $t$-transitive for any $t<s$. In particular, we say that the action is transitive if it is 1-transitive. As usual, we denote by $G_{x}=\left\{g \in G \mid x^{g}=x\right\}$ the stabilizer subgroup of $G$ with respect to $x \in \Omega$.

Now suppose that $G$ is a finite group acting transitively on $[n]=\{1,2, \ldots, n\}$. For each fixed $i \in[n]$, we have $|G| /\left|G_{i}\right|=n$ by the orbit-stabilizer theorem, and furthermore, we see that $G$ has left coset decomposition

$$
\begin{equation*}
\Pi_{i}: G=g_{1, i} G_{i} \cup g_{2, i} G_{i} \cup \cdots \cup g_{n, i} G_{i}=G_{1, i} \cup G_{2, i} \cup \cdots \cup G_{n, i}, \tag{4}
\end{equation*}
$$

where $g_{j, i}$ is an arbitrary element in $G$ that maps $j$ to $i$ and

$$
G_{j, i}=g_{j, i} G_{i}=\left\{g \in G \mid j^{g}=i\right\},
$$

for all $j \in[n]$. Clearly, $\left|G_{j, i}\right|=\left|G_{i}\right|=|G| / n$.

Let $\Gamma=\operatorname{Cay}(G, T)$ be a Cayley graph of $G$. According to Lemma 5, for each $i \in[n]$, the left coset decomposition $\Pi_{i}$ given in (4) is an equitable partition of $\Gamma$ with quotient matrix $B_{\Pi_{i}}=\left(b_{s t}\right)_{n \times n}$, where

$$
\begin{equation*}
b_{s t}=\left|T \cap g_{t, i} G_{i} g_{s, i}^{-1}\right|=\left|T \cap G_{t, s}\right| \tag{5}
\end{equation*}
$$

is exactly the number of elements in $T$ mapping $t$ to $s$. Since $b_{s t}=\left|T \cap G_{t, s}\right|$ is independent on the choice of $i$, all the equitable partitions $\Pi_{i}$ share the same quotient matrix. For this reason, we use $B_{\Pi}$ instead of $B_{\Pi_{i}}$. Also, by counting the edges between $G_{s, i}$ and $G_{t, i}$ in two ways, we obtain $b_{s t} \cdot\left|G_{s, i}\right|=b_{t s} \cdot\left|G_{t, i}\right|$, which implies that $b_{s t}=b_{t s}$ because $\left|G_{s, i}\right|=\left|G_{t, i}\right|=|G| / n$. Therefore, $B_{\Pi}=\left(b_{s t}\right)_{n \times n}$ is symmetric.

For any fixed $k \in[n]$, we also can partition the vertex set of $\Gamma$ as another form

$$
\begin{equation*}
\Pi_{k}^{\prime}: G=G_{k, 1} \cup G_{k, 2} \cup \cdots \cup G_{k, n} \tag{6}
\end{equation*}
$$

which is exactly the right coset decomposition of $G$ with respect to $G_{k}$. In general, $\Pi_{k}^{\prime}$ is not an equitable partition of $\Gamma$. As in Theorem 2, we can decompose the edge set of $\Gamma$ into $E(\Gamma)=E_{1} \cup E_{2}$, where $E_{1}=\cup_{i=1}^{n} E\left(\Gamma\left[G_{k, i}\right]\right)$ and $E_{2}=E(\Gamma) \backslash E_{1}$. Let $\Gamma_{1}$ denote the spanning subgraph of $\Gamma$ with edge set $E_{2}$. The following lemma determines the structure of $\Gamma_{1}$ and $\Gamma\left[G_{k, i}\right]$ for all $i \in[n]$.

Lemma 6. For any fixed $k \in[n]$, we have
(i) $\Gamma\left[G_{k, i}\right] \cong \operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)$ for all $i \in[n]$;
(ii) $\Gamma_{1}=\operatorname{Cay}\left(G, T \backslash\left(T \cap G_{k}\right)\right)$.

Proof. For (i), the corresponding isomorphism can be defined as

$$
\begin{aligned}
\phi: G_{k, i}=g_{k, i} G_{i} & \rightarrow g_{k, i} G_{i} g_{k, i}^{-1}=G_{k} \\
g_{k, i} g & \mapsto g_{k, i} g g_{k, i}^{-1}, \quad \forall g \in G_{i} .
\end{aligned}
$$

Clearly, $\phi$ is one-to-one and onto. Furthermore, we have

$$
\begin{aligned}
\left\{g_{k, i} g, g_{k, i} g^{\prime}\right\} \in E\left(\Gamma\left[G_{k, i}\right]\right) & \Longleftrightarrow g_{k, i} g^{\prime}\left(g_{k, i} g\right)^{-1} \in T \\
& \Longleftrightarrow g_{k, i} g^{\prime} g^{-1} g_{k, i}^{-1} \in T \cap g_{k, i} G_{i} g_{k, i}^{-1}=T \cap G_{k} \\
& \Longleftrightarrow g_{k, i} g^{\prime} g_{k, i}^{-1}\left(g_{k, i} g g_{k, i}^{-1}\right)^{-1} \in T \cap G_{k} \\
& \Longleftrightarrow\left\{g_{k, i} g g_{k, i}^{-1}, g_{k, i} g^{\prime} g_{k, i}^{-1}\right\} \in E\left(\operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)\right),
\end{aligned}
$$

and so (i) follows. Now we consider (ii). Clearly, $\Gamma_{1}\left[G_{k, i}\right]$ is an empty graph for all $i \in[n]$. For any $g_{k, i} g \in G_{k, i}=g_{k, i} G_{i}$ and $g_{k, j} g^{\prime} \in G_{k, j}=g_{k, j} G_{j}(i \neq j)$, we have $\left\{g_{k, i} g, g_{k, j} g^{\prime}\right\} \in E\left(\Gamma_{1}\right)$ if and only if $g_{k, j} g^{\prime}\left(g_{k, i} g\right)^{-1} \in T$, which is the case if and only if $g_{k, j} g^{\prime}\left(g_{k, i} g\right)^{-1} \in T \backslash\left(T \cap G_{k}\right)$ because $g_{k, j} g^{\prime}\left(g_{k, i} g\right)^{-1}=g_{k, j} g^{\prime} g^{-1} g_{k, i}^{-1} \notin G_{k}$ due to $i \neq j$. Therefore, each edge of $\Gamma_{1}$ comes from $T \backslash\left(T \cap G_{k}\right)$. Conversely, $T \backslash\left(T \cap G_{k}\right)$ can only be used to produce the edges in $E\left(\Gamma_{1}\right)=E_{2}$ because each edge in $E_{1}=\cup_{i=1}^{n} E\left(\Gamma\left[G_{k, i}\right]\right)$ comes from $T \cap G_{k}$. This proves (ii).

Now we are in a position to give the main result of this section, which provides upper bounds for some special eigenvalues of Cayley graphs.

Theorem 7. Let $G$ be a finite group acting transitively on $[n]=\{1,2, \ldots, n\}$, and let $\Gamma=\operatorname{Cay}(G, T)$ be a Cayley graph of $G$. Then the left coset decomposition $\Pi_{i}$ of $G$ given in (4) leads to an equitable partition of $\Gamma$, and the corresponding quotient matrix $B_{\Pi}=B_{\Pi_{i}}$ is symmetric and independent on the choice of $i$. Moreover, if $\lambda$ is an eigenvalue of $\Gamma$ other than that of $B_{\Pi}$, then, for each $k \in[n]$, we have

$$
\lambda \leqslant \lambda_{2}\left(\operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)\right)+\lambda_{2}\left(\operatorname{Cay}\left(G, T \backslash\left(T \cap G_{k}\right)\right)\right),
$$

where $G_{k}$ is the stabilizer subgroup of $G$ with respect to $k$.
Proof. From the above arguments, it suffices to prove the second part of the theorem. Let $f$ be an arbitrary eigenvector of $\Gamma$ with respect to $\lambda$. Since $\Pi_{i}$ is an equitable partition of $\Gamma$ for each $i$, we see that $f$ must sum to zero on $G_{j, i}$ for all $i, j \in[n]$ by Lemma 1. For any fixed $k \in[n]$, let $\Pi_{k}^{\prime}$ be the vertex partition of $\Gamma$ given in (6). In particular, we have that $f$ sums to zero on $G_{k, i}$ for all $i \in[n]$. By Lemma 6 , all these induced subgraphs $\Gamma\left[G_{k, i}\right](i \in[n])$ are isomorphic to $\operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)$, and so share the same degree $\left|T \cap G_{k}\right|$. Let $\Gamma_{1}$ be the graph obtained from $\Gamma$ by removing all edges in $\cup_{i=1}^{n} E\left(\Gamma\left[G_{k, i}\right]\right)$. Note that $\Gamma_{1} \cong \operatorname{Cay}\left(G, T \backslash\left(T \cap G_{k}\right)\right)$ again by Lemma 6. Then, by applying Theorem 2 to the vertex partition $\Pi_{k}^{\prime}$, we obtain

$$
\begin{aligned}
\lambda & \leqslant \max _{1 \leqslant i \leqslant n} \lambda_{2}\left(\Gamma\left[G_{k, i}\right]\right)+\lambda_{2}\left(\Gamma_{1}\right) \\
& =\lambda_{2}\left(\operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)\right)+\lambda_{2}\left(\operatorname{Cay}\left(G, T \backslash\left(T \cap G_{k}\right)\right)\right)
\end{aligned}
$$

By the arbitrariness of $k \in[n]$, our result follows.
It is worth mentioning that Theorem 7 provides for us a recursive method to determine the second eigenvalue of the connected Cayley graph $\Gamma=\operatorname{Cay}(G, T)$. Indeed, by Lemma 1, all eigenvalues of $B_{\Pi}$ are also that of $\Gamma$, so we have $\lambda_{2}(\Gamma) \geqslant \lambda_{2}\left(B_{\Pi}\right)$. Therefore, if there exists some $k \in[n]$ such that

$$
\begin{equation*}
\lambda_{2}\left(\operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)\right)+\lambda_{2}\left(\operatorname{Cay}\left(G, T \backslash\left(T \cap G_{k}\right)\right)\right) \leqslant \lambda_{2}\left(B_{\Pi}\right) \tag{7}
\end{equation*}
$$

then we may conclude that $\lambda_{2}(\Gamma)=\lambda_{2}\left(B_{\Pi}\right)$ by Theorem 7 . Thus the problem is reduced to determining the exact value of $\lambda_{2}\left(\operatorname{Cay}\left(G_{k}, T \cap G_{k}\right)\right)$ and $\lambda_{2}\left(\operatorname{Cay}\left(G, T \backslash\left(T \cap G_{k}\right)\right)\right)$, which reminds us that the way of induction could be applied.

In the next section, we shall see that if $G$ and $T$ satisfy some additional conditions then the problem of proving $\lambda_{2}(\Gamma)=\lambda_{2}\left(B_{\Pi}\right)$ can be reduced to that of verifying the result for some small graphs.

## 3 Normal Cayley graphs

For a finite group $G$, the conjugacy class of $g \in G$ is defined as the set $\mathcal{C}_{g}=\left\{h^{-1} g h \mid\right.$ $h \in G\}$. Recall that a Cayley graph Cay $(G, T)$ is said to be normal if $T$ is closed under
conjugation, that is, $T$ is the disjoint union of some conjugacy classes of $G$. It is wellknown that the eigenvalues of a normal Cayley graph can be expressed in terms of the irreducible characters of $G$.

Theorem 8 ([4, 29, 32]). The eigenvalues of a normal Cayley graph Cay $(G, T)$ are given by

$$
\lambda_{\chi}=\frac{1}{\chi(1)} \sum_{\tau \in T} \chi(\tau),
$$

where $\chi$ ranges over all the irreducible characters of $G$. Moreover, the multiplicity of $\lambda_{\chi}$ is $\chi(1)^{2}$.

However, it is often difficult to identify the second eigenvalues of normal Cayley graphs from Theorem 8. In this section, by using Theorem 7, we reduce the problem of determining the second eigenvalues of normal Cayley graphs of highly transitive groups to that of verifying the result for some smaller graphs.

From now on, we always assume that $G$ acts transitively on $[n]$, and that $\Gamma=$ Cay $(G, T)$ is a connected normal Cayley graph of $G$, i.e., $T$ is a generating subset of $G$ which is also closed under conjugation. In order to use Theorem 7 recursively, we set $T_{0}=T, \Gamma_{0}=\operatorname{Cay}\left(G, T_{0}\right)=\Gamma$, and for $k=1,2, \ldots, n$, we define

$$
\begin{align*}
& \Gamma_{k}=\operatorname{Cay}\left(G, T_{k}\right) \text { with } T_{k}=T_{k-1} \backslash\left(T_{k-1} \cap G_{k}\right) ;  \tag{8}\\
& \Theta_{k}=\operatorname{Cay}\left(G_{k}, R_{k}\right) \text { with } R_{k}=T_{k-1} \cap G_{k} .
\end{align*}
$$

We see that both $\Gamma_{k}$ and $\Theta_{k}$ are subgraphs of $\Gamma_{k-1}$, and furthermore, by regarding $T_{k-1}$ as $T$ in Lemma 6, we have
Remark 9. The edge set of $\Gamma_{k-1}(k \geqslant 1)$ can be decomposed into that of $\Gamma_{k}$ and $n$ copies of $\Theta_{k}$.

Note that $T_{1}=T \backslash\left(T \cap G_{1}\right)$ consists of those elements in $T$ moving $1, T_{2}=T_{1} \backslash\left(T_{1} \cap G_{2}\right)$ consists of those elements in $T_{1}$ moving 2, i.e., those elements in $T$ moving both 1 and 2, and so on. Thus we have
Remark 10. For each $k \geqslant 1, T_{k}$ is the set of $\tau \in T$ satisfying $\{1,2, \ldots, k\} \subseteq \operatorname{supp}(\tau)$, i.e., $T_{k}=T \backslash\left(T \cap\left(\cup_{i=1}^{k} G_{i}\right)\right)$, and thus $R_{k}=T_{k-1} \cap G_{k}$ is the set of elements in $T$ moving $1,2, \ldots, k-1$ but fixing $k$.

Note that $G$ acts transitively on $[n]$. For $0 \leqslant k \leqslant n$, from Theorem 7 and (5) we see that the left coset decompositions $\Pi_{i}(i \in[n])$ of $G$ given in (4) are equitable partitions of $\Gamma_{k}=\operatorname{Cay}\left(G, T_{k}\right)$ which share the same symmetric quotient matrix

$$
\begin{equation*}
B_{\Pi}^{(k)}=\left(b_{s t}^{(k)}\right)_{n \times n}, \text { where } b_{s t}^{(k)}=\left|T_{k} \cap G_{t, s}\right| . \tag{9}
\end{equation*}
$$

In particular, $B_{\Pi}^{(0)}=B_{\Pi}$.
To achieve our goal, we need to determine the second eigenvalue of $B_{\Pi}^{(k)}(k \geqslant 0)$.

Lemma 11. Let $\Gamma_{k}=\operatorname{Cay}\left(G, T_{k}\right)(k \geqslant 0)$ be the graph defined in (8), and $B_{\Pi}^{(k)}$ the quotient matrix of $\Gamma_{k}$ defined in (9). If $G$ acts $(k+2)$-transitively on $[n]$, then $\lambda_{2}\left(B_{\Pi}^{(k)}\right)=$ $\left|T_{k} \cap G_{k+1}\right|-\left|T_{k} \cap G_{k+2, k+1}\right|$.

Proof. First suppose $k=0$. According to (9), we have $B_{\Pi}^{(0)}=\left(b_{s t}^{(0)}\right)_{n \times n}$, where $b_{s t}^{(0)}=$ $\left|T_{0} \cap G_{t, s}\right|$. Since $G$ acts 2-transitively on [n], for any $s \in[n]$, there exists some $g \in G$ such that $g$ maps $s$ to 1 . Considering that $T_{0}=T$ is closed under conjugation, we have $b_{s s}^{(0)}=\left|T_{0} \cap G_{s, s}\right|=\left|T_{0} \cap G_{s}\right|=\left|g^{-1}\left(T_{0} \cap G_{s}\right) g\right|=\left|\left(g^{-1} T_{0} g\right) \cap\left(g^{-1} G_{s} g\right)\right|=\left|T_{0} \cap G_{1}\right|=b_{11}^{(0)}$. Similarly, for any two distinct $s, t \in[n]$, there exists some $g$ in $G$ mapping $s$ to 1 and $t$ to 2 by the 2-transitivity of $G$ acting on $[n]$. Then $b_{s t}^{(0)}=\left|T_{0} \cap G_{t, s}\right|=\left|g^{-1}\left(T_{0} \cap G_{t, s}\right) g\right|=$ $\left|\left(g^{-1} T_{0} g\right) \cap\left(g^{-1} G_{t, s} g\right)\right|=\left|T_{0} \cap G_{t^{g}, s^{g}}\right|=\left|T_{0} \cap G_{2,1}\right|=b_{12}^{(0)}$. Combining these results, we have

$$
B_{\Pi}^{(0)}=b_{11}^{(0)} \cdot I_{n}+b_{12}^{(0)} \cdot\left(J_{n}-I_{n}\right) .
$$

Thus the quotient matrix $B_{\Pi}^{(0)}$ has eigenvalues $|T|=b_{11}^{(0)}+(n-1) \cdot b_{12}^{(0)}$ of multiplicity one and $b_{11}^{(0)}-b_{12}^{(0)}$ of multiplicity $n-1$. Therefore, $\lambda_{2}\left(B_{\Pi}^{(0)}\right)=b_{11}^{(0)}-b_{12}^{(0)}=\left|T_{0} \cap G_{1}\right|-\left|T_{0} \cap G_{2,1}\right|$, and our result follows.

Now suppose $k \geqslant 1$. By definition, we see that $T_{k}=T \backslash\left(T \cap\left(\cup_{l=1}^{k} G_{l}\right)\right)$. We claim that if $g$ is an element in $G$ fixing $\{1,2, \ldots, k\}$ setwise then $g^{-1} T_{k} g=T_{k}$. Indeed, we have $g^{-1} T_{k} g=\left(g^{-1} T g\right) \backslash\left(\left(g^{-1} T g\right) \cap\left(\cup_{l=1}^{k} g^{-1} G_{l} g\right)\right)=T \backslash\left(T \cap\left(\cup_{l=1}^{k} G_{l g}\right)\right)=T \backslash\left(T \cap\left(\cup_{l=1}^{k} G_{l}\right)\right)=$ $T_{k}$, as required.

We shall determine all eigenvalues of $B_{\Pi}^{(k)}$. According to (9), we see that $B_{\Pi}^{(k)}=\left(b_{s t}^{(k)}\right)$, where $b_{s t}^{(k)}=\left|T_{k} \cap G_{t, s}\right|$. For $1 \leqslant s \leqslant k$, we have $b_{s s}^{(k)}=\left|T_{k} \cap G_{s, s}\right|=0$ because $T_{k}$ must move $s$ but $G_{s, s}=G_{s}$ does not. For $k+1 \leqslant s \leqslant n$, by the $(k+2)$-transitivity of $G$ acting on [ $n$ ], there is a $g \in G$ fixing $\{1,2, \ldots, k\}$ setwise but moving $s$ to $k+1$. Then $g^{-1} T_{k} g=T_{k}$ and $g^{-1} G_{s} g=G_{k+1}$ by above arguments, and thus $b_{s s}^{(k)}=\left|T_{k} \cap G_{s, s}\right|=\left|T_{k} \cap G_{s}\right|=$ $\left|g^{-1}\left(T_{k} \cap G_{s}\right) g\right|=\left|\left(g^{-1} T_{k} g\right) \cap\left(g^{-1} G_{s} g\right)\right|=\left|T_{k} \cap G_{k+1}\right|=b_{k+1, k+1}^{(k)}$. For $1 \leqslant s<t \leqslant k$ (if $k \geqslant 2$ ), again by the ( $k+2$ )-transitivity, we can choose $g \in G$ such that $g$ moves $t$ to 2 and $s$ to 1 but fixes $\{1,2, \ldots, k\}$ setwise. Then we see that $b_{s t}^{(k)}=\left|T_{k} \cap G_{t, s}\right|=\left|g^{-1}\left(T_{k} \cap G_{t, s}\right) g\right|=$ $\left|\left(g^{-1} T_{k} g\right) \cap\left(g^{-1} G_{t, s} g\right)\right|=\left|T_{k} \cap G_{2,1}\right|=b_{12}^{(k)}$. For $1 \leqslant s \leqslant k$ and $k+1 \leqslant t \leqslant n$, there also exists some $g$ in $G$ mapping $s$ to $1, t$ to $k+1$ but fixing $\{1,2, \ldots, k\}$ setwise, thus we get $b_{s t}^{(k)}=\left|T_{k} \cap G_{t, s}\right|=\left|g^{-1}\left(T_{k} \cap G_{t, s}\right) g\right|=\left|T_{k} \cap G_{k+1,1}\right|=b_{1, k+1}^{(k)}$. For $k+1 \leqslant s<t \leqslant n$, we take $g \in G$ such that $g$ maps $s$ to $k+1$ and $t$ to $k+2$ but fixes $\{1,2, \ldots, k\}$ setwise. Then $b_{s t}^{(k)}=\left|T_{k} \cap G_{t, s}\right|=\left|g^{-1}\left(T_{k} \cap G_{t, s}\right) g\right|=\left|T_{k} \cap G_{k+2, k+1}\right|=b_{k+1, k+2}^{(k)}$. Concluding these results, we have

$$
b_{s t}^{(k)}=b_{t s}^{(k)}= \begin{cases}0, & \text { if } 1 \leqslant s=t \leqslant k ; \\ \left|T_{k} \cap G_{k+1}\right|=b_{k+1, k+1}^{(k)}, & \text { if } k+1 \leqslant s=t \leqslant n ; \\ \left|T_{k} \cap G_{2,1}\right|=b_{1,2}^{(k)}, & \text { if } 1 \leqslant s<t \leqslant k(\text { for } k \geqslant 2) ; \\ \left|T_{k} \cap G_{k+1,1}\right|=b_{1, k+1}^{(k)}, & \text { if } 1 \leqslant s \leqslant k, k+1 \leqslant t \leqslant n \\ \left|T_{k} \cap G_{k+2, k+1}\right|=b_{k+1, k+2}^{(k)}, & \text { if } k+1 \leqslant s<t \leqslant n\end{cases}
$$

Therefore, the quotient matrix $B_{\Pi}^{(k)}$ can be written as

$$
B_{\Pi}^{(k)}=\left[\begin{array}{cc}
b_{1,2}^{(k)} \cdot\left(J_{k}-I_{k}\right) & b_{1, k+1}^{(k)} \cdot J_{k \times(n-k)} \\
b_{1, k+1}^{(k)} \cdot J_{(n-k) \times k} & b_{k+1, k+1}^{(k)} \cdot I_{n-k}+b_{k+1, k+2}^{(k)} \cdot\left(J_{n-k}-I_{n-k}\right)
\end{array}\right] .
$$

Take $x_{1}=\left(y_{1}^{T}, 0^{T}\right)^{T} \in \mathbb{R}^{n}$ and $x_{2}=\left(0^{T}, y_{2}^{T}\right)^{T} \in \mathbb{R}^{n}$, where $y_{1} \in \mathbb{R}^{k}$ and $y_{2} \in \mathbb{R}^{n-k}$ are two arbitrary vectors orthogonal to the all ones vector, respectively. One can easily verify that $B_{\Pi}^{(k)} x_{1}=-b_{1,2}^{(k)} \cdot x_{1}$ and $B_{\Pi}^{(k)} x_{2}=\left(b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)}\right) \cdot x_{2}$, so $-b_{1,2}^{(k)}$ and $b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)}$ are eigenvalues of $B_{\Pi}^{(k)}$ with multiplicities at least $k-1$ and $n-k-1$, respectively. Also note that $\left|T_{k}\right|$ is always an eigenvalue of $B_{\Pi}^{(k)}$ with the all ones vector as its eigenvector because $\Gamma_{k}=\operatorname{Cay}\left(G, T_{k}\right)$ is $\left|T_{k}\right|$-regular. Thus there is just one eigenvalue, denoted by $\mu$, that is not known. By computing the trace of $B_{\Pi}^{(k)}$ in two ways, we obtain

$$
(n-k) \cdot b_{k+1, k+1}^{(k)}=\left|T_{k}\right|-(k-1) \cdot b_{1,2}^{(k)}+(n-k-1) \cdot\left(b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)}\right)+\mu,
$$

which gives that

$$
\begin{aligned}
\mu & =b_{k+1, k+1}^{(k)}+(n-k-1) \cdot b_{k+1, k+2}^{(k)}-\left(\left|T_{k}\right|-(k-1) \cdot b_{1,2}^{(k)}\right) \\
& =b_{k+1, k+1}^{(k)}+(n-k-1) \cdot b_{k+1, k+2}^{(k)}-(n-k) \cdot b_{1, k+1}^{(k)} \\
& =b_{k+1, k+1}^{(k)}+(n-k-1) \cdot b_{k+1, k+2}^{(k)}-(n-k) \cdot b_{k+1,1}^{(k)} .
\end{aligned}
$$

Thus the eigenvalues of $B_{\Pi}^{(k)}$ are $|T|,-b_{1,2}^{(k)}$ (with multiplicity $k-1$ ), $b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)}$ (with multiplicity $n-k-1$ ) and $\mu=b_{k+1, k+1}^{(k)}+(n-k-1) \cdot b_{k+1, k+2}^{(k)}-(n-k) \cdot b_{k+1,1}^{(k)}$.

Now we prove that $\lambda_{2}\left(B_{\Pi}^{(k)}\right)=b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)}$. Since $\lambda_{1}\left(B_{\Pi}^{(k)}\right)=\left|T_{k}\right|$, it remains to compare the remaining eigenvalues. To prove $b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)} \geqslant \mu=b_{k+1, k+1}^{(k)}+(n-k-$ 1) $\cdot b_{k+1, k+2}^{(k)}-(n-k) \cdot b_{k+1,1}^{(k)}$, it suffices to show that $b_{k+1,1}^{(k)} \geqslant b_{k+1, k+2}^{(k)}$. Indeed, by the $(k+2)$ transitivity of $G$ acting on $[n]$, there exists some $g \in G$ such that $g$ moves 1 to $k+2$ but fixes $k+1$ and $\{2, \ldots, k\}$ setwise. Then $g^{-1} T_{k} g=\left(g^{-1} T g\right) \backslash\left(\left(g^{-1} T g\right) \cap\left(\cup_{l=1}^{k} g^{-1} G_{l} g\right)\right)=$ $T \backslash\left(T \cap\left(\cup_{l=1}^{k} G_{l^{g}}\right)\right)=T \backslash\left(T \cap\left(G_{k+2} \cup\left(\cup_{l=2}^{k} G_{l}\right)\right)\right)$, and so we obtain

$$
\begin{align*}
b_{k+1,1}^{(k)} & =\left|T_{k} \cap G_{1, k+1}\right| \\
& =\left|g^{-1}\left(T_{k} \cap G_{1, k+1}\right) g\right| \\
& =\left|\left(g^{-1} T_{k} g\right) \cap\left(g^{-1} G_{1, k+1} g\right)\right|  \tag{10}\\
& =\left|\left(T \backslash\left(T \cap\left(G_{k+2} \cup\left(\cup_{l=2}^{k} G_{l}\right)\right)\right)\right) \cap G_{k+2, k+1}\right| \\
& =\left|T \cap G_{k+2, k+1}\right|-\left|T \cap\left(G_{k+2} \cup\left(\cup_{l=2}^{k} G_{l}\right)\right) \cap G_{k+2, k+1}\right| \\
& =\left|T \cap G_{k+2, k+1}\right|-\left|T \cap\left(\cup_{l=2}^{k} G_{l}\right) \cap G_{k+2, k+1}\right|,
\end{align*}
$$

where the last equality follows from $G_{k+2} \cap G_{k+2, k+1}=\varnothing$. Also, we see that

$$
\begin{equation*}
b_{k+1, k+2}^{(k)}=\left|T_{k} \cap G_{k+2, k+1}\right|=\left|T \cap G_{k+2, k+1}\right|-\left|T \cap\left(\cup_{l=1}^{k} G_{l}\right) \cap G_{k+2, k+1}\right| . \tag{11}
\end{equation*}
$$

Combining (10) and (11) yields

$$
b_{k+1,1}^{(k)}-b_{k+1, k+2}^{(k)}=\left|T \cap\left(\cup_{l=1}^{k} G_{l}\right) \cap G_{k+2, k+1}\right|-\left|T \cap\left(\cup_{l=2}^{k} G_{l}\right) \cap G_{k+2, k+1}\right| \geqslant 0
$$

as required. Now let us show that $b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)} \geqslant-b_{1,2}^{(k)}$. Since $-b_{1,2}^{(k)}$ is not an eigenvalue of $B_{\Pi}^{(k)}$ when $k=1$, we can suppose $k \geqslant 2$. If we can prove $b_{1,2}^{(k)} \geqslant b_{k+1, k+2}^{(k)}$, then the result follows because $b_{k+1, k+1}^{(k)} \geqslant 0$. As above, by taking $g \in G$ such that $g$ maps 1 to $k+1$ and 2 to $k+2$ but fixes $\{3, \ldots, k\}$ setwise, we get

$$
\begin{align*}
b_{1,2}^{(k)} & =\left|T_{k} \cap G_{2,1}\right| \\
& =\left|g^{-1}\left(T_{k} \cap G_{2,1}\right) g\right| \\
& =\left|\left(g^{-1} T_{k} g\right) \cap G_{k+2, k+1}\right|  \tag{12}\\
& =\left|T \cap G_{k+2, k+1}\right|-\left|T \cap\left(\cup_{l=3}^{k+2} G_{l}\right) \cap G_{k+2, k+1}\right| \\
& =\left|T \cap G_{k+2, k+1}\right|-\left|T \cap\left(\cup_{l=3}^{k} G_{l}\right) \cap G_{k+2, k+1}\right| .
\end{align*}
$$

Combining (11) and (12), we have

$$
b_{1,2}^{(k)}-b_{k+1, k+2}^{(k)}=\left|T \cap\left(\cup_{l=1}^{k} G_{l}\right) \cap G_{k+2, k+1}\right|-\left|T \cap\left(\cup_{l=3}^{k} G_{l}\right) \cap G_{k+2, k+1}\right| \geqslant 0
$$

and the result follows. Hence we conclude that

$$
\lambda_{2}\left(B_{\Pi}^{k}\right)=b_{k+1, k+1}^{(k)}-b_{k+1, k+2}^{(k)}=\left|T_{k} \cap G_{k+1}\right|-\left|T_{k} \cap G_{k+2, k+1}\right| .
$$

The proof is complete.
Set

$$
m=\max _{\tau \in T}|\operatorname{supp}(\tau)| .
$$

If $m<n$, then we claim that $\Gamma_{m}=\operatorname{Cay}\left(G, T_{m}\right)$ is disconnected. Indeed, by the definition, $T_{m}$ consists of those $\tau \in T$ such that $\{1,2, \ldots, m\} \subseteq \operatorname{supp}(\tau)$. Since each element of $T$ has at most $m$ supports, we have $\operatorname{supp}(\tau)=\{1,2, \ldots, m\}$ for any $\tau \in T_{m}$, which implies that $T_{m}$ cannot generate $G$ due to $m<n$.

In the following, we suppose further that the action of $G$ on $[n]$ is $(m+a)$-transitive with $a \geqslant 1$. Under this assumption, it is clear that $n \geqslant m+a$, and so $m<n$, implying that $\Gamma_{m}$ is disconnected. Denote by

$$
\begin{equation*}
G^{(0)}=G \text { and } G^{(i)}=\cap_{j=1}^{i} G_{n-j+1} \text { for } 1 \leqslant i \leqslant a-1 . \tag{13}
\end{equation*}
$$

Indeed, $G^{(i)}(1 \leqslant i \leqslant a-1)$ is just the subgroup of $G$ that fixes each point of $\{n-$ $i+1, \ldots, n\}$. For this reason, we can also regard $G^{(i)}$ as a group acting on $[n-i]=$ $\{1,2, \ldots, n-i\}$. Moreover, this action is $(m+a-i)$-transitive because $G$ acts $(m+a)$ transitively on $[n]$. For $0 \leqslant i \leqslant a-1$, we define

$$
\begin{align*}
& \Gamma_{k, i}=\operatorname{Cay}\left(G^{(i)}, T_{k} \cap G^{(i)}\right) \text { for } 0 \leqslant k \leqslant m ; \\
& \Theta_{k, i}=\operatorname{Cay}\left(G^{(i)} \cap G_{k}, R_{k} \cap G^{(i)}\right) \text { for } 1 \leqslant k \leqslant m, \tag{14}
\end{align*}
$$

where $G^{(i)}$ is defined in (13), and $T_{k}, R_{k}$ are given in (8). By definition, $\Gamma_{k, 0}=\Gamma_{k}=$ $\operatorname{Cay}\left(G, T_{k}\right), \Theta_{k, 0}=\Theta_{k}=\operatorname{Cay}\left(G_{k}, R_{k}\right)$, and $\Gamma_{k, i}$ is the subgraph of both $\Gamma_{k-1, i}$ and $\Gamma_{k, i-1}$. As in Remark 9, the edge set of $\Gamma_{k-1, i}$ can be decomposed into that of $\Gamma_{k, i}$ and ( $n-i$ )copies of $\Theta_{k, i}$. Also, for each fixed $i$, we see that $T_{0} \cap G^{(i)}=T \cap G^{(i)}$ is closed under conjugation in $G^{(i)}$, and $T_{k} \cap G^{(i)}$ is just the set of elements in $T \cap G^{(i)}$ moving each point of $\{1,2, \ldots, k\}$ (similar as Remark 10). Furthermore, since $n-i \geqslant m+a-i \geqslant m+1$, we claim that $T_{m} \subseteq G^{(i)}$ and that $\Gamma_{m, i}=\operatorname{Cay}\left(G^{(i)}, T_{m} \cap G^{(i)}\right)=\operatorname{Cay}\left(G^{(i)}, T_{m}\right)$ is disconnected. In particular, we have $\lambda_{2}\left(\Gamma_{m, i}\right)=\left|T_{m} \cap G^{(i)}\right|=\left|T_{m}\right|$ for all $0 \leqslant i \leqslant a-1$. Recall that $G^{(i)}$ acts $(m+a-i)$-transitively $(m+a-i \geqslant m+1)$ on $[n-i]$. According to Lemma 5 and the arguments in Section 2, every left coset decomposition of $G^{(i)}$ with respect to some stabilizer subgroup leads to an equitable partition of $\Gamma_{k, i}$, and all these equitable partitions share the same quotient matrix

$$
B_{\Pi}^{(k, i)}=\left(b_{s t}^{(k, i)}\right)_{(n-i) \times(n-i)} \text {, where } b_{s t}^{(k, i)}=\left|T_{k} \cap G^{(i)} \cap G_{t, s}\right| \text {. }
$$

Clearly, $B_{\Pi}^{(k, 0)}$ coincides with $B_{\Pi}^{(k)}$. For $0 \leqslant k \leqslant m-1$, we have $k+2 \leqslant m+1 \leqslant m+a-i$, and so $G^{(i)}$ acts $(k+2)$-transitively on $[n-i]$. By applying Lemma 11 to $\Gamma_{k, i}$, we obtain

$$
\begin{equation*}
\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)=\left|T_{k} \cap G^{(i)} \cap G_{k+1}\right|-\left|T_{k} \cap G^{(i)} \cap G_{k+2, k+1}\right|, \tag{15}
\end{equation*}
$$

where $0 \leqslant k \leqslant m-1$ and $0 \leqslant i \leqslant a-1$.
Before giving the main result of this section, we need the following two lemmas.
Lemma 12. Let $m$, a and $B_{\Pi}^{(k, i)}$ be defined as above. Assume that $a \geqslant 2$. For $0 \leqslant i \leqslant$ a-2, we have

$$
\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)-\lambda_{2}\left(B_{\Pi}^{(k, i+1)}\right)= \begin{cases}\lambda_{2}\left(B_{\Pi}^{(k+1, i)}\right), & \text { if } 0 \leqslant k \leqslant m-2 ; \\ \left|T_{m}\right|, & \text { if } k=m-1 .\end{cases}
$$

Proof. Since $G$ acts $(m+a)$-transitively on $[n]$, there exists some $g_{1}, g_{2} \in G$ such that $g_{1}$ moves $k+1$ to $k+2, n-i$ to $k+1, g_{2}$ moves $k+1$ to $k+2, k+2$ to $k+3$ and $n-i$ to $k+1$, and both of them fix $\{1, \ldots, k\}$ and $\{n-i+1, \ldots, n\}$ setwise. Then we have $g_{j}^{-1} T_{k} g_{j}=T_{k}, g_{j}^{-1} G^{(i)} g_{j}=G^{(i)}$ and $g_{j}^{-1} G^{(i+1)} g_{j}=g_{j}^{-1}\left(G_{n-i} \cap G^{(i)}\right) g_{j}=G_{k+1} \cap G^{(i)}$ for $j=1,2$, which gives that

$$
\left\{\begin{array}{l}
g_{1}^{-1}\left(T_{k} \cap G^{(i)} \cap G_{k+1}\right) g_{1}=T_{k} \cap G^{(i)} \cap G_{k+2} ;  \tag{16}\\
g_{1}^{-1}\left(T_{k} \cap G^{(i+1)} \cap G_{k+1}\right) g_{1}=T_{k} \cap G_{k+1} \cap G^{(i)} \cap G_{k+2} ; \\
g_{2}^{-1}\left(T_{k} \cap G^{(i)} \cap G_{k+2, k+1}\right) g_{2}=T_{k} \cap G^{(i)} \cap G_{k+3, k+2} ; \\
g_{2}^{-1}\left(T_{k} \cap G^{(i+1)} \cap G_{k+2, k+1}\right) g_{2}=T_{k} \cap G_{k+1} \cap G^{(i)} \cap G_{k+3, k+2} .
\end{array}\right.
$$

Also recall that $T_{k+1}=T_{k} \backslash\left(T_{k} \cap G_{k+1}\right)$. According to (15) and (16), we deduce that

$$
\begin{aligned}
\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)-\lambda_{2}\left(B_{\Pi}^{(k, i+1)}\right)= & \left(\left|T_{k} \cap G^{(i)} \cap G_{k+1}\right|-\left|T_{k} \cap G^{(i)} \cap G_{k+2, k+1}\right|\right)- \\
& \left(\left|T_{k} \cap G^{(i+1)} \cap G_{k+1}\right|-\left|T_{k} \cap G^{(i+1)} \cap G_{k+2, k+1}\right|\right) \\
= & \left(\left|T_{k} \cap G^{(i)} \cap G_{k+1}\right|-\left|T_{k} \cap G^{(i+1)} \cap G_{k+1}\right|\right)- \\
& \left(\left|T_{k} \cap G^{(i)} \cap G_{k+2, k+1}\right|-\left|T_{k} \cap G^{(i+1)} \cap G_{k+2, k+1}\right|\right) \\
= & \left(\left|T_{k} \cap G^{(i)} \cap G_{k+2}\right|-\left|T_{k} \cap G_{k+1} \cap G^{(i)} \cap G_{k+2}\right|\right)- \\
& \left(\left|T_{k} \cap G^{(i)} \cap G_{k+3, k+2}\right|-\left|T_{k} \cap G_{k+1} \cap G^{(i)} \cap G_{k+3, k+2}\right|\right) \\
= & \left|T_{k+1} \cap G^{(i)} \cap G_{k+2}\right|-\left|T_{k+1} \cap G^{(i)} \cap G_{k+3, k+2}\right| .
\end{aligned}
$$

Therefore, if $0 \leqslant k \leqslant m-2$, we have $\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)-\lambda_{2}\left(B_{\Pi}^{(k, i+1)}\right)=\lambda_{2}\left(B_{\Pi}^{(k+1, i)}\right)$ again by (15); if $k=m-1$, we have $\lambda_{2}\left(B_{\Pi}^{(m-1, i)}\right)-\lambda_{2}\left(B_{\Pi}^{(m-1, i+1)}\right)=\left|T_{m} \cap G^{(i)} \cap G_{m+1}\right|-$ $\left|T_{m} \cap G^{(i)} \cap G_{m+2, m+1}\right|=\left|T_{m}\right|-0=\left|T_{m}\right|$ because $\operatorname{supp}(\tau)=\{1,2, \ldots, m\}$ for any $\tau \in T_{m} \cap G^{(i)}=T_{m}$.

Lemma 13. Let $m, a, \Gamma_{k, i}$ and $\Theta_{k, i}$ be defined as above. Assume that $a \geqslant 2$. For $0 \leqslant i \leqslant a-2$ and $0 \leqslant k \leqslant m-1$, we have $\Theta_{k+1, i} \cong \Gamma_{k, i+1}$.

Proof. According to (14), we see that

$$
\Theta_{k+1, i}=\operatorname{Cay}\left(G^{(i)} \cap G_{k+1}, R_{k+1} \cap G^{(i)}\right)=\operatorname{Cay}\left(G^{(i)} \cap G_{k+1}, T_{k} \cap G_{k+1} \cap G^{(i)}\right)
$$

and

$$
\Gamma_{k, i+1}=\operatorname{Cay}\left(G^{(i+1)}, T_{k} \cap G^{(i+1)}\right)
$$

By the $(m+a)$-transitivity of $G$ acting on $[n]$, we can choose $g \in G$ such that $g$ moves $k+1$ to $n-i$ but fixes $\{1, \ldots, k\}$ and $\{n-i+1, \ldots, n\}$ setwise. Then we see that $g^{-1}\left(G_{k+1} \cap G^{(i)}\right) g=G_{n-i} \cap G^{(i)}=G^{(i+1)}$ and $g^{-1}\left(T_{k} \cap G_{k+1} \cap G^{(i)}\right) g=T_{k} \cap G_{n-i} \cap G^{(i)}=$ $T_{k} \cap G^{(i+1)}$. Thus $g$ induces an isomorphism from $\Theta_{k+1, i}$ to $\Gamma_{k, i+1}$ naturally.

Now we give the main result of this section, which indicates that the problem of proving $\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)(0 \leqslant k \leqslant m-1)$ can be reduced to verifying the result for some small graphs.

Theorem 14. Let $G$ be a finite group acting on $[n]$, and let $\Gamma=\operatorname{Cay}(G, T)$ be a connected normal Cayley graph of $G$. Let $m=\max _{\tau \in T}|\operatorname{supp}(\tau)|$. If the action of $G$ on $[n]$ is $(m+a)-$ transitive with $a \geqslant 1$ and $\lambda_{2}\left(\Gamma_{k, a-1}\right)=\lambda_{2}\left(B_{\Pi}^{(k, a-1)}\right)$ for all $k \in\{0,1, \ldots, m-1\}$, then we have

$$
\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(\Gamma_{k, 0}\right)=\lambda_{2}\left(B_{\Pi}^{(k, 0)}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)=\left|T_{k} \cap G_{k+1}\right|-\left|T_{k} \cap G_{k+2, k+1}\right|
$$

where $0 \leqslant k \leqslant m-1$. In particular, $\lambda_{2}(\Gamma)=\lambda_{2}\left(\Gamma_{0}\right)=\lambda_{2}\left(B_{\Pi}^{(0)}\right)=\left|T \cap G_{1}\right|-\left|T \cap G_{2,1}\right|$.

Proof. If $a=1$, there is nothing to prove. Thus we assume that $a \geqslant 2$. The main idea is to prove $\lambda_{2}\left(\Gamma_{k, i}\right)=\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)$ for all $0 \leqslant k \leqslant m-1$ and $0 \leqslant i \leqslant a-1$ by induction on $k$ and $i$.

First of all, we shall verify the induction basis. By assumption, we have known that $\lambda_{2}\left(\Gamma_{k, a-1}\right)=\lambda_{2}\left(B_{\Pi}^{(k, a-1)}\right)$ for all $0 \leqslant k \leqslant m-1$. Thus it suffices to verify $\lambda_{2}\left(\Gamma_{m-1, i}\right)=$ $\lambda_{2}\left(B_{\Pi}^{(m-1, i)}\right)$ for all $0 \leqslant i \leqslant a-1$. If $i=a-1$, we obtain the result again by assumption. Now suppose $0 \leqslant i<a-1$, and assume that the result holds for $i+1$, i.e., $\lambda_{2}\left(\Gamma_{m-1, i+1}\right)=$ $\lambda_{2}\left(B_{\Pi}^{(m-1, i+1)}\right)$. We shall prove $\lambda_{2}\left(\Gamma_{m-1, i}\right)=\lambda_{2}\left(B_{\Pi}^{(m-1, i)}\right)$. According to the arguments below Theorem 7 and (7), we only need to show $\lambda_{2}\left(B_{\Pi}^{(m-1, i)}\right) \geqslant \lambda_{2}\left(\Theta_{m, i}\right)+\lambda_{2}\left(\Gamma_{m, i}\right)$. From Lemma 13 we see that $\Theta_{m, i} \cong \Gamma_{m-1, i+1}$, so $\lambda_{2}\left(\Theta_{m, i}\right)=\lambda_{2}\left(\Gamma_{m-1, i+1}\right)=\lambda_{2}\left(B_{\Pi}^{(m-1, i+1)}\right)$ by the induction hypothesis. Also, as mentioned above, we have $\lambda_{2}\left(\Gamma_{m, i}\right)=\left|T_{m} \cap G^{(i)}\right|=\left|T_{m}\right|$ because $\Gamma_{m, i}$ is disconnected. Therefore, from Lemma 12 we deduce that

$$
\lambda_{2}\left(B_{\Pi}^{(m-1, i)}\right)-\lambda_{2}\left(\Theta_{m, i}\right)=\lambda_{2}\left(B_{\Pi}^{(m-1, i)}\right)-\lambda_{2}\left(B_{\Pi}^{(m-1, i+1)}\right)=\left|T_{m}\right|=\lambda_{2}\left(\Gamma_{m, i}\right),
$$

as required. Thus we have built up the induction basis.
Now suppose $0 \leqslant k<m-1$ and $0 \leqslant i<a-1$, and assume that the result holds for $k+1, i$ and $k, i+1$, i.e., $\lambda_{2}\left(\Gamma_{k+1, i}\right)=\lambda_{2}\left(B_{\Pi}^{(k+1, i)}\right)$ and $\lambda_{2}\left(\Gamma_{k, i+1}\right)=\lambda_{2}\left(B_{\Pi}^{(k, i+1)}\right)$. We shall prove $\lambda_{2}\left(\Gamma_{k, i}\right)=\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)$. As above, it remains to show that $\lambda_{2}\left(B_{\Pi}^{(k, i)}\right) \geqslant$ $\lambda_{2}\left(\Theta_{k+1, i}\right)+\lambda_{2}\left(\Gamma_{k+1, i}\right)$. Again by Lemma 13 and the induction hypothesis, we have $\lambda_{2}\left(\Theta_{k+1, i}\right)=\lambda_{2}\left(\Gamma_{k, i+1}\right)=\lambda_{2}\left(B_{\Pi}^{(k, i+1)}\right)$ and $\lambda_{2}\left(\Gamma_{k+1, i}\right)=\lambda_{2}\left(B_{\Pi}^{(k+1, i)}\right)$. Then from Lemma 12 we obtain

$$
\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)-\lambda_{2}\left(\Theta_{k+1, i}\right)=\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)-\lambda_{2}\left(B_{\Pi}^{(k, i+1)}\right)=\lambda_{2}\left(B_{\Pi}^{(k+1, i)}\right)=\lambda_{2}\left(\Gamma_{k+1, i}\right)
$$

and the result follows.
Therefore, we may conclude that $\lambda_{2}\left(\Gamma_{k, i}\right)=\lambda_{2}\left(B_{\Pi}^{(k, i)}\right)$ for all $0 \leqslant k \leqslant m-1$ and $0 \leqslant i \leqslant a-1$. In particular, for $0 \leqslant k \leqslant m-1$, we have $\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(\Gamma_{k, 0}\right)=\lambda_{2}\left(B_{\Pi}^{(k, 0)}\right)=$ $\left|T_{k} \cap G_{k+1}\right|-\left|T_{k} \cap G_{k+2, k+1}\right|$.

According to Theorem 14, to prove $\lambda_{2}(\Gamma)=\lambda_{2}\left(\Gamma_{0}\right)=\lambda_{2}\left(B_{\Pi}^{(0)}\right)=\left|T \cap G_{1}\right|-\left|T \cap G_{2,1}\right|$ (and as by-products, $\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)$ for $1 \leqslant k \leqslant m-1$ ), it suffices to verify $\lambda_{2}\left(\Gamma_{k, a-1}\right)=$ $\lambda_{2}\left(B_{\Pi}^{(k, a-1)}\right)$ for all $k \in\{0,1, \ldots, m-1\}$. Note that if $a$ is relatively large, i.e., the action of $G$ on [ $n$ ] is of high transitivity, then the graph $\Gamma_{k, a-1}$ will be of small order. This makes it easier to verify the equalities. It is well-known that the symmetric group $S_{n}$ acts $n$-transitively on $[n]$, so Theorem 14 is particularly effective for normal Cayley graphs of $S_{n}$. In the next section, we consider to determine the second eigenvalues of connected normal Cayley graphs of $S_{n}$ with $m \leqslant 5$.

## 4 The second eigenvalues of normal Cayley graphs of symmetric groups

Let $G=S_{n}$ be the symmetric group on $[n]$ with $n \geqslant 3$. As mentioned earlier, $S_{n}$ acts $n$-transitively on [n], and also, two elements in $S_{n}$ are conjugated if and only if they share
the same cycle type (see [27, Theorem 6.5]). Let $\Gamma=\operatorname{Cay}\left(S_{n}, T\right)$ be a normal Cayley graph of $S_{n}$, that is, $T$ is the disjoint union of some conjugacy classes of $S_{n}$. Then $\Gamma$ is connected if and only if $T$ contains some odd permutation. This is because $T$ generates a non-identity normal subgroup of $S_{n}$ while $A_{n}$ is the unique nontrivial normal subgroup of $S_{n}$ for $n \neq 4$, and $A_{4}$ and $\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} \leqslant A_{4}$ are the only nontrivial normal subgroups of $S_{4}$.

In this section, as applications of Theorem 14, we consider the second eigenvalues of connected normal Cayley graphs of $S_{n}$ for which each element of the connection set has at most five supports.

For convenience, we first list all the nontrivial conjugacy classes of $S_{n}$ with each element having at most five supports:

$$
\left\{\begin{array}{l}
\mathcal{C}^{(1)}=\{(p, q) \mid 1 \leqslant p, q \leqslant n\} ;  \tag{17}\\
\mathcal{C}^{(2)}=\{(p, q, r) \mid 1 \leqslant p, q, r \leqslant n\} ; \\
\mathcal{C}^{(3)}=\{(p, q)(r, s) \mid 1 \leqslant p, q, r, s \leqslant n\} ; \\
\mathcal{C}^{(4)}=\{(p, q, r, s) \mid 1 \leqslant p, q, r, s \leqslant n\} ; \\
\mathcal{C}^{(5)}=\{(p, q, r)(s, t) \mid 1 \leqslant p, q, r, s, t \leqslant n\} ; \\
\mathcal{C}^{(6)}=\{(p, q, r, s, t) \mid 1 \leqslant p, q, r, s, t \leqslant n\},
\end{array}\right.
$$

where $p, q, r, s, t$ are pairwise distinct. For $k \in[n]$, we denote by $\mathcal{C}_{k}^{(i)}$ (see Table 1) the set of elements in $\mathcal{C}^{(i)}$ that moves each point of $\{1,2, \ldots, k\}$, where $1 \leqslant i \leqslant 6$.

Table 1: The structure of $\mathcal{C}_{k}^{(i)}$ for $1 \leqslant i \leqslant 6$ and $k \in[n]$.

| $i$ | $k$ | $\mathcal{C}_{k}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | 1 | $\{(1, q) \mid 2 \leqslant q \leqslant n\}$ |
| 1 | 2 | $\{(1,2)\}$ |
| 1 | $\geqslant 3$ | $\varnothing$ |
| 2 | 1 | $\{(1, q, r) \mid 2 \leqslant q, r \leqslant n\}$ |
| 2 | 2 | $\{(1,2, r),(1, r, 2) \mid 3 \leqslant r \leqslant n\}$ |
| 2 | 3 | $\{(1,2,3),(1,3,2)\}$ |
| 2 | $\geqslant 4$ | $\varnothing$ |
| 3 | 1 | $\{(1, q)(r, s) \mid 2 \leqslant q, r, s \leqslant n\}$ |
| 3 | 2 | $\{(1,2)(r, s),(1, r)(2, s) \mid 3 \leqslant r, s \leqslant n\}$ |
| 3 | 3 | $\{(1,2)(3, s),(1,3)(2, s),(1, s)(2,3) \mid 4 \leqslant s \leqslant n\}$ |
| 3 | 4 | $\{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$ |
| 3 | $\geqslant 5$ | $\varnothing$ |
| 4 | 1 | $\{(1, q, r, s) \mid 2 \leqslant q, r, s \leqslant n\}$ |
| 4 | 2 | $\{(1,2, r, s),(1, r, 2, s),(1, r, s, 2) \mid 3 \leqslant r, s \leqslant n\}$ |
| 4 | 3 | $\{(1,2,3, s),(1,2, s, 3),(1,3,2, s),(1,3, s, 2),(1, s, 2,3),(1, s, 3,2) \mid 4 \leqslant s \leqslant n\}$ |
| 4 | 4 | $\{(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2)\}$ |
| 4 | $\geqslant 5$ | $\varnothing$ |
| 5 | 1 | $\{(1, p, q)(r, s),(p, q, r)(1, s) \mid 2 \leqslant p, q, r, s \leqslant n\}$ |
| 5 | 2 | $\{(p, q, r)(1,2),(1, p, q)(2, r),(2, p, q)(1, r),(1,2, p)(q, r),(1, p, 2)(q, r) \mid 3 \leqslant p, q, r \leqslant n\}$ |


| $i$ | $k$ | $\mathcal{C}_{k}^{(i)}$ |
| :---: | :---: | :---: |
| 5 | 3 | $\left\{\left.\begin{array}{l\|l} (1,2,3)(p, q),(1,3,2)(p, q),(1,2, p)(3, q),(1, p, 2)(3, q),(1,3, p)(2, q),(1, p, 3)(2, q), \\ (2,3, p)(1, q),(2, p, 3)(1, q),(1, p, q)(2,3),(2, p, q)(1,3),(3, p, q)(1,2) \end{array} \right\rvert\, 4 \leqslant p, q \leqslant n\right\}$ |
| 5 | 4 | $\left\{\left.\begin{array}{l} (1,2,3)(4, p),(1,3,2)(4, p),(1,2,4)(3, p),(1,4,2)(3, p),(1,2, p)(3,4), \\ (1, p, 2)(3,4),(1,3,4)(2, p),(1,4,3)(2, p),(1,3, p)(2,4),(1, p, 3)(2,4), \\ (1,4, p)(2,3),(1, p, 4)(2,3),(2,3,4)(1, p),(2,4,3)(1, p),(2,3, p)(1,4), \\ (2, p, 3)(1,4),(2,4, p)(1,3),(2, p, 4)(1,3),(3,4, p)(1,2),(3, p, 4)(1,2) \end{array} \right\rvert\, 5 \leqslant p \leqslant n\right\}$ |
| 5 | 5 | $\left\{\begin{array}{l} (1,2,3)(4,5),(1,3,2)(4,5),(1,2,4)(3,5),(1,4,2)(3,5),(1,2,5)(3,4), \\ (1,5,2)(3,4),(1,3,4)(2,5),(1,4,3)(2,5),(1,3,5)(2,4),(1,5,3)(2,4), \\ (1,4,5)(2,3),(1,5,4)(2,3),(2,3,4)(1,5),(2,4,3)(1,5),(2,3,5)(1,4), \\ (2,5,3)(1,4),(2,4,5)(1,3),(2,5,4)(1,3),(3,4,5)(1,2),(3,5,4)(1,2) \end{array}\right\}$ |
| 5 | $\geqslant 6$ | $\varnothing$ |
| 6 | 1 | $\{(1, q, r, s, t) \mid 2 \leqslant q, r, s, t \leqslant n\}$ |
| 6 | 2 | $\{(1,2, r, s, t),(1, r, 2, s, t),(1, r, s, 2, t),(1, r, s, t, 2) \mid 3 \leqslant r, s, t \leqslant n\}$ |
| 6 | 3 | $\left\{\left.\begin{array}{l} (1,2,3, s, t),(1,3,2, s, t),(1,2, s, 3, t),(1,3, s, 2, t),(1,2, s, t, 3),(1,3, s, t, 2), \\ (1, s, 2,3, t),(1, s, 3,2, t),(1, s, 2, t, 3),(1, s, 3, t, 2),(1, s, t, 2,3),(1, s, t, 3,2) \end{array} \right\rvert\, 4 \leqslant s, t \leqslant n\right\}$ |
| 6 | 4 | $\left\{\left.\begin{array}{l} (1,2,3,4, t),(1,2,3, t, 4),(1,2,4,3, t),(1,2,4, t, 3),(1,2, t, 3,4),(1,2, t, 4,3), \\ (1,3,2,4, t),(1,3,2, t, 4),(1,3,4,2, t),(1,3,4, t, 2),(1,3, t, 2,4),(1,3, t, 4,2), \\ (1,4,2,3, t),(1,4,2, t, 3),(1,4,3,2, t),(1,4,3, t, 2),(1,4, t, 2,3),(1,4, t, 3,2), \\ (1, t, 2,3,4),(1, t, 2,4,3),(1, t, 3,2,4),(1, t, 3,4,2),(1, t, 4,2,3),(1, t, 4,3,2) \end{array} \right\rvert\, 5 \leqslant t \leqslant n\right\}$ |
| 6 | 5 | $\left\{\begin{array}{l} \left.\begin{array}{l} (1,2,3,4,5),(1,2,3,5,4),(1,2,4,3,5),(1,2,4,5,3),(1,2,5,3,4),(1,2,5,4,3), \\ (1,3,2,4,5),(1,3,2,5,4),(1,3,4,2,5),(1,3,4,5,2),(1,3,5,2,4),(1,3,5,4,2), \\ (1,4,2,3,5),(1,4,2,5,3),(1,4,3,2,5),(1,4,3,5,2),(1,4,5,2,3),(1,4,5,3,2), \\ (1,5,2,3,4),(1,5,2,4,3),(1,5,3,2,4),(1,5,3,4,2),(1,5,4,2,3),(1,5,4,3,2) \end{array}\right\} \end{array}\right\}$ |
| 6 | $\geqslant 6$ | $\varnothing$ |

Now suppose that $\Gamma=\operatorname{Cay}\left(S_{n}, T\right)\left(=\Gamma_{0}\right)$ is a normal Cayley graph of $S_{n}$ with $m=$ $\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$. For $k \in[n]$, let $T_{k}=T \backslash\left(T \cap\left(\cup_{i=1}^{k}\left(S_{n}\right)_{i}\right)\right)$ (see Remark 10) and $\Gamma_{k}=\operatorname{Cay}\left(S_{n}, T_{k}\right)$ be defined as in (8). Then $T\left(=T_{0}\right)$ and $T_{k}(k \in[n])$ can be respectively written as $T=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}^{(i)}$ (see (17)) and $T_{k}=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}_{k}^{(i)}$ (see Table 1), where $\mathcal{I}_{T}$ is some nonempty subset of $\{1,2,3,4,5,6\}$. Moreover, by the arguments at the beginning of this section, we obtain that $\Gamma=\operatorname{Cay}\left(S_{n}, T\right)$ is connected if and only if $T=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}^{(i)}$ with

$$
\begin{equation*}
\mathcal{I}_{T} \in \mathcal{P} \backslash\{\varnothing,\{2\},\{3\},\{6\},\{2,3\},\{2,6\},\{3,6\},\{2,3,6\}\} \tag{18}
\end{equation*}
$$

where $\mathcal{P}$ is the power set of $\{1,2, \ldots, 6\}$.
Now we give the main result of this section, which determines the second eigenvalues of a majority of connected normal Cayley graphs (and some subgraphs of these graphs) on $S_{n}$ satisfying $m=\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$.

Theorem 15. Let $\Gamma=\operatorname{Cay}\left(S_{n}, T\right)\left(=\Gamma_{0}\right)$ be a connected normal Cayley graph of $S_{n}$ $(n \geqslant 7)$ with $m=\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$ (that is, $T=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}^{(i)}$ with $\mathcal{I}_{T}$ given in (18)). Let $\Gamma_{k}$ and $T_{k}$ be defined as in (8). If $\mathcal{I}_{T} \neq\{1,3\},\{1,6\},\{4,6\},\{1,2,3\},\{1,2,6\},\{1,3,6\}$, $\{1,4,6\},\{2,4,6\},\{3,4,6\},\{1,2,3,6\},\{1,2,4,6\},\{1,3,4,6\},\{2,3,4,6\},\{2,3,5,6\},\{1,2,3$, $4,6\}$, then for $0 \leqslant k \leqslant m-1$, the graph $\Gamma_{k}$ is connected and has second eigenvalue

$$
\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)=\left|T_{k} \cap\left(S_{n}\right)_{k+1}\right|-\left|T_{k} \cap\left(S_{n}\right)_{k+2, k+1}\right| .
$$

Proof. Take $a=n-6(\geqslant 1)$. Since $n \geqslant 7$ and $m \leqslant 5$, we see that $S_{n}$ acts $(m+a)$ transitively on $[n]$ due to $m+a<n$. By Theorem 14, to prove $\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)$ for
$0 \leqslant k \leqslant m-1$, it remains to verify $\lambda_{2}\left(\Gamma_{k, a-1}\right)=\lambda_{2}\left(B_{\Pi}^{(k, a-1)}\right)$ for $0 \leqslant k \leqslant m-1$. Since $S_{n}^{(a-1)}=S_{n}^{(n-7)}=\cap_{i=1}^{n-7}\left(S_{n}\right)_{n-i+1} \cong S_{7}$, we have $\Gamma_{k, a-1}=\operatorname{Cay}\left(S_{n}^{(n-7)}, T_{k} \cap S_{n}^{(n-7)}\right) \cong$ $\operatorname{Cay}\left(S_{7}, T_{k} \cap S_{7}\right)$ according to (14). Also note that $\lambda_{2}\left(B_{\Pi}^{(k, a-1)}\right)=\left|T_{k} \cap S_{n}^{(a-1)} \cap\left(S_{n}\right)_{k+1}\right|-$ $\left|T_{k} \cap S_{n}^{(a-1)} \cap\left(S_{n}\right)_{k+2, k+1}\right|=\left|T_{k} \cap\left(S_{7}\right)_{k+1}\right|-\left|T_{k} \cap\left(S_{7}\right)_{k+2, k+1}\right|$ by (15). Thus the problem is reduced to verify

$$
\begin{equation*}
\lambda_{2}\left(\operatorname{Cay}\left(S_{7}, T_{k} \cap S_{7}\right)\right)=\left|T_{k} \cap\left(S_{7}\right)_{k+1}\right|-\left|T_{k} \cap\left(S_{7}\right)_{k+2, k+1}\right| \tag{19}
\end{equation*}
$$

for $0 \leqslant k \leqslant m-1$. Recall that $T_{0}=T=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}^{(i)}$ with $\mathcal{I}_{T}$ given in (18), and $T_{k}=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}_{k}^{(i)}$ is just the set of $\tau \in T$ such that $\{1,2, \ldots, k\} \subseteq \operatorname{supp}(\tau)$ for $1 \leqslant k \leqslant$ $m-1$. Using computer, we can check that (19) is true except for those $T$ 's with $\mathcal{I}_{T}=$ $\{1,3\},\{1,6\},\{4,6\},\{1,2,3\},\{1,2,6\},\{1,3,6\},\{1,4,6\},\{2,4,6\},\{3,4,6\},\{1,2,3,6\},\{1,2$, $4,6\},\{1,3,4,6\},\{2,3,4,6\},\{2,3,5,6\}$ or $\{1,2,3,4,6\}$. Therefore, for the remaining $T$ 's, we may conclude that

$$
\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)=\left|T_{k} \cap\left(S_{n}\right)_{k+1}\right|-\left|T_{k} \cap\left(S_{n}\right)_{k+2, k+1}\right|,
$$

where $0 \leqslant k \leqslant m-1$ (in Table 2, we list the exact values of the first two largest eigenvalues of these $\Gamma_{k}$ 's); and furthermore, we observe that $\lambda_{2}\left(\Gamma_{k}\right)=\lambda_{2}\left(B_{\Pi}^{(k)}\right)<\left|T_{k}\right|=\lambda_{1}\left(\Gamma_{k}\right)$, so $\Gamma_{k}$ is also connected for $1 \leqslant k \leqslant m-1$.

This completes the proof.
Table 2: The first two eigenvalues of $\Gamma_{k}=\operatorname{Cay}\left(S_{n}, T_{k}\right)$, where $T_{k}=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}_{k}^{(i)}$.

| $\mathcal{I}_{T}$ | $m$ | $k$ | $\lambda_{1}\left(\Gamma_{k}\right)$ | $\lambda_{2}\left(\Gamma_{k}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| \{1\} | 2 | 0 | $(n(n-1)) / 2$ | $(n(n-3)) / 2$ |
|  |  | 1 | $n-1$ | $n-2$ |
| \{4\} | 4 | 0 | $(n(n-1)(n-2)(n-3)) / 4$ | $(n(n-2)(n-3)(n-5)) / 4$ |
|  |  | 1 | $(n-1)(n-2)(n-3)$ | $(n-3)\left(n^{2}-6 n+6\right)$ |
|  |  | 2 | $3(n-2)(n-3)$ | $3 n^{2}-21 n+34$ |
|  |  | 3 | $6(n-3)$ | $6(n-4)$ |
| \{5\} | 5 | 0 | $(n(n-1)(n-2)(n-3)(n-4)) / 6$ | $(n(n-2)(n-3)(n-4)(n-6)) / 6$ |
|  |  | 1 | $(5(n-1)(n-2)(n-3)(n-4)) / 6$ | $\left(5(n-3)(n-4)\left(n^{2}-7 n+7\right)\right) / 6$ |
|  |  | 2 | $(10(n-2)(n-3)(n-4)) / 3$ | $\left(5(n-4)\left(2 n^{2}-16 n+27\right)\right) / 3$ |
|  |  | 3 | $10(n-3)(n-4)$ | $5\left(2 n^{2}-18 n+39\right)$ |
|  |  | 4 | $20(n-4)$ | $20(n-5)$ |
| $\{1,2\}$ | 3 | 0 | $(n(2 n-1)(n-1)) / 6$ | $(n(n-1)(2 n-7)) / 6$ |
|  |  | 1 | $(n-1)^{2}$ | $(n-1)(n-3)$ |
|  |  | 2 | $2 n-3$ | $2 n-5$ |
| $\{1,4\}$ | 4 | 0 | $\left(n(n-1)\left(n^{2}-5 n+8\right)\right) / 4$ | $\left(n(n-4)(n-3)^{2}\right) / 4$ |
|  |  | 1 | $(n-1)\left(n^{2}-5 n+7\right)$ | $(n-4)\left(n^{2}-5 n+5\right)$ |
|  |  | 2 | $3 n^{2}-15 n+19$ | $3 n^{2}-21 n+35$ |
|  |  | 3 | $6(n-3)$ | $6(n-4)$ |
| $\{1,5\}$ | 5 | 0 | $\left(n(n-1)\left(n^{3}-9 n^{2}+26 n-21\right)\right) / 6$ | $\left(n(n-5)(n-3)\left(n^{2}-7 n+9\right)\right) / 6$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-45 n^{2}+130 n-114\right)\right) / 6$ | $\left(5 n^{4}-70 n^{3}+340 n^{2}-659 n+408\right) / 6$ |
|  |  | 2 | $\left(10 n^{3}-90 n^{2}+260 n-237\right) / 3$ | $\left(10 n^{3}-120 n^{2}+455 n-537\right) / 3$ |
|  |  | 3 | $10(n-3)(n-4)$ | $5\left(2 n^{2}-18 n+39\right)$ |
|  |  | 4 | $20(n-4)$ | $20(n-5)$ |
| $\{2,4\}$ | 4 | 0 | $(n(3 n-5)(n-1)(n-2)) / 12$ | $\left(n(n-2)\left(3 n^{2}-20 n+29\right)\right) / 12$ |
|  |  | 1 | $(n-1)(n-2)^{2}$ | $n^{3}-8 n^{2}+19 n-13$ |


| $\mathcal{I}_{T}$ | $m$ | $k$ | $\lambda_{1}\left(\Gamma_{k}\right)$ | $\lambda_{2}\left(\Gamma_{k}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\{2,5\}$ | 5 | 2 | $(n-2)(3 n-7)$ | $(3 n-7)(n-4)$ |
|  |  | 3 | $2(3 n-8)$ | $2(3 n-11)$ |
|  |  | 0 | $\left(n(n-1)(n-2)\left(n^{2}-7 n+14\right)\right) / 6$ | $\left(n(n-2)(n-5)(n-4)^{2}\right) / 6$ |
|  |  | 1 | $\left((n-1)(n-2)\left(5 n^{2}-35 n+66\right)\right) / 6$ | $\left((n-5)\left(5 n^{3}-45 n^{2}+121 n-90\right)\right) / 6$ |
|  |  | 2 | $\left(2(n-2)\left(5 n^{2}-35 n+63\right)\right) / 3$ | $\left(10 n^{3}-120 n^{2}+461 n-558\right) / 3$ |
|  |  | 3 | $2\left(5 n^{2}-35 n+61\right)$ | $10 n^{2}-90 n+197$ |
| $\{3,4\}$ | 4 | 4 | $20(n-4)$ | $20(n-5)$ |
|  |  | 0 | $(3 n(n-1)(n-2)(n-3)) / 8$ | $(3 n(n-2)(n-3)(n-5)) / 8$ |
|  |  | 1 | $(3(n-1)(n-2)(n-3)) / 2$ | $\left(3(n-3)\left(n^{2}-6 n+6\right)\right) / 2$ |
|  |  | 2 | $(9(n-2)(n-3)) / 2$ | $\left(3\left(3 n^{2}-21 n+34\right)\right) / 2$ |
| $\{3,5\}$ | 5 | 3 | $9(n-3)$ | $9(n-4)$ |
|  |  | 0 | $(n(n-1)(n-2)(n-3)(4 n-13)) / 24$ | $\left(n(n-2)(n-3)\left(4 n^{2}-37 n+81\right)\right) / 24$ |
|  |  | 1 | $((n-1)(n-2)(n-3)(5 n-17)) / 6$ | $\left((n-3)\left(5 n^{3}-52 n^{2}+157 n-122\right)\right) / 6$ |
|  |  | 2 | $((n-3)(20 n-71)(n-2)) / 6$ | $\left(20 n^{3}-231 n^{2}+847 n-978\right) / 6$ |
|  |  | 3 | $(n-3)(10 n-37)$ | $10 n^{2}-87 n+183$ |
| $\{4,5\}$ | 5 | 4 | $20 n-77$ | 20n-97 |
|  |  | 0 | $(n(2 n-5)(n-1)(n-2)(n-3)) / 12$ | $\left(n(n-2)(2 n-11)(n-3)^{2}\right) / 12$ |
|  |  | 1 | $((5 n-14)(n-1)(n-2)(n-3)) / 6$ | $\left((n-3)\left(5 n^{3}-49 n^{2}+139 n-104\right)\right) / 6$ |
|  |  | 2 | $((n-3)(10 n-31)(n-2)) / 3$ | $\left(10 n^{3}-111 n^{2}+392 n-438\right) / 3$ |
| $\{5,6\}$ | 5 | 3 | $2(n-3)(5 n-17)$ | $10 n^{2}-84 n+171$ |
|  |  | 4 | $2(10 n-37)$ | $2(10 n-47)$ |
|  |  | 0 | $(11 n(n-1)(n-2)(n-3)(n-4)) / 30$ | $(11 n(n-2)(n-3)(n-4)(n-6)) / 30$ |
|  |  | 1 | $(11(n-1)(n-2)(n-3)(n-4)) / 6$ | $\left(11(n-4)(n-3)\left(n^{2}-7 n+7\right)\right) / 6$ |
|  |  | 2 | $(22(n-3)(n-4)(n-2)) / 3$ | $\left(11(n-4)\left(2 n^{2}-16 n+27\right)\right) / 3$ |
|  |  | 3 | $22(n-3)(n-4)$ | $11\left(2 n^{2}-18 n+39\right)$ |
| $\{1,2,4\}$ | 4 | 4 | 44( $n-4$ ) | $44(n-5)$ |
|  |  | 0 | $\left(n(n-1)\left(3 n^{2}-11 n+16\right)\right) / 12$ | $\left(n(n-4)\left(3 n^{2}-14 n+19\right)\right) / 12$ |
|  |  | 1 | $(n-1)\left(n^{2}-4 n+5\right)$ | $(n-3)\left(n^{2}-5 n+5\right)$ |
| $\{1,2,5\}$ | 5 | 2 | $3 n^{2}-13 n+15$ | $3 n^{2}-19 n+29$ |
|  |  | 3 | $2(3 n-8)$ | $2(3 n-11)$ |
|  |  | 0 | $\left(n(n-1)\left(n^{3}-9 n^{2}+28 n-25\right)\right) / 6$ | $\left(n\left(n^{4}-15 n^{3}+82 n^{2}-189 n+151\right)\right) / 6$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-45 n^{2}+136 n-126\right)\right) / 6$ | $\left((n-3)\left(5 n^{3}-55 n^{2}+181 n-146\right)\right) / 6$ |
|  |  | 2 | $\left(10 n^{3}-90 n^{2}+266 n-249\right) / 3$ | $\left((n-5)\left(10 n^{2}-70 n+111\right)\right) / 3$ |
|  |  | 3 | $2\left(5 n^{2}-35 n+61\right)$ | $10 n^{2}-90 n+197$ |
| $\{1,3,4\}$ | 4 | 4 | $20(n-4)$ | $20(n-5)$ |
|  |  | 0 | $\left(n(n-1)\left(3 n^{2}-15 n+22\right)\right) / 8$ | $\left(n(n-3)\left(3 n^{2}-21 n+34\right)\right) / 8$ |
|  |  | 1 | $\left((n-1)\left(3 n^{2}-15 n+20\right)\right) / 2$ | $\left(3 n^{3}-27 n^{2}+74 n-58\right) / 2$ |
|  |  | 2 | $((3 n-7)(3 n-8)) / 2$ | $((3 n-8)(3 n-13)) / 2$ |
| $\{1,3,5\}$ | 5 | 3 | $9(n-3)$ | $9(n-4)$ |
|  |  | 0 | $\left(n(n-1)\left(4 n^{3}-33 n^{2}+89 n-66\right)\right) / 24$ | $\left(n(n-3)(n-5)\left(4 n^{2}-25 n+30\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-42 n^{2}+115 n-96\right)\right) / 6$ | $\left(5 n^{4}-67 n^{3}+313 n^{2}-587 n+354\right) / 6$ |
|  |  | 2 | $\left(20 n^{3}-171 n^{2}+475 n-420\right) / 6$ | $\left((n-4)\left(20 n^{2}-151 n+243\right)\right) / 6$ |
| $\{1,4,5\}$ | 5 | 3 | $(n-3)(10 n-37)$ | $10 n^{2}-87 n+183$ |
|  |  | 4 | $20 n-77$ | $20 n-97$ |
|  |  | 0 | $\left(n\left(2 n^{2}-13 n+24\right)(n-1)^{2}\right) / 12$ | $(n(n-3)(n-4)(n-5)(2 n-3)) / 12$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-39 n^{2}+100 n-78\right)\right) / 6$ | $\left((n-4)(n-5)\left(5 n^{2}-19 n+15\right)\right) / 6$ |
|  |  | 2 | $\left(10 n^{3}-81 n^{2}+215 n-183\right) / 3$ | $\left((n-5)\left(10 n^{2}-61 n+87\right)\right) / 3$ |
|  | 5 | 3 | $2(n-3)(5 n-17)$ | $10 n^{2}-84 n+171$ |
| $\{1,5,6\}$ |  | 4 | $2(10 n-37)$ | $2(10 n-47)$ |
|  |  | 0 | $\left(n(n-1)\left(11 n^{3}-99 n^{2}+286 n-249\right)\right) / 30$ | $\left(n(n-3)\left(11 n^{3}-132 n^{2}+484 n-513\right)\right) / 30$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-99 n^{2}+286 n-258\right)\right) / 6$ | $\left(11 n^{4}-154 n^{3}+748 n^{2}-1457 n+912\right) / 6$ |
|  |  | 2 | $\left(22 n^{3}-198 n^{2}+572 n-525\right) / 3$ | $\left(22 n^{3}-264 n^{2}+1001 n-1185\right) / 3$ |
| $\{2,3,4\}$ | 4 | 3 | $22(n-3)(n-4)$ | $11\left(2 n^{2}-18 n+39\right)$ |
|  |  | 4 | 44( $n-4$ ) | $44(n-5)$ |
|  |  | 0 | $(n(n-1)(n-2)(9 n-19)) / 24$ | $\left(n(n-2)\left(9 n^{2}-64 n+103\right)\right) / 24$ |
|  |  | 1 | $((n-1)(n-2)(3 n-7)) / 2$ | $\left(3 n^{3}-25 n^{2}+62 n-44\right) / 2$ |
|  |  | 2 | $((n-2)(9 n-23)) / 2$ | $\left(9 n^{2}-59 n+90\right) / 2$ |


| $\mathcal{I}_{T}$ | $m$ | $k$ | $\lambda_{1}\left(\Gamma_{k}\right)$ | $\lambda_{2}\left(\Gamma_{k}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\{2,3,5\}$ | 5 | 3 | $9 n-25$ | $9 n-34$ |
|  |  | 0 | $\left(n(n-1)(n-2)\left(4 n^{2}-25 n+47\right)\right) / 24$ | $\left(n(n-2)(n-5)\left(4 n^{2}-29 n+55\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)(n-2)\left(5 n^{2}-32 n+57\right)\right) / 6$ | $\left((n-4)\left(5 n^{3}-47 n^{2}+131 n-99\right)\right) / 6$ |
|  |  | 2 | $\left((n-2)\left(20 n^{2}-131 n+225\right)\right) / 6$ | $\left(20 n^{3}-231 n^{2}+859 n-1014\right) / 6$ |
|  |  | 3 | $10 n^{2}-67 n+113$ | $(10 n-37)(n-5)$ |
|  |  | 4 | $20 n-77$ | 20n-97 |
| $\{2,4,5\}$ | 5 | 0 | $\left(n(n-1)(n-2)\left(2 n^{2}-11 n+19\right)\right) / 12$ | $\left(n(n-2)(n-5)\left(2 n^{2}-13 n+23\right)\right) / 12$ |
|  |  | 1 | $\left((n-1)(n-2)\left(5 n^{2}-29 n+48\right)\right) / 6$ | $\left(5 n^{4}-64 n^{3}+292 n^{2}-551 n+342\right) / 6$ |
|  |  | 2 | $\left((n-2)\left(10 n^{2}-61 n+99\right)\right) / 3$ | $\left((n-4)\left(10 n^{2}-71 n+114\right)\right) / 3$ |
|  |  | 3 | $2\left(5 n^{2}-32 n+52\right)$ | $10 n^{2}-84 n+173$ |
|  |  | 4 | $2(10 n-37)$ | $2(10 n-47)$ |
| $\{2,5,6\}$ | 5 | 0 | $\left(n(n-1)(n-2)\left(11 n^{2}-77 n+142\right)\right) / 30$ | $\left(n(n-2)(n-4)\left(11 n^{2}-99 n+208\right)\right) / 30$ |
|  |  | 1 | $\left((n-1)(n-2)\left(11 n^{2}-77 n+138\right)\right) / 6$ | $\left(11 n^{4}-154 n^{3}+754 n^{2}-1493 n+954\right) / 6$ |
|  |  | 2 | $\left(2(n-2)\left(11 n^{2}-77 n+135\right)\right) / 3$ | $\left(22 n^{3}-264 n^{2}+1007 n-1206\right) / 3$ |
|  |  | 3 | $2\left(11 n^{2}-77 n+133\right)$ | $22 n^{2}-198 n+431$ |
|  |  | 4 | 44( $n-4$ ) | $44(n-5)$ |
| $\{3,4,5\}$ | 5 | 0 | $(n(4 n-7)(n-1)(n-2)(n-3)) / 24$ | $\left(n(n-2)(n-3)\left(4 n^{2}-31 n+51\right)\right) / 24$ |
|  |  | 1 | $((n-1)(n-2)(n-3)(5 n-11)) / 6$ | $\left((n-3)\left(5 n^{3}-46 n^{2}+121 n-86\right)\right) / 6$ |
|  |  | 2 | $((n-3)(20 n-53)(n-2)) / 6$ | $\left(20 n^{3}-213 n^{2}+721 n-774\right) / 6$ |
|  |  | 3 | $(n-3)(10 n-31)$ | $10 n^{2}-81 n+159$ |
|  |  | 4 | $20 n-71$ | $20 n-91$ |
| $\{3,5,6\}$ | 5 | 0 | $(n(n-1)(n-2)(n-3)(44 n-161)) / 120$ | $\left(n(n-2)(n-3)\left(44 n^{2}-425 n+981\right)\right) / 120$ |
|  |  | 1 | $((n-1)(n-2)(n-3)(11 n-41)) / 6$ | $\left((n-3)\left(11 n^{3}-118 n^{2}+367 n-290\right)\right) / 6$ |
|  |  | 2 | $((n-3)(44 n-167)(n-2)) / 6$ | $\left(44 n^{3}-519 n^{2}+1939 n-2274\right) / 6$ |
|  |  | 3 | $(n-3)(22 n-85)$ | $22 n^{2}-195 n+417$ |
|  |  | 4 | $44 n-173$ | $44 n-217$ |
| \{4, 5, 6\} | 5 | 0 | $(n(n-1)(n-2)(n-3)(22 n-73)) / 60$ | $\left(n(n-2)(n-3)\left(22 n^{2}-205 n+453\right)\right) / 60$ |
|  |  | 1 | $((n-1)(n-2)(n-3)(11 n-38)) / 6$ | $\left((n-3)\left(11 n^{3}-115 n^{2}+349 n-272\right)\right) / 6$ |
|  |  | 2 | $((n-3)(22 n-79)(n-2)) / 3$ | $\left(22 n^{3}-255 n^{2}+938 n-1086\right) / 3$ |
|  |  | 3 | $2(n-3)(11 n-41)$ | $22 n^{2}-192 n+405$ |
|  |  | 4 | $2(22 n-85)$ | $2(22 n-107)$ |
| $\{1,2,3,4\}$ | 4 | 0 | $\left(n(n-1)\left(9 n^{2}-37 n+50\right)\right) / 24$ | $\left(n\left(9 n^{3}-82 n^{2}+243 n-242\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)\left(3 n^{2}-13 n+16\right)\right) / 2$ | $((n-3)(n-4)(3 n-4)) / 2$ |
|  |  | 2 | $\left(9 n^{2}-41 n+48\right) / 2$ | $((9 n-23)(n-4)) / 2$ |
|  |  | 3 | $9 n-25$ | $9 n-34$ |
| $\{1,2,3,5\}$ | 5 | 0 | $\left(n(n-1)\left(4 n^{3}-33 n^{2}+97 n-82\right)\right) / 24$ | $\left(n\left(4 n^{4}-57 n^{3}+298 n^{2}-663 n+514\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-42 n^{2}+121 n-108\right)\right) / 6$ | $\left((n-3)\left(5 n^{3}-52 n^{2}+163 n-128\right)\right) / 6$ |
|  |  | 2 | $\left(20 n^{3}-171 n^{2}+487 n-444\right) / 6$ | $\left(20 n^{3}-231 n^{2}+859 n-1008\right) / 6$ |
|  |  | 3 | $10 n^{2}-67 n+113$ | $(10 n-37)(n-5)$ |
|  |  | 4 | $20 n-77$ | $20 n-97$ |
| $\{1,2,4,5\}$ | 5 | 0 | $\left(n(n-1)\left(2 n^{3}-15 n^{2}+41 n-32\right)\right) / 12$ | $\left(n(n-4)\left(2 n^{3}-19 n^{2}+58 n-53\right)\right) / 12$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-39 n^{2}+106 n-90\right)\right) / 6$ | $\left((n-3)\left(5 n^{3}-49 n^{2}+145 n-110\right)\right) / 6$ |
|  |  | 2 | $\left(10 n^{3}-81 n^{2}+221 n-195\right) / 3$ | $\left(10 n^{3}-111 n^{2}+398 n-453\right) / 3$ |
|  |  | 3 | $2\left(5 n^{2}-32 n+52\right)$ | $10 n^{2}-84 n+173$ |
|  |  | 4 | $2(10 n-37)$ | $2(10 n-47)$ |
| $\{1,2,5,6\}$ | 5 | 0 | $\left(n(n-1)\left(11 n^{3}-99 n^{2}+296 n-269\right)\right) / 30$ | $\left(n\left(11 n^{4}-165 n^{3}+890 n^{2}-2025 n+1619\right)\right) / 30$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-99 n^{2}+292 n-270\right)\right) / 6$ | $\left((n-3)\left(11 n^{3}-121 n^{2}+391 n-314\right)\right) / 6$ |
|  |  | 2 | $\left(22 n^{3}-198 n^{2}+578 n-537\right) / 3$ | $\left(22 n^{3}-264 n^{2}+1007 n-1203\right) / 3$ |
|  |  | 3 | $2\left(11 n^{2}-77 n+133\right)$ | $22 n^{2}-198 n+431$ |
|  |  | 4 | 44( $n-4$ ) | $44(n-5)$ |
| $\{1,3,4,5\}$ | 5 | 0 | $\left(n(n-1)\left(4 n^{3}-27 n^{2}+59 n-30\right)\right) / 24$ | $\left(n(n-5)(n-3)\left(4 n^{2}-19 n+18\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-36 n^{2}+85 n-60\right)\right) / 6$ | $\left(5 n^{4}-61 n^{3}+259 n^{2}-443 n+246\right) / 6$ |
|  |  | 2 | $\left(20 n^{3}-153 n^{2}+385 n-312\right) / 6$ | $\left(20 n^{3}-213 n^{2}+721 n-768\right) / 6$ |
|  |  | 3 | $(n-3)(10 n-31)$ | $10 n^{2}-81 n+159$ |
|  |  | 4 | $20 n-71$ | $20 n-91$ |
| $\{1,3,5,6\}$ | 5 | 0 | $\left(n(n-1)\left(44 n^{3}-381 n^{2}+1069 n-906\right)\right) / 120$ | $\left(n(n-3)\left(44 n^{3}-513 n^{2}+1831 n-1902\right)\right) / 120$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-96 n^{2}+271 n-240\right)\right) / 6$ | $\left(11 n^{4}-151 n^{3}+721 n^{2}-1385 n+858\right) / 6$ |
|  |  |  |  | continued on next page |


| $\mathcal{I}_{T}$ | $m$ | $k$ | $\lambda_{1}\left(\Gamma_{k}\right)$ | $\lambda_{2}\left(\Gamma_{k}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| \{1, 4, 5, 6\} | 5 | 2 | $\left(44 n^{3}-387 n^{2}+1099 n-996\right) / 6$ | $\left((n-4)\left(44 n^{2}-343 n+567\right)\right) / 6$ |
|  |  | 3 | $(n-3)(22 n-85)$ | $22 n^{2}-195 n+417$ |
|  |  | 4 | $44 n-173$ | $44 n-217$ |
|  |  | 0 | $\left(n(n-1)(2 n-3)\left(11 n^{2}-75 n+136\right)\right) / 60$ | $\left(n(n-3)(n-4)\left(22 n^{2}-161 n+219\right)\right) / 60$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-93 n^{2}+256 n-222\right)\right) / 6$ | $\left((n-4)\left(11 n^{3}-104 n^{2}+278 n-201\right)\right) / 6$ |
|  |  | 2 | $\left(22 n^{3}-189 n^{2}+527 n-471\right) / 3$ | $\left(22 n^{3}-255 n^{2}+938 n-1083\right) / 3$ |
|  | 5 | 3 | $2(n-3)(11 n-41)$ | $22 n^{2}-192 n+405$ |
| $\{2,3,4,5\}$ |  | 4 | $2(22 n-85)$ | $2(22 n-107)$ |
|  |  | 0 | $\left(n(n-1)(n-2)\left(4 n^{2}-19 n+29\right)\right) / 24$ | $\left(n(n-5)(n-2)\left(4 n^{2}-23 n+37\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)(n-2)\left(5 n^{2}-26 n+39\right)\right) / 6$ | $\left(5 n^{4}-61 n^{3}+265 n^{2}-479 n+288\right) / 6$ |
|  |  | 2 | $\left((n-2)\left(20 n^{2}-113 n+171\right)\right) / 6$ | $\left(20 n^{3}-213 n^{2}+733 n-810\right) / 6$ |
|  |  | 3 | $10 n^{2}-61 n+95$ | ( $2 n-7$ )(5n-23) |
| $\{2,4,5,6\}$ | 5 | 4 | $20 n-71$ | 20n-91 |
|  |  | 0 | $\left(n(n-1)(n-2)\left(22 n^{2}-139 n+239\right)\right) / 60$ | $\left(n(n-2)\left(22 n^{3}-271 n^{2}+1088 n-1439\right)\right) / 60$ |
|  |  | 1 | $\left((n-1)(n-2)\left(11 n^{2}-71 n+120\right)\right) / 6$ | $\left(11 n^{4}-148 n^{3}+700 n^{2}-1349 n+846\right) / 6$ |
|  |  | 2 | $\left((n-2)\left(22 n^{2}-145 n+243\right)\right) / 3$ | $\left((n-4)\left(22 n^{2}-167 n+276\right)\right) / 3$ |
|  |  | 3 | $2\left(11 n^{2}-74 n+124\right)$ | $22 n^{2}-192 n+407$ |
| $\{3,4,5,6\}$ | 5 | 4 | 2(22n-85) | $2(22 n-107)$ |
|  |  | 0 | $(n(n-1)(n-2)(n-3)(44 n-131)) / 120$ | $\left(n(n-2)(n-3)\left(44 n^{2}-395 n+831\right)\right) / 120$ |
|  |  | 1 | $((11 n-35)(n-1)(n-2)(n-3)) / 6$ | $\left((n-3)\left(11 n^{3}-112 n^{2}+331 n-254\right)\right) / 6$ |
|  |  | 2 | $((n-3)(44 n-149)(n-2)) / 6$ | $\left(44 n^{3}-501 n^{2}+1813 n-2070\right) / 6$ |
|  |  | 3 | $(n-3)(22 n-79)$ | $22 n^{2}-189 n+393$ |
| \{1, 2, 3, 4, 5\} | 5 | 4 | $44 n-167$ | $44 n-211$ |
|  |  | 0 | $\left(n(n-1)\left(4 n^{3}-27 n^{2}+67 n-46\right)\right) / 24$ | $\left(n\left(4 n^{4}-51 n^{3}+238 n^{2}-477 n+334\right)\right) / 24$ |
|  |  | 1 | $\left((n-1)\left(5 n^{3}-36 n^{2}+91 n-72\right)\right) / 6$ | $\left((n-3)(n-4)\left(5 n^{2}-26 n+23\right)\right) / 6$ |
|  |  | 2 | $\left(20 n^{3}-153 n^{2}+397 n-336\right) / 6$ | $\left((n-4)\left(20 n^{2}-133 n+201\right)\right) / 6$ |
|  |  | 3 | $10 n^{2}-61 n+95$ | ( $2 n-7$ )( $5 n-23$ ) |
| \{1, 2, 3, 5, 6\} | 5 | 4 | $20 n-71$ | 20n-91 |
|  |  | 0 | $\left(n(n-1)\left(44 n^{3}-381 n^{2}+1109 n-986\right)\right) / 120$ | $\left(n\left(44 n^{4}-645 n^{3}+3410 n^{2}-7635 n+6026\right)\right) / 120$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-96 n^{2}+277 n-252\right)\right) / 6$ | $\left((n-3)\left(11 n^{3}-118 n^{2}+373 n-296\right)\right) / 6$ |
|  |  | 2 | $\left(44 n^{3}-387 n^{2}+1111 n-1020\right) / 6$ | $\left(44 n^{3}-519 n^{2}+1951 n-2304\right) / 6$ |
|  |  | 3 | $22 n^{2}-151 n+257$ | $22 n^{2}-195 n+419$ |
| $\{1,2,4,5,6\}$ | 5 | 4 | $44 n-173$ | $44 n-217$ |
|  |  | 0 | $\left(n(n-1)\left(22 n^{3}-183 n^{2}+517 n-448\right)\right) / 60$ | $\left(n(n-4)\left(22 n^{3}-227 n^{2}+722 n-697\right)\right) / 60$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-93 n^{2}+262 n-234\right)\right) / 6$ | $\left((n-3)\left(11 n^{3}-115 n^{2}+355 n-278\right)\right) / 6$ |
|  |  | 2 | $\left(22 n^{3}-189 n^{2}+533 n-483\right) / 3$ | $\left(22 n^{3}-255 n^{2}+944 n-1101\right) / 3$ |
|  |  | 3 | $2\left(11 n^{2}-74 n+124\right)$ | $22 n^{2}-192 n+407$ |
| \{1, 3, 4, 5, 6\} | 5 | 4 | $2(22 n-85)$ | $2(22 n-107)$ |
|  |  | 0 | $\left(n(n-1)\left(44 n^{3}-351 n^{2}+919 n-726\right)\right) / 120$ | $\left(n(n-3)\left(44 n^{3}-483 n^{2}+1621 n-1602\right)\right) / 120$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-90 n^{2}+241 n-204\right)\right) / 6$ | $\left(11 n^{4}-145 n^{3}+667 n^{2}-1241 n+750\right) / 6$ |
|  |  | 2 | $\left(44 n^{3}-369 n^{2}+1009 n-888\right) / 6$ | $\left(44 n^{3}-501 n^{2}+1813 n-2064\right) / 6$ |
|  |  | 3 | $(n-3)(22 n-79)$ | $22 n^{2}-189 n+393$ |
| \{2, 3, 4, 5, 6\} |  | 4 | $44 n-167$ | $44 n-211$ |
|  | 5 | 0 | $\left(n(n-1)(n-2)\left(44 n^{2}-263 n+433\right)\right) / 120$ | $\left(n(n-2)\left(44 n^{3}-527 n^{2}+2056 n-2653\right)\right) / 120$ |
|  |  | 1 | $\left((n-1)(n-2)\left(11 n^{2}-68 n+111\right)\right) / 6$ | $\left(11 n^{4}-145 n^{3}+673 n^{2}-1277 n+792\right) / 6$ |
|  |  | 2 | $\left((n-2)\left(44 n^{2}-281 n+459\right)\right) / 6$ | $\left(44 n^{3}-501 n^{2}+1825 n-2106\right) / 6$ |
|  |  | 3 | $22 n^{2}-145 n+239$ | $(22 n-79)(n-5)$ |
|  |  | 4 | $44 n-167$ | $44 n-211$ |
| $\{1,2,3,4,5,6\}$ | 5 | 0 | $\left(n(n-1)\left(44 n^{3}-351 n^{2}+959 n-806\right)\right) / 120$ | $\left(n\left(44 n^{4}-615 n^{3}+3110 n^{2}-6705 n+5126\right)\right) / 120$ |
|  |  | 1 | $\left((n-1)\left(11 n^{3}-90 n^{2}+247 n-216\right)\right) / 6$ | $((11 n-13)(n-3)(n-4)(n-5)) / 6$ |
|  |  | 2 | $\left(44 n^{3}-369 n^{2}+1021 n-912\right) / 6$ | $((44 n-105)(n-4)(n-5)) / 6$ |
|  |  | 3 | $22 n^{2}-145 n+239$ | $(22 n-79)(n-5)$ |
|  |  | 4 | $44 n-167$ | $44 n-211$ |

Note that the method in Theorem 15 is invalid for those $T=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}^{(i)}$ with

$$
\mathcal{I}_{T} \in\left\{\begin{array}{l}
\{1,3\},\{1,6\},\{4,6\},\{1,2,3\},\{1,2,6\},\{1,3,6\},\{1,4,6\},  \tag{20}\\
\{2,4,6\},\{3,4,6\},\{1,2,3,6\},\{1,2,4,6\},\{1,3,4,6\}, \\
\{2,3,4,6\},\{2,3,5,6\},\{1,2,3,4,6\}
\end{array}\right\} .
$$

Thus we have the following problem:

Problem 16. For $T=\cup_{i \in \mathcal{I}_{T}} \mathcal{C}^{(i)}$ with $\mathcal{I}_{T}$ shown in (20), what is the second eigenvalue of the normal Cayley graph $\Gamma=\operatorname{Cay}\left(S_{n}, T\right)$ ?

Remark 17. It is worth mentioning that for small $m$ (for example, $m=6$ or 7 ), as in Theorem 15, one can also determine the second eigenvalues of some connected normal Cayley graphs (and some subgraphs of these graphs) of $S_{n}$ as long as the computer can verify the conditions of Theorem 14.

Remark 18. It is well-known that the alternating group $A_{n}(n \geqslant 3)$ acts ( $n-2$ )-transitively on $[n]$. Thus the method used in Theoerm 15 is still valid for determining the second eigenvalues of those connected normal Cayley graphs (and some subgraphs of these graphs) of $A_{n}$ when $m$ is relatively small.

Let $T=\mathcal{C}^{(1)}$ (see (17)) be the set of all transpositions in $S_{n}(n \geqslant 3)$. Then $m=2$ and $T_{1}=T_{m-1}=\mathcal{C}_{1}^{(1)}=\{(1, q) \mid 2 \leqslant q \leqslant n\}$. If $n \geqslant 7$, by Theorem 15 (see also Table 2), the spectral gap of $\Gamma=\operatorname{Cay}\left(S_{n}, T\right)$ and $\Gamma_{1}=\operatorname{Cay}\left(S_{n}, T_{1}\right)$ are $|T|-\left|T \cap\left(S_{n}\right)_{1}\right|+\left|T \cap\left(S_{n}\right)_{2,1}\right|=$ $\frac{1}{2} n(n-1)-\frac{1}{2}(n-1)(n-2)+1=n$ and $\left|T_{1}\right|-\left|T_{1} \cap\left(S_{n}\right)_{2}\right|+\left|T_{1} \cap\left(S_{n}\right)_{3,2}\right|=n-1-(n-2)+0=1$, respectively. If $3 \leqslant n \leqslant 6$, one can easily verify that the result also holds. Thus, the two results below are consequences of our work.

Corollary 19 (Diaconis and Shahshahani [15]). For $n \geqslant 3$, the spectral gap of Cay $\left(S_{n}\right.$, $\{(p, q) \mid 1 \leqslant p, q \leqslant n\})$ is $n$.

Corollary 20 (Flatto, Odlyzko and Wales [18]). For $n \geqslant 3$, the spectral gap of $\operatorname{Cay}\left(S_{n}\right.$, $\{(1, q) \mid 2 \leqslant q \leqslant n\})$ is 1 .

## 5 Further research

Let $G$ be finite group acts transitively on $[n]$ (for example, $G=S_{n}$ or $A_{n}$ ), and let Cay $(G, T)$ be a Cayley graph of $G$. By Theorem 7, the left coset decomposition given in (4) is always an equitable partition of Cay $(G, T)$, and the corresponding quotient matrix $B_{\Pi}=\left(b_{s, t}\right)_{n \times n}\left(\right.$ see (5)) is symmetric, where $b_{s, t}\left(=b_{t, s}\right)$ is the number of elements in $T$ moving $t$ to $s$. Since the eigenvalues of $B_{\Pi}$ are also eigenvalues of $\operatorname{Cay}(G, T)$, we have $\lambda_{2}\left(B_{\Pi}\right) \leqslant \lambda_{2}(\operatorname{Cay}(G, T))$. Inspired by the main result of Section 4, we pose the following problem.

Problem 21. Let $G$ be finite group acts transitively on $[n]$. For which connected Cayley graphs of $G$, the equality $\lambda_{2}\left(B_{\Pi}\right)=\lambda_{2}(\operatorname{Cay}(G, T))$ holds?

Let $T$ be a symmetric generating subset of $G$. We define the permutation graph $\operatorname{Per}(T)$ as the edge-weighted graph with vertex set $\{1,2, \ldots, n\}$ in which each edge $e=s t$ ( $s \neq t$ ) has weight $w(e)=b_{s, t}$, the number of elements in $T$ moving $t$ to $s$ as mentioned above. If $G=S_{n}$ and $T$ contains only transpositions, it is clear that the permutation graph $\operatorname{Per}(T)$ coincides with the transposition graph $\operatorname{Tra}(T)$ defined in Section 1. Since $\operatorname{Cay}(G, T)$ is $|T|$-regular, the sum of each row of the quotient matrix $B_{\Pi}$ is equal to $|T|$. We can verify that $B_{\Pi}=|T| \cdot I_{n}-L(\operatorname{Per}(T))$, where $L(\operatorname{Per}(T))$ is the Laplacian matrix
of the permutation graph $\operatorname{Per}(T)$. This implies that $\lambda_{2}\left(B_{\Pi}\right)=|T| \cdot I_{n}-\mu_{n-1}(L(\operatorname{Per}(T)))$, where $\mu_{n-1}(L(\operatorname{Per}(T)))$ denotes the second least eigenvalue of $L(\operatorname{Per}(T))$, i.e., the algebraic connectivity of $\operatorname{Per}(T)$. Therefore, the spectral gap of $\operatorname{Cay}(G, T)$ satisfies the inequality

$$
|T|-\lambda_{2}(\operatorname{Cay}(G, T)) \leqslant|T|-\lambda_{2}\left(B_{\Pi}\right)=\mu_{n-1}(L(\operatorname{Per}(T)))
$$

Then we can restate Problem 21 as below.
Problem 22. Let $G$ be finite group acts transitively on $[n]$. For which connected Cayley graphs of $G$, the spectral gap of $\operatorname{Cay}(G, T)$ equals to the algebraic connectivity of the permutation graph $\operatorname{Per}(T)$ ?

In fact, Aldous' theorem give a positive answer of Problem 21 (or Problem 22) in the case that $G=S_{n}$ and $T$ consists of transpositions. Also, the result of Theorem 15 in this paper gives a partial answer of Problem 21 (or Problem 22) for the connected normal Cayley graphs (and some of their subgraphs) of $S_{n}$ with $\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$.

For any $\sigma \in S_{n}$, there exists a unique partition $[n]=I_{1} \cup \cdots \cup I_{m}$ of $[n]$ into contiguous blocks such that $\sigma\left(I_{i}\right)=I_{i}$ for each $i \in[m]$. Here, each $I_{i}$ consists of consecutive elements in $[n]$, so that $I_{i}=\{a, a+1, \ldots, b\}$ for some pair of natural numbers $a \leqslant b$. If this partition is of cardinality $m$, then we call $\sigma$ an $m$-reducible permutation. In [13, 14], Dai introduced and discussed some combinatorial properties of a new variant of the family of Johnson graphs, the Full-Flag Johnson graphs. He showed that the Full-Flag Johnson graph $F J(n, r)(r<n)$ is isomorphic to the Cayley graph Cay $\left(S_{n}, R P^{(r)}\right)$, where $R P^{(r)}$ is the set of all $(n-r)$-reducible permutations of $S_{n}$. For a positive integer $n$, the Cayley graph Cay $\left(S_{n},\{(i, i+1) \mid 1 \leqslant i \leqslant n-1\}\right)$ is called the permutahedron of order $n$, which is a well-known combinatorial graph. Observe that each $(n-1)$-reducible permutation of $S_{n}$ must be of the form $(i, i+1)$ for some $i \in[n-1]$, we have $R P^{(1)}=\{(i, i+1) \mid 1 \leqslant i \leqslant n-1\}$, and so the permutahedron of order $n$ is just the Full-Flag Johnson graph $F J(n, 1)$. Thus the Full-Flag Johnson graphs can be also viewed as the generalizations of permutahedra [14].

Let $M_{n}$ be the tridiagonal matrix of order $n$ defined as below:

$$
M_{n}=\left[\right]
$$

At the end of the paper [14], Dai proved that the eigenvalues of $M_{n}$ are also eigenvalues of the permutahedron $F J(n, 1)$, and conjectured that $\lambda_{2}\left(M_{n}\right)=\lambda_{2}(F J(n, 1))$. In fact, since $F J(n, 1)=\operatorname{Cay}\left(S_{n}, R P^{(1)}\right)$ with $R P^{(1)}=\{(i, i+1) \mid 1 \leqslant i \leqslant n-1\}, M_{n}$ is just the quotient matrix of $F J(n, 1)$ shown in (5). Thus we may conclude that Dai's conjecture follows from Aldous' theorem immediately by the arguments at the beginning of this section.

Now consider the graph $F J(n, 2)=\operatorname{Cay}\left(S_{n}, R P^{(2)}\right)$ where $R P^{(2)}$ consists of all $(n-2)$ reducible permutations of $S_{n}$. By definition, we can check that each ( $n-2$ )-reducible
permutation of $S_{n}$ belongs to one of the following three classes:

$$
\left\{\begin{array}{l}
Q^{(1)}=\{(i, i+1, i+2),(i, i+2, i+1) \mid 1 \leqslant i \leqslant n-2\} ; \\
Q^{(2)}=\{(i, i+2) \mid 1 \leqslant i \leqslant n-2\} ; \\
Q^{(3)}=\{(i, i+1)(j, j+1) \mid 1 \leqslant i \leqslant n-3,3 \leqslant j \leqslant n-1, i<j-1\} .
\end{array}\right.
$$

Therefore, we have $R P^{(2)}=Q^{(1)} \cup Q^{(2)} \cup Q^{(3)}$. Furthermore, by Theorem 7 and (5), the graph $F J(n, 2)=\operatorname{Cay}\left(S_{n}, R P^{(2)}\right)$ has the quotient matrix

$$
B_{n}=\left[\begin{array}{ccccccccccccc}
\frac{n^{2}-n-6}{2} & n-2 & 2 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
n-2 & \frac{n^{2}-3 n-2}{2} & n-2 & 2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & n-2 & \frac{n^{2}-3 n-6}{2} & n-2 & 2 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & n-2 & \frac{n^{2}-3 n-6}{2} & n-2 & 2 & \cdots & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 2 & n-2 & \frac{n^{2}-3 n-6}{2} & n-2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 2 & n-2 & \frac{n^{2}-3 n-6}{2} & n-2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 2 & n-2 & \frac{n^{2}-3 n-2}{2} & n-2 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 2 & n-2 & \frac{n^{2}-n-6}{2}
\end{array}\right]_{n \times n}
$$

In accordance with Problem 21, we ask if $\lambda_{2}(F J(n, 2))=\lambda_{2}\left(B_{n}\right)$ ? Using computer, we can verify that the equality holds for $4 \leqslant n \leqslant 7$ and we make the following conjecture.

Conjecture 23. For $n \geqslant 4, \lambda_{2}(F J(n, 2))=\lambda_{2}\left(B_{n}\right)$.
Theorem 7 indicates a possible method to prove Conjecture 23. Now we describe the detail of the method. For $k=1,2$, we define

$$
F J_{k}(n, 2)=\operatorname{Cay}\left(S_{n}, R P_{k}^{(2)}\right),
$$

where $R P_{1}^{(2)}=\{(1,2,3),(1,3,2),(1,3),(1,2)(3,4),(1,2)(4,5), \ldots,(1,2)(n-1, n)\}$ and $R P_{2}^{(2)}=\{(1,2)(n-1, n)\}$. Note that $R P_{1}^{(2)}$ is the set of elements in $R P^{(2)}=Q^{(1)} \cup Q^{(2)} \cup$ $Q^{(3)}$ moving 1 while $R P_{2}^{(2)}$ is the set of elements in $R P_{1}^{(2)}$ moving $n$. Clearly, $F J_{1}(n, 2)$ is connected and $F J_{2}(n, 2)$ is just the disjoint union of $\frac{n!}{2} K_{2}$ 's. Again by Theorem 7, the graph $F J_{1}(n, 2)$ has the quotient matrix

$$
B_{n}^{(1)}=\left[\begin{array}{cccccccccc}
0 & n-2 & 2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
n-2 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
2 & 1 & n-4 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & n-2 & 1 & \cdots & 0 & 0 & 0 & 0 \\
0 & 8 & & & & \vdots & & & & \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & n-2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & n-2 & 1 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & n-1
\end{array}\right]_{n \times n} .
$$

Using computer, we can check that $\lambda_{2}\left(F J_{1}(n, 2)\right)=\lambda_{2}\left(B_{n}^{(1)}\right)$ holds for $4 \leqslant n \leqslant 7$, and so we propose the following conjecture.

Conjecture 24. For $n \geqslant 4, \lambda_{2}\left(F J_{1}(n, 2)\right)=\lambda_{2}\left(B_{n}^{(1)}\right)$.

In order to prove Conjecture 23 by induction on $n$, we can assume that the result holds for $n-1$, i.e., $\lambda_{2}(F J(n-1,2))=\lambda_{2}\left(B_{n-1}\right)$. By the arguments below Theorem 7 and (7), it suffices to show that

$$
\lambda_{2}\left(B_{n}\right) \geqslant \lambda_{2}\left(\operatorname{Cay}\left(\left(S_{n}\right)_{1}, R P^{(2)} \cap\left(S_{n}\right)_{1}\right)\right)+\lambda_{2}\left(\operatorname{Cay}\left(S_{n}, R P^{(2)} \backslash\left(R P^{(2)} \cap\left(S_{n}\right)_{1}\right)\right)\right)
$$

Note that $\operatorname{Cay}\left(\left(S_{n}\right)_{1}, R P^{(2)} \cap\left(S_{n}\right)_{1}\right) \cong F J(n-1,2)$ and $\operatorname{Cay}\left(S_{n}, R P^{(2)} \backslash\left(R P^{(2)} \cap\left(S_{n}\right)_{1}\right)\right)=$ $\operatorname{Cay}\left(S_{n}, R P_{1}^{(2)}\right)=F J_{1}(n, 2)$. Thus, if Conjecture 24 is true, it remains to verify the following inequality:

$$
\begin{equation*}
\lambda_{2}\left(B_{n}\right) \geqslant \lambda_{2}\left(B_{n-1}\right)+\lambda_{2}\left(B_{n}^{(1)}\right) \tag{21}
\end{equation*}
$$

Thus we also need to prove Conjecture 24. As above, we can assume $\lambda_{2}\left(F J_{1}(n-1,2)\right)=$ $\lambda_{2}\left(B_{n-1}^{(1)}\right)$, and it suffices to show that

$$
\begin{align*}
\lambda_{2}\left(B_{n}^{(1)}\right) & \geqslant \lambda_{2}\left(\operatorname{Cay}\left(\left(S_{n}\right)_{n}, R P_{1}^{(2)} \cap\left(S_{n}\right)_{n}\right)\right)+\lambda_{2}\left(\operatorname{Cay}\left(S_{n}, R P_{1}^{(2)} \backslash\left(R P_{1}^{(2)} \cap\left(S_{n}\right)_{n}\right)\right)\right) \\
& =\lambda_{2}\left(F J_{1}(n-1,2)\right)+\lambda_{2}\left(F J_{2}(n, 2)\right)  \tag{22}\\
& =\lambda_{2}\left(B_{n-1}^{(1)}\right)+1,
\end{align*}
$$

here we use the facts $\operatorname{Cay}\left(\left(S_{n}\right)_{n}, R P_{1}^{(2)} \cap\left(S_{n}\right)_{n}\right) \cong F J_{1}(n-1,2)$ and $\operatorname{Cay}\left(S_{n}, R P_{1}^{(2)} \backslash\right.$ $\left.\left(R P_{1}^{(2)} \cap\left(S_{n}\right)_{n}\right)\right)=F J_{2}(n, 2) \cong \frac{n!}{2} K_{2}$. Therefore, if one can prove (21) and (22), then Conjecture 23 and Conjecture 24 follow immediately. However, it is not easy to identify the second eigenvalues of $B_{n}$ and $B_{n}^{(1)}$, so we leave it as an open problem.

In accordance with Problem 21, for $r \geqslant 3$, we pose the following problem.
Problem 25. For $3 \leqslant r<n$, does the quotient matrix given in (5) always contain the second eigenvalue of the Full-Flag graph $F J(n, r)=\operatorname{Cay}\left(S_{n}, R P^{(r)}\right)$ ?

On the other hand, for regular graphs, the smallest eigenvalue is closely related to the independent number. Let $\Gamma$ be a $k$-regular graph with smallest eigenvalue $\tau$ and independent number $\alpha(\Gamma)$, the well-known Hoffman ratio bound asserts that

$$
\alpha(\Gamma) \leqslant \frac{|V(\Gamma)|}{1-k / \tau}
$$

and that if the equality holds for some independent set $S$ with characteristic vector $v_{S}$, then $v_{S}-\frac{|S|}{|V(\Gamma)|} \mathbf{1}$ is an eigenvector of the eigenvalue $\tau$. By applying the Hoffman ratio bound to several important families of graphs belonging to classical $P$ - or $Q$-polynomial association schemes (such as Johnson scheme, Hamming scheme, Grassmann scheme) and some famous Cayley graphs (such as the derangement graph) on the symmetric group $S_{n}$, variants of Erdős-Ko-Rado Theorems for sets, vector spaces, integer sequences and permutations have been obtained by various researchers (see Godsil and Meagher [20] for the detail). Recently, Brouwer, Cioabă, Ihringer and McGinnis [6] determine the smallest eigenvalues of (distance- $j$ ) Hamming graphs, (distance- $j$ ) Johnson graphs, and the graphs of the relations of classical $P$ - and $Q$-polynomial association schemes. Motivated by these works, it is interesting to consider the smallest eigenvalues of normal

Cayley graphs of $S_{n}$. A natural question is that whether the method developed in this paper is valid for the smallest eigenvalues. However, it is not the case. According to the proof of Lemma 11, the quotient matrix $B_{\Pi}\left(=B_{\Pi}^{0}\right)$ of the normal Cayley graph $\Gamma_{0}=\operatorname{Cay}\left(S_{n}, T_{0}=T\right)$ has eigenvalues $|T|$ and $\left|T \cap G_{1}\right|-\left|T \cap G_{2,1}\right|$ (with multiplicity $n-1)$. Thus we have $\lambda_{n}\left(B_{\Pi}\right)=\lambda_{2}\left(B_{\Pi}\right)=\left|T \cap G_{1}\right|-\left|T \cap G_{2,1}\right|$. If $n \geqslant 7$, we can verify that $\lambda_{n}\left(B_{\Pi}\right)=\lambda_{2}\left(B_{\Pi}\right) \geqslant 0$ holds for all connected normal Cayley graphs of $S_{n}$ with $\max _{\tau \in T}|\operatorname{supp}(\tau)| \leqslant 5$, which implies that $\lambda_{n}\left(B_{\Pi}\right)$ cannot be the smallest eigenvalue. Thus we pose the following problem.

Problem 26. For normal Cayley graphs of $S_{n}$, are there some good general methods to determine the smallest eigenvalues?

## Acknowledgements

The authors are grateful to the anonymous referees for their useful and constructive comments, which have considerably improved the presentation of this paper.

## References

[1] D. Aldous. https://www.stat.berkeley.edu/users/aldous/Research/OP/sgap. html.
[2] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.
[3] N. Alon, V. D. Milman. $\lambda_{1}$, isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory, Ser. B, 38(1):73-88, 1985.
[4] L. Babai. Spectra of Cayley graphs. J. Combin. Theory, Ser. B, 27(2):180-189, 1979.
[5] A. E. Brouwer, W. H. Haemers. Spectra of Graphs. Springer, 2011.
[6] A. E. Brouwer, S. M. Cioabă, F. Ihringer and M. McGinnis. The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters. J. Combin. Theory, Ser. B, 133:88-121, 2018.
[7] P. Caputo, T. M. Liggett and T. Richthammer. Proof of Aldous' spectral gap conjecture. J. Amer. Math. Soc., 23(3):831-851, 2010.
[8] F. Cesi. Cayley graphs on the symmetric group generated by initial reversals have unit spectral gap. Electron. J. Combin., 16(1):\#N29, 2009.
[9] F. Cesi. On the eigenvalues of Cayley graphs on the symmetric group generated by a complete multipartite set of transpositions. J. Algebraic Combin., 32(2):155-185, 2010.
[10] F. Cesi. A few remarks on the octopus inequality and Aldous' spectral gap conjecture. Commun. Algebra, 44(1):279-302, 2016.
[11] F. Cesi. On the spectral gap of some Cayley graphs on the Weyl group $W\left(B_{n}\right)$. arXiv:1807.11833, 2018.
[12] F. Chung, J. Tobin. The spectral gap of graphs arising from substring reversals. Electron. J. Combin., 23(3):\#P3.4, 2017.
[13] I. Dai. Combinatorial Properties of Full-Flag Johnson Graphs. In Combinatorial Algorithms, vol. 9538 of Lecture Notes in Comput. Sci., pages 112-123. Springer, 2016.
[14] I. Dai. Diameter bounds and recursive properties of Full-Flag Johnson graphs. Discrete Math., 341:1932-1944, 2018.
[15] P. Diaconis, M. Shahshahani. Generating a random permutation with random transpositions. Z. Wahrscheinlichkeitstheor. Verw. Geb., 57(2):159-179, 1981.
[16] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc., 284(2):787-794, 1984.
[17] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(2):298-305, 1973.
[18] L. Flatto, A. M. Odlyzko and D. B. Wales. Random shuffles and group representations. Ann. Probab., 13(1):154-178, 1985.
[19] J. Friedman. On Cayley graphs on the symmetric group generated by transpositions. Combinatorica, 20(4):505-519, 2000.
[20] C. Godsil, K. Meagher. Erdős-Ko-Rado Theorems: Algebraic Approaches. Cambridge University Press, 2016.
[21] C. Godsil, G. Royle. Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207. Springer, 2001.
[22] S. Handjani, D. Jungreis. Rate of convergence for shuffling cards by transpositions. J. Theoret. Probab., 9(4): 983-993, 1996.
[23] S. Hoory, N. Linial and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc., 43(4):439-561, 2006.
[24] X. Huang, Q. Huang. Automorphism group of the complete alternating group graph. Appl. Math. Comput., 314:58-64, 2017.
[25] X. Huang, Q. Huang. The adjacency spectral gap of some Cayley graphs on alternating groups. J. Algebraic Combin., in press, 2018. doi:10.1007/s10801-018-0843-1.
[26] X. Huang, Q. Huang and L. Lu. Construction of graphs with exactly $k$ main eigenvalues. Linear Algebra Appl., 486:204-218, 2015.
[27] I. M. Isaacs. Algebra: A Graduate Course, Graduate Studies in Mathematics, vol. 100 (reprint of the 1994 original). Amer. Math. Soc., 2009.
[28] J. S. Jwo, S. Lakshmivarahan and S. K. Dhall. A new class of interconnection networks based on the alternating group. Networks, 23:315-326, 1993.
[29] A. Lubotzky. Discrete Groups, Expanding Graphs, and Invariant Measures. Birkhäuser Verlag, 1994.
[30] A. Lubotzky. Expander graphs in pure and applied mathematics. Bull. Amer. Math. Soc., 49(1):113-162, 2012.
[31] B. Mohar. Isoperimetric numbers of graphs. J. Combin. Theory, Ser. B, 47(3):274291, 1989.
[32] M. R. Murty. Ramanujan graphs. J. Ramanujan Math. Soc., 18:1-20, 2003.
[33] O. Parzanchevski, D. Puder. Aldous' spectral gap conjecture for normal sets. arXiv:1804.02776, 2018.
[34] X. Yang, D. J. Evans and G. M. Megson. The locally twisted cubes. Int. J. Comput. Math., 82:401-413, 2005.


[^0]:    *Supported by the China Postdoctoral Science Foundation under grant 2019M652556 and the Postdoctoral Research Sponsorship in Henan Province under grant 1902011.
    ${ }^{\dagger}$ Corresponding author. Supported by the NSFC grants 11531011 and 11671344.
    ${ }^{\ddagger}$ Supported by the NSF grants DMS-1600768 and CIF-1815922.

