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Abstract

A permutation σ of the multiset {1, 1, 2, 2, . . . , n, n} is called a Stirling permuta-
tion of order n if σs > σi as long as σi = σj and i < s < j. In this paper, we present
a unified refinement of the ascent polynomials and the ascent-plateau polynomials
of Stirling permutations. In particular, by using Foata and Strehl’s group action,
we prove that the pairs of statistics (left ascent-plateau, ascent) and (left ascent-
plateau, plateau) are equidistributed over Stirling permutations of given order, and
we show the γ-positivity of the enumerative polynomial of left ascent-plateaus, dou-
ble ascents and descent-plateaus. A connection between the γ-coefficients of this
enumerative polynomial and Eulerian numbers is also established.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

A Stirling permutation of order n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such
that for each i, 1 6 i 6 n, all entries between the two occurrences of i are larger than i.

Denote by Qn the set of Stirling permutations of order n. Let σ = σ1σ2 · · ·σ2n ∈ Qn.
For 1 6 i 6 2n, we say that an index i is a descent of σ if σi > σi+1 or i = 2n, and we say
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†Supported by NSFC 11571235.
‡Supported by NSC 107-2115-M-001-009-MY3.
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that an index i is an ascent of σ if σi−1 < σi or i = 1. Hence the index i = 1 is always an
ascent and i = 2n is always a descent. A plateau of σ is an index i such that σi = σi+1,
where 1 6 i 6 2n − 1. Let des (σ), asc (σ) and plat (σ) denote the numbers of descents,
ascents and plateaus of σ, respectively.

Stirling permutations were introduced by Gessel and Stanley [7], and they proved that

(1− x)2k+1

∞∑
n=0

{
n+ k

n

}
xn =

∑
σ∈Qk

xdesσ,

where
{
n
k

}
is the Stirling number of the second kind, i.e., the number of ways to partition a

set of n objects into k non-empty subsets. A classical result of Bóna [2] says that descents,
ascents and plateaus are equidistributed, i.e.,∑

σ∈Qn

xdesσ =
∑
σ∈Qn

xascσ =
∑
σ∈Qn

xplatσ. (1)

This equidistributed result have been extensively studied by Janson, Kuba, Panholzer,
Haglund, Visontai, Chen, Fu et al., see [5, 8, 9, 10] and references therein.

It is natural to explore multivariate extension of (1). Let us now recall some definitions.

Definition 1 ([14]). An occurrence of an ascent-plateau of σ ∈ Qn is an index i such that
σi−1 < σi = σi+1, where i ∈ {2, 3, . . . , 2n − 1}. An occurrence of a left ascent-plateau is
an index i such that σi−1 < σi = σi+1, where i ∈ {1, 2, . . . , 2n− 1} and σ0 = 0.

Let ap (σ) and lap (σ) be the numbers of ascent-plateaus and left ascent-plateaus of
σ, respectively. For example, ap (442332115665) = 2 and lap (442332115665) = 3.

Define
Mn(x) =

∑
σ∈Qn

xap (σ),

Nn(x) =
∑
σ∈Qn

xlap (σ).

According to [14, Theorem 2, Theorem 3], we have

M(x, t) =
∑
n>0

Mn(x)
tn

n!
=

√
x− 1

x− e2t(x−1)
,

N(x, t) =
∑
n>0

Nn(x)
tn

n!
=

√
1− x

1− xe2t(1−x)
.

Clearly, Mn(x) = xnNn

(
1
x

)
. The reader is referred to [16, 17] for further properties of

these polynomials.
Let

Cn(x) =
∑
σ∈Qn

xasc (σ).
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The polynomials Cn(x) and Nn(x), respectively, satisfy the following recurrence relation

Cn+1(x) = (2n+ 1)xCn(x) + x(1− x)C ′n(x),

Nn+1(x) = (2n+ 1)xNn(x) + 2x(1− x)N ′n(x),

with the initial conditions C0(x) = N0(x) = 1 (see [2, 7, 13] for instance). The purpose
of this paper is to present a unified refinement of the polynomials Cn(x) and Nn(x). In
the sequel, we always assume that Stirling permutations are prepended by 0. That is, we
identify an n-Stirling permutation σ1σ2 · · ·σ2n with the word σ0σ1σ2 · · · σ2n, where σ0 = 0.

In this paper, we introduce the following definition.

Definition 2. Let σ = σ1σ2 · · ·σ2n ∈ Qn. For 1 6 i 6 2n − 1, a double ascent of σ
is an index i such that σi−1 < σi < σi+1, a descent-plateau of σ is an index i such that
σi−1 > σi = σi+1.

Let dasc (σ) and dp (σ) denote the numbers of double ascents and descent-plateaus of
σ, respectively. For example, dasc (244332115665) = 2 and dp (244332115665) = 2. It is
clear that

asc (σ) = lap (σ) + dasc (σ), plat (σ) = lap (σ) + dp (σ). (2)

It is natural to consider the polynomials Pn(x, y, z) defined by

Pn(x, y, z) =
∑
σ∈Qn

xlap (σ)ydasc (σ)zdp (σ) =
∑
i,j,k

pn(i, j, k)xiyjzk,

where 1 6 i 6 n, 0 6 j 6 n− 1, 0 6 k 6 n− 1. In particular,

Pn(x, x, 1) = Pn(x, 1, x) = Cn(x),

Pn(x, 1, 1) = Nn(x).

As a continuation of [2], the main result of this paper says that the pairs of statistics
(lap (σ), asc (σ)) and (lap (σ), plat (σ)) are equidistributed. The main tools of the proofs
are the grammatical technique and a variation of the Foata and Strehl’s group action.

2 Main results

Context-free grammars can be used to study various exponential structures (see [4,
5, 15, 17] for instance). For an alphabet A, let Q((A)) be the ring of formal Laurent
series formed from letters in A. Following [4], a context-free grammar over A is a function
G : A→ Q((A)) that replaces a letter in A by an element of Q((A)). The formal derivative
D is a linear operator defined with respect to a context-free grammar G. According
to [5], an advantage of the grammatical description of a combinatorial sequence is that
a recursion of its generating function can be provided by attaching a labelling of the
combinatorial object in accordance with the replacement rules of the grammar.
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2.1 A grammatical labeling of Stirling permutations

The first few of the polynomials Pn(x, y, z) are given as follows:

P1(x, y, z) = x,

P2(x, y, z) = xy + xz + x2,

P3(x, y, z) = x(y2 + z2) + 4x2(y + z) + 2xyz + 2x2 + x3.

Theorem 3. Let A = {x, y, z, p, q} and

G = {x→ xzq, y → yzp, z → xyz, p→ xyz, q → xyz}. (3)

Then
Dn(z) = z

∑
i,j,k

pn(i, j, k)(xy)iqjpkz2n−2i−j−k,

where 1 6 i 6 n, 0 6 j 6 n− 1, 0 6 k 6 n− 1 and 2i+ j + k 6 2n. Set Pn = Pn(x, y, z).
Then the polynomials Pn(x, y, z) satisfy the recurrence relation

Pn+1 = (2n+ 1)xPn + (xy + xz − 2x2)
∂

∂x
Pn + x(1− y)

∂

∂y
Pn + x(1− z)

∂

∂z
Pn, (4)

with the initial condition P0(x, y, z) = 1.

Proof. Now we give a labeling of σ ∈ Qn as follows:

(L1) If i is a left ascent-plateau, then put a superscript label y immediately before σi and
a superscript label x right after σi;

(L2) If i is a double ascent, then put a superscript label q immediately before σi;

(L3) If i is a descent-plateau, then put a superscript label p right after σi;

(L4) The rest positions in σ are labeled by superscript labels z. It should be noted that
the labels z mark the descent positions of σ.

The weight of σ is defined by

w(σ) = z(xy)lap (σ)qdasc (σ)pdp (σ)z2n−2lap (σ)−dasc (σ)−dp (σ).

For example, the labeling of 552442998813316776 is as follows:

y5x5z2y4x4z2y9x9z8p8z1y3x3z1q6y7x7z6z.

We proceed by induction on n. Note that Q1 = {y1x1z} and

Q2 = {y1x1y2x2z, q1y2x2z1z, y2x2z1p1z}.

Thus the weight of y1x1z is given by D(z) and the sum of weights of elements in Q2 is
given by D2(z), since D(z) = xyz and D2(x) = z(xyqz + xypz + x2y2).

Assume that the result holds for n = m − 1, where m > 3. Let σ be an element
counted by pm−1(i, j, k), and let σ′ be an element of Qm obtained by inserting the pair
mm into σ. We distinguish five cases:

the electronic journal of combinatorics 26(2) (2019), #P2.5 4



(c1) If the pair mm is inserted at a position with label x, then the change of labeling is
illustrated as follows:

· · ·σy`−1σ
x
` σ`+1 · · · 7→ · · ·σq`−1σ

y
`m

xmzσ`+1 · · · .

In this case, the insertion corresponds to the rule x 7→ xzq and produces i permuta-
tions in Qm with i left ascent-plateaus, j+ 1 double ascents and k descent-plateaus;

(c2) If the pair mm is inserted at a position with label y, then the change of labeling is
illustrated as follows:

· · ·σy`−1σ
x
` σ`+1 · · · 7→ · · ·σy`−1m

xmzσp`σ`+1 · · · .

In this case, the insertion corresponds to the rule y 7→ yzp and produces i permuta-
tions in Qm with i left ascent-plateaus, j double ascents and k+ 1 descent-plateaus;

(c3) If the pair mm is inserted at a position with label z, then the change of labeling is
illustrated as follows:

· · ·σz`σ`+1 · · · 7→ · · ·σy`m
xmzσ`+1 · · · .

In this case, the insertion corresponds to the rule z 7→ xyz and produces 2m− 2−
2i− j − k permutations in Qm with i+ 1 left ascent-plateaus, j double ascents and
k descent-plateaus;

(c4) If the pair mm is inserted at a position with label q, then the change of labeling is
illustrated as follows:

· · ·σq`σ`+1 · · · 7→ · · ·σy`m
xmzσ`+1 · · · .

In this case, the insertion corresponds to the rule q 7→ xyz and produces j permu-
tations in Qm with i + 1 left ascent-plateaus, j − 1 double ascents and k descent-
plateaus;

(c5) If the pair mm is inserted at a position with label p, then the change of labeling is
illustrated as follows:

· · ·σp`σ`+1 · · · 7→ · · ·σy`m
xmzσ`+1 · · · .

In this case, the insertion corresponds to the rule p 7→ xyz and produces k permu-
tations in Qm with i + 1 left ascent-plateaus, j double ascents and k − 1 descent-
plateaus.

By induction, we see that grammar (3) generates all elements in Qm. Combining the
above five cases, we see that

pn+1(i, j, k) =ipn(i, j − 1, k) + ipn(i, j, k − 1) + (j + 1)pn(i− 1, j + 1, k)+

(k + 1)pn(i− 1, j, k + 1) + (2n+ 3− 2i− j − k)pn(i− 1, j, k).

Multiplying both sides of the above recurrence relation by xiyjzk for all i, j, k, we get (4).
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2.2 Equidistributed statistics

Let i ∈ [2n] and let σ = σ1σ2 . . . σ2n ∈ Qn. We define an action ϕi on Qn as follows:

• If i is a double ascent, then ϕi(σ) is obtained by moving σi to the right of the second
σi, which forms a new pleateau σiσi;

• If i is a descent-plateau, then ϕi(σ) is obtained by moving σi to the right of σk,
where k = max{j ∈ {0, 1, 2, . . . , i− 1} : σj < σi}.

For instance, if σ = 2447887332115665, then

ϕ1(σ) = 4478873322115665, ϕ4(σ) = 2448877332115665,

and ϕ9(ϕ1(σ)) = ϕ6(ϕ4(σ)) = σ. In recent years, the Foata and Strehl’s group actions
have been extensively studied (see [3, 11] for instance). We introduce the Foata-Strehl
action on Stirling permutations by

ϕ′i(σ) =

{
ϕi(σ), if i is a double ascent or descent-plateau;
σ, otherwise.

It is clear that ϕ′i are involutions and that they commute. Hence, for any subset
S ⊆ [2n], we may define the function ϕ′S : Qn 7→ Qn by ϕ′S(σ) =

∏
i∈S

ϕ′i(σ). Then the

group Z2n
2 acts on Qn via the function ϕ′S, where S ⊆ [2n].

The main result of this paper is given as follows, which is also implied by (4).

Theorem 4. For any n > 1, we have

Pn(x, y, z) = Pn(x, z, y). (5)

Furthermore, ∑
σ∈Qn

xlap (σ)yasc (σ) =
∑
σ∈Qn

xlap (σ)yplat (σ). (6)

Proof. For any σ ∈ Qn, we define

Dasc (σ) = {i ∈ [2n− 1] : σi−1 < σi < σi+1},
DP (σ) = {i ∈ [2n− 1] : σi−1 > σi = σi+1},

LAP (σ) = {i ∈ [2n− 1] : σi−1 < σi = σi+1}.

Let S = S(σ) = Dasc (σ) ∪DP (σ). Note that

Dasc (ϕ′S(σ)) = DP (σ), DP (ϕ′S(σ)) = Dasc (σ) and LAP (ϕ′S(σ)) = LAP (σ).

Therefore,

Pn(x, y, z) =
∑
σ∈Qn

xlap (σ)ydasc (σ)zdp (σ)
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=
∑
σ∈Qn

xlap (ϕ′S(σ))ydp (ϕ′S(σ))zdasc (ϕ
′
S(σ))

=
∑
σ′∈Qn

xlap (σ′)zdasc (σ
′)ydp (σ′)

= Pn(x, z, y).

Combining (2) and (5), we see that Pn(xy, y, 1) = Pn(xy, 1, y). This completes the proof.

Theorem 5. For n > 1, we have∑
σ∈Qn

xlap (σ)ydasc (σ)zdp (σ) =
∑
16i6n

06j6n−1

γn,i,jx
i(y + z)j,

where
γn,i,j = #{σ ∈ Qn : lap (σ) = i, dasc (σ) = j, dp (σ) = 0}.

Proof. Let NDP n = {σ ∈ Qn : dp (σ) = 0}, and let

NDP n,i,j = {σ ∈ Qn : lap (σ) = i, dasc (σ) = j, dp (σ) = 0}.

For any σ ∈ NDP n,i,j, let [σ] = {ϕ′S(σ) | S ⊆ Dasc (σ)}. For any σ′ ∈ [σ], suppose that
σ′ = ϕ′S(σ) for some S ⊆ Dasc (σ). Then

lap (σ′) = lap (σ), dasc (σ′) = dasc (σ)− |S| and dp (σ′) = |S|.

Moreover, {[σ] | σ ∈ NDP n} form a partition of Qn. Hence,∑
σ∈Qn

xlap (σ)ydasc (σ)zdp (σ)

=
∑

σ∈NDP n

∑
σ′∈[σ]

xlap (σ′)ydasc (σ
′)zdp (σ′)

=
∑

σ∈NDP n

∑
S⊆Dasc (σ)

xlap (ϕ′S(σ))ydasc (ϕ
′
S(σ))zdp (ϕ′S(σ))

=
∑

σ∈NDP n

∑
S⊆Dasc (σ)

xlap (σ)ydasc (σ)−|S|z|S|

=
∑

σ∈NDP n

xlap (σ)
∑

S⊆Dasc (σ)

ydasc (σ)−|S|z|S|

=
∑

σ∈NDP n

xlap (σ)(y + z)dasc (σ)

=
∑
i,j

γn,i,jx
i(y + z)j.
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Taking y = z = 1 in Theorem 5, we have

Nn(x) =
∑
σ∈Qn

xlap (σ) =
n∑
i=1

(
n−1∑
j=0

2jγn,i,j

)
xi.

Let Nn(x) =
∑n

k=1N(n, k)xk. According to [13, Eq. (24)], we have

Nn(x) =
n∑
k=1

2n−2k
(

2k

k

)
k!

{
n

k

}
xk(1− x)n−k.

Thus, for n > 1, we have

n−1∑
j=0

2jγn,i,j =
i∑

j=1

(−1)i−j2n−2j
(

2j

j

)(
n− j
i− j

)
j!

{
n

j

}
.

Theorem 6. Let A = {u, v, w} and G = {u→ uvw, v → 2uw,w → uw}. Then

Dn(w) =
∑
16i6n

06j6n−1

γn,i,ju
ivjw2n+1−2i−j. (7)

Furthermore, the numbers γn,i,j satisfy the recurrence relation

γn+1,i,j = iγn,i,j−1 + 2(j + 1)γn,i−1,j+1 + (2n+ 3− 2i− j)γn,i−1,j, (8)

with the initial conditions γ1,1,0 = 1 and γ1,i,j = 0 for i > 1 and j > 0.

Proof. From the grammar (3), we see that

D(xy) = xyz(p+ q),

D(p+ q) = 2xyz,

D(z) = xyz.

Set u = xy, v = p + q and w = z. Then D(u) = uvw,D(v) = 2uw and D(w) = uw.
Combining Theorem 3 and Theorem 5, we get (7). Since Dn+1(w) = D(Dn(w)), we obtain
that

Dn+1(w) = D

(∑
i,j

γn,i,ju
ivjw2n+1−2i−j

)
=
∑
i,j

iγn,i,ju
ivj+1w2n+2−2i−j + 2

∑
i,j

jγn,i,ju
i+1vj−1w2n+2−2i−j+∑

i,j

(2n+ 1− 2i− j)γn,i,jui+1vjw2n+1−2i−j.

Equating the coefficients of uivjw2n+1−2i−j on both sides of the above equation, we ob-
tain (8).
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Let Gn(x, y) =
∑

i,j γn,i,jx
iyj. Multiplying both sides of the recurrence relation (8) by

xiyj for all i, j, we get that

Gn+1(x, y) = (2n+ 1)xGn(x, y) + (xy − 2x2)
∂

∂x
Gn(x, y) + (2x− xy)

∂

∂y
Gn(x, y). (9)

The first few of the polynomials Gn(x, y) are given as follows:

G0(x, y) = 1, G1(x, y) = x,G2(x, y) = xy + x2, G3(x, y) = xy2 + 4x2y + 2x2 + x3.

2.3 Connection with Eulerian numbers

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}.
Let π = π(1)π(2) . . . π(n) ∈ Sn. A descent of π is an index i ∈ [n − 1] such that
π(i) > π(i + 1). Let des (π) be the number of descents of π. The classical Eulerian
polynomials are defined by

An(x) =
∑
π∈Sn

xdes (π).

Let #C denote the cardinality of a set C. The Eulerian numbers are defined by〈
n

k

〉
= #{π ∈ Sn : des (π) = k}.

Recall that the Eulerian numbers satisfy the recurrence relation〈
n+ 1

k

〉
= (k + 1)

〈
n

k

〉
+ (n+ 1− k)

〈
n

k − 1

〉
,

with the initial conditions
〈
1
0

〉
= 1 and

〈
1
k

〉
= 0 for k > 1. We can now present the

following result.

Theorem 7. For n > 1 and 0 6 k 6 n− 1, we have

γn,n−k,k =

〈
n

k

〉
.

Proof. Set a(n, k) = γn,n−k,k. Then a(n, k − 1) = γn,n−k+1,k−1. Using (8), it is easy to
verify that γn,i,j = 0 for i + j > n. Hence γn,n−k,k+1 = 0. Therefore, the numbers a(n, k)
satisfy the recurrence relation

a(n+ 1, k) = (k + 1)a(n, k) + (n+ 1− k)a(n, k − 1).

Since the numbers a(n, k) and
〈
n
k

〉
satisfy the same recurrence relation and initial condi-

tions, they agree.
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A bijective proof of Theorem 7:

Proof. Let σ ∈ Qn. Note that every element of [n] appears exactly two times in σ. Let
α(σ) be the permutation of Sn obtained from σ by deleting each first occurrence of i ∈ [n].
Then α is a map from Qn to Sn. For example, α(344355661221) = 435621. Let

Dn = {σ ∈ Qn : lap (σ) = i, dasc (σ) = n− i, dp (σ) = 0}.

It is clear that lap (σ) + dasc (σ) = n implies dp (σ) = 0 for σ ∈ Qn.
Let x be a given element in [n]. For any σ ∈ Qn, we define an action βx on Qn as

follows:

• Read σ from left to right and let i be the first index such that σi = x;

• Move σi to the right of σk, where k = max{j ∈ {0, 1, 2, . . . , i− 1} : σj < σi}, where
σ0 = 0.

For example, if σ = 3443578876652211, then

β1(σ) = 1344357887665221, β2(σ) = 2344357887665211, β6(σ) = 3443567887652211.

It is clear that βx(βy(σ)) = βy(βx(σ)) for any x, y ∈ [n]. For any S ⊆ [n], let βS : Qn 7→ Qn
be a function defined by

βS(σ) =
∏
x∈S

βx(σ).

Clearly, β[n](σ) ∈ Dn and α(σ) = α(β[n](σ)). Moreover, β[n](σ) = σ if σ ∈ Dn.
Let α|Dn denote the restriction of the map α on the set Dn. Then α|Dn is a map from

Dn to Sn. Let π = π(1)π(2) · · · π(n) ∈ Sn. The inverse α|−1Dn
is defined as follows:

• let σ = σ1σ2 . . . σ2n be the Stirling permutation such that σ2i−1 = σ2i = π(i) for
each i = 1, 2, . . . , n;

• let S(π) = {πi : πi−1 > πi, 2 6 i 6 n};

• let α|−1Dn
(π) = βS(π)(σ).

Note that

lap (α|−1Dn
(π)) + dasc (α|−1Dn

(π)) = n and dasc (α|−1Dn
(π)) = des (π).

Then α|Dn is a bijection from Dn to Sn. This completes the proof.

Example 8. The bijection between S3 and D3 is demonstrated as follows:

123↔ 112233 (S = ∅)↔ βS(112233) = 112233;

132↔ 113322 (S = {2})↔ βS(113322) = 112332;

213↔ 221133 (S = {1})↔ βS(221133) = 122133;

231↔ 223311 (S = {1})↔ βS(223311) = 122331;

312↔ 331122 (S = {1})↔ βS(331122) = 133122;

321↔ 332211 (S = {1, 2})↔ βS(332211) = 123321.
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3 Concluding remarks

In this paper, we introduce several variants of the ascent-plateau statistic on Stirling
permutations. Here we provide another variant. Recall that the hyperoctahedral group
Bn is the group of signed permutations of the set ±[n] such that π(−i) = −π(i) for all
i, where ±[n] = {±1,±2, . . . ,±n}. As usual, we always identify a signed permutation
π = π(1) · · · π(n) with the word π(0)π(1) · · · π(n), where π(0) = 0. For each π ∈ Bn, we
define

des A(π) = #{i ∈ [n− 1] : π(i) > π(i+ 1)},
des B(π) = #{i ∈ {0, 1, 2 . . . , n− 1} : π(i) > π(i+ 1)}.

Following [1], the number of flag descents of π ∈ Bn is defined by

fdes (π) =

{
2des A(π) + 1, if π(1) < 0;
2des A(π), otherwise.

Note that fdes (π) = des A(π) + des B(π). In the same way, it is natural to introduce the
definition of the number of flag ascent-plateaus. Let σ = σ1σ2 · · · σ2n ∈ Qn. The number
of flag ascent-plateaus of σ is defined by

fap (σ) =

{
2ap (σ) + 1, if σ1 = σ2;
2ap (σ), otherwise.

Clearly, fap (σ) = ap (σ) + lap (σ). A grammatical labeling of σ ∈ Qn is given as follows:

(L1) If i ∈ {2, 3, . . . , 2n − 1} is an ascent-plateau, then put a superscript label y imme-
diately before σi and a superscript label y right after σi;

(L2) If σ1 = σ2, then put a superscript label y immediately before σ1 and a superscript
x right after σ1;

(L3) If σ1 < σ2, then put a superscript label x immediately before σ1;

(L4) The rest of positions in σ are labeled by a superscript label z.

Note that the weight of σ is given by w(σ) = xyfap (σ)z2n−fap (σ). It is routine to check that
if G = {x→ xyz, y → yz2, z → y2z}, then

Dn(x) = x
∑
σ∈Qn

yfap (σ)z2n−fap (σ).

Combining [12, Theorem 10], it is not hard to verify that

∑
π∈Bn

xfdes (π)+1 =
n∑
k=0

(
n

k

) ∑
σ∈Qk

xfap (σ)
∑

ρ∈Qn−k

x2lap (ρ),

the electronic journal of combinatorics 26(2) (2019), #P2.5 11



∑
π∈Bn

xfdes (π) =
n∑
k=0

(
n

k

) ∑
σ∈Qk

xfap (σ)
∑

ρ∈Qn−k

x2ap (ρ).

In [18], Park studied the (p, q)-analogue of the descent polynomials of Stirling permu-
tations:

Cn(x, p, q) =
∑
σ∈Qn

xdes (σ)pinv (σ)qmaj (σ).

It would be interesting to provide a unified refinement of Cn(x, p, q) and the following
polynomials: ∑

σ∈Qn

xap (σ)ylap (σ)pinv (σ)qmaj (σ).
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