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Abstract

A graph Γ of even order is a bicirculant if it admits an automorphism with two
orbits of equal length. Symmetry properties of bicirculants, for which at least one of
the induced subgraphs on the two orbits of the corresponding semiregular automor-
phism is a cycle, have been studied, at least for the few smallest possible valences.
For valences 3, 4 and 5, where the corresponding bicirculants are called gener-
alized Petersen graphs, Rose window graphs and Tabačjn graphs, respectively, all
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edge-transitive members have been classified. While there are only 7 edge-transitive
generalized Petersen graphs and only 3 edge-transitive Tabačjn graphs, infinite fam-
ilies of edge-transitive Rose window graphs exist. The main theme of this paper is
the question of the existence of such bicirculants for higher valences. It is proved
that infinite families of edge-transitive examples of valence 6 exist and among them
infinitely many arc-transitive as well as infinitely many half-arc-transitive members
are identified. Moreover, the classification of the ones of valence 6 and girth 3 is
given. As a corollary, an infinite family of half-arc-transitive graphs of valence 6 with
universal reachability relation, which were thus far not known to exist, is obtained.

Mathematics Subject Classifications: 05C25, 20B25

1 Introduction

Even though almost all graphs have no nontrivial automorphisms (see for instance [7,
Corollary 2.3.3]) investigation of highly symmetric graphs has been a very active topic
of research in algebraic graph theory for decades. The majority of several hundreds of
papers on this topic have focused on graphs with a particular degree of symmetry, such as
vertex-transitivity, edge-transitivity or arc-transitivity (see Section 2 for the definitions).
Since the family of all arc-transitive graphs (let alone the families of edge-transitive or
vertex-transitive graphs) is way too rich to be investigated as a whole, one has to restrict
to some specific subfamily to be able to obtain classification type results. For instance,
there are several papers giving a classification of cubic or tetravalent arc-transitive graphs
of specific types of orders (see for instance [5, 25] and the references therein), or with
other restrictions such as their girth (see for instance [14]).

When dealing with graphs with a high degree of symmetry the following viewpoint is
of interest. In 1981 Marušič conjectured [18] that every vertex-transitive graph admits a
nontrivial semiregular automorphism (that is, an automorphism having all orbits of the
same length). The conjecture, now known as the Polycirculant conjecture, is still open,
but several results confirming the conjecture for some restricted subfamilies have been
obtained (see for instance [4, 23]). Now, the nicest possibility regarding the existence of
semiregular automorphisms is that the semiregular automorphism has just one orbit. In
this case the graph is a Cayley graph of a cyclic group, a so called circulant. These graphs
are quite well understood. For instance, arc-transitive circulants have been characterized
independently by Kovács and Li [10, 16]. Since each edge-transitive Cayley graph of an
Abelian group is automatically arc-transitive, this in fact gives a characterization of all
edge-transitive circulants.

The next best possibility is that the graph admits a semiregular automorphism with
two orbits. Such graphs are called bicirculants. Even though we are currently nowhere
near such general results on arc-transitive, let alone edge-transitive, bicirculants as the
ones from [10, 16], some progress has been made. For instance, the automorphism groups
of bicirculants, for which the two orbits of the semiregular automorphism are of prime
length, are quite well understood [17]. Classification results for arc-transitive bicirculants
of small valences have also been obtained. For instance, combining together the results
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of [6, 20, 21] one obtains the classification of all cubic arc-transitive bicirculants. Similarly,
the classification of tetravalent arc-transitive bicirculants is obtained by combining the
results of [11, 12, 13]. Recently, the classification of pentavalent arc-transitive bicirculants
was also obtained [1, 2].

One of the most important steps in these classifications is the classification of the arc-
transitive bicirculants (which for these valences actually coincide with the edge-transitive
ones), for which at least one of the induced subgraphs on the two orbits of the corre-
sponding semiregular automorphism is a cycle. The corresponding graphs for valences 3,
4 and 5 are called generalized Petersen graphs, Rose window graphs and Tabačjn graphs,
respectively. The edge-transitive members of these three families of graphs were classi-
fied in [6], [11] and [2], respectively. It is interesting to note that while there are only
7 edge-transitive generalized Petersen graphs and only 3 edge-transitive Tabačjn graphs
infinite families of edge-transitive Rose window graphs exist (which was first pointed out
by Wilson [24] when he introduced the Rose window graphs). It is thus very natural to
ask whether edge-transitive analogues of these graphs of higher valences also exist. The
6-valent analogues, which are obtained from the generalized Petersen graphs by adding
three additional perfect matchings between the two orbits of the corresponding semireg-
ular automorphism (see Section 3 for the formal definition), were first studied by Vasil-
jević [22] who named them Nest graphs. In this paper we show that infinite families of
arc-transitive, as well as of half-arc-transitive (see Section 2 for the definition) Nest graphs
exist. It should be pointed out that the members of the infinite family of graphs that has
quite recently been obtained by Zhou and Zhang [26] when they classified half-arc-regular
bicirculants of valence 6 also turn out to be Nest graphs. The existence of infinitely many
edge-transitive Nest graphs thus motivates the following question.

Question 1. For which integers d > 6 does there exist an edge-transitive bicirculant of
valence d, such that at least one of the subgraphs induced on the two orbits of the corre-
sponding semiregular automorphism is a cycle? For which of these valences do infinitely
many such examples exist?

For small valences one can search for examples using a computer. An exhaustive
computer search shows that there exists no edge-transitive bicirculant of valence d where
7 6 d 6 10 and order at most 100, such that at least one of the subgraphs induced on the
two orbits of the corresponding semiregular automorphism is a cycle. Due to the fact that
the seven cubic examples have orders 8, 10, 16, 20, 20, 24 and 48, the three pentavalent
examples have orders 6, 12 and 12, while in the cases of valence 4 and 6 we have examples
of almost every even order starting from 6 and 8, respectively, it very well might be the
case that the answer to Question 1 is that there are in fact no such examples. This implies
that the following natural problem might be quite important.

Problem 2. Classify the edge-transitive Nest graphs.

We give a partial solution to this problem by classifying the examples of girth 3 (see
Theorem 8). Since the girth of any Nest graph is at most 6 (see Section 3) this leaves
the girths 4, 5 and 6 to be dealt with. We finish this section by highlighting another
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result of this paper. When dealing with half-arc-transitive graphs the reachability relation
and the corresponding alternets (see Section 2 for the definitions) play an important
role. Namely, the alternets give an insight into the structure of the graph in question,
and, in the case that we have more than one alternet, give rise to imprimitivity block
systems for the corresponding automorphism group. The situation when one has just
one alternet, that is when the reachability relation is universal, thus deserves special
attention (we remark that half-arc-transitive graphs with a few alternets were studied
in [8]). In 2010 an infinite family of half-arc-transitive graphs of valence 12 with universal
reachability relation was constructed [15]. Until now, this was the smallest valence for
which a half-arc-transitive graph with universal reachability relation was known to exist.
Since Marušič proved [19] that the reachability relation cannot be universal in a half-arc-
transitive graph of valence 4, the smallest possible valence for which a half-arc-transitive
graph with universal reachability relation could exist is 6. In Theorem 23 we prove that 6
is indeed attained by exhibiting an infinite family of half-arc-transitive graphs of valence
6 with universal reachability relation.

2 Notation and definitions

Throughout the paper the graphs are assumed to be finite and undirected, even though we
will occasionally be working with an orientation of the edges of the graph, implicitly given
by the action of its automorphism group. For a graph Γ and its vertex x the neighborhood
of x in Γ will be denoted by Γ(x), while the fact that the vertices x and y are adjacent in
Γ will be denoted by x ∼ y. Throughout the paper we will often be working with 2-paths
of the graph in question. We point out that, unless otherwise specified, we consider a
2-path (x, y, z) simply as a subgraph of the graph in question, and so we consider the
2-paths (x, y, z) and (z, y, x) as being equal.

For an integer n the residue class ring modulo n will be denoted by Zn. Throughout
the paper we will constantly be working with integers and elements from Zn and will
sometimes regard them simply as integers while at other times as elements of Zn. For
instance, if for 1 6 b, k 6 n − 1 we write b + 2k = 1, we mean that when b and k are
viewed as elements of Zn equality b + 2k = 1 holds (in Zn). On the other hand, if we
write b + k < n we mean that the sum of integers b and k is strictly smaller than n (of
course without making the calculation modulo n). This should cause no confusion but we
will nevertheless sometimes stress that we want to view a certain expression within Zn to
make things completely unambiguous.

A subgroup G 6 Aut(Γ) of the automorphism group of the graph Γ is said to be
vertex-transitive, edge-transitive and arc-transitive, respectively, if the induced action of
G on the vertex set, edge set and arc set, respectively, is transitive. If G is vertex- and
edge-transitive but not arc-transitive, it is half-arc-transitive. When G = Aut(Γ) in the
above definitions we say that Γ is vertex-, edge-, arc- or half-arc-transitive, respectively.

It is well known that in a half-arc-transitive graph Γ no automorphism can interchange
a pair of adjacent vertices (see for instance [19, Proposition 2.1]). Moreover, the action
of the automorphism group of Γ induces two paired natural orientations of the edges of
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Γ, implying that Γ is of even valence. When dealing with half-arc-transitive graphs one
usually fixes one of these two natural orientations of the edges of Γ. The fact that the
edge xy of Γ is oriented from x to y in this orientation will be denoted by x → y or
y ← x and the vertices x and y will be referred to as the tail and the head of the edge
xy, respectively. Of course, for any vertex x, half of the edges, incident with x, have x as
their tail and half of them have x as their head.

Suppose Γ is half-arc-transitive and fix one of the two natural Aut(Γ)-induced orien-
tations of the edges. One can then define the reachability relation on the edge set of Γ,
first introduced in [3] in the context of infinite digraphs, as follows. An edge f is reachable
from the edge e if there exists an alternating path (with respect to the fixed orientation)
whose starting and terminal edges are e and f . The reachability relation is clearly an
equivalence relation and does not depend on which of the two paired Aut(Γ)-induced
orientations of the edges one has chosen. Its equivalence classes are called alternets.

3 The Nest graphs

In this section the Nest graphs are formally introduced and two infinite families of edge-
transitive examples are identified. The Nest graphs are obtained from the generalized
Petersen graphs by adding three additional perfect matchings between the two orbits of
the natural (2, n)-semiregular automorphism, which are all consistent with its action.

Construction 3. Let n > 4 and 1 6 a, b, c, k 6 n−1 be integers such that k 6= n/2 and a,
b and c are pairwise distinct. Then the Nest graph N (n; a, b, c; k) is the graph of order 2n
with vertex set consisting of two sets of size n, namely {ui : i ∈ Zn} and {vi : i ∈ Zn}, and
edge set consisting of the following six sets of size n (where computations are performed
modulo n):

• the set Erim of rim edges {uiui+1 : i ∈ Zn},
• the set Ehub of hub edges {vivi+k : i ∈ Zn},
• the set E0 of 0-spokes {uivi : i ∈ Zn},
• the set Ea of a-spokes {uivi+a : i ∈ Zn},
• the set Eb of b-spokes {uivi+b : i ∈ Zn},
• the set Ec of c-spokes {uivi+c : i ∈ Zn}.

Observe that the assumptions on the parameters imply that the graph N (n; a, b, c; k)
is indeed a regular graph of valence 6. Moreover, it is clear that the graph admits the
(2, n)-semiregular automorphism ρ, mapping according to the rule

uiρ = ui+1 and viρ = vi+1 for all i ∈ Zn. (1)

Unlike the generalized Petersen graphs and the Rose window graphs, all of which admit
an additional involutory automorphism normalizing ρ, there are in general no additional
automorphisms (other than the ones from the subgroup 〈ρ〉) which would automatically be
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ensured in the Nest graphs. For instance, it is easy to verify that the graph N (7; 1, 2, 4; 2)
is such an example (it is in fact the smallest such graph). Nevertheless, the following
holds.

Lemma 4. Let Γ = N (n; a, b, c; k) be a Nest graph with c = a + b in Zn. Then the
permutation τ of V (Γ), given by the rule

uiτ = u−i and viτ = v−i+c for all i ∈ Zn, (2)

is an automorphism of Γ. Consequently, Γ is edge-transitive if and only if it is arc-
transitive.

Proof. Using the fact that c = a + b it can easily be verified that τ preserves adjacency.
Now, if Γ is edge-transitive, it is automatically vertex-transitive (since the automorphism
ρ from (1) has just two orbits on the vertex set of Γ and some edges of Γ connect vertices
from the same orbit of ρ while other connect vertices from different orbits of ρ). Since τρ
interchanges the pair u0, u1 of adjacent vertices it thus follows that Γ is arc-transitive.

Of course, different sets of parameters a, b, c, k for a fixed n may result in isomorphic
graphs. We record some rather obvious isomorphisms, which are best described intuitively
by ‘reflecting’ with respect to the edge u0v0 (that is, exchanging the roles of ui and vi by
un−i and vn−i, respectively, for all i) or “rotating” the set of vertices of the form vi by a
steps (that is, renaming each vi by vi−a).

Lemma 5. Let n > 4 and 1 6 a, b, c, k 6 n − 1 be integers such that k 6= n/2 and
a, b and c are pairwise distinct. Then the graph N (n; a, b, c; k) is isomorphic to each of
the graphs N (n; a′, b′, c′; k), where {a′, b′, c′} = {a, b, c}, as well as to any of the graphs
N (n; a, b, c;−k), N (n;−a,−b,−c; k) and N (n;−a, b− a, c− a; k).

The above lemma implies that we can assume a < b < c and k < n/2. Moreover,
“rotating” the vertices of the form vi by a, b or c, if necessary, we can assume that a is
minimal among the elements of {a, b− a, c− b, n− c}. Unless otherwise specified we will
always make this assumption.

One of the goals of this paper is to investigate the edge-transitive Nest graphs. Using
Lemma 5 a computer search for all edge-transitive examples up to some reasonable order
can be performed. In Table 1 all pairwise nonisomorphic edge-transitive Nest graphs of
order up to 220 are given. For each of the graphs the defining parameters n, a, b, c and k
are given, as well as its girth, the size of the vertex-stabilizer and an indication of whether
the graph is arc-transitive or half-arc-transitive. Observe that every edge-transitive Nest
graph is automatically vertex-transitive, and so the edge-transitive graphs that are not
arc-transitive are half-arc-transitive. Table 1 reveals that, in contrast to the fact that there
is no half-arc-transitive Rose window graph [11], there do exist half-arc-transitive Nest
graphs. We also point out that except for the graphs N (10; 2, 4, 6; 3) and N (12; 2, 4, 8; 5)
none of the graphs from Table 1 is bipartite.

Table 1 also seems to suggest that the family of edge-transitive, as well as the family
of arc-transitive Nest graphs, is infinite. We prove this by exhibiting an infinite family
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(n; a, b, c; k) girth stab (H)AT (n; a, b, c; k) girth stab (H)AT (n; a, b, c; k) girth stab (H)AT
(4; 1, 2, 3; 1) 3 48 AT (36; 3, 10, 25; 17) 5 3 HAT (74; 2, 37, 39; 1) 4 12 AT
(5; 1, 2, 3; 2) 3 12 AT (36; 2, 9, 11; 17) 4 6 AT (76; 2, 19, 21; 37) 4 6 AT
(6; 1, 3, 4; 1) 3 12 AT (38; 2, 19, 21; 1) 4 12 AT (76; 1, 15, 54; 37) 3 3 HAT
(8; 1, 3, 4; 3) 3 72 AT (38; 1, 15, 16; 1) 3 6 AT (78; 2, 39, 41; 1) 4 12 AT
(8; 1, 2, 5; 3) 3 12 AT (42; 2, 21, 23; 1) 4 12 AT (78; 1, 33, 34; 1) 3 6 AT
(10; 2, 5, 7; 1) 4 12 AT (42; 1, 9, 10; 1) 3 6 AT (82; 2, 41, 43; 1) 4 12 AT
(10; 1, 3, 4; 3) 3 12 AT (44; 2, 11, 13; 21) 4 6 AT (84; 1, 10, 51; 41) 3 3 HAT
(10; 2, 4, 6; 3) 4 12 AT (46; 2, 23, 25; 1) 4 12 AT (84; 2, 21, 23; 41) 4 6 AT
(12; 1, 3, 10; 5) 3 6 AT (50; 2, 25, 27; 1) 4 12 AT (86; 1, 13, 14; 1) 3 6 AT
(12; 2, 4, 8; 5) 4 48 AT (52; 2, 13, 15; 25) 4 6 AT (86; 2, 43, 45; 1) 4 12 AT
(14; 2, 7, 9; 1) 4 12 AT (52; 1, 7, 34; 25) 3 3 HAT (90; 15, 43, 58; 1) 4 6 AT
(14; 1, 5, 6; 1) 3 6 AT (54; 9, 25, 34; 1) 4 6 AT (90; 2, 45, 47; 1) 4 12 AT
(18; 3, 7, 10; 1) 4 6 AT (54; 2, 27, 29; 1) 4 12 AT (92; 2, 23, 25; 45) 4 6 AT
(18; 2, 9, 11; 1) 4 12 AT (58; 2, 29, 31; 1) 4 12 AT (94; 2, 47, 49; 1) 4 12 AT
(20; 2, 5, 7; 9) 4 6 AT (60; 2, 15, 17; 29) 4 6 AT (98; 1, 37, 38; 1) 3 6 AT

(22; 2, 11, 13; 1) 4 12 AT (62; 2, 31, 33; 1) 4 12 AT (98; 2, 49, 51; 1) 4 12 AT
(26; 1, 7, 8; 1) 3 6 AT (62; 1, 11, 12; 1) 3 6 AT (100; 2, 25, 27; 49) 4 6 AT

(26; 2, 13, 15; 1) 4 12 AT (66; 2, 33, 35; 1) 4 12 AT (102; 2, 51, 53; 1) 4 12 AT
(28; 1, 6, 19; 13) 3 3 HAT (68; 2, 17, 19; 33) 4 6 AT (106; 2, 53, 55; 1) 4 12 AT
(28; 2, 7, 9; 13) 4 6 AT (70; 5, 27, 32; 1) 4 6 AT (108; 2, 27, 29; 53) 4 6 AT
(30; 2, 15, 17; 1) 4 12 AT (70; 2, 35, 37; 1) 4 12 AT (108; 9, 34, 79; 53) 6 3 HAT
(34; 2, 17, 19; 1) 4 12 AT (74; 1, 21, 22; 1) 3 6 AT (110; 2, 55, 57; 1) 4 12 AT

Table 1: All edge-transitive Nest graphs of order up to 220.

of examples in Lemma 6. Two additional infinite families of arc-transitive Nest graphs
are given in Lemma 7 and Lemma 13, while an infinite family of half-arc-transitive Nest
graphs is given in Proposition 22. There are various other observations to be made. For
instance, except for the graph of order 10 (which happens to be the complement of the
Petersen graph) the order of all edge-transitive Nest graphs seems to be divisible by 4
(that is, n is even) but, except for the two graphs of order 16, none of them seems to
have order divisible by 16. Next, the vertex-stabilizers seem to be bounded from above
by 12 (except for the three graphs of orders 8, 16 and 24, respectively). To mention just
two more things, it appears that, except for two graphs of orders 20 and 24, none of the
examples is bipartite and, except possibly for a very specific family of half-arc-transitive
examples whose orders are an odd multiple of 72, all examples are either of girth 3 or 4.

It is not difficult to show that the girth of (edge-transitive) Nest graphs is at most 6.
Namely, every Nest graph N (n; a, b, c; k) contains several 6-cycles. For instance, since the
assumption 1 6 a < b < c 6 n− 1 implies that b is different from both 1 and −1, we have
the 6-cycle (v0, u0, u1, v1, u1−b, u−b). On the other hand, the example N (108; 9, 34, 79; 53)
from Table 1 shows that the girth of an (edge-transitive) Nest graph can actually be equal
to 6. Since the only two graphs from Table 1, whose girth exceeds 4, are not arc-transitive,
it is an interesting question to ask whether an arc-transitive Nest graph with girth greater
than 4 exists.

Based on the data from Table 1 it is easy to identify infinite families of edge-transitive
Nest graphs. We present two in the next two lemmas.

Lemma 6. Let m > 3 be an odd integer. Then the Nest graph N (2m; 2,m,m + 2; 1) is
arc-transitive having vertex-stabilizers isomorphic to the dihedral group D6 of order 12.

Proof. Let Γ = N (2m; 2,m,m + 2; 1) and let ϕ be the permutation of the vertex set of
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Γ, given by the rule

uiϕ =

{
u−i ; i even
v−i+1 ; i odd,

viϕ =

{
u−i+1 ; i even
v−i+2 ; i odd,

where i ∈ Zn. It is easy to verify that ϕ is an automorphism of Γ. We give some details and
leave the rest to the reader. For instance, the rim edge uiui+1 is mapped to the 0-spoke
u−iv−i or the 2-spoke v−i+1u−i−1, depending on whether i is even or odd, respectively.
Similarly, since m is odd, the m-spoke uivm+i is mapped to the (m+ 2)-spoke u−iv−i+m+2

or the m-spoke u−i+1+mv−i+1, depending on whether i is even or odd, respectively.
Note that Lemma 4 implies that the permutation τ defined in (2) is an automorphism

of Γ. It is also easy to see that the permutation η, defined by the rule

uiη = ui and viη = vi+m for all i ∈ Zn,

is an involutory automorphism of Γ. It is now clear that the group G = 〈ρ, ϕ, τ, η〉, where
ρ is as in (1), acts arc-transitively on Γ. We finally prove that in fact G = Aut(Γ) and
that the vertex-stabilizers in G are isomorphic to D6. We first prove that G = Aut(Γ)
and that the stabilizers are of order 12. In view of arc-transitivity it suffices to prove that
the only nontrivial element of the pointwise stabilizer of the arc (u0, u1) is the involution
η. To see this let ψ be any nontrivial automorphism of Γ fixing both u0 and u1. It is
easy to see that of the five remaining neighbors of u0 (other than u1) u−1 is the only
one having exactly three common neighbors with u1 (namely, u0, v1 and vm+1). It thus
follows that ψ fixes u−1 as well. Repeating the same argument for u−1 and u0 one can
see that ψ fixes u−2, and inductively that it fixes each ui. Since for each i the only two
vertices of the form vj, having four common neighbors with ui, are vi+1 and vi+m+1, it is
now clear that ψ = η. A straightforward calculation shows that ηϕ is of order 6 and that
τ(ηϕ)τ = (ηϕ)−1, which finally shows that the stabilizer of u0 in Aut(Γ) is D6.

We remark that it can be shown that the graph N (4; 1, 2, 3; 1) and the graphs from
Lemma 6 are the only edge-transitive Nest graphs admitting a nontrivial automorphism
fixing all the vertices ui pointwise. Since the proof is somewhat tedious, while this fact
will not play a role in the remainder of our paper, we do not provide it here. Instead, we
provide another infinite family of arc-transitive Nest graphs.

Lemma 7. Let m > 3 be an odd integer. Then the Nest graph N (4m; 2,m,m+2; 2m−1)
is arc-transitive with vertex stabilizers isomorphic to the symmetric group S3 of order 6.

Proof. We only give a sketch of the proof and leave the details to the reader. Lemma 4
implies that τ from (2) is an automorphism of Γ = N (4m; 2,m,m+ 2; 2m− 1). It can be
verified that the permutation ϕ of the vertex set of Γ given by the rule

uiϕ =

{
u−i ; i even
v−i+1 ; i odd,

viϕ =

{
u−i+1 ; i even
v−i+2m+2 ; i odd,

where i ∈ Zn, is an automorphism of Γ and that the group 〈ρ, ϕ〉 has just two orbits on the
set of all edges of Γ, one of which coincides with the set of all m- and all (m+ 2)-spokes.
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The nature of the action of τ thus yields that the group G = 〈ρ, ϕ, τ〉 acts arc-transitively
on Γ. It remains to be proved that the pointwise stabilizer of the arc (u0, u1) in Aut(Γ) is
trivial and that the stabilizer of u0 is not abelian. To see this we first verify that there are
four 4-cycles through u0u1 in Γ, one through (v2, u0, u1), one through (vm+2, u0, u1), and
two through (u−1, u0, u1). Any automorphism ψ, fixing both u0 and u1 must thus also fix
u−1, and then an inductive argument shows that ψ fixes each ui. Since the neighbors of
vi of the form uj are ui, ui−2, ui−m and ui−m−2 which are all fixed, vi has to be mapped to
a common neighbor of these four vertices, which is easily seen to be just vi, and so each
vi must also be fixed by ψ, implying that ψ is the identity. Since ϕ and τ both fix u0 but
u1ϕτ = vm+2 while u1τϕ = v2, this shows that the stabilizer of u0 in Aut(Γ) is isomorphic
to S3.

The classification of all edge-transitive Nest graphs seems to be a rather difficult
problem. One could try to build on the general method that was used to classify all edge-
transitive Rose Window graphs [11] and all edge-transitive Tabačjn graphs [2]. The key
idea in those two classifications is to first bound the vertex stabilizers of such graphs, then
apply a nice result of Lucchini from 1998 (see for instance [9, Theorem 2.20]) to conclude
that for large enough graphs the subgroup H, generated by the corresponding semiregular
automorphism with two orbits, has nontrivial core in the full automorphism group of the
graph. One then identifies the (small) graphs for which H does have trivial core in the
automorphism group after which all edge-transitive cyclic covers of these core-free graphs
need to be classified. In addition, the possibility that the quotient graph with respect to
the core of H might reduce the valence of the graph needs to be considered (which of course
cannot occur in the case of 5-valent graphs). Even though this approach might still work
for Nest graphs, there are some serious obstacles. First of all, unlike the case of valence 5
there is no theoretical result giving a general bound for the order of vertex-stabilizers of
a 6-valent vertex- and edge-transitive graph while we have not been able to find an easy
combinatorial argument to bound the orders of stabilizers of Nest graphs. Second, one
can check that the subgroup 〈ρ〉 is core-free in the full automorphism group for all four
of the graphs N (5; 1, 2, 3; 2), N (8; 1, 3, 4; 3), N (8; 1, 2, 5; 3) and N (12; 2, 4, 8; 5), while for
most of the other small examples the core is of index 2 in 〈ρ〉. Thus, if one would want to
use the above mentioned method, all edge-transitive cyclic covers of the above mentioned
four graphs would need to be determined as well as all edge-transitive cyclic covers of the
‘doubled’ complete graph K4 (that is the multigraph with 4 vertices and a pair of parallel
edges joining each pair of different vertices).

Instead of trying to overcome these difficulties, we decided to refrain from attempting
to classify all edge-transitive Nest graphs and to show instead that there are infinite
subfamilies of such graphs (arc-transitive, as well as half-arc-transitive and with very
interesting properties on their own) and to direct the focus to Question 1. Furthermore,
using mostly combinatorial methods, we at least classify the edge-transitive Nest graphs
of girth 3. We state the obtained classification in the following theorem. As it turns out,
even obtaining the classification with this additional restriction is not trivial. Its proof is
given in the next section.
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Theorem 8. Let Γ be a Nest graph of girth 3. Then Γ is edge-transitive if and only if
one of the following holds:

(i) Γ is isomorphic to one of the graphs N (4; 1, 2, 3; 1), N (5; 1, 2, 3; 2), N (8; 1, 2, 5; 3),
N (8; 1, 3, 4; 3), N (10; 1, 3, 4; 3) or N (12; 1, 3, 10; 5).

(ii) Γ ∼= N (n; 1, 2m+1, 2m+2; 1), where m > 1 and n is an even divisor of 2(m2+m+1)
with n > 4m+ 2.

(iii) Γ ∼= N (2m; 1, b, b + m + 1;m − 1), where b = 4b0 − 1 for some b0 > 1 and m is a
divisor of b2 + 3 with m ≡ 2 (mod 4) and b < 2m.

Furthermore, Γ is half-arc-transitive if (iii) holds and is arc-transitive otherwise.

4 Edge-transitive Nest graphs of girth 3

Throughout this section let Γ = N (n; a, b, c; k) be an edge-transitive Nest graph of girth
3. Without loss of generality we may assume that 1 6 a < b < c. Observe that the
edge-transitivity implies that each edge of Γ lies on the same number λ = λ(Γ) of 3-cycles
of Γ. Since n > 4, each 3-cycle of Γ containing the edge u0u1 consists of the edge u0u1
and two spokes, and so the number λ is equal to the number of occurrences of the number
1 in the list [a, b− a, c− b, n− c]. Thus 1 6 λ 6 4. We first deal with the two easy cases
when λ > 3.

Lemma 9. Let Γ = N (n; a, b, c; k) be edge-transitive of girth 3. Then λ = 4 if and only
if Γ ∼= N (4; 1, 2, 3; 1) ∼= K2,2,2,2

∼= K8 − 4K2 (the complete graph on 8 vertices minus a
perfect matching), and λ = 3 if and only if Γ ∼= N (5; 1, 2, 3; 2) (the complement of the
Petersen graph).

Proof. By the above remarks a = b−a = c−b = n−c = 1 must hold for λ = 4 to hold. It
is now clear that Γ = N (4; 1, 2, 3; 1) (replacing k by n− k if necessary). Since the graph
N (4; 1, 2, 3; 1) ∼= K2,2,2,2 is clearly edge-transitive, this proves the first part of the lemma.

Suppose now that λ = 3. By Lemma 5 we can assume a = 1, b = 2 and c = 3
with n > 5. None of the neighbors u−2 and u−3 of v0 is a neighbor of u0 (recall that
n > 5), and so the spoke u0v0 can only be a part of three 3-cycles if both vk and v−k are
neighbors of u0 and are thus contained in {v1, v2, v3}. Since k 6= −k this clearly implies
that n = 5 and k ∈ {2, 3}. Thus Γ ∼= N (5; 1, 2, 3; 2), which is clearly edge-transitive,
being the complement of the Petersen graph.

The remaining cases λ = 2 and λ = 1 require more detailed consideration. We deal
with each of these cases in a separate subsection.

4.1 The case λ = 2

Throughout this subsection we assume Γ = N (n; a, b, c; k) is an edge-transitive Nest graph
of girth 3 with λ = 2. Observe that in this case for any pair of adjacent vertices x and
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y the vertex x has three neighbors which are not neighbors of y nor are y itself, with the
same holding for y. In some of the arguments it will prove useful to consider the subgraph
of Γ induced on these six vertices, that is on (Γ(x) ∪ Γ(y)) \ ({x, y} ∪ (Γ(x) ∩ Γ(y))). We
call this subgraph the local structure with respect to the edge xy and denote it by Γxy.
Moreover, the subgraph of Γxy induced on the three neighbors of x contained in Γxy, will
be denoted by Γxxy.

Lemma 5 and the remarks at the beginning of Section 4 imply that we have two
essentially different possibilities. Either a = 1, b = 2 and 4 6 c 6 n − 2, or a = 1 and
3 6 b = c − 1 6 n − 3. We first prove that there is only one graph satisfying the first
possibility.

Lemma 10. The graph Γ = N (n; 1, 2, c; k) is edge-transitive with λ = 2 if and only if
Γ ∼= N (8; 1, 2, 5; 3) which is in fact arc-transitive.

Proof. It is easy to verify that N (8; 1, 2, 5; 3) is indeed arc-transitive with λ = 2. For
the converse suppose that Γ = N (n; 1, 2, c; k) is edge-transitive with λ = 2. Observe
that in this case k > 1 since otherwise the edge u0v1 would lie on at least three 3-cycles.
Moreover, for the edge u0u1 to lie on two 3-cycles, 3 < c < n − 1 has to hold, implying
n > 6. Thus {c, c− 1, c− 2}∩ {1,−1} = ∅, and so for the edge u0vc to lie on two 3-cycles
both vc+k and vc−k must be neighbors of u0. It follows that c + k and c − k are two
different members of the set {0, 1, 2}, implying that 2c ∈ {1, 2, 3} and 2k ∈ {±1,±2}. In
fact, since we can assume k < n/2, this implies 2k ∈ {−1,−2}.

A similar consideration of the possible 3-cycles containing u0v0 reveals that precisely
one of the vertices vk, v−k must be adjacent to u0 and is thus contained in {v1, v2, vc}.
Since k > 1 we either have k = 2 or −k = c (recall that k < n/2, while since 2c ∈ {1, 2, 3}
we get c > n/2). If k = 2, then the fact that n > 6 and 2k ∈ {−1,−2} yields n = 6 and
c = 4, but then the edge u0v0 lies on three 3-cycles, a contradiction. Thus k 6= 2 (implying
n > 7), and so k = −c. Now, if n is odd then k = (n − 1)/2 and c = (n + 1)/2, but
then k > 2 implies that the edge u0v2 lies on just one 3-cycle, a contradiction. It follows
that n is even, say n = 2n0, and k = n0 − 1, c = n0 + 1. Recall that this implies n > 8
and consider the local structure Γu0v1 . Since k > 3 the subgraph Γu0u0v1 has one vertex of
valence 2 (namely vn0+1) and two vertices of valence 1 (namely v0 and v2). Similarly the
vertex un0 is the unique vertex of Γv1u0v1 of valence 2 and moreover, un0 ∼ vn0+1. Now,
edge-transitivity of Γ implies that the same situation must occur in the local structure
Γu0u1 . Here the two vertices of valence 2 in Γu0u0u1 and Γu1u0u1 are v0 and v3, respectively,
and consequently v0 ∼ v3. This implies k = 3, and so n = 8. Thus Γ ∼= N (8; 1, 2, 5; 3), as
claimed.

We now classify the edge-transitive Nest graphs N (n; a, b, c; k) with a = 1 and 3 6
b = c− 1 6 n− 3. We first show that, except for two small exceptions, k = 1 must hold
in this case.

Lemma 11. Let Γ = N (n; 1, b, b + 1; k) be edge-transitive with 3 6 b 6 n − 3 and
k < n/2. Then either k = 1 or Γ is isomorphic to one of the graphs N (8; 1, 3, 4; 3) and
N (10; 1, 3, 4; 3) which are both arc-transitive.
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Proof. Observe that the assumptions on the parameters imply that the edge u0u1 lies
on two 3-cycles, so that λ = 2. Suppose k > 1 and let us prove that in this case Γ is
isomorphic to one of the two graphs from the statement of the lemma. By Lemma 5 we
have Γ ∼= N (n; 1,−b,−b + 1; k), and so we can assume b 6 n/2. Thus, b > 3 implies
n > 6. In fact, since the edge v0v2 lies on three 3-cycles in the graph N (6; 1, 3, 4; 2), we
have n > 7.

Observe that u−1 is a common neighbor of u0 and v0, and so λ = 2 implies that these
two vertices have exactly one more common neighbor. Consequently, |{u1, v1, vb, vb+1} ∩
{vk, v−k, u−b, u−b−1}| = 1. Since b 6 n/2 and n > 7, we have that 1 /∈ {−b,−b− 1}, and
so 1 < k < n/2 implies |{b, b + 1} ∩ {k,−k}| = 1. A similar argument considering the
possibilities for the common neighbor of u0 and v1, other than u1, yields |{b, b+ 1}∩{1 +
k, 1− k}| = 1.

We claim that b = k must hold. It is easy to see that since k < n/2 and b 6 n/2 the
only other possibility is that n = 2m is even and b = m, k = m − 1. To see that this is
not possible consider the local structures Γu0u1 and Γu0v0 . One can verify that there are
no edges between the vertices of Γu0u0u1 and Γu1u0u1 (recall that n > 7). On the other hand
v1 ∈ Γu0u0v0 is adjacent to um ∈ Γv0u0v0 , contradicting the edge-transitivity of Γ.

We thus have k = b, that is Γ = N (n; 1, b, b+ 1; b). Consider the local structure Γu0u1
and let µ be the number of edges between the vertices of Γu0u0u1 and those of Γu1u0u1 . It is
easy to see that the assumptions imply µ = 0, except for the case when at least one of
b = 3 (in which case u2 ∼ vb and u−1 ∼ v2) or 2b+ 2 = 0 (in which case v0 ∼ vb+2) holds.
Thus µ ∈ {0, 1, 2, 3}. Since the vertex u−b of Γv0u0v0 is adjacent to the vertex v1 of Γu0u0v0 ,
edge-transitivity of Γ implies µ > 0. Moreover, if 2b + 2 = 0 then the vertices v−b and
u−b−1 of Γv0u0v0 are adjacent to u1 and vb+1 of Γu0u0v0 , respectively, implying that µ > 2. This
implies b = 3, and consequently µ = 3 or µ = 2, depending on whether 2b+2 = 0 holds or
not. If 2b+ 2 = 0 then n = 8 and we get the graph N (8; 1, 3, 4; 3). If however 2b+ 2 6= 0
then the fact that there must be precisely two edges between the vertices of Γu0u0v0 and
Γv0u0v0 implies that precisely one of the vertices v−b, u−b−1 must be adjacent to precisely
one of u1, vb+1. Since b = 3, n > 7 and 2b + 2 6= 0 this can only happen if v−b ∼ vb+1 in
which case 3b+ 1 = 0, that is n = 10, and so Γ = N (10; 1, 3, 4; 3). The arc-transitivity of
the graphs N (8; 1, 3, 4; 3) and N (10; 1, 3, 4; 3) can easily be verified.

In the next two lemmas we classify the edge-transitive Nest graphs of the form
N (n; 1, b, b+ 1; 1) with 3 6 b 6 n− 3. Recall that we can assume b 6 n/2.

Lemma 12. Let Γ = N (n; 1, b, b + 1; 1) be edge-transitive with 3 6 b 6 n/2. Then
b = 2m + 1 for some m > 1 and n is an even divisor of 2(m2 + m + 1). Moreover, Γ
is arc-transitive and its automorphism group acts regularly on its arc-set, except for the
graph N (6; 1, 3, 4; 1), which is arc-transitive with vertex stabilizers of order 12.

Proof. By assumption, n > 6. Consider now the local structure Γu0u1 . Since b 6= 1 the
subgraph Γu0u0u1 is the 2-path (v0, u−1, vb) and the subgraph Γu1u0u1 is the 2-path (v2, u2, vb+2).
Due to the edge-transitivity of Γ, a similar situation occurs for any pair of adjacent vertices
x and y of Γ, that is, if x ∼ y then each of Γxxy and Γyxy is a 2-path. We denote the internal
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vertex of the 2-path Γyxy by s(x, y). Thus s(u0, u1) = u2 and s(u1, u0) = u−1. It is easy to
verify that for all i ∈ Zn the following hold:

s(ui, ui+1) = ui+2, s(ui, ui−1) = ui−2, s(ui, vi) = ui−b−1, s(vi, ui) = vi+b+1,
s(ui, vi+1) = ui+1−b, s(vi, ui−1) = vi+b−1, s(ui, vi+b) = ui+b−1, s(vi, ui−b) = vi−b+1,

s(ui, vi+b+1) = ui+b+1, s(vi, ui−b−1) = vi−b−1, s(vi, vi+1) = vi+2, s(vi, vi−1) = vi−2.
(3)

Observe that this gives rise to specific natural closed walks in Γ defined as follows.
Starting from a given arc (x, y) of Γ we then follow the vertices s(x, y), s(y, s(x, y)), etc.
until we eventually come back to the arc (x, y). We call the corresponding closed walk
the s-walk containing (x, y). In view of (3), the s-walk containing (u0, u1) is the n-cycle
(u0, u1, u2, . . . , un−1). Since c = b + 1 = a + b, Lemma 4 implies that Γ is arc-transitive,
and so all s-walks in Γ are n-cycles.

Now, let ϑ ∈ Aut(Γ) be an automorphism mapping the arc (u0, u1) to the arc (u0, v0).
Then ϑ maps the n-cycle (u0, u1, . . . , un−1) to the s-walk containing (u0, v0). In view of
(3) the latter starts with (u0, v0, u−b−1, v−b−1, u2(−b−1), v2(−b−1), . . .), and so n must be even
and

u2iϑ = u−i(b+1) and u2i+1ϑ = v−i(b+1), where i ∈ Zn,
must hold. In particular, 〈b+1〉 is the index 2 subgroup of Zn, that is 〈b+1〉 = 〈2〉. Thus
b = 2m+ 1 is odd and the vertices of the form vi are mapped to the vertices of the form
uj and vj with j odd.

Similarly, there exists an automorphism ξ of Γ, mapping the arc (u0, u1) to the arc
(u0, v1). A similar argument to the above shows that

u2iξ = ui(1−b) and u2i+1ξ = vi(1−b)+1, where i ∈ Zn.

It follows that 〈b − 1〉 = 〈2〉 in Zn, which together with 〈b + 1〉 = 〈2〉 implies that
n ≡ 2 (mod 4). Now, since v0 is adjacent to both u0 and u−1, its image under ϑ is
a common neighbor of u0 and vb+1, and so v0ϑ ∈ {u1, vb}. If v0ϑ = u1, then the fact
that v1 is a common neighbor of u0, u1 and v0 implies that v1ϑ = v1, and so ϑ fixes the
entire s-walk containing (u0, v1) pointwise. But then (3) implies that ϑ fixes each uj with
j ∈ 〈b−1〉 = 〈2〉, and so u2 = u2ϑ = u−b−1, implying that b+3 = 0. As n 6 n/2 we get the
graph Γ = N (6; 1, 3, 4; 1) which is easily seen to be arc-transitive with vertex stabilizers
of order 12. Moreover, setting m = 1 we have 3 = b = 2m+1 and 6 = n = 2(m2 +m+1).

We can thus assume that v0ϑ = vb and consequently v1ϑ = u−1. It follows that u1−bϑ =
s(u0, v1)ϑ = s(u0, u−1) = u−2. However, since u1−b = u−2m we also have u1−bϑ = um(b+1),
and so m(b+ 1) + 2 = 0, that is 2(m2 +m+ 1) = 0. Thus Γ = N (n; 1, 2m+ 1, 2m+ 2; 1)
where n is an even divisor of 2(m2 +m+ 1) and b = 2m+ 1 6 n/2.

For the last part of the lemma it suffices to show that unless Γ = N (6; 1, 3, 4; 1),
the only automorphism of Γ fixing the arc (u0, u1) is the identity. Now, since any such
automorphism necessarily fixes the entire s-walk containing (u0, u1) pointwise, it fixes
each ui. But as vi is adjacent to each of the fixed vertices ui, ui−1, ui−b, ui−b−1, it is now
clear that the only way vi could be moved is if it was mapped to vi−b in which case 2b = 0
would have to hold. But then Γ = N (6; 1, 3, 4; 1), as claimed.
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Lemma 13. For every m > 1 and every even divisor n of 2(m2 +m+1) with n > 4m+2
the graph N (n; 1, 2m+ 1, 2m+ 2; 1) is arc-transitive with λ = 2.

Proof. Since b = 2m+ 1 > 3 and c = 2m+ 2 6 n− 2 it is clear that the edge u0u1 lies on
precisely two 3-cycles of the graph Γ = N (n; 1, 2m + 1, 2m + 2; 1). Moreover, Lemma 4
implies that we only need to prove that Γ is edge-transitive. To this end we consider the
permutation ϑ of V (Γ), defined by the rule

u2iϑ = u−i(b+1), u2i+1ϑ = v−i(b+1), v2iϑ = vb−i(b+1), v2i+1ϑ = u−1−i(b+1) for all i ∈ Zn.

Since gcd(b+ 1, n) divides gcd(2m+ 2, 2(m2 +m+ 1)) = 2, it is clear that 〈b+ 1〉 = 〈2〉
in Zn, and so ϑ is a bijection. To prove that it also preserves adjacency in Γ, we consider
its action on the edges of the six different types (rim, hub, spokes). Since the image of a
vertex depends on the parity of its index we need to consider twelve different possibilities.

We consider six of them and leave the remaining six to the reader. For instance, the rim
edges u2iu2i+1 and u2i+1u2i+2 are mapped to the 0-spoke ui(−b−1)vi(−b−1) and the (b + 1)-
spoke vi(−b−1)u(i+1)(−b−1), respectively. Similarly, the 0-spokes u2iv2i and u2i+1v2i+1 are
mapped to the b-spoke ui(−b−1)vb+i(−b−1) and the 1-spoke vi(−b−1)u−1+i(−b−1), respectively.
Finally, since m(b + 1) = m(2m + 2) = 2(m2 + m + 1) − 2 = −2 in Zn, the b-spokes
u2iv2i+b and u2i+1v2i+1+b are mapped to the rim edge ui(−b−1)ui(−b−1)+1 and the hub edge
vi(−b−1)vi(−b−1)+1. Similar considerations show that ϑ also preserves adjacency for the
remaining six possible types of edges, and so ϑ ∈ Aut(Γ). The nature of its action
reveals that 〈ρ, ϑ〉 acts transitively on the edge-set of Γ, and so Lemma 4 implies that Γ
is arc-transitive.

Combining together Lemmas 10–12 allows us to complete the classification of the
edge-transitive Nest graphs of girth 3 with λ = 2.

Proposition 14. Let Γ = N (n; a, b, c; k) be a Nest graph of girth 3. Then Γ is edge-
transitive with λ = 2 if and only if Γ is isomorphic to one of the following graphs:

• N (8; 1, 2, 5; 3);

• N (8; 1, 3, 4; 3);

• N (10; 1, 3, 4; 3);

• N (n; 1, 2m+ 1, 2m+ 2; 1), where m > 1 and n is an even divisor of 2(m2 +m+ 1)
with n > 4m+ 2.

Moreover, all of these graphs are arc-transitive.

4.2 The case λ = 1

Throughout this subsection we assume Γ = N (n; a, b, c; k) is an edge-transitive Nest graph
of girth 3 with λ = 1. In this case each edge of Γ lies on a unique 3-cycle of Γ, and so the
set of 3-cycles of Γ decomposes the edge-set of Γ. The subgroup R = 〈ρ〉, where ρ is as
in (1), thus has two orbits of length n in its action on the set of all 3-cycles of Γ.
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In view of Lemma 5 we can assume a = 1, 3 6 b, b+ 2 6 c 6 n− 2 and b− 1 6 n− c.
Therefore, b 6 (n − 1)/2. One of the two R-orbits of 3-cycles thus consist of all the
3-cycles (ui, ui+1, vi+1), i ∈ Zn. Consequently, the other R-orbit of 3-cycles consists of
3-cycles having one hub edge, a b-spoke and a c-spoke. Thus c−b equals either k or −k in
Zn. With no loss of generality we can assume c− b = k (note however that we can now no
longer assume k < n/2). The R-orbit of 3-cycles containing a hub edge then consists of
all the 3-cycles (ui, vi+b, vi+b+k). Using the fact that 3 6 b 6 (n− 1)/2 and b+ k 6 n− 2
one can easily check that the assumption that (u−1, u0, v0) is the only 3-cycle containing
u0v0, as well as the only 3-cycle containing u−1v0, implies

2 6 k 6 n− 5 and b /∈ {−2k, 1− 2k,−k, 1− k, k, k + 1}. (4)

We start with the following straightforward but useful observation.

Lemma 15. Let Γ = N (n; 1, b, b+k; k), where 3 6 b 6 (n−1)/2, b+k 6 n−2 and b and
k satisfy (4), be edge-transitive. Then for any 3-cycle of Γ there exists an automorphism
of Γ cyclically permuting its vertices.

Proof. Since the edge u0u1 lies on just one 3-cycle, edge-transitivity implies that λ = 1.
The claim thus clearly holds if Γ is arc-transitive. If however it is not arc-transitive, then
edge-transitivity implies it is half-arc-transitive. Since no automorphism of a half-arc-
transitive graph can interchange a pair of adjacent vertices it is thus clear that for any of
the two natural orientations of the edges of Γ, induced by the action of Aut(Γ), all of the
3-cycles are directed, and so we can again find an appropriate automorphism.

In the remainder of the paper we will say that a 2-path is an induced 2-path if its
endvertices are not adjacent. In other words, induced 2-paths are the 2-paths that do not
lie on a 3-cycle.

We now identify four R-orbits of induced 5-cycles of Γ (note that a 5-cycle is induced
if and only if all of its 2-paths are induced). The representatives of the four R-orbits,
whose members are said to be of type g.1, g.2, g.3 and g.4, respectively, are

(u0, v1, u1−b, u−b, v0), (u0, v1, u1−b−k, u−b−k, v0),
(u0, vb+k, uk, vk, v0) and (u0, vb+k, uk, vk+1, v1),

respectively. Using (4) it is easy to verify that these 5-cycles are all induced. The 5-cycles
of the above four R-orbits will be called generic. Observe that each spoke of Γ lies on four
different generic 5-cycles while each rim and each hub edge lies on two generic 5-cycles.
Since Γ is edge-transitive this implies that Γ must have some non-generic induced 5-cycles
as well. We can in fact prove more but before stating the next lemma we introduce some
notation. For a cycle C of Γ and consecutive vertices x and y on C we let sC(x, y) be the
successor of y on C when C is traversed in the direction from x to y. Thus, if C is the
generic 5-cycle of type g.1, containing the edge u0u1, then sC(u0, u1) = vb+1.

Lemma 16. Let Γ be as in Lemma 15. Then each edge of Γ lies on at least five induced
5-cycles and each induced 2-path of Γ lies on at least one induced 5-cycle.
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Proof. Observe that for the four generic 5-cycles containing u0v0, say Ci, where 1 6 i 6 4,
the successors sCi

(u0, v0) are all different. Now, take ψ ∈ Aut(Γ) such that it maps the
arc (u0, v0) to (v0, u−1) (which exists due to Lemma 15). Since for an induced cycle C and
consecutive vertices x and y contained in C, sC(x, y) cannot be the common neighbor of
x and y, it follows that for each x ∈ {u−2, v−1, vb−1, vb+k−1} there is an induced 5-cycle C
containing the edge v0u−1 such that sC(v0, u−1) = x. However, there is no generic 5-cycle
through the 2-path (u−2, u−1, v0), and so there must exist a non-generic induced 5-cycle
containing it. The edge u−1v0 thus lies on at least five induced 5-cycles, proving the first
claim of the lemma (recall that Γ is edge-transitive). Since the successors sC′i(u−1, v0)
for the four generic 5-cycles C ′i through u−1v0 are also all different, this shows that each
induced 2-path, containing the edge u−1v0, lies on at least one induced 5-cycle, which also
proves the second claim of the lemma.

In the remainder of this section a careful investigation of the induced 5-cycles of Γ
is undertaken. Before doing so we first prove that but for one exception the graph Γ
contains no 4-cycles.

Lemma 17. Let Γ be as in Lemma 15. Then the graph Γ contains no 4-cycles unless
Γ ∼= N (12; 1, 3, 10; 5).

Proof. Suppose Γ does contain 4-cycles. Since each edge of Γ lies on a unique 3-cycle all
4-cycles are induced. Observe that a 4-cycle contains zero, two or four spokes (we say that
a 4-cycle is a zero-spoke, a two-spoke or a four-spoke 4-cycle, respectively), where the first
option occurs if and only if 4k = 0 in Zn. Let c4 denote the number of 4-cycles through
any given edge of Γ (recall that Γ is edge-transitive) and for each i ∈ {0, 2, 4} let Ni be
the number of 4-cycles of Γ containing i spokes. We now count the pairs of a 4-cycle and
an edge contained in it, and also the pairs of a 4-cycle and a spoke contained in it. Doing
this in two different ways we obtain (note that Γ has 4n spokes and 2n non-spokes)

6nc4 = 4(N0 +N2 +N4) and 4nc4 = 2N2 + 4N4.

It follows that N2 + 2N0 = nc4 = 2N4 − 2N0. Observe that the R-orbits of two-spoke
4-cycles are all of length n, while an R-orbit of a four-spoke 4-cycle is of length n or n/2.
Thus 2N4 is divisible by n, and so nc4 = 2N4 − 2N0 implies that N0 = 0 (note that if
N0 6= 0 then N0 = n/4). This finally proves that

nc4 = N2 = 2N4. (5)

In particular, N4 6= 0. We now analyze the possible four-spoke 4-cycles. To any such
4-cycle a code of length 4 can be assigned in the following way. We start traversing the
cycle at a vertex of the form ui and then for each traversed edge put a 0, 1, b or c in
the code, depending on whether we traversed a 0-, 1-, b- or (b + k)-spoke, respectively.
We claim that none of the 2-paths (ui, vi+b+k, ui+k) or (vi, ui, vi+1) can lie on a four-spoke
4-cycle. Suppose to the contrary that C is a four-spoke 4-cycle containing the 2-path
(ui, vi+b+k, ui+k). Since C is an induced 4-cycle we must have sC(vi+b+k, ui) ∈ {vi, vi+1}
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and sC(vi+b+k, ui+k) ∈ {vi+k, vi+k+1}, implying that one of i = i+ k + 1 and i+ 1 = i+ k
holds, which contradicts (4). A similar argument shows that the 2-path (vi, ui, vi+1) also
cannot lie on a four-spoke 4-cycle. This shows that in the code of any four-spoke 4-cycle
each 0 or 1 is followed by a b or c and vice versa. We can thus assume that the first
symbol of the code is a 0 or a 1. Up to 2-step cyclic rotations the possible codes are
then (0, b, 0, b), (0, b, 0, c), (0, b, 1, b), (0, b, 1, c), (0, c, 0, c), (0, c, 1, b), (0, c, 1, c), (1, b, 1, b),
(1, b, 1, c) and (1, c, 1, c). Since 2b 6 n − 1 none of the codes (0, b, 0, b), (0, b, 1, b) and
(1, b, 1, b) is possible. In the following table we list the remaining seven possible codes, the
corresponding necessary and sufficient conditions for the existence of the corresponding
four-spoke 4-cycles and the lengths of the corresponding R-orbits of 4-cycles. We name
the R-orbits by O1-O7.

name code condition length
O1 (0, b, 0, c) 2b+ k = 0 n
O2 (0, b, 1, c) 2b+ k − 1 = 0 n
O3 (0, c, 0, c) 2b+ 2k = 0 n/2
O4 (0, c, 1, b) 2b+ k − 1 = 0 n
O5 (0, c, 1, c) 2b+ 2k − 1 = 0 n
O6 (1, b, 1, c) 2b+ k − 2 = 0 n
O7 (1, c, 1, c) 2b+ 2k − 2 = 0 n/2

Using (4) we find that out of the six conditions from the table the only two that can
possibly hold simultaneously are the ones for O1 and O7. If this is indeed the case then
N4 = 3n/2, and so (5) implies c4 = 3 and N2 = 3n. Moreover, n is even, k = 2 and
b = n/2− 1. This implies that (u0, u1, u2, vn/2+1) and (u0, u1, v2, v0) are both (two-spoke)
4-cycles, implying that their R-orbits, together with O1 and O7, provide the three 4-cycles
through each rim edge, each 0-spoke and each (b+k)-spoke, while they only provide two 4-
cycles through each 1-spoke and each b-spoke, and only one 4-cycle through each hub edge.
The remaining R-orbit of (two-spoke) 4-cycles thus consists of 4-cycles containing two
consecutive hub edges, a 1-spoke and a b-spoke. Since the 4-cycles must be induced, they
are of the form (ui, vi+1, vi+3, vi+5) with n/2 − 1 = b = 5. But then Γ = N (12; 1, 5, 7; 2),
which is not edge-transitive, as can easily be verified. It follows that precisely one of the
conditions from the above table holds, implying that N4 ∈ {n/2, n, 2n}. We now analyze
each of these three possibilities.

Case 1: N4 = n/2.
In this case one of 2b + 2k = 0 and 2b + 2k − 2 = 0 holds, and so (4) implies that n is
even and one of b+ k = n/2 and b+ k = n/2 + 1 holds. Moreover, (5) implies c4 = 1 and
N2 = n, so that a unique R-orbit of two-spoke 4-cycles exists. If b + k = n/2, then the
fact that the 4-cycles of O3 only contain 0- and (b + k)-spokes implies that the 4-cycle
containing u0u1 must be (vb, u0, u1, v2) with b = k + 2 (recall that it is induced). Thus
2k+ 2 = n/2, implying that n = 4m for some integer m. Then k = m− 1 and b = m+ 1,
so that Γ = N (4m; 1,m+ 1, 2m;m− 1). If however b+ k = n/2 + 1, a similar argument
shows that n = 4m, b = m and k = m + 1, so that Γ = N (4m; 1,m, 2m + 1;m + 1).
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However, as we now show, none of these graphs is edge-transitive. Suppose that Γ =
N (4m; 1,m + 1, 2m;m − 1) where m > 3 (recall that (4) holds). Let ψ ∈ Aut(Γ) be an
automorphism mapping the arc (u−1, u0) to (v1, u0) (which exists by Lemma 15 since we
have ρ from (1)). Then ψ fixes setwise the 4-cycle (vm, u−1, u0, v1), and so it fixes vm and
interchanges u−1 with v1. It follows that it also interchanges the common neighbor v0 of
u−1 and u0 with the common neighbor u1 of v1 and u0. This implies that ψ interchanges
the unique 4-cycle (u0, v0, u2m, v2m) through u0v0 with the unique 4-cycle (u0, u1, v2, vm+1)
through u0u1. In particular, it interchanges v2m with vm+1 and u2m with v2. Moreover,
it interchanges the unique 4-cycle (u1, v1, u2m+1, v2m+1) through u1v1 with the unique 4-
cycle (v0, u−1, u−2, vm−1) through v0u−1, and so it interchanges u2m+1 with u−2 and v2m+1

with vm−1. But then the common neighbor u2m of u2m+1 and v2m+1 must be mapped to
v2m−2, implying that 2m − 2 = 2, which contradicts m > 3. A similar contradiction can
be obtained if Γ = N (4m; 1,m, 2m+ 1,m+ 1).

Case 2: N4 = n.
In this case one of 2b + k = 0, 2b + 2k − 1 = 0 and 2b + k − 2 = 0 holds and (5)
implies c4 = 2 and N2 = 2n, so that there are two R-orbits of two-spoke 4-cycles. The
arguments in each of the three possibilities are similar. Suppose first that 2b + k = 0,
so that 4-cycles from O1 exist. Then for each i ∈ Zn the two 4-cycles of Γ containing
uivi are in O1. The two 4-cycles C and C ′ through u1v1 have sC(u1, v1) 6= sC′(u1, v1)
and sC(v1, u1) ∼ sC′(v1, u1). Letting ψ ∈ Aut(Γ) be an automorphism mapping (u1, v1)
to (u0, u1) we thus have that sCψ(u0, u1) 6= sC′ψ(u0, u1) and sCψ(u1, u0) ∼ sC′ψ(u1, u0).
As there is no 4-cycle containing (v0, u0, u1) (since both that contain u0v0 are in O1)
we have {sCψ(u1, u0), sC′ψ(u1, u0)} = {vb, vb+k}, and so Cψ and C ′ψ belong to the two
different R-orbits of two-spoke 4-cycles. It follows that the 4-cycles from each of these
two orbits contain one 1-spoke and one hub edge each (recall that c4 = 2). But then
sCψ(u0, u1) = v2 = sC′ψ(u0, u1), a contradiction. For the possibility 2b + 2k − 1 = 0 the
two 4-cycles of Γ containing uivi+b+k are both in O5 while for the possibility 2b+k−2 = 0
the two 4-cycles of Γ containing uivi+1 are both in O6. In both cases a similar argument
as above applies. We leave the details to the reader.

Case 3: N4 = 2n.
In this case 2b + k − 1 = 0 holds, so that we have the four-spoke 4-cycles from R-orbits
O2 and O4, while (5) implies c4 = 4 and N2 = 4n. Let C2 ∈ O2 and C4 ∈ O4 be the four-
spoke 4-cycles through u−1v0 and let ψ ∈ Aut(Γ) be an automorphism mapping (u−1, v0)
to (v0, u0). Observe that sC2(u−1, v0) � sC4(u−1, v0), while sC2(v0, u−1) ∼ sC4(v0, u−1).
Therefore, sC2ψ(u0, v0) ∼ sC4ψ(u0, v0) holds. Note however, that for the 4-cycles C ′2 ∈ O2

and C ′4 ∈ O4 through u0v0 we have sC′2(u0, v0) � sC′4(u0, v0), showing that there must be
a two-spoke 4-cycle C through u0v0 so that sC(u0, v0) ∈ {vk, v−k}. Now, observe that the
rim and hub edges only lie on the two-spoke 4-cycles which either contain one rim and
one hub edge or two rim edges or two hub edges. It thus follows that a 4-cycle with two
consecutive rim edges exists if and only if a 4-cycle with two consecutive hub edges exists.

If there is no 4-cycle with two rim edges then the spokes and non-spokes alternate on
each two-spoke 4-cycle, and so for the two two-spoke 4-cycles through u0v0 (recall that
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c4 = 4), which we denote by C ′ and C ′′, we have sC′(v0, u0) = sC′′(v0, u0) = u1 (recall
that the 4-cycles are induced), which is not adjacent to any of sC′2(v0, u0) or sC′4(v0, u0).
Applying ψ−1 to C ′ and C ′′ we thus see that since sC2(u−1, v0) � sC4ψ(u−1, v0) one of
sC′ψ−1(u−1, v0) and sC′′ψ−1(u−1, v0) must coincide with one of sC2(u−1, v0) and sC4(u−1, v0),
implying there is another 4-cycle (not from O2 or O4) containing two consecutive spokes,
a contradiction.

This shows that a 4-cycle C containing (u0, u1, u2) must exist. Since C is induced, it
follows that sC(u1, u0) ∈ {v0, vb, vb+k} and sC(u1, u2) ∈ {v3, vb+2, vb+k+2}. In view of (4)
it thus follows that one of b + k + 2 = 0, b = 3 and k = 2 holds. Since 2b + k − 1 = 0
the first two conditions are equivalent and so by (4) precisely one of b = 3 and k = 2
holds. Suppose first that k = 2, in which case 2b + 1 = 0, forcing n = 2b + 1 and
Γ = N (2b + 1; 1, b, b + 2; 2). Then C = (u0, u1, u2, bb+2), Cρ

−1 and (u0, u1, v2, v0) are
4-cycles of Γ through u0u1, and so the fourth one, say C ′, must also contain one hub edge.
Then sC′(u1, u0) ∈ {v0, vb, vb+2} and sC′(u0, u1) ∈ {v2, vb+1, vb+3} and then b > 4 implies
that b = 4 with n = 9 must hold, which however is also not possible since we then have
five 4-cycles through u0u1.

This leaves us with the possibility that k > 2 and b = 3, which then implies k+ 5 = 0.
Then C = (u0, u1, u2, v3) and C ′ = (u0, u1, u2, v0) are both 4-cycles of Γ. Now, sC(u2, u1) =
sC′(u2, u1) = u0 is a neighbor of v1 = sC′ρ(u2, u1), and so applying ρ−1ψ−1 we find that the
fourth 4-cycle C ′′ through u0v0 (other than C ′2, C

′
4 and C ′) has sC′′(v0, u0) ∈ {vb, vb+k}.

As also sC(u0, u1) = sC′(u0, u1) = u2 is a neighbor of v2 = sCρ−1(u0, u1) = v2, while in
addition sC′4(u0, v0) = sC′(u0, v0) = u2 is not a neighbor of sC′2(u0, v0), applying ρ−1ψ−1

shows that sC′′(u0, v0) = v−k = v5, forcing C ′′ = (u0, v0, v5, v10) with b + k = 10, that is
n = 12. Therefore, Γ = N (12; 1, 3, 10; 7) ∼= N (12; 1, 3, 10; 5), as claimed.

For the rest of this section we assume Γ is not isomorphic to N (12; 1, 3, 10; 5), so that
Γ has no 4-cycles by Lemma 17. It follows that all 5-cycles of Γ are induced, that is, any
2-path along a 5-cycle is induced. We now investigate the 5-cycles of Γ. Before making
the first few useful observations we fix some notation. We let c5 be the number of 5-cycles
through any given edge of Γ and for each i ∈ {0, 2, 4} we let Ni be the number of 5-cycles
of Γ with i spokes.

Lemma 18. Let Γ be as in Lemma 15 with Γ � N (12; 1, 3, 10; 5). Then the following
hold.

(i) No 3-path of Γ is contained on more than one 5-cycle.

(ii) N4 = 2N2 + 5N0.

(iii) c5 ∈ {5, 10}, unless 5k = 0 in Zn, in which case c5 ∈ {6, 11}.
(iv) Aut(Γ) has more than one orbit on the set of all induced 2-paths of Γ.

Proof. By Lemma 17 the graph Γ has no 4-cycles and so the first claim is clear. Counting
the number of pairs of an edge and a 5-cycle containing it, and the number of pairs of a
spoke and a 5-cycle containing it, respectively, we get

6nc5 = 5(N4 +N2 +N0) and 4nc5 = 4N4 + 2N2, (6)
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which proves claim (ii). Now, observe that N0 6= 0 if and only if 5k = 0 in Zn, in which
case N0 = n/5, while each R-orbit of a two-spoke 5-cycle, as well as of a four-spoke 5-
cycle, is clearly of length n. Thus, if 5k 6= 0, then the right hand side of the first equation
in (6) is divisible by 5n, and so 5 divides c5. If however 5k = 0, then 6c5 ≡ 1 (mod 5),
and so c5 ≡ 1 (mod 5).

Since all 5-cycles are induced, (i) implies that there can be at most four 5-cycles
through any given induced 2-path, and so c5 6 16. Let us inspect the possible 5-cycles
through (u0, vb+k, uk), where we let C3 and C4 be the corresponding generic 5-cycles of
types g.3 and g.4, respectively. Since sC3(vb+k, u0) = v0, sC4(vb+k, u0) = v1, sC3(vb+k, uk) =
vk and sC4(vb+k, uk) = vk+1, it is clear that the only way another 5-cycle C through
(u0, vb+k, uk) can exist is if sC(vb+k, u0) ∈ {u−1, u1} and sC(vb+k, uk) ∈ {uk−1, uk+1}. In
view of (4) the only possibility is that k = 3 and C = (u2, u1, u0, vb+k, uk). In particular,
the 2-path (u0, vb+k, uk) lies on two 5-cycles, unless k = 3 in which case it lies on three
5-cycles. This shows that c5 < 16. A similar argument shows that the 2-path (v0, u0, v1)
also lies on two 5-cycles, unless one of 3k − 1 = 0 and 3k + 1 = 0 holds, in which case
it lies on three 5-cycles. Thus, for c5 = 15 to hold both k = 3 and one of 3k = 1 and
3k = −1 would need to hold, which by (4) is not possible (recall that b 6 (n − 1)/2).
Thus c5 < 15, establishing claim (iii).

Finally, if Aut(Γ) was transitive on the set of all induced 2-paths of Γ then for any
given edge xy of Γ and the four neighbors wi, 1 6 i 6 4, of y, not adjacent to x, the
number of 5-cycles through (x, y, wi) would be the same, and so c5 would be divisible by
4. In view of (iii) this is not possible, and so (iv) holds.

The next lemma will play a central role in the rest of this section. It shows that for any
2-path, having the internal vertex of the form vi and consisting of a b- and a (b+k)-spoke,
there are precisely two 5-cycles through it and none of them contains a rim edge.

Lemma 19. Let Γ be as in Lemma 18. Then k > 3 and the 2-path (u0, vb+k, uk) lies on
precisely two 5-cycles, namely the generic ones of types g.3 and g.4.

Proof. By way of contradiction suppose k = 3. By Lemma 17 the graph Γ has no 4-cycles,
and so none of the conditions from the table in the proof of Lemma 17 can hold, implying
that 2b 6 n − 7. It is not difficult to verify that b > 8 also has to hold (note that (4)
implies b > 5 while for instance if b = 7 the 4-cycle (u0, v7, v4, v1) exists). It follows that
8 6 b 6 (n − 7)/2. Thus n > 23, and consequently 5k 6= 0 in Zn. By Lemma 16 the
2-path (v0, v3, v6) lies on a 5-cycle. However, one can verify that 8 6 b 6 (n−7)/2 implies
that this can only happen if 8 6 b 6 10. One can now verify that the edge u0vb lies
on precisely six different 5-cycles (four generic, the 5-cycle (u0, vb, u−3, u−2, u−1) and one
of (u0, vb, vb−3, vb−6, vb−9) and (u0, vb, vb−3, vb−6, u1), depending on whether b ∈ {9, 10} or
b = 8), contradicting Lemma 18. Thus k > 3 and then the argument from the proof of
Lemma 18 proves that (u0, vb+k, uk) lies on precisely two 5-cycles.

We next prove that the automorphism group of Γ is as small as possible in the sense
that it acts regularly on the set of its arcs or edges, depending on whether Γ is arc-
transitive or half-arc-transitive, respectively. Before proving this we make the following
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notational convention. Let A = Aut(Γ). For a vertex x of Γ the induced action of
the stabilizer Ax on the neighborhood Γ(x) is isomorphic to a subgroup of the group
H = 〈(1 2), (1 3 5)(2 4 6), (1 3)(2 4)〉, where the pairs {1, 2}, {3, 4} and {5, 6} represent
adjacent pairs of vertices. In the case that Γ is half-arc-transitive any of the two A-induced
orientations of the edges of Γ is such that the 3-cycles of Γ are directed, and so it is clear
that the induced action of Ax on Γ(x) is isomorphic to one of the subgroups 〈(1 3 5)(2 4 6)〉
and 〈(1 3)(2 4), (3 5)(4 6)〉. Suppose now that Γ is arc-transitive. By Lemma 18 the action
of A on the set of induced 2-paths of Γ is not transitive, and so the induced action of Ax
on Γ(x) is isomorphic to one of the subgroups 〈(1 3 5 2 4 6)〉, 〈(1 2)(3 6)(4 5), (1 3 5)(2 4 6)〉
and 〈(1 3 5 2 4 6), (3 6)(4 5)〉.

Lemma 20. Let Γ be as in Lemma 18. Then the stabilizer of any arc of Γ is trivial in
Aut(Γ). In other words, either Γ is arc-transitive and the action of Aut(Γ) on the set of
the arcs of Γ is regular or Γ is half-arc-transitive and the action of Aut(Γ) on the set of
the edges of Γ is regular.

Proof. Denote A = Aut(Γ) and suppose the claim of this lemma does not hold. Then
the above remarks imply that for each pair of adjacent vertices x and y of Γ there exists
an element ψ ∈ A fixing both x and y but interchanging {w1, w2} with {z1, z2}, where
(y, w1, w2) and (y, z1, z2) are 3-cycles. Moreover, the restriction of ψ2 to Γ(y) is the
identity.

Now, let x = u0 and y = vb+k and let ψ ∈ A be an automorphism as described in the
previous paragraph. Since the unique common neighbor of x and y is vb we have vbψ = vb.
Lemma 19 implies that there are exactly two 5-cycles through (u0, vb+k, uk), namely the
generic 5-cycles C3 = (u0, vb+k, uk, vk, v0) (of type g.3) and C4 = (u0, vb+k, uk, vk+1, v1)
(of type g.4). By assumption, ψ maps the adjacent pair {uk, vb+2k} to the adjacent pair
{ub+k, ub+k−1} and vice versa. We now analyze the two possibilities regarding ukψ.

Case 1: ukψ = ub+k.
Since C2 = (u0, vb+k, ub+k, vb+k+1, u1) is a 5-cycle through (u0, vb+k, ub+k), it follows that
either C3ψ = C2 or C4ψ = C2 holds. Thus one of v0ψ and v1ψ is u1. It follows that ψ fixes
u0 and its neighbor vb+k, but does not fix all of the neighbors of u0, and so the remarks
preceding this lemma imply that ψ interchanges the adjacent pairs {u−1, v0} and {v1, u1}.
This implies that v1ψ 6= u1, and so ψ interchanges v0 with u1 (and consequently u−1 with
v1). Then C3ψ = C2, and so vkψ = vb+k+1. The common neighbor u−b of v0 and vk is
thus mapped by ψ to vb+1. To determine the image C4ψ we need to determine the image
vk+1ψ, which must be a neighbor of ub+k. Now, since vk+1 is not the common neighbor
of vk and uk, we have vk+1ψ 6= ub+k+1, and so the fact that C4ψ is induced implies that
vk+1ψ ∈ {v2b+k, v2b+2k}. Since C4ψ contains the rim edge u−1u0, Lemma 19 then implies
that the ψ-image of the 2-path (uk, vk+1, v1) of C4, that is (ub+k, vk+1ψ, u−1), does not
consist of a b- and a (b+ k)-spoke, and so the edge vk+1v1 has to be mapped to a 0-spoke
(it cannot be a 1-spoke since we already know that v0 = u1ψ), that is vk+1ψ = v−1. This
finally proves that ψ maps the common neighbor u1−b of v1 and vk+1 to the common
neighbor u−2 of u−1 and v−1. But then u−2 is adjacent to vb+1 = u−bψ and it has to be
via a 0-spoke (recall that k 6= 3), so that b+ 3 = 0, contradicting b 6 (n− 1)/2.
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Case 2: ukψ = ub+k−1.
Most of the argument is very similar to the one in the previous case so we leave some
details to the reader. Since C ′2 = (u0, vb+k, ub+k−1, vb+k−1, u−1) is a 5-cycle through
(u0, vb+k, ub+k−1) we deduce that C4ψ = C ′2, and so ψ interchanges v1 with u−1 and
v0 with u1, and maps vk+1 of C4 to vb+k−1 of C ′2. Since vk is not the common neighbor of
uk and vk+1, it follows that vkψ ∈ {v2b+k−1, v2b+2k−1}, implying that the edge v0vk cannot
be mapped to a b- or a (b+ k)-spoke. It is thus a 1-spoke, and so vkψ = v2. The common
neighbor u−b of v0 and vk is thus mapped to u2, while the common neighbor u−b+1 of v1
and vk+1 is mapped to vb−1. Since k 6 n − 5 the edge u2vb−1 must be a 1-spoke, and so
b = 4. Then the common neighbor v−b+1 of u−b and u−b+1 is mapped to u3, which is a
neighbor of the fixed vertex vb = v4. Since vb+k is also fixed, it follows that v−b+1 = vb−k,
and so k = 7. Moreover, the remarks preceding this lemma imply that ψ in fact inter-
changes v−b+1 = v−3 with u3. But then the adjacent vertices u3 and v7 are mapped to v−3
and v2, respectively (recall that v7 = vk), implying that −3− 7 = 2 in Zn, that is n = 12.
However, as b+ k = 11, this is impossible.

Lemma 21. Let Γ be as in Lemma 18. Then Γ is half-arc-transitive and the stabilizer of
any vertex of Γ is of order 3.

Proof. In view of Lemma 20 we only need to prove that Γ is half-arc-transitive. By way
of contradiction suppose Γ is arc-transitive. The remarks preceding Lemma 20 and the
fact that by Lemma 18 the action of Aut(Γ) on the set of induced 2-paths of Γ is not
transitive imply that for each pair of adjacent vertices x and y and a pair of adjacent
neighbors w1 and w2 of y, different from x, the induced 2-paths (x, y, w1) and (x, y, w2)
are not in the same Aut(Γ)-orbit.

By Lemma 20 the action of Aut(Γ) on the set of arcs of Γ is regular, and so there is a
unique automorphism α of Γ, fixing u0 and mapping vb to vb+k. Thus vb+kα = vb, and so α
is an involution. Since ρ (from (1)) is semiregular, we have that α /∈ 〈ρ〉. Observe first that
ukα 6= vb−k, since otherwise the two paths (uk, vk+b, u0) and (uk, vb+k, vb) = (u0, vb, vb−k)ρ

k

would be in the same Aut(Γ)-orbit. We now analyze the other three possibilities for ukα.
In the analysis we will be working with the 5-cycles C3 = (u0, vb+k, uk, vk, v0) and C4 =
(u0, vb+k, uk, vk+1, v1), which by Lemma 19 are the only 5-cycles through (u0, vb+k, uk).

Suppose first that ukα = u−k. Then C3α and C4α are the two generic 5-cycles through
(u0, vb, u−k), and since α 6= ρ−2k, the arc (uk, vk) has to be mapped to (u−k, v−k+1). Thus
α interchanges vk+1 with v−k, vk with v−k+1 and v0 with v1, and thus also the common
neighbor u1 of u0 and v1 with u−1, and similarly uk−1 with u−k+1 and uk+1 with u−k−1.
But then u0αρα = u−1 and u1αρα = u0, so that αρα = ρ−1. Thus vb+k = vbα = v0ρ

bα =
v0αρ

−b = v1−b, implying that 2b+ k − 1 = 0, which contradicts Lemma 17.
Suppose next that ukα = ub and let C1 = (u0, vb, ub, vb+1, u1) be the generic 5-cycle of

type g.1 through (u0, vb, ub). Then C1 = C3α must hold, since in the case of C1 = C4α
the arc (uk, vk+1) would be mapped by α to the arc (ub, vb+1), and so regularity of the
action of Aut(Γ) on the set of the arcs of Γ would imply α = ρb−k, which is not the
case. It follows that vkα = vb+1 and v0α = u1, and thus α also interchanges v1 with
u−1 and uk−1 with ub+1. Now, observe that since vk+1 is a neighbor of uk but is not
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adjacent to vb+k, we have that vk+1α ∈ {v2b, v2b+k}. But if vk+1α = v2b+k then the 2-path
(vb, ub, v2b+k) is in the same Aut(Γ)-orbit as (vk+1, uk, vb+k), which is in the same Aut(Γ)-
orbit as (ub−1, ub, v2b+k) (apply ρ−kαρb), a contradiction. Thus α interchanges vk+1 with
v2b, and so C4α = (u0, vb, ub, v2b, u−1) is a 5-cycle containing a rim edge, so that the edge
u−1v2b must be a 0-spoke (confront Lemma 19). Thus 2b + 1 = 0. But now the 2-path
(u0, vb, ub), which is in the same Aut(Γ)-orbit as (u0, vb+k, uk) is contained on at least
three 5-cycles (C3α, C4α and C4αρ

−b), contradicting Lemma 19.
Suppose finally that ukα = ub−1 and let C ′1 = (u0, vb, ub−1, vb−1, u−1) be the generic

5-cycle of type g.1 through (u0, vb, ub−1). The argument is very similar to the one in the
previous paragraphs, so we omit some details. We first find that α interchanges vb+2k

with ub and that C ′1 = C4α, implying that α interchanges vk+1 with vb−1, uk+1 with ub−2,
v1 with u−1 and v0 with u1. Moreover, vkα ∈ {v2b−1, v2b+k−1} and α maps the edge v0vk
from C3 to the 1-spoke u1v2, so that either 2b− 1 = 2 or 2b+ k− 1 = 2. Since the former
contradicts b 6 (n−1)/2, we have that α interchanges vk with v2b+k−1, and thus also uk−1
with v2b−1. But then αρkαρ1−b maps the 2-path (v1, u0, vb+k) to the 2-path (vb, u0, v1), a
contradiction.

We are now finally ready to classify the edge-transitive Nest graphs with λ = 1.

Proposition 22. Let Γ = N (n; a, b, c; k) be a Nest graph. Then Γ is edge-transitive of
girth 3 with λ = 1 if and only if Γ is isomorphic to the graph N (2m; 1, b, b+m+1;m−1),
where b = 4b0 − 1 for some b0 > 1 and m > 2 is an even divisor of b2 + 3 with m ≡ 2
(mod 4) and b < 2m. Moreover, Γ is half-arc-transitive with the vertex stabilizers of
order 3 except for the graph N (12; 1, 3, 10; 5) which is arc-transitive with vertex stabilizers
of order 6.

Proof. The last part follows from Lemma 21 (the fact that the graph N (12; 1, 3, 10; 5) ∼=
N (12; 2, 3, 5; 5) is indeed arc-transitive with vertex stabilizers of order 6 follows from
Lemmas 5 and 7), so we only need to prove the first part.

Suppose first that Γ is edge-transitive of girth 3 with λ = 1. By Lemma 21 the graph
Γ is either isomorphic to N (12; 1, 3, 10; 5), in which case we can take b0 = 1 and m = 6,
or is half-arc-transitive with vertex stabilizers of order 3. We can thus assume that the
latter holds. Fix the Aut(Γ)-induced orientation of the edges of Γ in which u0 → u1.
Now, if u0 ← vb holds then Lemma 15 implies that u0 → vb+k, and so setting b′ = b + k
and k′ = n − k we have that Γ = N (n; 1, b′, b′ + k′; k′) with u0 → vb′ . With no loss of
generality we can thus assume that u0 → vb holds. Note however, that we can now no
longer assume that b 6 (n− 1)/2 nor that b+ k < n. Using Lemma 15 and the action of
the automorphism ρ from (1) we thus find that for each i ∈ Zn

ui → ui+1, ui → vi, vi → ui−1, ui → vi+b, vi → vi+k and vi → ui−b−k (7)

holds. Now, let α ∈ Aut(Γ) be the unique automorphism fixing vb and mapping u0 to ub.
Then Lemma 21 implies that α is of order 3, and so it cyclically permutes the vertices
u0, ub, vb−k, in this order. It must thus also cyclically permute the respective common
neighbors vb+k, ub−1 and u−k of these vertices with vb.
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Let C3 = (u0, vb, u−k, v−k, v0) and C4 = (u0, vb, u−k, v1−k, v1) be the two 5-cycles con-
taining the 2-path P = (u0, vb, u−k) (confront Lemma 19). Since the 2-path Pα =
(ub, vb, vb+k) is contained in the 5-cycle C = (ub, vb, vb+k, ub+k, v2b+k) and vb+k ← ub+k
while for the corresponding two edges on C3 and C4 we have u−k → v−k and u−k ← v1−k,
respectively, it follows that C = C4α, and so v1−kα = ub+k and v1α = v2b+k. Since
u1−k is the common neighbor of u−k and v1−k, we thus also get u1−kα = ub+k−1 and
similarly u1α = v2b. As u−k → v−k and we have already determined the α images
of u1−k and vb−k, it thus follows that v−kα = vb+2k. Similarly v0α = ub+1, imply-
ing that C3α = (ub, vb, vb+k, vb+2k, ub+1). Moreover, as v−k → v0 the edge ub+1vb+2k

must be a 1-spoke (note that, since the 5-cycles are induced, it cannot be a (b + k)-
spoke), and so 2k = 2. It follows that n = 2m is even and k = m + 1, that is
Γ = N (2m; 1, b, b+m+ 1;m− 1).

Let us now consider the Aut(Γ)-orbit O of the 2-path P . Since u0 → vb → u−k, the
fact that the action of Aut(Γ) on the set of edges of Γ is regular implies that for each
pair of vertices x and y of Γ with x → y there is a unique neighbor z of y (not adjacent
to x) such that (x, y, z) ∈ O and a unique neighbor w of x (not adjacent to y) such that
(w, x, y) ∈ O. Considering Pα and Pα2 we first find that

(ui, vi+b, ui−k), (ui, vi, vi+k), (vi, vi+k, ui+k−1) ∈ O for all i ∈ Zn.

Since (u1−k, v1−k, v1)α = (ub+k−1, ub+k, v2b+k), edge-transitivity and the above remarks
imply that also

(ui, ui+1, vi+b+1), (vi, ui−1, vi−1), (vi, ui−b−k, ui−b−k+1) ∈ O for all i ∈ Zn.

Therefore, since (vb+1, ub, vb) ∈ O and (ub, vb)α = (vb−k, vb), we get vb+1α = ub−k, and
so the common neighbor ub+1 of ub and vb+1 is mapped by α to ub−k−1. Similarly
(vb, ub−1, vb−1) ∈ O, and so vb−1α = u1−k, implying that ub−2α = v1−k. Thus

u−kα
−1ρ2α = ub+1α = ub−k−1 = u−kρ

b−1 and v1−kα
−1ρ2α = ubα = vb−k = v1−kρ

b−1.

Then Lemma 20 implies α−1ρ2α = ρb−1. Observe that this implies 〈2〉 = 〈b− 1〉 in Z2m,
and so b is odd, say b = 2b′ + 1. We can now also completely determine the action of α.
For instance, for any i ∈ Zn we get u2iα = u0ρ

2iα = u0αρ
i(b−1) = ui(b−1)+b. Similarly we

find that for each i ∈ Zn

u2iα = ui(b−1)+b, u2i+1α = vi(b−1)+2b, v2iα = ui(b−1)+b+1 and v2i+1α = vi(b−1)+2b+m+1. (8)

Thus vb = vbα = v2b′+1α = vb′(b−1)+2b+m+1, implying that 0 = b′(b − 1) + b + m + 1 =
2b′2 + 2b′ + m + 2 = 2b′(b′ + 1) + m + 2 (and consequently b2 + 3 = 4b′2 + 4b′ + 4 = 0).
The fact that n = 2m is even now implies that m must be even, so that 4 divides n. In
fact, as b′(b′ + 1) is even m ≡ 2 (mod 4) must hold, and so n ≡ 4 (mod 8). In view of
the fact that 〈2〉 = 〈b − 1〉 holds in Zn we thus also get that b − 1 ≡ 2 (mod 4), and so
b = 4b0 − 1 for some b0 > 1.

For the converse let Γ = N (2m; 1, b, b+m+1;m−1), where b = 4b0−1 for some b0 > 1
and m > 2 is an even divisor of b2 + 3 with m ≡ 2 (mod 4) and b < 2m. It is easy to see
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that the assumptions imply 3 6 b 6 2m− 5 and b+m+ 1 /∈ {2, 2m− 1} (when computed
modulo 2m), implying that the edge u0u1 is on exactly one 3-cycle. It thus suffices to
prove that Γ is edge-transitive. Observe that gcd(2m, b−1) = gcd(2m, 2(2b0−1)), and so
the fact that m divides b2+3 = 4((2b0−1)2+2b0−1)+4 implies that 〈b−1〉 = 〈2〉 in Z2m.
Thus defining α as in (8) gives rise to a permutation of the vertex set of Γ. We show that
α also preserves adjacency. In view of the action of α this will imply that 〈ρ, α〉 6 Aut(Γ)
acts transitively on the set of all edges of Γ, showing that Γ is edge-transitive.

Observe that, since m ≡ 2 (mod 4) and 0 = b2 + 3 = 2(8b20− 4b0 + 2) in Z2m, we must
have that 8b20−4b0+2 = m in Z2m, and so 2b0(b−1) = m−2. It is now easy to verify that α
does indeed preserve adjacency. For instance, the vertex u2i is mapped to ui(b−1)+b, while
the α-images of its six neighbors u2i−1, u2i+1, v2i, v2i+1, v2i+b, v2i+b+m+1 can be obtained
as follows. Since u2i−1 = u2(i−1)+1, we have u2i−1α = v(i−1)(b−1)+2b = vi(b−1)+b+1, which
is a neighbor of ui(b−1)+b. That u2i+1α, v2iα and v2i+1α are neighbors of u2iα follows
directly from (8). Next, as v2i+b = v2(i+2b0−1)+1, we have v2i+bα = v(i+2b0−1)(b−1)+2b+m+1 =
vi(b−1)+b, which is a neighbor of ui(b−1)+b. Finally, let m = 2m′ and note that m′(b −
1) = m (since b − 1 ≡ 2 (mod 4)). Thus the α-image of v2i+b+m+1 = v2(i+2b0+m′) is
u(i+2b0+m′)(b−1)+b+1 = ui(b−1)+m−2+m+b+1 = ui(b−1)+b−1, which is also a neighbor of ui(b−1)+b.
We leave the remaining adjacencies to the reader.

Combining together Lemma 9, Proposition 14 and Proposition 22 we obtain a proof
of Theorem 8. It is now also easy to compile a list of all half-arc-transitive Nest graphs
of girth 3 up to a given order. Of course, one needs to check for potential isomorphisms
after compiling the list of all parameter sets satisfying Proposition 22. All 46 pairwise
nonisomorphic examples up to n = 1000 (that is, up to order 2000), are given in Table 2
(note that we have ordered the parameters corresponding to the spokes in increasing
order, so that the actual parameter b from the above proposition is not always the one
following 1). It is interesting to note that there are nonisomorphic examples of certain
orders, namely of orders 728, 1064, 1736 and 1976.

The fact that for valence 6 we get half-arc-transitive generalizations of generalized
Petersen graphs for the first time (there are no half-arc-transitive Rose window graphs) is
an interesting fact in its own. We now show that there is another reason why the half-arc-
transitive Nest graphs of girth 3 are important. As was mentioned in the introduction, the
graphs constructed in [15] are half-arc-transitive of valence 12 with universal reachability
relation. However, except for the fact that half-arc-transitive graphs of valence 4 cannot
have universal reachability relation (see [19]), it was not know whether half-arc-transitive
graphs with universal reachability relation of valences smaller than 12 (that is 6, 8 or 10)
exist. As it turns out, the Nest graphs settle this question in the affirmative by providing
an infinite family of examples of valence 6.

Theorem 23. Let Γ = N (2m; 1, b, b+m+ 1;m− 1), where b = 4b0 − 1 for some b0 > 1
and m > 2 is an even divisor of b2 + 3 with m ≡ 2 (mod 4) and b < 2m. Then Γ is a
half-arc-transitive graph. Moreover, its reachability relation is universal if and only if 3
does not divide m, while in the case that 3 does divide m the graph Γ has three alternets.
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N (28; 1, 6, 19; 13) N (52; 1, 7, 34; 25) N (76; 1, 15, 54; 37)
N (84; 1, 10, 51; 41) N (124; 1, 11, 74; 61) N (148; 1, 22, 95; 73)
N (156; 1, 34, 111; 77) N (172; 1, 14, 99; 85) N (196; 1, 38, 135; 97)
N (228; 1, 15, 130; 113) N (244; 1, 27, 150; 121) N (268; 1, 59, 194; 133)
N (292; 1, 18, 163; 145) N (316; 1, 47, 206; 157) N (364; 1, 19, 202; 181)
N (364; 1, 34, 215; 181) N (372; 1, 51, 238; 185) N (388; 1, 71, 266; 193)
N (412; 1, 94, 299; 205) N (436; 1, 91, 310; 217) N (444; 1, 22, 243; 221)
N (508; 1, 39, 294; 253) N (516; 1, 99, 358; 257) N (532; 1, 23, 290; 265)
N (532; 1, 62, 327; 265) N (556; 1, 86, 363; 277) N (588; 1, 135, 430; 293)
N (604; 1, 66, 367; 301) N (628; 1, 26, 339; 313) N (652; 1, 118, 443; 325)
N (676; 1, 46, 383; 337) N (724; 1, 98, 459; 361) N (732; 1, 27, 394; 365)
N (772; 1, 170, 555; 385) N (796; 1, 186, 583; 397) N (804; 1, 75, 478; 401)
N (844; 1, 30, 451; 421) N (868; 1, 51, 486; 433) N (868; 1, 135, 570; 433)
N (876; 1, 130, 567; 437) N (892; 1, 79, 526; 445) N (916; 1, 190, 647; 457)
N (948; 1, 111, 586; 473) N (964; 1, 31, 514; 481) N (988; 1, 175, 670; 493)
N (988; 1, 138, 631; 493)

Table 2: All half-arc-transitive Nest graphs of girth 3 up to order 2000.

Proof. That Γ is half-arc-transitive follows from Proposition 22. Let R be the reachability
relation on Γ and let us fix the Aut(Γ)-induced orientation of the edges of Γ such that
u0 → u1. From the proof of Proposition 22 it follows that for each i we have ui → ui+1,
ui → vi, ui → vi+b, vi → ui−1, vi → ui−b−m−1 and vi → vi+m+1. Consider now the
alternating path (u0, v0, vm−1, um−2, um−3). The arc (u0, v0) is thus R-related to any arc
whose tail is of the form ui or of the form vm−1+i, where i is any element of the subgroup
〈m − 3〉 of Z2m. Thus, if m is not divisible by 3 then R is clearly universal. If however
3 divides m, then 3 also divides b (recall that m divides b2 + 3). It is now easy to see
that an alternating path of even length, starting in u0, can only reach vertices of the form
ui and v2+i, where i is from the subgroup 〈3〉 of Z2m. It is thus clear that R has three
equivalence classes, with representatives (u0, u1), (u1, u2) and (u2, u3).

As mentioned in the introduction, it turns out that the graphs from Theorem 23 appear
also in a recent paper by Zhou and Zhang [26] (albeit in a somewhat different form) in
which the authors classified the half-arc-regular bicirculants of valence 6 (it should be
pointed out, however, that the authors did not investigate the natural orientation induced
by the action of their automorphism group and were not aware of the fact that there is
an infinite family of examples with universal reachability relation among them). Note
that, in view of Proposition 22, the automorphism groups of our Nest graphs indeed act
regularly on the sets of their edges. Furthermore, in light of [26, Proposition 1.1] our
result shows that as long as we restrict to graphs of girth 3 the automorphism group of a
half-arc-transitive bicirculant of valence 6 necessarily acts regularly on its edge-set, except
possibly for examples, in which none of the induced subgraphs on the two orbits of the
corresponding semiregular automorphism is connected.
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Tabačjn graphs, Graphs Combin. 31 (2015) 1137–1153.

[3] P. J. Cameron, C. E. Praeger, N. C. Wormald, Highly arc-transitive digraphs and
universal covering digraphs, Combinatorica 13 (1993) 1–21.
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[11] I. Kovács, K. Kutnar, D. Marušič, Classification of edge-transitive rose window
graphs, J. Graph Theory 65 (2010) 216–231.
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