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Abstract

We exhibit a connection between two statistics on set partitions, the intertwining
number and the depth-index. In particular, results link the intertwining number to
the algebraic geometry of Borel orbits. Furthermore, by studying the generating
polynomials of our statistics, we determine the q = −1 specialization of a q-analogue
of the Bell numbers. Finally, by using Renner’s H-polynomial of an algebraic
monoid, we introduce and study a t-analog of q-Stirling numbers.

Mathematics Subject Classifications: 05A15, 14M15

1 Introduction

This paper is concerned with the intertwining number of a set partition, which is a
combinatorial statistic introduced by Ehrenborg and Readdy in [10]. This statistic is
among the combinatorial parameters on set partitions whose generating function is an
important q-analog of the Stirling numbers of the second kind:

Sq(n, k) =

{
qk−1Sq(n− 1, k − 1) + [k]qSq(n− 1, k) if n, k > 1;

δn,k if n = 0 or k = 0.
(1)

Here δn,k is the Kronecker’s delta function. As far as we know, this recurrence has first
appeared in a paper of Milne who showed that (1) has a combinatorial interpretation in
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terms of statistics on set partitions. After Milne’s work, many authors found interesting
combinatorial statistics whose (bi)generating polynomials satisfy the recurrence in (1),
see for example [23]. For more recent results on the q-Stirling numbers, and an exposition
of the history of Stirling numbers, we recommend the articles [6, 8].

In the present paper we connect the intertwining number to another statistic on the set
partitions, namely, the depth-index, which was recently introduced and studied in [3] by
the first two authors. The depth-index, although defined in purely combinatorial terms,
equals the dimension of the closure of a certain (doubled) Borel orbit, and thus, the
intertwining number also receives a geometric interpretation. One purpose of this article
is to show that the depth-index is related in an interesting way to other set partition
statistics.

Let us briefly set up the notation that is necessary to state our main results. Let
A be a set partition of {1, . . . , n} into blocks A1, . . . , Ak. The minimal elements of the
blocks are the openers, and the maximal elements are the closers of the set partition. For
example, A = 18|2569|37|4 in Π9 has openers 1, 2, 3, 4 and closers 4, 7, 8, 9.

Let us assume that the elements of each block are listed in increasing order, that is,
two elements i, j in a block are consecutive if j is the smallest element larger than i in
the same block. Then the arc diagram of a set partition A ∈ Πn is obtained by placing
labels 1, . . . , n in this order on a horizontal line, and connecting consecutive elements of
each block by arcs, as in Figure 1.

1 2 3 4 5 6 7 8 9

Figure 1: The arc-diagram of the set partition A = 18|2569|37|4.

The extended arc diagram is obtained from the arc diagram by adding a half-arc
(−∞, i) from the far left to each opener i, and a half-arc (i,∞) from each closer i to the
far right. These arcs are drawn in such a way that half-arcs to the left do not cross, and
half-arcs to the right do not cross either. An example is shown in Figure 2.

Two (generalized) arcs (i, j) and (k, `) cross in A if i < k < j < `. The total number
of crossings in A is the intertwining number1 of A, denoted i(A).

To indicate the geometric motive of our work, we will briefly mention the Bruhat-
Chevalley-Renner order for set partitions: let Bn be the group of invertible upper trian-
gular n× n matrices and let Bn be the monoid of upper triangular matrices with entries
in {0, 1}, having at most one non-zero entry in each row and column. Then, for σ and τ
in Bn,

σ 6 τ ⇐⇒ BnσBn ⊆ BnτBn,

where X denotes the Zariski closure of X. It was shown by Renner [18, sec.8] that this
makes Bn into a graded poset, the rank of σ being dimBnσBn. Let Bnil

n be the semigroup

1http://www.findstat.org/St000490
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of nilpotent elements in Bn. Then the following simple bijection between Bnil
n and Πn

makes this order into an order of Πn: the matrix corresponding to the set partition A
has an entry equal to 1 in row i and and column j if and only if (i, j) is an arc of A.

A purely combinatorial way to describe the above partial order on set partitions was
recently introduced in [3], where the rank function of the poset was given by a certain
combinatorial statistic (on arc-diagrams), called the depth-index of A and was denoted
by t(A). Now we are ready to outline the structure of this article and to mention our
results which connect the depth-index to the other statistics.

First of all, in Section 2, we relate the intertwining number to the depth-index; this
is our Theorem 3. On the one hand, the depth-index t(A) is the rank function of the
Bruhat-Chevalley-Renner order on the set partitions. On the other hand, the poset
of doubled Borel orbits ordered by the containment relations on closures is ranked by
the dimension function. In other words, the depth-index t(A) gives the dimension of
BnτBn where τ is the upper-triangular partial permutation matrix which corresponds
to the set partition A. Thus, it follows from Theorem 3 that the intertwining number
i(A) is the rank function of the dual poset, i(A) = codim (BnτBn). Notice that from a
computational point of view the intertwining number is simpler than the depth index.
In Section 3, we give another combinatorial interpretation of the depth-index and of
the intertwining number using so-called rank-control matrices. In Section 4, we apply
Theorem 3 to compute q-Bell numbers corresponding to the depth-index when q = −1.
In Section 5, we use Renner’s H-polynomial of an algebraic monoid to introduce and
study a new t-analog of q-Stirling numbers.

2 The intertwining number and the depth-index

From now on, we identify a set partition with its arc-diagram. The blocks of a set
partitions are chains in its arc-diagram. We will frequently use the following well-known
and very important, albeit rather obvious fact: If A is an arc-diagram on n vertices with
k arcs, then the number of chains of A is n − k, while singletons are also considered as
chains. In this regard, we will denote by Πn,k (k = 1, . . . , n) the set of set partitions of
{1, . . . , n} with k blocks, or equivalently, the set of arc-diagrams on n vertices with k
chains.

In this section we exhibit the relationship between Ehrenborg and Readdy’s inter-
twining number, introduced in [10], and the depth index, introduced in [3].

Definition 1. Let A be a set partition from Πn,k. Then the intertwining number2 i(A)
of A is the total number of crossings in the extended arc diagram of A. More formally,
for a pair of disjoint sets B and C of integers, the intertwining number is the cardinality
of the set

{(b, c) ∈ B × C : {min(b, c) + 1, . . . ,max(b, c)− 1} ∩ (B ∪ C) = ∅} ,

and the intertwining number of a set partition A is the sum of intertwining numbers of
all pairs of blocks of A.

2http://www.findstat.org/St000490
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Let us denote by Arcs(A) the set of arcs of A. The depth index3 t(A) of A is

k∑
i=1

(n− i)−
n∑
v=1

depth(v) +
∑

α∈Arcs(A)

depth(α), (2)

where depth(v), which is called the depth of a vertex v, is the number of arcs (i, j) ∈
Arcs(A) with 1 6 i < v < j 6 n, and depth(α), which is called the depth of an arc
α = (u, v), is the number of arcs (i, j) ∈ Arcs(A) with 1 6 i < u < v < j 6 n.

The intertwining number is best understood by visualizing it on the extended arc
diagram of the set partition. An example is depicted in Figure 2.

1 2 3 4 5 6 7 8 9

0 1 2 3 2 0 2 3 2 i(A) = 15

0 0 0 0 2 5 4 4 6 t(A) = 21

Figure 2: The extended arc diagram of the set partition A = 18|2569|37|4, together with
the computation of the intertwining number and the depth index.

Remark 2. The second sum appearing in (2), that is
∑n

v=1 depth(v), coincides with the
dimension exponent4, ∑

B is a block of A

(maxB −minB + 1)− n.

Moreover, the sum
∑

α∈Arcs(A) depth(α) is just the number of nestings5 of A. Note that the

number of nestings is equidistributed with the number of crossings6, see [12, Corollary 1.5].
This statistic and the dimension exponent both occur in the theory of supercharacters.
More precisely, for any supercharacter indexed by a set partition A, the dimension is
given by the dimension exponent of A, and the scalar product with a supercharacter
indexed by the same set partition equals the number of crossings of A, see [1].

Our main result is the following:

Theorem 3. For any set partition A ∈ Πn, we have

t(A) + i(A) =

(
n

2

)
.

3http://www.findstat.org/St001094
4http://www.findstat.org/St000572
5http://www.findstat.org/St000233
6http://www.findstat.org/St000232
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For the proof it will be convenient to refine the intertwining number and the depth
index as follows.

Definition 4. Let A be a set partition of {1, . . . , n}, and let v ∈ {1, . . . , n}.
The partner u of an element is 0 if v is the minimal element of its block, otherwise it

is the largest element in the same block smaller than v, that is, (u, v) is an arc in the arc
diagram.

The partial intertwining number, denoted by iv(A), is the number of crossings of the
arc (or half-arc) ending in v with arcs or half-arcs whose smaller vertex i is between u
and v.

The partial depth index, denoted by tv(A), is the sum of the number of (proper) arcs
(i, j) with u < i < j < v and the number u, which is the partner of v.

In Figure 2, the partial intertwining numbers are written on the second line, below
the elements of the set partition. Since every crossing is counted precisely once, the sum
of these numbers is the intertwining number of A. The partial depth indices are written
below, on the third line.

It is clear that the sum of partial intertwining numbers is the intertwining number of
the set partition. The corresponding statement for the depth index is also true:

Lemma 5. The sum of the partial depth indices of a set partition is equal to its depth
index.

Before we prove this lemma, let us note a second useful fact.

Lemma 6. For each v ∈ {1, . . . , n}, the sum of tv(A) and iv(A) equals v − 1, the total
number of vertices before v.

Clearly, Theorem 3 follows at once from Lemma 5 and Lemma 6.

Proof of Lemma 6. Let u be the partner of v. Then any arc (i, j) with u < i < v
either satisfies u < i < j < v, and thus contributes +1 to the partial depth index, or it
contributes precisely one crossing to iv(A).

Proof of Lemma 5. Let A be a set partition of {1, . . . , n} and let v ∈ {1, . . . , n}. Let A′

be the set partition obtained from A by removing the last vertex with label n.
We will now use induction: we proceed with the assumption that t(A′) =

∑n−1
v=1 tv(A

′).
Moreover, by definition we have tv(A

′) = tv(A) for v < n. (Clearly, if n = 1, then there
is nothing to prove.)

If n is a singleton block of A, then t(A) is obtained from t(A′) by adding the number
of arcs of A. Otherwise, we assume that (m,n) is an arc in A, and there are ν arcs (i, j)
in A with m < i < j < n. Then

t(A) = t(A′) + (n− 1)− (n− 1−m) + ν,

since the new arc (m,n) contributes n− 1 to the first sum in the definition of the depth
index, and the new arc increases the depth of each of the vertices between m and n by 1.

In both of these cases, t(A) = t(A′) + m + ν = t(A′) + tn(A), hence the proof is
finished.
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3 The intertwining number and the rank control matrix

We start with setting up our notation.

Definition 7. For an n × n matrix X, let Xk,` denote the lower-left k × ` submatrix
of X. Then the rank control matrix R(X) = (rk,`)

n
k,`=1 is the n × n matrix with entries

defined by rk,` := rank (Xk,`).

As far as we know, the rank control matrix R(X) was introduced by Melnikov in [13].
A closely related version is used in [17] and in [14] for describing the Bruhat-Chevalley
order on symmetric groups. Incitti [11] used it in his study of the Bruhat order on
involutions. After Incitti’s work, the rank control matrix is used in [2], [9], [5], [4] for
studying Bruhat orders on partial involutions and partial fixed-point-free involutions.
See [6] for related work on the rook monoid.

Next, we introduce the “inequalities statistic” of an arc-diagram.

Definition 8. Let A be a set partition from Πn. We denote by M(A) = (mi,j)
n
i,j=1 the

n× n matrix defined by

mi,j =

{
1 if (i, j) is an arc in A;

0 otherwise.

In this notation, the inequalities statistic of A, denoted by D(A), is defined by

D(A) = |{(i, j) | 2 6 i 6 n, 1 6 j 6 n− 1 and ri,j 6= ri−1,j+1}| ,

Here, ri,j’s are the entries of rank control matrix R(M(A)) = (ri,j)
n
i,j=1.

In other words, M(A) is the adjacency matrix of A, regarded as the directed graph
with edges directed towards the vertices with bigger labels. The statistic D(A) is the
total number of inequalities along antidiagonals from south-west to north-east of the
rank control matrix R(M(A)).

Proposition 9. Let A be a set partition of {1, . . . , n} and let (ri,j)
n
i,j=1 denote the rank

control matrix of M(A). In this case, the entry ri,j (i, j ∈ {1, . . . , n}) is equal to the
number of arcs (k, l) in A such that i 6 k < l 6 j.

The proof of Proposition 9 follows from the definition of rank control matrix of M(A),
so we omit writing it. Nevertheless, we give an example that explains it.

Example 10. For example, let A denote the arc-diagram

1 2 3 4

Then M(A) =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and R(M(A)) =


0 1 2 2
0 0 1 1
0 0 0 0
0 0 0 0

. The antidiagonals from

south-west to north-east in he matrix R(M(A)) are: (0, 1), (0, 0, 2), (0, 0, 1, 2), (0, 0, 1)
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and (0, 0). Note that we skipped the initial and the last antidiagonal sequences since they
do not have any inequalities, hence they do not contribute to our statistic. Now, we have
two inequalities in the third diagonal (0, 0, 1, 2) (0 6= 1 and 1 6= 2) and one inequality in
the first, second and fourth diagonals. Thus, for this arc-diagram A we have D(A) = 5.

Let us point out that the depth index of A is equal to five as well:

t(A) = 3 + 2− (0 + 0 + 0 + 0) + (0 + 0) = 5 .

This is not a coincidence as we will show in our next result.

Theorem 11. Let A be an arc-diagram from Πn. By viewing A as a directed graph we
let R = (ri,j)

n
i,j=1 denote the rank-control matrix of the adjacency matrix of A. In this

case, the following relations hold true:

1. t(A) = D(A), where

D(A) = |{(i, j) | 2 6 i 6 n, 1 6 j 6 n− 1 and ri,j 6= ri−1,j+1}| ;

2. i(A) = E(A), where

E(A) = |{(i, j) | 2 6 i 6 j + 1 6 n and ri,j = ri−1,j+1}| ,

We divide the proof into two propositions.

Proposition 12. Let A be a set partition. Then

t(A) = D(A) .

Proof. For a fixed j with 2 6 j 6 n, we set Dj(A) = |{i | 2 6 i 6 n, and ri,j 6= ri+1,j−1}|.
We will prove that tj(A) = Dj(A) for every j, 2 6 j 6 n, where tj(A) is the partial depth
index defined as in Definition 4.

If the vertex j is not the endpoint of any arc, hence, the partner of j is 0, or, equiva-
lently, the j-th column of the matrix M(A) consists of 0’s only, then tj(A) is the number
of arcs (u, v) with u < v < j. In this case, Dj(A) equals the number of 1’s to the left of
the j-th column in the matrix M(A). Each such 1 in M(A) corresponds to an arc in A,
therefore, tj(A) = Dj(A).

If the j-th column of M(A) has a 1 at the position (w, j), then (w, j) is an arc in A
for some w (w < j) and furthermore there are w inequalities of the form ri,j > ri+1,j−1

for each i such that 1 6 i 6 w. Also, it is easily seen that each arc (u, v), where
w < u < v < j, contributes an inequality of the form ru,j > ru+1,j−1. Therefore,
Dj(A) = w + |{(u, v) |w < u < v < j , mu,v = 1}|. Since w is the partner of the vertex j,
we see that tj(A) = w + |{(u, v) |w < u < v < j , (u, v) is an arc in A}|. Therefore, in
this case we have tj(A) = Dj(A) also.

Now, since by Lemma 5, t(A) =
∑n

j=2 tj(A), and D(A) =
∑n

j=2 Dj(A), the proof is
finished.

By combining Theorem 3 and Proposition 12 we are able to express the intertwining
number in terms of the number of equalities in anti-diagonals of the rank control matrix.
To this end, if A is an arc-diagram from Πn, then let us denote by E(A) the following
statistic:

E(A) = |{(i, j) | 2 6 i 6 j + 1 6 n and ri,j = ri−1,j+1}| ,
where, as before, ri,j’s are the entries of the rank control matrix R(M(A)).
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Proposition 13. Let A be an arc-diagram. Then

i(A) = E(A) .

Proof. Let n be the number of vertices of A. By Theorem 3, we have i(A) =
(
n
2

)
− t(A).

Using Theorem 12 we now have i(A) =
(
n
2

)
−D(A). To finish the proof we will show that

E(A) =
(
n
2

)
− D(A).

Now, notice that i > j implies ri,j = ri−1,j+1 since the adjacency matrix M(A) of A is
strictly upper triangular. (The edges are directed towards vertices with bigger indices.)
Therefore, the pairs (i, j) with i > j do not contribute to D(A). By definition, pairs (i, j)
with i > j do not contribute to E(A) either. By arguing in a similar manner we see that
a pair (i, j) with 2 6 i 6 j 6 n contributes either to E(A) or to D(A) but not to both.
Clearly, the number of such pairs equals

(
n
2

)
. This shows that E(A) + D(A) =

(
n
2

)
, and

the proof is finished.

Proof of Theorem 11. This is a combination of Propositions 12 and 13.

Before proceeding to the next section, we briefly discuss the algebraic geometric sig-
nificance of the equalities t(A) = D(A) and i(A) = E(A).

We already mentioned that the doubled Borel group Bn × Bn acts on matrices via

(B1, B2) ·X = B1XB
−1
2 for (B1, B2) ∈ Bn × Bn, X ∈ Matn, (3)

and the action (3) restricts to give an action on Bn.

Proposition 14. Let X and Y be two matrices from Matn such that Y = BXC, where
B and C are from Bn. If Xk` and Yk` denotes the lower-left k × ` submatrices of X and
Y , respectively, then

rank (Xk`) = rank (Yk`) for all 1 6 k, ` 6 n.

Proof. Let us write the matrix BXC in block form:(
∗ ∗

0k×(n−k) B′

)(
∗ ∗
Xk` ∗

)(
C ′ ∗

0(n−`)×` ∗

)
=

(
∗ ∗

B′Xk`C
′ ∗

)
,

and therefore, Yk` = B′Xk`C
′. Matrices B′ and C ′ are invertible (upper-triangular k × k

and ` × ` submatrices of B and C respectively), which implies that Yk` and Xk` have
equal ranks.

Proposition 14 shows that the rank control matrix R is an invariant of a Bn × Bn-
orbit. Let Nn denote the

(
n
2

)
dimensional affine space of upper triangular n× n matrices

which are nilpotent. If Z is from Nn, then the closure BnZBn in Bn is an affine alge-
braic subvariety of Nn. As we mentioned in the introduction, such orbit closures are
parametrized by the arc-diagrams, and furthermore, the Bruhat-Chevalley-Renner order
can be interpreted in a combinatorial way on the arc-diagrams. All of this is recorded
in [3].
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Remark 15. There is another combinatorial method to determine the relation between
two elements in the Bruhat-Chevalley-Renner order. Namely, it is sufficient to compare
the corresponding rank control matrices componentwise. More precisely, for two k × `
matrices X = (xi,j), Y = (yi,j) let us define X 6 Y if xi,j 6 yi,j for all i, j, 1 6 i 6 k,
1 6 j 6 `. It can be shown (see [2]) that BnZ1Bn ⊆ BnZ2Bn if and only if R(Z1) 6 R(Z2).
Now, if A and B are two arc-diagrams, then we write that A 6 B if the corresponding
nilpotent partial permutation matrices σA and σB satisfy σA 6 σB. In this notation,
A 6 B if and only if R(M(A)) 6 R(M(B)).

Recall that the depth index statistic gives us the dimensions of the Bn × Bn-orbits,
therefore, by Theorem 3, the intertwining number of an arc-diagram gives the codimen-
sion of the corresponding orbit closure in Nn. Note also that the dimension of the variety
BnZBn equals dimNn minus the number of algebraically independent polynomial rela-
tions that defines the affine variety BnZBn. Therefore, by using Proposition 13, we obtain
the following result.

Proposition 16. Let BnZBn (Z ∈ Nn) be a doubled Borel subgroup orbit. Then the
parameter E(R(Z)) which counts the number of equalities in the anti-diagonals in the
upper triangle of R(Z) actually counts the number of algebraically independent polynomial
equations that define the variety BnZBn.

There is a proof of Proposition 16 that does not use Theorem 3. However, this direct
proof is somewhat long and it is very similar to the proof of Theorem 7.6 of [2], so, we
omit it.

4 q = −1 specialization

The next result of our article builds on the connections between various set partition
statistics that we established so far. The n-th Bell number, denoted by Bn is the sum
Bn :=

∑
k S(n, k). It follows from Theorem 3 that the following polynomial is a q-analog

of the Bell numbers:

Bn(q) := q(
n
2)Xn

(
1

q

)
, where Xn(q) =

∑
σ∈Πn

qt(σ). (4)

Theorem 17. Let Xn(q) denote the rank generating series of the depth-index statistic as
in (4). Then

Xn(−1) = (−1)(
n
2)Bn(−1) =


1 if n ≡ 0 or 1 or 3 or 10 (mod 12);

−1 if n ≡ 4 or 6 or 7 or 9 (mod 12);

0 if n ≡ 2 (mod 3).

(5)

Proof. As we hinted at in the introduction, the intertwining number on Πn,k has the
q-Stirling numbers as its generating series,

Sq(n, k) =
∑

A∈Πn,k

qi(A) (k = 0, 1 . . . , n− 1). (6)
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Let us define Hn(q, t) as the generating function Hn(q, t) :=
∑n

k=0 Sq(n, k)tk. Then,
by the definition of Bn(q), we have Hn(q, 1) = Bn(q). The following specialization of∑∞

n=0Hn(q, t)xn follows from [24, Theorem 1 eqn. (1.5)]:∑
n>0

Hn(−1, 1)xn =
1

1− x+ x2
=

1 + x

1 + x3
. (7)

The power series expansion of (7) yields (5).

Remark 18. The above proof of Theorem 17, which is pointed to us by the referee, is
different (and more insightful) than our original proof, which uses a simple counting
argument.

Remark 19. Another statistic with the same generating function is introduced by Milne
in [15].

Definition 20. Let A = A1|A2| . . . |Ak be a set partition from Πn,k. The dual major index7

of A is defined by

m̂aj(A) =
k∑
i=1

(i− 1) |Ai| .

This nomenclature is due to Sagan [20]. Although it is not referred to as the ‘dual major

index’ in [22], m̂aj is the second of the three statistics that are studied by Wagner. In [21],

Steingŕımsson refers to m̂aj as “LOS”, the left opener statistic. A bijection φ : Πn,k → Πn,k

satisfying
m̂aj(φ(A)) = i(A),

and thus proving the equidistribution of the intertwining number and the dual major
index was found by Parviainen in [16]. It is defined as follows. As before, let iv(A) be
the number of crossings of the arc (or line) ending in v with arcs or lines whose smaller
vertex i is between the partner of v and v. Then the blocks of the set partition φ(A)
are the sets of elements sharing the same number iv(A). For example, the image of the
set partition A = 18|2569|37|4 from Figure 2 is φ(A) = 16|2|3579|48 and the dual major

index of φ(A) is given by m̂aj(φ(A)) = 0 · 2 + 1 · 1 + 2 · 4 + 3 · 2 = 15.

5 H-polynomials

In the previous section we considered the generating functions Bn(q), Xn(q) of the statis-

tics m̂aj, t, respectively. We noted that Bn(q) = q(
n
2)Xn(1/q). We considered also the

following generating polynomial of q-Stirling numbers: Hn(q, t) :=
∑n

k=0 Sq(n, k)tk. For
n = 0, 1, 2, the values of the polynomial Hn(q, t) are given by

H0(q, t) = 1,

H1(q, t) = Sq(1, 0) + Sq(1, 1)t = t,

H2(q, t) = Sq(2, 0) + Sq(2, 1)t+ Sq(2, 2)t2 = t+ qt2.

In this section, by relating the depth index and the intertwining number to the num-
bers of rational points of Bn−1 over finite fields, we prove the following result.

7http://www.findstat.org/St000493
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Theorem 21. We have

Hn

(
q,

1

1− q

)
=

1

(1− q)n
,

for all n > 0.

Let M be an algebraic monoid with a reductive group of units denoted by G. Let
B denote the Borel subgroup in G, T denote the maximal torus contained in B, and let
R denote the Renner monoid defined as R := NG(T )/T , where NG(T ) is the normalizer
of T in G and the bar indicates that we are taking the closure in Zariski topology. The
H-polynomial of the Renner monoid of R is defined by

H(R, q) :=
∑
σ∈R

qa(σ)(q − 1)b(σ),

where a(σ) is the dimension of the unipotent part of the orbit BσB and b(σ) is the
dimension of the diagonalizable part of BσB.

One can think of the H-polynomial of R as a transformed “Hasse-Weil motivic zeta
function” of the projectivization P(M −{0}) of M . Indeed, by treating q as a power of a
prime number, for all sufficiently large q, (H(R, q)− 1)/(q− 1) is equal to the number of
rational points over Fq (the finite field with q elements) of P(M −{0}). See [19, Remark
3.2]. For an application of this idea to the rook theory, we recommend [7].

We will consider the simplest example, where M is Matn, the monoid of all n × n
matrices. Clearly, the projectivization of Matn is the n2−1 dimensional projective space,
hence its number of Fq-rational points is given by (qn

2 − 1)/(q− 1). The Renner monoid
of Matn is the rook monoid Rn. Furthermore, if σ ∈ Rn, then a(σ) = `(σ)− rank(σ), and
b(σ) = rank(σ), where rank(σ) is the rank of σ as a matrix. Therefore, the H-polynomial
of Rn becomes

qn
2

= H(Rn, q) =
∑
σ∈Rn

q`(σ)−rank(σ)(q − 1)rank(σ). (8)

An important consequence of the formula in (8) is that if X denotes any Bn×Bn-stable
smooth and irreducible subvariety of Matn, then H(X, q) gives the number of Fq-rational
points of X. In particular, we apply this observation to Nn, the semigroup of nilpotent
elements in Bn. Note that, there is a natural algebraic variety isomorphism between Nn
and Bn−1. The isomorphism is given by the deleting of the first column and the last
row of the elements of Nn. Moreover, under this isomorphism, Bn × Bn-orbits in Nn are
isomorphically mapped onto Bn−1 × Bn−1-orbits in Bn−1. Therefore, there is no loss of
information to work with Bn−1 instead of Nn. Now, on one hand we have the number of
points of Bn−1 over Fq,

|Bn−1| = q(
n
2). (9)

On the other hand, we have that

H(Bn−1, q) =
∑

σ∈Bn−1

q`(σ)−rank(σ)(q − 1)rank(σ) =
∑

σ∈Bn−1

qt(σ)−rank(σ)(q − 1)rank(σ). (10)
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By combining (9) with (10) and noting that this is a polynomial identity (since it holds
true for all sufficiently large prime powers), we have

q(
n
2) =

∑
σ∈Bn−1

qt(σ)−rank(σ)(q − 1)rank(σ) =
∑

σ∈Bn−1

qt(σ)(1− 1/q)rank(σ). (11)

Eqn.(11) suggests a variation of the generating series of the statistic t and it provides
a way to evaluate this generating series.

Proof of Theorem 21. Recall that

q(
n
2)

∑
σ∈Bn−1, rank(σ)=k

q−t(σ) =
∑

A∈Πn,n−k

qi(A) = Sq(n, n− k), (12)

where k ∈ {1, . . . , n}.
We multiply both sides of (12) by tn−k and then sum over k ∈ {1, . . . , n} to get

Hn(q, t) = q(
n
2)

n∑
k=1

∑
σ∈Bn−1, rank(σ)=k

q−t(σ)tn−k,

which is equivalent to

Hn(q, t) = q(
n
2)tn

∑
σ∈Bn−1

q−t(σ)t−rank(σ). (13)

At the same time, since eqn. (11) is equivalent to q−(n
2) =

∑
σ∈Bn−1

q−t(σ)(1 − q)rank(σ),

by replacing t with (1− q)−1 in (13), we obtain

Hn

(
q,

1

1− q

)
= q(

n
2) q−(n

2)

(1− q)n
=

1

(1− q)n
.

This finishes the proof of our theorem for n > 1. The case of n = 0 has already been
computed before, hence, the proof is complete.

Remark 22. Clearly, by Theorem 21, we have
∑

n>0Hn (q, 1/(1− q))xn = 1
1−x/(1−q) . It

is pointed to us by the referee that, once interpreted in terms of q-Stirling numbers, this
equality follows from [24, Theorem 1 eqn. (1.5)] also.

6 Final Remarks

We close our paper by listing our new formulas for the intertwining number. Let A be
an arc diagram on n vertices with k arcs.

1. i(A) =
(
n
2

)
− t(A): This is the main result of the present paper.

2. i(A) =
(
n
2

)
−`(σ), where σ = (σ1, σ2, . . . , σn) is the partial permutation correspond-

ing to A. Recall that σ is defined so that σj = i whenever (i, j) is an arc in A. `(σ)
is the length of the partial permutation σ. See the formulas in the introduction.
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3. i(A) =
(
n
2

)
− dimBnσBn, where σ is as in the previous item.

4. i(A) = E(A), where E(A) is the number of equalities in the antidiagonals of the
upper-triangle of the rank control matrix of A. See Section 3.

5. i(A) =
(
n
2

)
− c(A). The statistic c(A) is defined in [3]. We recall its definition here

for completeness. Let α be an arc in A and let cross(α) denote the total number of
chains that are crossed by α in A. Note that a chain can be crossed at most twice. In
this case, we consider it as a single crossing. Let A be an arc-diagram on n vertices
with k arcs denoted by α1, α2, . . . , αk and n − k chains denoted β1, β2, . . . , βn−k.
The crossing-index of A is defined by the formula

c(A) =
k∑
i=1

(n− i)−
n−k∑
j=1

depth(βj)−
k∑

m=1

cross(αm),

where depth(βj) (j = 1, . . . , n − k) is the number of arcs that are above βj. It is
easy to show (by induction) that c(A) = t(A). For details, see [3].
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