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Abstract

In this paper we study the lattice point covering property of some regular poly-
gons in dimension 2.

Mathematics Subject Classifications: 52C05, 52C07, 11H06

1 Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the n-dimensional
Euclidean space Rn with non-empty interior. We denote by Kn(o) ⊂ Kn the set of all

convex bodies, having the origin as an interior point, i.e., 0 ∈ int (K), and by Kn(s) ⊂ Kn(o)
those bodies which are symmetric with respect to 0, i.e., K = −K.

We say that a convex body K ∈ Kn has the lattice point covering property, if K
contains a lattice point of Zn in any position, i.e., in any translation and rotation of K.

There are several beautiful results about the lattice point covering property.

Theorem 1 (Niven & Zuckerman,[4]). A triangle with sides of lengths a, b, c, with a 6
b 6 c, has the lattice point covering property if and only if 2∆(c− 1) > c2 where ∆ is the
area of the triangle.

Theorem 2 (Niven & Zuckerman,[4]). Let a and b be the distances between the pairs of
opposite sides, say with a 6 b, of a parallelogram ABCD with an interior angle γ 6 π/2.
The parallelogram has the lattice point covering property if and only if a > 1 and one of
the following conditions hold:

(i) b >
√

2;

(ii) b 6
√

2 and α + β + γ 6 π/2, where α = arccos(a/
√

2) and β = arccos(b/
√

2).
∗Supported by a PhD scholarship of the Berlin Mathematical School.
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Theorem 3 (Henk & Tsintsifas,[3]). Let E ⊂ Rn be an ellipsoid with semi-axes αi,
1 6 i 6 n. The following statements are equivalent:

(i) E contains a lattice point of Zn in any position,

(ii)
∑n

i=1
1
α2
i
6 4,

(iii) E contains a cube of edge length 1.

Let K ∈ Kn. Denote by Z(K) the lattice point covering radius of K, i.e., the smallest
positive number r, such that rK has the lattice point covering property. We are here
concerned with the lattice point covering properties of regular polygons. Let us denote
by

Hn = conv

{(
cos

(
2kπ

n

)
, sin

(
2kπ

n

))
: k = 0, 1, · · · , n− 1

}
the regular n-gon.

Our main result is:

Theorem 4. Let ti > 0, i ∈ N.

(1) The following statements are equivalent:

(i) t4n ·H4n contains a lattice point of Z2 in any position,

(ii) t4n ·H4n contains a ball with radius
√
2
2

,

(iii) t4n >
√
2

2

cos π
2n

.

(2) The following statements are equivalent for n = 1, 2:

(i) t4n+2 ·H4n+2 contains a lattice point of Z2 in any position,

(ii) t4n+2 ·H4n+2 contains [−1
2
, 1
2
]2,

(iii) t6 > 1
3−
√
3
≈ 0.788675 . . . ; t10 >

cos π
5
−sin π

5
+sin 2π

5
−cos 2π

5

2 sin π
5

≈ 0.734342 . . . .

Corollary 5.

(i) Z(H4n) =

√
2

2

cos π
2n

, for n ∈ N.

(ii) Z(H6) = 1
3−
√
3
.

(iii) Z(H10) =
cos π

5
−sin π

5
+sin 2π

5
−cos 2π

5

2 sin π
5

.

This paper is organized as follows: in the Section 2 we will introduce the covering
radius and the gauge function; then we will give a necessary and a sufficient condition of
the lattice point covering property in the Section 3 and the Section 4, respectively; the
content of the Section 5 will be the proof of the main theorem.
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2 Covering Radius

The covering radius of K ∈ Kn(o) with respect to Zn is denoted by

c(K) = c(K,Zn) = min{λ > 0 : λK + Zn = Rn}.

The gauge function ‖·‖ associated to a K ∈ Kn(o) is the function

‖·‖K : Rn → [0,∞)

defined by ‖v‖K = min{t > 0 : v ∈ tK}.

Theorem 6. Let K ∈ Kn(o). Then K contains a lattice point of Zn in any position if and

only if, for any o(K) rotation of K, c(o(K)) 6 1.

Proof. If c(o(K)) > 1 for some rotation o(K), then there exists a point x ∈ Rn, such that
for every u ∈ Z2,

‖x− u‖o(K) > 1⇐⇒ ‖u− x‖−o(K) > 1.

Therefore, −o(K) + x does not contain a lattice point of Z2.
If c(o(K)) 6 1 for any rotation o(K), then for any point x ∈ Rn, since o(K)+Zn = Rn,

there exists a lattice point u ∈ Z2, such that

‖x− u‖o(K) 6 1⇐⇒ ‖u− x‖−o(K) 6 1.

So, −o(K) + x contain a lattice point u.

Therefore, the lattice point covering property of a convex body depends on the covering
radius of all rotations of this convex body.

3 Necessary Condition

According to the knowledge of the lattice covering for a centrally symmetric convex body,
we have:

Theorem 7 (I.Fáry,[1]). Let K ∈ K2
(s), such that K + Z2 is a lattice covering. Then K

contains a spacefiller L, i.e., a parallelogram or a centrally symmetric hexagon, such that
L+ Z2 is a lattice tiling.

Since the lattice point covering property depends on the lattice covering of all rotations,
we have:

Theorem 8. Let K ∈ K2
(s). Then K contains a lattice point of Z2 in any position, if and

only if

(1) o(K) + Z2 = R2,

(2) o(K) contains a spacefiller L, i.e., parallelogram or a centrally symmetric hexagon,
such that L+ Z2 is a lattice tiling,

for any rotation o(K).
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Proof. Apply Theorem 6 and 7.

We here call it a necessary condition of the lattice point covering property, because
this condition has to hold, but is uneasy to check.

4 Sufficient Condition

For a planar convex body, it is possible to check some inscribed parallelograms, i.e., by
checking the Steiner symmetrization of the convex body. We will give a sufficient condition
of the lattice point covering property in this way.

The Steiner symmetrization of K ∈ K2 with respect to {x ∈ R2 : x2 = 0}, denoted
by St1(K), is a convex body symmetric with respect to {x ∈ R2 : x2 = 0}, such that for
each line l vertical to {x ∈ R2 : x2 = 0},

vol 1(K ∩ l) = vol 1(St1(K) ∩ l),

where vol 1(L) denotes the length of a line segment L. For more information on the Steiner
symmetrization, we refer to [2, Section 9.1]. It is obvious that St1(K) ⊂ St1(L) for two
convex bodies K ⊂ L.

Theorem 9. Let K ∈ K2
(s). If for each rotation o(K) of K, St1(o(K)) contains [−1

2
, 1
2
]2,

then K contains a lattice point of Z2 in any position.

Proof. Notice that if St1(o(K)) contains [−1
2
, 1
2
]2, then o(K) contains a parallelogram in

the form of L = conv {(1
2
, a), (1

2
, a+1), (−1

2
,−a), (−1

2
,−a−1)}, which is a spacefiller with

respect to Z2. Therefore K has the lattice point covering property (cf. Theorem 6).

We also have the following proposition of lattice covering for sets symmetric with
respect to the axis ox and oy.

Proposition 10. Let K ∈ K2
(s). If K is symmetric with respect to {x ∈ R2 : x1 = 0} and

{x ∈ R2 : x2 = 0}, then K + Z2 = R2 if and only if K contains [−1
2
, 1
2
]2.

Proof. If K contains [−1
2
, 1
2
]2, then K +Z2 is a lattice covering. Otherwise, if K does not

contain [−1
2
, 1
2
]2, i.e., (1

2
, 1
2
) /∈ K, then since K is symmetric with respect to {x ∈ R2 :

x1 = 0} and {x ∈ R2 : x2 = 0}, K does not contain any point of (1
2
, 1
2
) +Z2, thus K +Z2

does not contain (1
2
, 1
2
) + Z2.

5 Proof of the Main Theorem

In this section we discuss the lattice point covering property of some regular polygons.
The proofs have the following steps:

1. Prove that the Steiner symmetrizations of all rotations of the convex body contain
[−1

2
, 1
2
]2 (using Theorem 9).
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2. Prove that a smaller copy of the convex body does not have the lattice point covering
property (using Theorem 8(1) and Proposition 10).

We first look at the regular 4n-gon.

Proof of Theorem 4(1). If t · H4n contains B2(
√
2
2

), where B2(r) denotes the Euclidean

disk of radius r centered at 0, then each rotation o(t ·H4n) also contains B2(
√
2
2

). Notice

that B2(
√
2
2

) contains [−1
2
, 1
2
]2, therefore o(t ·H4n) + Z2 is always a lattice covering, thus

t ·H4n has the lattice point covering property (cf. Theorem 6).

If t · H4n does not contain B2(
√
2
2

), then o(t · H ′4n, π4 ) + (1
2
, 1
2
), does not contain any

lattice point of Z2, where o(t ·H ′4n, π4 ) is the rotation of t ·H ′4n by angle π
4
.

Denote by o(K, θ) the counterclockwise rotation of K by angle θ, i.e.,

o(Hn, θ) = conv

{(
cos

(
2kπ

n
+ θ

)
, sin

(
2kπ

n
+ θ

))
: k = 0, 1, · · · , n− 1

}
.

Then we look at the regular hexagon.

Proof of Theorem 4(2), n = 1. For the symmetric reason between H6 and Z2, the case
π
12

6 θ 6 π
6

is actually symmetric to the case 0 6 θ 6 π
12

with respect to the line
{x ∈ R2 : x2 = x1}. We are going to prove that St1(o(

1
3−
√
3
H6, θ)) contains [−1

2
, 1
2
]2 for

0 6 θ 6 π
12

(cf. Theorem 9).
By calculation,

St1(o(H6, θ)) = conv

{
(± cos θ, 0),

(
± cos(θ − π

3
),±

sin π
3

2 sin(θ + π
6
)

)
,(

± cos(θ +
π

3
),±

√
3

2 cos θ

)}
,

which is also symmetric with respect to {x ∈ R2 : x1 = 0}. In order to check whether
St1(o(

1
3−
√
3
H6, θ)) contains [−1

2
, 1
2
]2 for 0 6 θ 6 π

12
, notice that when 0 6 θ 6 π

12
, it holds

cos(θ +
π

3
) 6

√
3

2 cos θ
(1)

(cf. Proposition 12), therefore the line {x ∈ R2 : x2 = x1} may intersect the boundary of
St1(o(H6, θ)) with the edge

conv

{
(cos θ, 0),

(
cos(θ − π

3
),

sin π
3

2 sin(θ + π
6
)

)}
or the edge

conv

{(
cos
(
θ − π

3

)
,

sin π
3

2 sin
(
θ + π

6

)) ,(cos(θ +
π

3
),

√
3

2 cos θ

)}
.
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Case 1: cos(θ − π
3
) 6

sin π
3

2 sin(θ+π
6
)
, i.e., 0 6 θ 6 arcsin

(
4√3
2

)
− π

6
.

In this case, the line {x ∈ R2 : x2 = x1} intersects the edge

conv

{
(cos θ, 0),

(
cos
(
θ − π

3

)
,

sin π
3

2 sin(θ + π
6
)

)}
with (s(θ), s(θ)), where

s(θ)

s(θ)− cos θ
=

sin π
3

2 sin(θ+π
6
)

cos(θ − π
3
)− cos θ

,

thus

s(θ) =
sin π

3
cos θ

sin π
3
− 2 sin2(θ + π

6
) + 2 cos θ sin(θ + π

6
)
. (2)

This function s(θ) is increasing in
[
0, arcsin

(
4√3
2

)
− π

6

]
(cf. Proposition 13), there-

fore,

s(θ) > s(0) =

√
3√

3 + 1
,

and
1

3−
√

3
s(θ) >

1

2
.

So St1(o(
1

3−
√
3
H6, θ)) always contains [−1

2
, 1
2
]2 when θ ∈ [0, arcsin

(
4√3
2

)
− π

6
].

Case 2: cos(θ − π
3
) >

sin π
3

2 sin(θ+π
6
)
, i.e., arcsin

(
4√3
2

)
− π

6
6 θ 6 π

12
.

In this case, the line {x ∈ R2 : x2 = x1} intersects the edge

conv

{(
cos
(
θ − π

3

)
,

sin π
3

2 sin(θ + π
6
)

)
,

(
cos
(
θ +

π

3

)
,

√
3

2 cos θ

)}
.

with (t(θ), t(θ)), where

2t(θ)−
√
3

cos θ

t(θ)− cos
(
θ + π

3

) =

sin π
3

sin(θ+π
6 )
−
√
3

cos θ

cos
(
θ − π

3

)
− cos

(
θ + π

3

) ,
i.e.,

t(θ) =
2
√

3 sin
(
θ + π

6

)
+
√

3 cos
(
θ + π

3

)
4 cos θ sin

(
θ + π

6

)
+
√

3
. (3)

This function t(θ) is decreasing in
[
arcsin

(
4√3
2

)
− π

6
, π
12

]
, and in fact it is decreasing

in
[
arcsin

(
4√3
2

)
− π

6
, π
6

]
(cf. Proposition 14), therefore

t(θ) > t
( π

12

)
> t
(π

6

)
=

√
3√

3 + 1
,
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and
1

3−
√

3
t(θ) >

1

2
.

Thus St1(o(
1

3−
√
3
H6, θ)) always contains [−1

2
, 1
2
]2 when θ ∈

[
arcsin

(
4√3
2

)
− π

6
, π
12

]
.

To see that 1
3−
√
3

is the minimum number, we refer to Proposition 10 applied to ρH6

for any ρ < 1
3−
√
3
.

Now we look at the regular 10-gon.

Proof of Theorem 4(2), n = 2. For the symmetric reason between H10 and Z2, the case
π
20

6 θ 6 π
10

is actually symmetric to the case 0 6 θ 6 π
20

with respect to the line

{x ∈ R2 : x2 = x1}. We are going to prove that St1(o(
cos π

5
−sin π

5
+sin 2π

5
−cos 2π

5

2 sin π
5

H10, θ))

contains [−1
2
, 1
2
]2 for 0 6 θ 6 π

20
(cf. Theorem 9).

By calculation,

St1(o(H10, θ)) = conv

{
± (cos θ, 0),(
± cos(θ − π

5
),±

sin π
10

sin π
5

sin( π
10

+ θ)

)
,

(
± cos(θ +

π

5
),±

sin π
5

sin 3π
10

sin(3π
10
− θ)

)
,(

± cos(θ − 2π

5
),±

sin 3π
10

sin 2π
5

sin(3π
10

+ θ)

)
,

(
± cos(θ +

2π

5
),±

sin 2π
5

cos θ

)}
.

While θ ∈ [0, π
20

], it holds

cos
(
θ − π

5

)
>

sin π
10

sin π
5

sin
(
π
10

+ θ
) (cf. Proposition 16),

cos
(
θ +

π

5

)
>

sin π
5

sin 3π
10

sin
(
3π
10
− θ
) (cf. Proposition 17),

cos

(
θ − 2π

5

)
<

sin 3π
10

sin 2π
5

sin
(
3π
10

+ θ
) (cf. Proposition 18),

cos

(
θ +

2π

5

)
<

sin 2π
5

cos θ
(cf. Proposition 19).

Therefore, the line {x ∈ R2 : x2 = x1} intersects St1(o(H10, θ)) with the edge

conv

{(
cos(θ +

π

5
),

sin π
5

sin 3π
10

sin(3π
10
− θ)

)
,

(
cos(θ − 2π

5
),

sin 3π
10

sin 2π
5

sin(3π
10

+ θ)

)}
at the point (t(θ), t(θ)), where

t(θ)− sin 3π
10

sin 2π
5

sin( 3π
10

+θ)

t(θ)− cos(θ − 2π
5

)
=

sin π
5
sin 3π

10

sin( 3π
10
−θ) −

sin 3π
10

sin 2π
5

sin( 3π
10

+θ)

cos(θ + π
5
)− cos(θ − 2π

5
)
. (4)
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The function t(θ) is increasing in [0, π
20

] (cf. Proposition 15), therefore

t(θ) > t(0) =
sin π

5

cos π
5
− sin π

5
+ sin 2π

5
− cos 2π

5

,

and
cos π

5
− sin π

5
+ sin 2π

5
− cos 2π

5

2 sin π
5

t(θ) >
1

2
.

So St1(o(
cos π

5
−sin π

5
+sin 2π

5
−cos 2π

5

2 sin π
5

H10, θ)) always contains [−1
2
, 1
2
]2 when θ ∈ [0, π

20
].

To see that
cos π

5
−sin π

5
+sin 2π

5
−cos 2π

5

2 sin π
5

is the minimum number, we refer to Proposition 10

applied to ρH10 for any ρ <
cos π

5
−sin π

5
+sin 2π

5
−cos 2π

5

2 sin π
5

.

Remark 11. St1(o(H2n, θ)), θ ∈ [0, π
4n

], has the vertices

(cos θ, 0),(
cos(θ − 2π

n
),

sin π
n

sin 2π
n

sin(π
n

+ θ)

)
,

(
cos(θ +

2π

n
),

sin 2π
n

sin 3π
n

sin(3π
n
− θ)

)
,(

cos(θ − 4π

n
),

sin 3π
n

sin 4π
n

sin(3π
n

+ θ)

)
,

(
cos(θ +

4π

n
),

sin 4π
n

sin 5π
n

sin(5π
n
− θ)

)
. . .

One can deal with all regular (4n+ 2)-gons similarly.

A Some Inequalities

Proposition 12.

cos(θ +
π

3
) 6

√
3

2 cos θ
for 0 6 θ 6 π

12
.

Proof. It is equivalent to

2 cos θ cos(θ +
π

3
) 6
√

3

⇐⇒ cos
π

3
+ cos(2θ +

π

3
) 6
√

3

⇐⇒ cos(2θ +
π

3
) 6
√

3− 1

2
,

which holds true since cos(2θ + π
3
) is decreasing in θ ∈ [0, π

12
] and cos π

3
<
√

3− 1
2
.

Proposition 13.

s(θ) =
sin π

3
cos θ

sin π
3
− 2 sin2(θ + π

6
) + 2 cos θ sin(θ + π

6
)
> s(0)

for 0 6 θ 6 arcsin
(

4√3
2

)
− π

6
.
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Proof. Notice that

s(θ) =

√
3 cos θ

−3 +
√

3 + 4 cos2 θ
.

Since x
−3+

√
3+4x2

is decreasing in x ∈ [cos
(

arcsin
(

4√3
2

)
− π

6

)
, 1] and cos θ is decreasing in

θ ∈ [0, arcsin
(

4√3
2

)
− π

6
] then s(θ) is increasing.

Proposition 14.

t(θ) =
2
√

3 sin
(
θ + π

6

)
+
√

3 cos
(
θ + π

3

)
4 cos θ sin

(
θ + π

6

)
+
√

3
> t(

π

6
)

for arcsin
(

4√3
2

)
− π

6
6 θ 6 π

6
.

Proof. Notice that

t(θ) =
3 sin(θ + π

3
)

4 sin2(θ + π
3
) +
√

3− 1
.

Since x
4x2+

√
3−1 is decreasing in x ∈ [sin

(
arcsin

(
4√3
2

)
− π

6

)
, 1
2
] and sin(θ+ π

3
) is increasing

in θ ∈ [arcsin
(

4√3
2

)
− π

6
, π
6
] then t(θ) is decreasing.

Proposition 15.
t(θ) > t(0)

for 0 6 θ 6 π
20

where

t(θ)− sin 3π
10

sin 2π
5

sin( 3π
10

+θ)

t(θ)− cos(θ − 2π
5

)
=

sin π
5
sin 3π

10

sin( 3π
10
−θ) −

sin 3π
10

sin 2π
5

sin( 3π
10

+θ)

cos(θ + π
5
)− cos(θ − 2π

5
)
.

Proof. Notice that

t(θ) =
2 sin 3π

10
cos π

10
cos θ

2 cos2 θ + sin 3π
5
− cos 3π

5
− 1

.

Since x
2x2+sin 3π

5
−cos 3π

5
−1 is decreasing in x ∈ [cos π

20
, 1] and cos θ is decreasing in θ ∈ [0, π

20
]

thus t(θ) is increasing.

Proposition 16.

cos(θ − π

5
) >

sin π
10

sin π
5

sin( π
10

+ θ)

for 0 6 θ 6 π
20

.
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Proof. The statement is equivalent to

sin(
π

10
+ θ) cos(θ − π

5
) > sin

π

10
sin

π

5

⇔ sin(2θ − π

10
) + sin

3π

10
> 2 sin

π

10
sin

π

5

⇔ sin(2θ − π

10
) > 2 sin

π

10
sin

π

5
− sin

3π

10
.

Since sin(2θ − π
10

) is increasing for 0 6 θ 6 π
20

, and

sin
3π

10
− sin

π

10
− 2 sin

π

10
sin

π

5
> 0,

the inequality holds for 0 6 θ 6 π
20

.

Proposition 17.

cos(θ +
π

5
) >

sin π
5

sin 3π
10

sin(3π
10
− θ)

for 0 6 θ 6 π
20

.

Proof. The statement is equivalent to

sin(
3π

10
− θ) cos(θ +

π

5
) > sin

π

5
sin

3π

10

⇔ sin
π

2
+ sin(

π

10
− 2θ) > 2 sin

π

5
sin

3π

10

⇔ sin(
π

10
− 2θ) > 2 sin

π

5
sin

3π

10
− sin

π

2
.

Since sin( π
10
− 2θ) is decreasing for 0 6 θ 6 π

20
, and

0 > 2 sin
π

5
sin

3π

10
− sin

π

2
,

the inequality holds for 0 6 θ 6 π
20

.

Proposition 18.

cos(θ − 2π

5
) <

sin 3π
10

sin 2π
5

sin(3π
10

+ θ)

for 0 6 θ 6 π
20

.

Proof. The statement is equivalent to

sin(
3π

10
+ θ) cos(θ − 2π

5
) < sin

3π

10
sin

2π

5

⇔ sin(2θ − π

10
) + sin

7π

10
< 2 sin

3π

10
sin

2π

5

⇔ sin(2θ − π

10
) < 2 sin

3π

10
sin

2π

5
− sin

7π

10
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Since sin(2θ − π
10

) is increasing for 0 6 θ 6 π
20

, and

0 < 2 sin
3π

10
sin

2π

5
− sin

7π

10
,

the inequality holds for 0 6 θ 6 π
20

.

Proposition 19.

cos(θ +
2π

5
) <

sin 2π
5

cos θ

for 0 6 θ 6 π
20

.

Proof. The statement is equivalent to

cos θ cos(θ +
2π

5
) < sin

2π

5

⇔ cos(2θ +
2π

5
) + cos

2π

5
< 2 sin

2π

5

⇔ cos(2θ +
2π

5
) < 2 sin

2π

5
− cos

2π

5
.

Since cos(2θ + 2π
5

) is decreasing for 0 6 θ 6 π
20

, and

cos
2π

5
< 2 sin

2π

5
− cos

2π

5
,

the inequality holds for 0 6 θ 6 π
20

.
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