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Abstract

The matching complex M(G) of a simple graph G is the simplicial complex
consisting of the matchings on G. The matching complex M(G) is isomorphic to
the independence complex of the line graph L(G).

Braun and Hough introduced a family of graphs ∆m
n , which is a generalization of

the line graph of the (n×2)-grid graph. In this paper, we show that the independence
complex of ∆m

n is a wedge of spheres. This gives an answer to a problem suggested
by Braun and Hough.

Mathematics Subject Classifications: 05C69, 05E45

1 Introduction

A matching on a simple graph G = (V (G), E(G)) is a subgraph of G whose maximal
degree is at most 1. A matching is identified with its edge set. The matching complex
M(G) of G is the simplicial complex whose simplices are the matchings on G. We refer
to [6] for a concrete introduction to this subject.

In this paper, we study the homotopy types of the matching complexes of the (n× 2)-
grid graphs. For a pair m and n of positive integers, the (m × n)-grid graph Γ(m,n) is
defined by

V (Γ(m,n)) = {(i, j) ∈ Z2 | 1 6 i 6 m, 1 6 j 6 n},

E(Γ(m,n)) = {{(i, j), (i′, j′)} | |i′ − i|+ |j′ − j| = 1}.

In particular, we write Γn instead of Γ(n, 2).
Kozlov [7] showed that the matching complex of Γ(n, 1) is contractible or homotopy

equivalent to a sphere. However, the topology of a matching complex is in general very
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complicated, even for simple examples of graphs. For example, the matching complexes
of complete graphs and complete bipartite graphs have torsions in their integral homology
groups (see [2], [6], and [9]). After Jonsson’s unpublished work [5] concerning the matching
complexes of general grid graphs, Braun and Hough [3] investigate the matching complex
of Γn, and wrote “the topology of the matching complex for the 2× n grid graph is quite
mysterious”. However, in this paper we determine the homotopy type of the matching
complex of Γn completely, and show that they are wedges of spheres. In fact, we determine
the homotopy types of independence complexes of some family of graphs ∆m

n introduced
by Braun and Hough [3]. To state it precisely, we need some preparation.

For a graph G, the independence complex I(G) of G is the simplicial complex whose
simplices are the independent sets of G. The line graph L(G) of G is the graph whose
vertex set is the edge set E(G) of G, and two distinct edges e and e′ of G are adjacent if and
only if they have a common endpoint. Then the matching complex M(G) coincides with
the independence complex of the line graph L(G). Figure 1 depicts the line graph of Γ5.
Here ei, fi, and f ′i denote the edges {(1, i), (2, i)}, {(i, 1), (i+ 1, 1)}, and {(i, 2), (i+ 1, 2)}
of Γn, respectively.

For a pair m and n of positive integers, Braun and Hough [3] introduced the graph
∆m

n , which is a generalization of L(Γn). The vertex set of ∆m
n consists of ei for i = 1, · · · , n

and fk
i for i = 1, · · · , n−1 and k = 1, · · · ,m. The adjacent relations are given as follows:

fk
i ∼ fk

i+1, (i = 1, · · · , n− 2), ei ∼ fk
i ∼ ei+1, (i = 1, · · · , n− 1)

Figure 2 depicts the graph ∆4
5. Clearly, ∆2

n and L(Γn) are isomorphic, and hence I(∆2
n)

and M(Γn) are isomorphic.
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Braun and Hough [3] actually studied1 the independence complexes of ∆m
n . The pur-

pose of this paper is to determine the homotopy types of the independence complexes of
∆m

n . The following two theorems are the main results in this paper.

Theorem 1.1. ∆1
2n ' Sn−1 and ∆1

2n−1 ' ∗ for n > 1.

Theorem 1.2. For n > 5 and m > 2, we have

I(∆m
n ) ' Σ2I(∆m

n−3) ∨ ΣmI(∆m
n−3) ∨ Σm+1(∆m

n−4).

Here Σ denotes the reduced suspension.

Remark 1.3. The equation among the Euler characteristics of I(∆m
n ) obtained by Theorem

1.2 is known. See Corollary 16 of [3].

In particular, we have

M(Γn) ' Σ2M(Γn−3) ∨ Σ2M(Γn−3) ∨ Σ3M(Γn−4).

By Theorem 1.2, the homotopy type of I(∆m
n ) is determined by I(∆m

1 ), · · · , I(∆m
4 )

recursively. In Section 4, we determine the homotopy types of these complexes as follows:

Proposition 1.4. For m > 2, the complexes I(∆m
1 ), · · · , I(∆m

4 ) are described as follows:

I(∆m
1 ) = ∗, I(∆m

2 ) ' S0, I(∆m
3 ) ' S1 ∨ Sm−1, I(∆m

4 ) ' Sm

Combining Theorem 1.2 and Proposition 1.4, we have that the independence complex
of ∆m

n is a wedge of spheres. In particular, the integral homology groups of them have no
torsions. This gives an answer to a problem suggested by Braun and Hough (see the end
of [3]).

This paper is organized as follows. In Section 2, we review some facts concerning
independence complexes. Since Theorem 1.1 is easily deduced from known results, we
discuss it in this section. Theorem 1.2 and Proposition 1.4 are proved in Section 3 and
Section 4, respectively.

2 Preliminaries

We refer to [6] and [8] for fundamental terms and facts concerning simplicial complexes.
For a vertex v of a simple graph G, let NG(v) denote the set of vertices adjacent to v.

We write NG[v] to mean NG(v)∪{v}. For a subset S of V (G), the subgraph of G induced
by V (G) \ S is denoted by G \ S. In particular, we write G \ v instead of G \ {v}.

We first recall the following simple observation of independence complexes (see Adama-
szek [1]). For a vertex v of G, the link of v in I(G) coincides with I(G \ NG[v]). Since
I(G)\v = I(G\v), we have that I(G) is the mapping cone of the inclusion I(G\NG(v)) ↪→
I(G \ v). Here I(G) \ v denotes the subcomplex of I(G) whose simplices are the simplices
of I(G) not containing v. This observation clearly yields the following proposition:

1Our definition of ∆m
n is a little different from the one of [3]. Namely, their ∆m

n is our ∆m
n+2.

the electronic journal of combinatorics 26(3) (2019), #P3.1 3



r r r r
r r r rJ

J
JJ

J
J
JJ

J
J
JJ

J
J
JJ


























enen−1

f1
n−1f1

n−2

'
r r

r r
b

b
r

rJ
J
JJ

J
J
JJ

J
J
JJ










en

f1
n−1

en−2

Figure 3

Proposition 2.1 (See [1]). Let v be a vertex of a graph G. If the inclusion I(G \NG[v]) ↪→
I(G \ v) is null-homotopic, then we have

I(G) ' I(G \ v) ∨ ΣI(G \NG[v]).

Proposition 2.2 (Lemma 2.5 of [4]). Let v and w be a pair of distinct vertices of G with
NG(v) ⊂ NG(w). Then the inclusion I(G \ w) ↪→ I(G) is a homotopy equivalence.

Proof. By the above observation, it suffices to see that I(G \NG[w]) is contractible. But
this is clear since G \NG[w] has an isolated vertex v.

Here we give the proof of Theorem 1.1 since it easily follows from Proposition 2.2.

Proposition 2.3. If n > 3, then I(∆1
n) ' ΣI(∆1

n−2).

Proof. Since N∆1
n
(en) ⊂ N∆1

n
(en−1) and N∆1

n
(en) ⊂ N∆1

n
(f 1

n−2) (see Figure 3), we have

I(∆1
n) ' I(∆1

n \ {en−1, f
1
n−2}) = I(∆1

n−2) ∗ I(K2) = ΣI(∆1
n−2).

Proof of Theorem 1.1. It is clear that I(∆1
1) = ∗ and I(∆1

2) = I(P3) ' S0. Here P3

denotes the path graph with 3-vertices. Thus Proposition 2.3 implies Theorem 1.1.

3 Theorem 1.2

The purpose of this section is to prove Theorem 1.2. Throughout this section, we assume
that m is an integer greater than 1. Suppose n > 2, and put Xn = ∆m

n \ en−1. Since
N∆m

n
(en) ⊂ N∆m

n
(en−1), Proposition 2.2 implies the following:

Lemma 3.1. For n > 2 and m > 2, we have I(∆m
n ) ' I(Xn).

Next we consider the graph Yn = Xn \ en−2 (see Figure 5).

Proposition 3.2. For n > 4 and m > 2, we have I(Xn) ' I(Yn) ∨ Σ2I(∆m
n−3).

Proof. We want to apply Proposition 2.1 to the vertex en−2 of Xn. Thus we need to show
that I(Xn\NXn [en−2]) ' ΣI(∆m

n−3) and the inclusion I(Xn\NXn [en−2]) ↪→ I(Xn\en−2) =
I(Yn) is null-homotopic.
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By Figure 5 and Proposition 2.2, it is clear that I(Xn \NXn [en−2]) ' I(∆m
n−3 tK2) =

ΣI(∆m
n−3). To see that the inclusion I(Xn \NXn [en−2]) ↪→ I(Xn \ en−2) is null-homotopic,

we first see that the inclusion

I(Xn \ (NXn [en−2] ∪ {f 1
n−1})) ↪→ I(Xn \ en−2) = I(Yn)

is a homotopy equivalence. Note that every vertex of Xn\(NXn [en−2]∪{f 1
n−1}) is not adja-

cent to f 1
n−2 in Yn. Thus I(Xn\(NXn [en−2]∪{f 1

n−1})) is contained in the star stI(Yn)(f
1
n−2).

This means that the composite

I
(
Xn \ (NXn [en−2] ∪ {f 1

n−1})
) '−→ I

(
Xn \NXn [en−2]

)
→ I(Yn)

is null-homotopic. It follows from Proposition 2.2 that the first inclusion is a homotopy
equivalence (Here we use the assumption m > 2). Thus the inclusion I(Xn\NXn [en−2])→
I(Yn) is null-homotopic, and this completes the proof.

Finally we study the homotopy type of I(Yn)

Proposition 3.3. For n > 5 and m > 2, we have I(Yn) ' ΣmI(∆m
n−3) ∨ Σm+1I(∆m

n−4)

Proof. We want to apply Proposition 2.1 to the vertex en of Yn. Namely, we must show
the following:

(1) The inclusion I(Yn \NYn [en]) ↪→ I(Yn \ en) is null-homotopic.

(2) The homotopy type of I(Yn \NYn [en]) is ΣmI(∆m
n−4).

(3) The homotopy type of I(Yn \ en) is ΣmI(∆m
n−3).

Define the induced subgraphs Zn, Z ′n, and Z ′′n of Yn as follows:

Zn = Yn \
(
{f i

n−4 | i = 1, · · · ,m} ∪ {en−3} ∪NYn [en]
)
,

Z ′n = Yn \
(
{f i

n−4 | i = 1, · · · ,m} ∪ {en−3, en}
)
,

Z ′′n = Yn \ (NYn [en−3] ∪ {en})
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Figure 6 depicts the graphs Zn, Z ′n, and Z ′′n in the case m = 4.
By Proposition 2.2, I(Yn \ N [en]) is homotopy equivalent to I(Zn). Clearly, we have

I(Zn) ' ΣmI(∆m
n−4), which implies (2). By Proposition 2.2, the inclusions I(Zn) ↪→ I(Z ′n)

and I(Z ′′n) ↪→ I(Z ′n) are homotopy equivalences. Since I(Z ′′n) is contained in the star
stI(Yn\en)(en−3), we have that the inclusion I(Z ′′n) ↪→ I(Yn \ en) is null-homotopic. It
follows from the commutative diagram

I(Zn) ' //

%%

I(Z ′n)

��

I(Z ′′n)'oo

yy
I(Yn \ en)

that the inclusion I(Zn) ↪→ I(Yn \ en) is null-homotopic. By the sequence

I(Zn)
'−→ I(Yn \NYn [en])→ I(Yn \ en),

of inclusions, we have that I(Yn \NYn [en]) ↪→ I(Yn \en) is null-homotopic. This completes
the proof of (1).

Finally, we prove (3). By Proposition 2.2, it is easy to see that I(Yn \ en) is homotopy
equivalent to I(Wn) (see Figure 6). Here Wn is defined by

Wn = Yn \ ({fk
n−3 | k = 1, · · · ,m} ∪ {en}).

Clearly, I(Wn) is homotopy equivalent to ΣmI(∆m
n−3). This completes the proof of (3).

Combining Lemma 3.1, Proposition 3.2, and Proposition 3.3, we have

I(∆m
n ) ' I(Xn) ' I(Yn) ∨ Σ2I(∆m

n−3) ' ΣmI(∆m
n−3) ∨ Σm+1(∆m

n−4) ∨ I(∆m
n−3).

This completes the proof of Theorem 1.2.

4 Proposition 1.4

In this section, we prove Proposition 1.4. For the reader’s convenience, we rewrite it here:
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Proposition 4.1. For m > 2, the complexes I(∆m
1 ), · · · , I(∆m

4 ) are described as follows:

I(∆m
1 ) = ∗, I(∆m

2 ) ' S0, I(∆m
3 ) ' S1 ∨ Sm−1, I(∆m

4 ) ' Sm

Proof. Note that I(∆m
1 ) is a point. It clearly follows from Proposition 2.2 that I(∆m

2 ) '
I(K2) = S0.

Consider the case of n = 3. By Lemma 3.1, we have that I(∆m
3 ) ' I(X3). Braun

and Hough determined the homotopy types of the independence complexes of X3 (see
Lemma 3.2 of [3]), but we give an alternative proof of this result for self-containedness.
First Proposition 2.2 implies that I(X3 \e3) and I(X3 \{e1, e3}) are homotopy equivalent.
Since X3 \ {e1, e3} is the m-copies of K2, we have

I(X3 \ e3) ' I(X3 \ {e1, e3}) = Sm−1.

On the other hand, applying Proposition 2.2 again, we have that I(X3 \ NX3 [e3]) and
I(K2) = S0 are homotopy equivalent. Since every map from S0 to Sm−1 is null-homotopic,
the inclusion I(X3\NX3 [e3]) ↪→ I(X3\e3) is null-homotopic. Thus Proposition 2.1 implies
I(X3) = S1 ∨ Sm−1.

Finally we consider the case n = 4. By Proposition 3.2 and I(∆m
1 ) = ∗, we have that

I(X4) ' I(Y4). By Proposition 2.2, I(Y4 \e4) is homotopy equivalent to the independence
complex of the disjoint union of one isolated vertex and m-copies of K2, and hence con-
tractible. In particular, the inclusion I(Y4 \NY4 [e4]) ↪→ I(Y4 \ e4) is null-homotopic, and
hence Proposition 2.1 implies I(Y4) ' ΣI(Y4 \NYn [e4]). Since Y4 \NYn [e4] ∼= X3 \ e3, we
have that I(Y4 \N [e4]) = Sm−1 by the previous paragraph. Thus we conclude that

I(∆m
4 ) ' I(Y4) ' ΣI(Y4 \N [e4]) = Sm.

This completes the proof.
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Therefore the complexes I(∆m
1 ), · · · , I(∆m

4 ) are wedges of spheres. Thus Theorem
1.2 implies that all of I(∆m

n ) are wedges of spheres and their integral homology groups
have no torsions. This gives an answer to a question suggested in the end of Braun and
Hough [3].
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