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Abstract

The goal of this paper is to give some theorems which relate to the problem
of classifying combinatorial (resp. smooth) closed manifolds up to piecewise-linear
(PL) homeomorphism. For this, we use the combinatorial approach to the topology
of PL manifolds by means of a special kind of edge–colored graphs, called crys-
tallizations. Within this representation theory, Bracho and Montejano introduced
in 1987 a nonnegative numerical invariant, called the reduced complexity, for any
closed n–dimensional PL manifold. Here we consider this invariant, and extend
in this context the concept of average order first introduced by Luo and Stong in
1993, and successively investigated by Tamura in 1996 and 1998. Then we obtain
some classification results for closed connected smooth low–dimensional manifolds
according to reduced complexity and average order. Finally, we answer to a question
posed by Trout in 2013.

Mathematics Subject Classifications: 57N15, 57Q15, 05C10

1 Colored Graphs and Crystallizations

All spaces and maps will be considered in the PL category, for which we refer to [16]. The
definitions and main results of Graph Theory can be found in [10]. For the representation
of PL manifolds by means of edge–colored graphs and crystallizations see the survey
papers [1, 2, 7, 9, 21].

Here we recall the necessary definitions to explain the statements of our main theorem.
An (n+1)–colored graph (G, c) is a multigraph G = (V (G), E(G)), regular of degree n+1
(possibly with multiple edges, but without loops), together with a proper edge-coloring
c : E(G) → ∆n = {i ∈ Z : 0 6 i 6 n}. This means that any two adjacent edges in G are
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differently colored. As usual, V (G) and E(G) denote the vertex set and the edge set of
G, respectively; ∆n will be called the color set, and its elements the colors.

The cellular complex K = K(G) associated to G is constructed as follows: (1) for
each vertex v of G, consider a standard n–simplex σn(v), and label its n + 1 vertices by
the colors of ∆n; (2) if v and w are joined in G by an i–colored edge, then identify the
(n− 1)–faces of σn(v) and σn(w) opposite the vertex labelled by i ∈ ∆n, so that equally
labelled vertices coincide. The complex K(G) is not a classical simplicial complex for two
simplexes may meet in more than a single face. On the other hand, it is a pseudocomplex
in the sense of [11], p.49. This means that any simplex of K(G) is canonically isomorphic
to a standard one, and the intersection of two simplexes can be either empty or a union
of common faces. By construction, the graph G can be thought as the 1–skeleton of the
dual cellular complex of K(G).

Let Mn be a closed connected PL (or, smooth) n–manifold. We say that (G, c) rep-
resents M if M is PL homeomorphic to the space underlying K(G). A crystallization of
M is an (n + 1)–colored graph (G, c) representing M such that K(G) has exactly n + 1
vertices (which we shall always assume to be colored by the elements of ∆n). In this case,
K(G) is called a contracted triangulation of M .

The following is a famous theorem of Pezzana (for the proof see, for example, [7]):

Theorem 1. Every closed connected PL (or, smooth) n–manifold admits a crystallization,
that is, it has a contracted triangulation.

Let M be a closed connected PL n–manifold, (G, c) a crystallization of M (with color
set ∆n), and K = K(G) the associated contracted triangulation of M . If Γ ⊂ ∆n,
then gΓ represents the number of connected components of the partial subgraph GΓ =
(V (G), c−1(Γ)). If Γ = {i, j} (resp. {r, s, t} and {h, k, r, s}), then gΓ will be simply
written as gij (resp. grst and ghkrs). Let p denote the order of G, i.e., the number of
vertices in the graph. We always assume that {vi : i ∈ ∆n} is the vertex set of K, and
that vi corresponds to Gî, where î = ∆n \ {i}.

Theorem 2. An (n + 1)-colored graph (G, c) is a crystallization of a closed connected
PL n-manifold if and only if every partial subgraph Gî is connected and represents the
(n− 1)-sphere, for every i ∈ ∆n.

Let qh(K) denote the number of h–simplexes in K, for any h ∈ ∆n. For any Γ ⊂ ∆n

with cardinality h, gΓ is also the number of (n−h)–simplexes of K = K(G) whose vertices
are labelled by colors in ∆n \ Γ.

Using crystallizations, we can associate some numerical invariants to any closed con-
nected PL manifold. See, for example, [2, 3, 4, 7]. Here we are interested in two of them,
called reduced complexity and average order, which will be presented in the next two
sections together with new results about characterizations of certain PL manifolds, up to
PL homeomorphisms.
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2 Reduced complexity

Let M be a closed connected PL n–manifold. Following [2], we define the complexity c(M)
of M as the minimum number of n–simplexes which a contracted triangulation of M must
have. In other words, c(M) is the minimum order of a crystallization which represents
M . Since any crystallization has at least two vertices, it was defined in [2] the reduced
complexity of M as c̃(M) = c(M)− 2. This combinatorial invariant gives a finite–to–one
map from the class of closed connected PL n–manifolds to the set of nonnegative even
integers. Of course, the only n–manifold of reduced complexity zero is the standard n–
sphere Sn. For any closed connected surface M , we have c̃(M) = 4−2χ(M), where χ(M)
is the Euler characteristic of M (see Theorem 3.13 of [2]). Thus the reduced complexity
can be regarded as a generalization of the Euler characteristic. Moreover, it has the nice
property of classifying manifolds up to a finite ambiguity. More precisely, if we know a
closed connected manifold M has a specific value of reduced complexity, then there are
only finitely many topological types possible for M .

The classification of all closed connected 3–manifolds with reduced complexity less
than or equal to 28 was given in [5] and [12], §5, by using computer algorithms. There
are exactly sixty-nine of such manifolds. Among them, there are S3, S1×S2, twenty–eight
lens spaces, the six Euclidean orientable 3–manifolds, and sixteen quotients of S3 by the
action of their finite (non-cyclic) fundamental groups.

The complete classification of all closed connected PL 4–manifolds up to reduced
complexity 14 was obtained in [6]. To clarify the next statement, we first explain the
twisted bundle notation. Let S1×Sn−1 (resp. S1×

∼
Sn−1) denote the orientable (resp. non

orientable or twisted) Sn−1-bundle over S1.
Then the main theorem of [6] is the following:

Theorem 3. (a) There are no closed connected 4–manifolds M of reduced complexity
0 < c̃(M) < 6. The unique closed connected 4–manifold of reduced complexity 6 is
the complex projective plane CP 2.

(b) M4 be a closed connected 4–manifold. If c̃(M) = 8, then M is PL homeomorphic
to either S1 × S3 or S1 ×

∼
S3. There are no closed connected 4–manifolds of reduced

complexity 10.

(c) The unique closed connected prime 4–manifold of reduced complexity 12 is the topo-
logical product S2 × S2.

(d) The unique closed connected prime 4–manifold of reduced complexity 14 is the real
projective 4–space RP 4.

In [8], it was given the classification of the closed connected PL (or, smooth) 5–
manifolds up to reduced complexity 20. This gives combinatorial characterizations of
S1 × S4, S1 ×

∼
S4 and S2 × S3 among closed PL 5–manifolds.

More precisely, the main result of [8] is the following:
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Theorem 4. (a) The only reduced complexity zero 5–manifold is S5, and there are no
closed connected 5–manifolds M of reduced complexity 0 < c̃(M) < 10. The only
closed connected 5–manifolds of reduced complexity 10 are S1 × S4 and S1 ×

∼
S4.

(b) There are no closed connected 5–manifolds M of reduced complexity 10 < c̃(M) < 20.
The only closed connected spin 5–manifolds of reduced complexity 20 are S2 × S3 and
the connected sums N1 #N2, where each Ni, i = 1, 2, is either S1 × S4 or S1 ×

∼
S4.

Further results and conjectures concerning with the reduced complexity of triangulated
manifolds can be found in the quoted papers.

3 Average order

Let K be a simplicial triangulation of a closed connected 3–manifold M with E0(K)
edges and F0(K) triangles. Note that we distinguish a simplicial triangulation from a
pseudocomplex (or, in general, a cell decomposition) into a union of 3–simplexes, that is,
such a cell decomposition is a triangulation when the intersection of any two simplexes
is actually a single face of each of them. The order of an edge in K is the number of
triangles incident to that edge. The average edge order of K was defined in [13] as

µ0(K) =
3F0(K)

E0(K)
. (1)

Luo and Stong showed in [13] that for a closed 3–manifold M , µ0(K) being small
implies that the topology of M is fairly simple and restricts the triangulation K. The
relations between this quantity and the topology of M were investigated in the quoted
paper, and the main result of [13] is stated as follows:

Theorem 5. Let K be any simplicial triangulation of a closed connected 3–manifold M .
Then

(a) 3 6 µ0(K) < 6, equality holds if and only if K is the simplicial triangulation of the
boundary of a 4–simplex.

(b) For any ε > 0 there are simplicial triangulations K1 and K2 of M such that

µ0(K1) < 4.5 + ε and µ0(K2) > 6− ε.

(c) If µ0(K) < 4.5, then K is a simplicial triangulation of S3.

(d) If µ0(K) = 4.5, then K is a simplicial triangulation of S3, S1 × S2 or S1 ×
∼
S2.

Similar results for 3–manifolds with non–empty boundary were established by Tamura
[17, 18]. For a related study see also the paper of Walkup [22]. This concept was extended
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in [4] to higher dimension, and successively investigated there (see [3] for the 3–dimensional
case) for the class of colored triangulations of PL n–manifolds.

Let now K be a colored triangulation of a closed connected n–manifold M , that is, K
is a pseudocomplex triangulating M , whose vertices are labeled by ∆n so that the coloring
is injective on each n–simplex of K. For such a colored triangulation K, it is natural to
define the average (n− 2)–simplex order of K (see [4]) as

µ(K) =
n qn−1(K)

qn−2(K)
(2)

where qk(K) is the number of k–simplexes of K, for k = 0, . . . , n. The following is the
main theorem of [4] (which extends that of [3] obtained in dimension 3).

Theorem 6. Let K be any colored triangulation of a closed connected PL n–manifold
Mn, n > 3. Then

(a) 2 6 µ(K) < 6, equality holds if and only if K is the standard (two n–simplexes)
colored triangulation of Sn.

(b) For any ε > 0 there exists a colored triangulation Kε of M such that

µ(Kε) <
2(n+ 1)

(n− 1)
+ ε.

If n = 3, there exists a colored triangulation K̄ε of M such that µ(K̄ε) > 6− ε.

(c) If µ(K) < 2(n+1)
(n−1)

, then K is a colored triangulation of Sn.

(d) For 3 6 n 6 5, if µ(K) = 2(n+1)
(n−1)

, then K is a colored triangulation of one of the

following n–manifolds: Sn, S1 × Sn−1, S1 ×
∼
Sn−1 or (for n = 3) the real projective

space RP 3.

Remark. Note that µ0 in (1) and µ in (2) have essentially the same definition, but they
assume in general quite different values (this is the reason to use distinct notations). In
fact, the former is defined by using the class of simplicial triangulations, while the latter
arises from the different class of colored pseudocomplexes.

Now we recall the definition of a further combinatorial invariant of closed connected PL
n–manifolds. Let K be a contracted triangulation of a closed connected PL n–manifold M ,
and µ(K) the average (n−2)–simplex order of K. By [7] the (contracted) average (n−2)–
simplex order of M (in short, the average order), written µ−(M), is the smallest µ(K) for
a contracted triangulation K of M . The motivation for introducing this invariant comes
from the 2–dimensional case (see also [13]). Suppose we have a contracted triangulation
K of a closed connected surface M . Then q0(K) = 3, q1(K) = (3p)/2 and q2(K) = p
for p > 2 even. Hence µ−(M) = p = 6 − 2χ(M) by a Euler characteristic calculation.
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Therefore, the average vertex order being less than 6, equal to 6, or greater than 6
corresponds to M having a spherical, Euclidean, or hyperbolic structure, respectively.

It is also convenient to introduce a new numerical invariant for a closed connected PL
n-manifold M . Let µ+(M) denote the maximum µ(K) for a contracted triangulation K
of M . Of course, if M is a closed connected surface, then µ−(M) = µ+(M) = 6 − 2χ(M).

In dimension 3, we are able to improve Theorem II of [3] in order to get the following
result:

Theorem 7. Let M be a closed connected PL 3–manifold. Then the reduced complexity
and the average order of M are linked by the following formula:

µ−(M) =
6 c̃(M) + 12

c̃(M) + 6
. (3)

Furthermore, we have:

(a) If 2 6 µ−(M) < 4, then M is PL homeomorphic to a 3–sphere. If µ−(M) = 4, then
M is PL homeomorphic to either S1 × S2, S1 ×

∼
S2 or RP 3.

(b) Suppose now M prime and orientable. Then we have:

• If 4 < µ−(M) < 5, then M is PL homeomorphic to one of the lens spaces L(3, 1),
L(4, 1), and L(5, 2), or the quaternionic space S3/ < 2, 2, 2 >.

• If µ−(M) = 5, then M is PL homeomorphic to L(5, 1), L(7, 2), L(8, 3), or the
prism manifold S3/ < 3, 2, 2 >.

• For 5 < µ−(M) < 5.2, there are six lens spaces, seven spherical manifolds with
finite noncyclic fundamental groups, and four euclidean fibered manifolds (see
the Appendix for more detailed information).

Proof. If p denotes the number of tetrahedra in a contracted triangulation of K, then
q2(K) = 2p. Since χ(M) = 0 and q0(K) = 4, we get q1(K) = 4 + q2(K)− p = 4 + p. This
gives

µ(K) =
3q2(K)

q1(K)
=

6p

4 + p

hence 2 6 µ(K) < 6. The derivative of the function f(p) = (6p)/(4 + p) with respect to
the variable p is given by

f
′
(p) =

24

(4 + p)2
> 0.

Thus the function f(p) is increasing with respect to p. Since c̃(M) + 2 6 p, we get

2 6 µ−(M) =
6 c̃(M) + 12

6 + c̃(M)
< 6.

If 4 < µ−(M) 6 5, then 6 < c̃(M) 6 18 by (3). For Statement (a), if 2 6 µ−(M) < 4,
(resp. µ−(M) = 4), the result follows from Theorem 3b (resp. Theorem 3c) of [4]. The
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first two sentences of Statement (b) follows from the classification of all closed connected
prime orientable 3–manifolds which admit a contracted triangulation having at most 20
tetrahedra (see [12], §5.4, pp. 224-225). The crystallization of minimal order 18 of
S3/ < 2, 2, 2 > is depicted in [12], Fig.158, p.198. The crystallization of minimal order 20
of S3/ < 3, 2, 2 > is shown in [12], Fig.159, p.198. For lens spaces see [12], §5.4.1, Table
10A. If 5 < µ−(M) < 5.2, then 18 < c̃(M) < 24 by (3). Thus the last part of Statement
(b) follows from the catalogue of closed orientable 3–manifolds triangulated by at most
24 colored tetrahedra (see [5, 12]). The relevant crystallizations of minimal orders 22 and
24 of the spherical manifolds with finite noncyclic fundamental groups are depicted in
[12], §5.3.3, pp.199-202. The crystallizations of minimal order 24 of the euclidean fibered
manifolds are shown in [12], §5.3.3, pp.202-204. See the Appendix for the list of the
manifolds present in the range 5 < µ−(M) < 5.2.

We are going to prove our main result in dimension 4. We emphasize that the useful
topological invariant switches from µ− for χ(M) < 5 to µ+ for χ(M) > 5. It is also
remarkable that when χ(M) = 5 the distribution of the µ(K) gives no topological infor-
mation whatsoever. The trichotomy between χ(M) < 5, χ(M) = 5 and χ(M) > 5 is
striking. It should be interesting to know of other instances where this is important.

Theorem 8. Let M4 be a closed connected PL 4–manifold, and Tc the class of all 4-
dimensional contracted triangulations. Then we have:

(a) If χ(M) < 5, then

2 6 µ−(M) =
5c̃(M) + 10

7− χ(M) + c̃(M)
< 5 = sup

K∈Tc
µ(K) (4)

and equality holds if and only if M is PL homeomorphic to a 4–sphere. Furthermore,
for every ε > 0 there exists a contracted triangulation Kε of M such that µ(Kε) > 5−ε.

(b) If χ(M) = 5, then µ−(M) = µ+(M) = 5.

(c) If χ(M) > 5, then

inf
K∈Tc

µ(K) = 5 < µ+(M) =
5c̃(M) + 10

7− χ(M) + c̃(M)
< 6. (5)

Furthermore, for every ε > 0 there exists a contracted triangulation Kε of M such that
µ(Kε) < 5 + ε.

Proof. Let (G, c) be a crystallization of M of order p, K = K(G) the associated contracted
triangulation. Then c̃(M) 6 p − 2. By Lemma (2.1)a [6] we have q3(K) = (5p)/2 and
q2(K) =

∑
i<j gij, hence

µ(K) =
4q3(K)

q2(K)
=

10p∑
i<j gij

. (6)
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We now show that gij 6 p/2 for every i, j ∈ ∆4, i 6= j. Fix i, j ∈ ∆4, i 6= j, and let pα,ij
be the number of vertices of a connected component Cα,ij of G colored by i, j ∈ ∆4, i 6= j,
for α = 1, . . . , gij. Then pα,ij is even (> 2) and

∑gij
α=1 pij = p. In fact, the set {Cα,ij}α of

cardinality gij induces a partition of the vertex (resp. edge) set of G. So we obtain

2 gij 6
gij∑
α=1

pij = p,

hence gij 6 p/2 for arbitarily fixed distinct colors i, j ∈ ∆4. This implies that
∑

i<j gij 6
5p. Hence the formula in (6) gives µ(K) > 2 for any contracted triangulation K of M .
By Lemma (2.2) [6], we have

2
∑
r<s<t

grst = 3
∑
ij

gij − 5p. (7)

Substituting (7) into (6) yields

µ(K) =
30p

2
∑

r<s<t grst + 5p
< 6

as grst > 0 for every distinct colors r, s, t ∈ ∆4. Thus for every contracted triangulation
K of M , we have 2 6 µ(K) < 6, hence 2 6 µ−(M) < 6.

If µ−(M) = 2, then there is a contracted triangulation K of M such that 5p =
∑

i<j gij,
hence gij = p/2 for every i, j ∈ ∆4 and grst = p/2 for every r, s, t ∈ ∆4. Then the 5-
colored graph G is a dipole of type 5, that is, it consists of two vertices joined by 5 edges,
one of each color in ∆4. This means that the pseudocomplex K = K(G) associated to G
consists of two 4–simplexes with identified boundary, so p = 2 and c̃(M) = 0 (compare
also with [4], p.257). Then M4 is PL homeomorphic to a 4–sphere.

By Lemma (2.2) [6] we have∑
i<j

gij = 10 + 2p− 2χ(M). (8)

Substituting (8) into (6) gives

µ(K) =
5p

5− χ(M) + p
.

Thus for any contracted triangulation K of M , we get

2 6 µ(K) =
5p

5− χ(M) + p
< 6. (9)

Then µ(K) goes to 5 when p goes to infinity. Note that for any closed connected PL
4–manifold M4 there is a contracted triangulation of arbitrarily large order p = q4(K). It
suffices to add a sequence of 2-dipoles to a crystallization representing M . For the notion
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of dipole in a crystallization see the survey papers quoted in Section 1. Given a closed
connected PL 4–manifold M , the function

f(p) =
5p

5− χ(M) + p

has derivative with respect to p

f
′
(p) =

5(5− χ(M))

(5− χ(M) + p)2
.

Then f(p) is an increasing (resp. decreasing) function of p when χ(M) < 5 (resp. χ(M) >
5). For χ(M) = 5, then f(p) = 5 for all p, hence µ−(M) = µ+(M) = 5. This proves
the statement in (b). For χ(M) < 5, f(p) increases. So the inequality c̃(M) + 2 6 p, for
every p = q4(K), gives

µ−(M) =
5c̃(M) + 10

7− χ(M) + c̃(M)
6 f(p) < 5.

Furthermore, f(p) increasing function and f(p)→ 5 for p→ +∞ imply the last statement
in (a). For χ(M) > 5, f(p) decreases. Then the inequality c̃(M) + 2 6 p, for every p, and
f(p)→ 5 for p→ +∞ imply

5c̃(M) + 10

7− χ(M) + c̃(M)
> f(p) > 5.

Then infK µ(K) = 5 and for every ε > 0 there exists a contracted triangulation Kε of M
such that µ−(M) 6 µ(Kε) < 5 + ε. Thus µ+(M) < 6, and (c) is proved.

Combining Theorem 8 with Theorem 3, we get the following characterizations:

Theorem 9. Let M4 be a prime closed connected PL 4–manifold. Then we have:

(a) If µ−(M) < 10
3

, then M is PL homeomorphic to a 4–sphere. If µ−(M) = 10
3

, then M
is PL homeomorphic to either S1 × S3 or S1 ×

∼
S3.

(b) If µ−(M) < 80
21

and χ(M) = 0, then M is PL homeomorphic to either S1 × S3 or
S1 ×
∼
S3.

(c) If µ−(M) 6 4 and χ(M) = 1 or 3, then M is PL homeomorphic to either CP 2 or
RP 4.

(d) µ−(M) 6 14
3

and χ(M) = 4, then M is PL homeomorphic to the topological product
S2 × S2.
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Proof. (a) If µ−(M) < 10
3

, there is a contracted triangulation K of M such that µ(K) <
10
3

= 2 (n+1)
n−1

for n = 4. Then M is PL homeomorphic to S4 by Theorem 3(b) of [4].

If µ−(M) = 10
3

, hence µ(K) = 10
3

= 2 (n+1)
n−1

for n = 4, then M is PL homeomorphic to
either S1 × S3 or S1 ×

∼
S3 by Theorem 3(c) of [4].

(b) If χ(M) = 0 and µ−(M) < 80
21

, from Theorem 8(a), we get

2 6 µ−(M) =
5 c̃(M) + 10

7 + c̃(M)
<

80

21

hence
105 c̃(M) + 210 < 560 + 80 c̃(M).

This implies that c̃(M) < 14. Since c̃(M) is even, it follows that c̃(M) 6 12. Now the
statement in (b) is proved by using Theorem 3(a-c) and χ(M) = 0.
(c) If χ(M) = 1 and µ−(M) 6 4, from Theorem 8(a), we obtain

2 6 µ−(M) =
5 c̃(M) + 10

6 + c̃(M)
6 4

hence c̃(M) 6 14. By Theorem 3(d) M is PL homeomorphic to RP 4.
If χ(M) = 3 and µ−(M) 6 4, from Theorem 8(a), we get

2 6 µ−(M) =
5 c̃(M) + 10

4 + c̃(M)
6 4

hence c̃(M) 6 6. By Theorem 3(a) M is PL homeomorphic to CP 2.
(d) If χ(M) = 4 and µ−(M) 6 14

3
, from Theorem 8(a), we obtain

2 6 µ−(M) =
5 c̃(M) + 10

3 + c̃(M)
6

14

3

hence c̃(M) 6 12. By Theorem 3(a-c) it follows that M is PL homeomorphic to the
topological product S2 × S2.

Examples. The following are explicit computations of the considered combinatorial in-
variants for the manifolds listed above:
• Theorem 9(a,b). For M = S4, we have µ−(M) = 2, χ(M) = 2 and c̃(M) = 0. If
M = S1 × S3 or S1 ×

∼
S3, then µ−(M) = 10

3
, χ(M) = 0 and c̃(M) = 8.

• Theorem 9(c). If M = CP 2, then µ−(M) = 4, χ(M) = 3 and c̃(M) = 6. If M = RP 4,
then µ−(M) = 4, χ(M) = 1 and c̃(M) = 14.
• Theorem 9(d). If M = S2 × S2, then µ−(M) = 14

3
, χ(M) = 4 and c̃(M) = 12.

• The following examples are relevant to the discussion of Theorem 8 as they relate with
the µ+(M) < 6 portion of the χ(M) > 5 inequality. More precisely, we construct two
sequences of manifolds that give µ+ → 6. If M = h(S2 × S2) is the connected sum of
h > 1 copies of S2 × S2, then µ+(M) = 12h+2

2h+1
which goes to 6 when h goes to infinity,
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χ(M) = 2(h + 1) and c̃(M) = 12h. If M = k(CP 2), k > 1, then µ+(M) = 6k+2
k+1

which
goes to 6 when k goes to infinity, χ(M) = k+ 2 and c̃(M) = 6k. If M is a connected sum
of ` copies of S1 × S3 and/or S1 ×

∼
S3, then µ−(M) = 8`+2

2`+1
which goes to 4 when ` goes to

infinity, χ(M) = 2− 2` and c̃(M) = 8`.

The following is our main result on the average order for the class of 5-dimensional
manifolds (here statement (a) is new, while statements (b) and (c) follow from [4]):

Theorem 10. Let M be a closed connected PL 5–manifold. Then we have

(a)

2 6 µ−(M) 6
5c̃(M) + 10

c̃(M) + 5 rk(M) + 5
< 5

where rk(M) denotes the rank of the fundamental group π1(M). Furthermore,µ−(M)=
2 if and only if M is PL homeomorphic to S5.

(b) If µ−(M) < 3, then M is PL homeomorphic to S5.

(c) If µ−(M) = 3, then M is PL homeomorphic to either S1 × S4 or S1 ×
∼
S4.

Proof. Let (G, c) be a crystallization of M with minimum order p = c̃(M) + 2, and let
K = K(G) be the associated contracted triangulation. By Lemma 2.1(a) [8] we get

µ(K) =
5q4(K)

q3(K)
=

15p∑
i<j gij

.

By Lemma 2.2 and Lemma 2.1(d) of [8], we have∑
i<j

gij =
∑

h<k<r<s

ghkrs + 3p− 6 > 3p+ 15 rk(M) + 9.

On the other hand, gij 6 p/2 for every distinct colors i, j ∈ ∆5, so we get
∑

i<j gij 6
(15p)/2. Thus we obtain the inequalities in (a). If µ−(M) = 2, then there is a contracted
triangulation K of M such that 15p = 2

∑
i<j gij, hence gij = p/2 for every i, j ∈ ∆5.

By Lemma 2.2 [8] we get gijk = p/2 for every distinct colors i, j, k ∈ ∆5. We see also
that ghkrs = p/2 for every 4-tuple of distinct colors. So the last formula of Lemma 2.2 [8]
gives p = 2. Then K consists of two 5–simplexes with identified boundary, i.e., M ∼= S5.
Statements (b) and (c) are those in [4], Theorem 3, for n = 5.

Examples. The first two inequalities in Theorem 10(a) may become equalities.
For M = S5, we have µ−(M) = 2 and rk(M) = c̃(M) = 0. If M = S1 × S4 or S1 ×

∼
S4,

then µ−(M) = 3, rk(M) = 1 and c̃(M) = 10.
For M = S3 × S2, we have µ−(M) = 4.4, rk(M) = 0 and c̃(M) = 20. If M = RP 5,

then µ−(M) = 4, rk(M) = 1 and c̃(M) = 30, as shown in [8], Lemma 1.
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4 A question on average order

The work by Luo and Stong [13] and Tamura [17, 18] implies the following result, stated
in [20]:

Theorem 11. For every closed connected topological 3-manifold M and every rational
number

4.5 < r < 6

there is a simplicial triangulation T of M for which the average edge–order µ(T ) is r.

The fact that we can find such a triangulation T independent of the topology of M is
significant. This is a point of difference with the statement of Theorem 12 (below).

The following question has been posed by Trout in [20]:

Question: Does anyone know of results similar to Theorem 11 but for n > 4?

We provide an answer to question above for n = 4.

Theorem 12. For any rational number

4 6 r < 6

there are a closed connected 4–manifold M and a contracted triangulation K of M such
that the average 2–simplex order µ(K) is r.

Proof. First suppose that 4 6 r < 5. Let r = a/b, with a, b > 0, (a, b) = 1. Then a < 5b
and 4b 6 a. Let us consider the closed connected 4–manifold M = CP 2#N , where N is
a connected sum of ` copies of S1 × S3 and/or S1 ×

∼
S3, with ` = k(5b− a)− 1 and k > 1.

Since χ(CP 2) = 3 and χ(N) = 2 − 2`, it follows that χ(M) = 3 − 2` = 5 − 2k(5b − a).
Let K1 be a contracted triangulation of M with minimal order p, that is, p = c̃(M) + 2.
Then the subadditivity of the reduced complexity implies that

p− 2 = c̃(M) 6 c̃(CP 2) + c̃(N) = 6 + 8`

hence p 6 8(` + 1) = 8k(5b − a) 6 2ak. The last inequality holds as 4b 6 a and
k > 1. Adding 2–dipoles (if necessary) to a crystallization representing K1, we get a
crystallization of order p+2n = 2ak (recall that p is always even). The last crystallization
represents a contracted triangulation K of M . Moreover, using (9) we have

µ(K) =
5(p+ 2n)

5− χ(M) + p+ 2n
=

10ak

2k(5b− a) + 2ak
=
a

b
= r.

Suppose now 5 6 r < 6. Then we have r = a/b, a, b > 0, (a, b) = 1, a < 6b and
5b 6 a. Let M be the closed connected PL 4–manifold defined as M = CP 2#`(S2 × S2)
with ` = k(a − 5b) + 1 and k > 1. Here `(S2 × S2) denotes the connected sum of `
copies of S2 × S2. Since χ(CP 2) = 3 and χ(`(S2 × S2)) = 2(` + 1), it follows that
χ(M) = 3 +2` = 5+ 2k(a−5b). Let K1 be a contracted triangulation of M with minimal
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order p, that is, p = c̃(M) + 2. Then the subadditivity of the reduced complexity implies
that

p− 2 = c̃(M) 6 c̃(CP 2) + c̃(`(S2 × S2)) = 6 + 12`

hence p 6 8 + 12` 6 2ak. The last inequality holds as 4 + 6` 6 ak, that is, 2 6 (6b− a)k
which follows from a < 6b and k > 1. Adding 2–dipoles (if necessary) to a crystallization
representing K1, we get a crystallization of order p + 2n = 2ak. The last crystallization
represents a contracted triangulation K of M . Moreover, using (9) we have

µ(K) =
5(p+ 2n)

5− χ(M) + p+ 2n
=

10ak

−2k(a− 5b) + 2ak
=
a

b
= r.

This completes the proof.

Connections between the average order and the edge diameter of a manifold can be
derived from the work by Trout [19].

Appendix

Here we describe explicitly the closed connected prime orientable PL 3-manifolds M with
5 < µ−(M) < 5.2 completing the statement in the third bullet point of Theorem 7, part
(b). For the theory of Seifert manifolds and for the notation used to describe them we
refer to [14, 15]. However, we recall such a notation to make the reading clear. Let F be
a closed connected (orientable ε = o or nonorientable ε = n) surface of genus g. If b ∈ Z
and (p1, q1), . . . , (pr, qr) are coprime integer pairs with |pi| > 2, an orientable (O) Seifert
manifold M with Seifert invariants

M = (O g ε : b (p1, q1) · · · (pr, qr))

is defined as follows. Let Σ be F minus (r + 1) open discs and let W be the orientable
S1-bundle over Σ. Give Σ any orientation, pick a section σ of W and choose positive
homology bases (µ0, λ0), (µ1, λ1), . . . , (µr, λr) on the components of ∂W arising from the
punctures of F , with µi ⊂ ∂σ and a fibre as λi, for every i = 0, 1, . . . , r. Then M is the
Dehn filling of W along p1 µ1 + q1 λ1, . . . , pr µr + qr λr, and µ0 + b λ0. That is, we attach
(r+ 1) solid tori to W along the boundary components sending their meridians to closed
simple curves which represent the above-specified homology classes. Then we have

Theorem 13. Let M be a closed connected prime orientable 3–manifold.

• If 5 < µ−(M) < 5.2, then M is homeomorphic to one of the following manifolds:

• Lens spaces: L(6, 1), L(9, 2), L(10, 3), L(11, 3), L(12, 5), and L(13, 5);
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• Spherical manifolds with finite noncyclic fundamental groups (which are Seifert
fibered manifolds):

S3/ < 3, 3, 2 > ∼= (O 0 o : −1 (2, 1) (3, 1) (3, 1)) (the octahedral space)

S3/ < 5, 3, 2 > ∼= (O 0 o : −1 (2, 1) (3, 1) (5, 1)) (the Poincaré homology 3–sphere)

S3/ < 4, 3, 2 > ∼= (O 0 o : −1 (2, 1) (3, 1) (4, 1))

S3/Z3 oi Z8
∼= (O 0 o : −1 (2, 1) (2,−1) (3, 1))

S3/Z5 oi Z8
∼= (O 0 o : −1 (2, 1) (2, 1) (5, 2))

S3/Z3 ×Q8
∼= (O 0 o : −2 (2, 1) (2,−1) (2, 1))

S3/Q16
∼= (O 0 o : −1 (2, 1) (2, 1) (4, 1))

• Euclidean fibered manifolds:

(O 1n : −1 (2, 1) (2, 1))

(O 0 o : −1 (3, 1) (3, 1) (3, 1))

(O 0 o : −2 (2, 1) (2, 1) (2, 1) (2, 1))

S1 × S1 × S1

The relevant crystallizations of minimal order 26 and 28 for closed connected prime
3–manifolds can be found in [12], §5.3.5 and §5.3.6, pp.205–223. They represent closed 3-
manifolds M with 5.2 6 µ−(M) 6 5.25. For closed 3-manifolds M with 5.25 < µ−(M) 6
90
17

one can analyze the catalogue produced in [5].
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