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Abstract

Bootstrap percolation is a process that is used to describe the spread of an in-
fection on a given graph. In the model considered here each vertex is equipped
with an individual threshold. As soon as the number of infected neighbors ex-
ceeds that threshold, the vertex gets infected as well and remains so forever. We
perform a thorough analysis of bootstrap percolation on a model of directed and
inhomogeneous random graphs, where the distribution of the edges is specified by
assigning two distinct weights to each vertex, describing the tendency of it to re-
ceive edges from or to send edges to other vertices. Under the mild assumption that
the limiting degree distribution of the graph is integrable we determine the typical
fraction of infected vertices. Our model allows us to study a variety of settings, in
particular the prominent case in which the degree distribution has an unbounded
variance. As a second main contribution, we quantify the notion of “systemic risk”,
that is, we characterize to what extent tiny initial infections can propagate to large
parts of the graph through a cascade, and discover novel features that make graphs
prone/resilient to initially small infections.
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1 Introduction

In this paper we study bootstrap percolation, which is a classical mathematical model that
is used to describe how a certain activity disperses on a given finite graph. In the classical
variant of the model, one starts with a non-empty subset of the vertices, the so-called
initially infected set. The process continues in distinct rounds, and further vertices become
active as soon as they have at least a certain fixed number c ∈ N of infected neighbors.
After a finite number of steps the set of infected vertices will eventually stabilize, and the
important question is to quantify its shape as a function of the underlying graph and the
initially infected set.

The study of bootstrap percolation has a rather long history, beginning with its in-
vention in 1979 in [12], where it was used to investigate the demagnetisation properties
of certain crystals. Since then, many important properties of it were studied in a broad
variety of different settings, including for example the case where the underlying graph
is the d-dimensional finite grid [n]d, see [22, 23, 8] and [7], the extensive study for Erdos-
Rényi random graphs [25] and random regular graphs [10], and the cases of tori [6] and
infinite trees [17, 9]. From today’s perspective, however, the underlying graphs that we
wish to study are more complex and heterogeneous, and the details of the infection pro-
cess are more intricate. Let us mention two characteristic examples that will motivate
the definition of our model:

• Financial networks. The vertices are financial institutions (like banks or insurance
companies) and the edges describe monetary dependencies between them, for ex-
ample a loan from one bank to another. If some institutions go bankrupt, then this
may result in a cascade of credit defaults, depending on how much each remaining
institution can withstand.

• Social networks. The vertices are individuals, who exchange information through
announcing messages; in Twitter for example, the users may broadcast a message
to all of their followers. They, in turn, can broadcast it further, resulting again in a
cascade of message transmitions.

The graphs in the two previous examples, as well as many others that appear in a variety
of similar contexts, have three relevant characteristics. First, they are heterogeneous, in
the sense that the degree distribution (i.e., the probability that a uniformly chosen random
vertex has a given number of neighbors) is far from uniform – it typically has a heavy
tail. This has been verified empirically in a vast number of studies [1, 14, 2]. Second, the
graphs are directed, meaning that the induced relation among the vertices is not necessarily
symmetric. Finally, each vertex has an individual threshold level according to which it
becomes infected; some vertices are more sensitive to activity in their neighborhood than
others.

The model that we study encompasses these characteristics. It contains two basic
ingredients: a model for random directed graphs, where the degree distribution regarding
both incoming and outgoing edges can be prescribed, and a model for bootstrap perco-
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lation, where each vertex has its own individual infection threshold. The main results of
this paper include a detailed study with respect to all parameters.

Our graph model is defined as follows. Let n ∈ N. Each vertex i ∈ [n] := {1, . . . , n} is
associated with three parameters w−i , w

+
i ∈ R+ and ci ∈ N0. The first parameter w−i quan-

tifies the tendency of i to receive edges from other vertices, and similarly w+
i quantifies

its tendency to connect to other vertices. In particular, the probability that the directed
edge (i, j), where i 6= j, is in the graph, is given by min{1, w+

i w
−
j /n}. Moreover, all these

events are assumed to be independent. This model is a generalization of the popular
Chung-Lu model [13], see also [28] and the extensive study [11], to the setting of directed
graphs. As an auxiliary (and not unexpected) result, we show that if the joint empirical
distribution of the weight sequences (w−i , w

+
i )i∈[n] converges to the distribution of an inte-

grable random variable (W−,W+), then the resulting in-degree and out-degree sequences
are close to a bivariate mixed Poisson distribution with mixing variable (W−,W+). Ran-
dom directed graphs that were proposed prior to our work are based on the configuration
model, where the actual in- and out degrees are specified for each vertex, see e.g. [4, 15].
These models are quite powerful and sufficient in many situations; however, they generate
simple graphs (i.e., with no loops and multiple edges) with a probability that is bounded
away from zero only if the degree sequence fulfills a second moment condition, see e.g. [24].
In our intended applications this condition is only rarely satisfied. The degree sequences
that are frequently observed in real-world networks are so heavy tailed that they may
have a variance that grows with the number n of vertices, the most prominent case being
a power-law distribution with exponent 2 < β < 3 [2, 14].

The third set of parameters in our model, i.e., the quantities (ci)i∈[n], describe the
sensitiveness of the vertices with respect to activity in their neghborhoods. Our bootstrap
percolation process on a given graph G with vertex set [n] is a deterministic procedure
that works as follows. There is an initially infected set of vertices A0. For a vertex i let
N−G (i) = {j ∈ [n] | (j, i) is an edge of G} be the in-neighborhood of i in G. In the k-th
generation, where k ∈ N, the infection spreads to

Ak =
{
i ∈ [n] | |N−G (i) ∩ Ak−1| > ci

}
.

That is, as soon as there are ci infected in-neighbors of i, that vertex gets infected as
well and remains so forever. A straightforward consequence of this definition is that
the sequence A0,A1,A2, . . . stabilizes after at most n − 1 generations. We say that
An is the set of finally infected vertices. The main result of this paper, Theorem 3,
establishes in several relevant cases the typical size of An if the underlying graph is a
directed inhomogeneous random graph in the setting described previously, and if the joint
empirical distribution of (w−i , w

+
i , ci)i∈[n] converges to the distribution of a random vector

(W−,W+, C), where, as before, we assume that (W−,W+) is integrable. Our setting is
quite general, and it allows in particular for intricate correlation structures among the
in-/out-degrees of the vertices and the infection threshold, which are expected to exist
in many natural models. For example, in specific settings it is certainly expected that
vertices with high degrees have also a higher threshold, as might be the case in a financial
network. Related albeit more restricted settings with varying infection thresholds have
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been considered before, in particular in [27, 3, 4], where the underlying model for the
graph is the configuration model.

The second main contribution of this paper is a quantification of the notion of “sys-
temic risk”, that is, to what extent a small number of initial infections can propagate
through the percolation process to a significant fraction of all vertices. In our setting this
corresponds (informally) to the case P(C = 0)→ 0, which essentially prescribes that only
a sublinear fraction of vertices is initially infected. This is a particularly important situ-
ation, as in typical applications cascades are triggered by only a small number of vertices
in the network – in a financial crisis, for example, a small number of market participants
defaults initially, but this may have a severe effect on a huge part of the network. Among
other results, we determine under which conditions on (W−,W+, C) the finally infected
set contains a large fraction of all vertices that is independent of the probability of being
initially infected, as long as this is positive; see Sections 2, 6.

Paper & Proof Outline The paper is structured as follows. In the next section we
formulate in more detail our model and state the main results as well as some applications,
particularly in the context of quantifying systemic risk. In Section 3 we study some basic
properties of the proposed directed inhomogeneous random graph. The proofs of our
main results start in Section 4, where we first study a special case of our model. Namely,
we consider the setting where the weights w−i , w

+
i and threshold value ci of each vertex

may obtain a value from a finite set only. Moreover, there we reformulate the activation
process in a sequential form such that at each time-step only the infection from one
vertex is considered. This reformulation allows us to approximate the dynamics of the
system with differential equations, using the method in [30], to derive a law of large
numbers for the activation process in the sequential description. The use of this method
is quite common for such problems, see e.g. [5]; however, in our context the application
is both conceptually and technically complex due to the three-dimensional nature of our
parameter space. Moreover, since the functions defining the differential equations are
only Lipchitz continuous on a domain smaller than the one of interest, we develop a
novel probabilistic argument to show that the infections outside the considered domain
are negligible. In Section 5, we extend our results to the general setting by developing
several couplings of the original vertex sequence to tailor-made sequences with finitely
many values; this is the main technical contribution of this paper. Difficulties arise here
due to the multi-dimensionality of the vector (W−,W+, C) and the fact that we only
assume a first moment for (W−,W+). Based on these results, in Section 6 we prove our
results on systemic risk and provide several examples. Finally, in Section 7 we present
some extensions of our main results.

2 Results & Applications

Random Graph Model For each n ∈ N we consider the vertex set [n] = {1, . . . , n}
and the set of directed edges E := {(i, j) | i, j ∈ [n], i 6= j}. Let Ω := {0, 1}|E| and
F := 2Ω. We define a probability measure P on (Ω,F) in the following way. To each
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vertex i ∈ [n] we assign two deterministic weights w−i (n) and w+
i (n) ∈ R+ and define the

probability pi,j = pi,j(n) for i 6= j that there is a directed edge from vertex i to vertex j
by

pi,j = min
{

1, w+
i w
−
j /n

}
. (1)

Furthermore, we assume that the events that an edge is present happens independent
of the presence of all other edges. The role of w−i respectively w+

i is to determine the
tendency of vertex i ∈ [n] to have incoming respectively outgoing edges. Let further
w−(n) = (w−1 (n), . . . , w−n (n)) and w+(n) = (w+

1 (n), . . . , w+
n (n)) be the in- and out weight

sequences. Observe that all the quantities including P,Ω and F depend on n. However,
to simplify notation we often neglect to mention explicitly this dependency. We denote
the resulting random graph by Gn(w−(n),w+(n)) and we abbreviate it with Gn(w−,w+).

For a pair of in- and out-weight sequences (w−,w+) we define their empirical distri-
bution

Fn(x, y) = n−1
∑
i∈[n]

1{w−i (n) 6 x,w+
i (n) 6 y}, x, y ∈ [0,∞). (2)

Let in the following (W−
n ,W

+
n ) be a random vector with distribution function Fn(x, y).

We shall pose some mild assumptions on the weight sequences.

Definition 1 (Regular Weight Sequence). The sequence (w−(n),w+(n))n>1 of pairs
of weight sequences is regular, if it satisfies the following conditions:

1. Convergence of weights: There exists a distribution function F : [0,∞) ×
[0,∞) → [0, 1] such that for all (x, y) where F is continuous, limn→∞ Fn(x, y) =
F (x, y).

2. Convergence of average weights: Let (W−,W+) be a random variable with
distribution F . Then limn→∞ E[(W−

n ,W
+
n )] = E[(W−,W+)] = (λ−, λ+) for some

λ−, λ+ ∈ R+.

3. Existence of a Lower Bound: There is a w0 > 0 such that w−i (n), w+
i (n) > w0

for all n ∈ N and i ∈ [n].

Note that we do not require the convergence of higher moments for the vertex weights.
Moreover, it can easily be seen that for a regular pair of weight sequences maxi∈[n] w

+
i =

o(n) and maxi∈[n] w
−
i = o(n). We shall use this observation frequently. Further note that

the third condition is a mild technical condition to simplify proofs and is not enforcing a
minimum degree.

Bootstrap Percolation with Infection Thresholds In addition to the weights, we
assume that each vertex i ∈ [n] is associated with an infection threshold ci. The vertex i
becomes infected after ci of the vertices that have a directed edge to it are infected. We
allow for vertices that can never be infected and assume that they have threshold ∞, a
choice done for convenience. Set N∞ := N∪{∞} and N∞0 := N0 ∪{∞}. As in the case of
the weights, we assume that we are given a threshold sequence c(n) = (c1(n), . . . , cn(n)) ∈
(N∞0 )n.
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Definition 2 (Regular Vertex Sequence). Let (w−(n),w+(n))n>1 be regular and
(c(n))n>1 a sequence of percolation thresholds. We call (w−(n),w+(n), c(n))n>1 a regular
vertex sequence if there exists a distribution function F : R× R× N∞0 → [0, 1] such that
for all points (x, y, `) ∈ R × R × N∞0 for which F (x, y, `) is continuous in (x, y) we have
limn→∞ Fn(x, y, `) = F (x, y, `), where Fn(x, y, `) is the empirical distribution function

Fn(x, y, `) = n−1
∑
i∈[n]

1{w−i (n) 6 x,w+
i (n) 6 y, ci(n) 6 `}, ∀(x, y, `) ∈ R×R×N∞0 . (3)

Note that in contrast to Definition 1 of a regular weight sequence we do not pose any
integrability assumptions on the threshold value. We denote by Gn(w−(n),w+(n), c(n))
the random graph Gn(w−(n),w+(n)), where the infection thresholds of the vertices are
given by c(n), and we abbreviate it with Gn(w−,w+, c).

Given a directed graph G and the threshold sequence, a bootstrap percolation process
is triggered by the initial set of infected vertices A0 := {i ∈ [n] | ci = 0}. Recall that for
a vertex N−G (i) = {j ∈ [n] | (j, i) is an edge of G} is the in-neighborhood of vertex i in G.
In the k-th generation, where k ∈ N, the infection spreads to the set Ak given by

Ak =
{
i ∈ [n] | |N−G (i) ∩ Ak−1| > ci

}
. (4)

One can easily see that after at most n− 1 rounds, the sequence A0,A1,A2, . . . stabilizes
and An−1 = An. We call An the final set of infected vertices in G.

Main result Our main result quantifies the size of the final infected set for the random
graph Gn(w−,w+, c), where (w−(n),w+(n), c(n))n>1 is regular. Let us introduce some
notation first. For r ∈ N∞0 let ψr(x) denote in the rest of the paper the probability that
a Poisson distributed random variable with parameter x > 0 is at least r, i.e.,

ψr(x) :=

{
P(Poi(x) > r) =

∑
j>r e

−xxj/j!, r > 0

0 r =∞ . (5)

We say that a sequence of events (En)n>1 occurs with high probability if

lim
n→∞

P(Gn(w−,w+, c) ∈ En) = 1.

Finally,
p−→ denotes the usual convergence in probability.

Theorem 3. Let (w−(n),w+(n), c(n))n>1 be a regular vertex sequence with limiting dis-
tribution F : R×R×N∞0 → [0, 1]. Let (W−,W+, C) be a random vector with distribution
F . Assume P(C = 0) > 0 and that F (x, y, `) is continuous in (x, y) for each ` ∈ N.
Denote by ẑ the smallest positive solution of

f(z; (W−,W+, C)) := E[W+ψC(W−z)]− z = 0. (6)

Let An denote the final set of infected vertices in Gn(w−,w+, c). Then:
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1. For all ε > 0 with high probability n−1 |An| > E[ψC(W−ẑ)]− ε.

2. If there exist δ > 0, κ < 1 such that E[W+W−P(Poi(zW−) = C − 1)1C>1] < κ for
z ∈ (ẑ − δ, ẑ + δ), then

n−1 |An|
p−→ g(ẑ; (W−, C)) := E[ψC(W−ẑ)], as n→∞. (7)

Our main results provides a lower bound of essentially g(ẑ; (W−, C)) for the fraction
of vertices in the final infected set. Under the additional assumption 2., we obtain the
convergence in probability to that value. This extra assumption is needed, as otherwise
the process might show a different behavior; such an effect was studied in [25] for the case
of Erdos-Rényi random graphs and infection thresholds that are the same for all vertices.
We do not consider this case here.

Remark 4. In [4] a similar result was derived in the case where the underlying graph is
generated with the configuration model and the additional assumption that the degree
distribution has a bounded variance. There, for convergence in probability it is required
that the fixpoint of the relevant functional has negative derivative, i.e., that f ′(ẑ) 6 κ for
some κ < 0. If E[W+W−] =∞ however, f is not necessarily differentiable. Furthermore,
it is shown in Appendix A that if f is differentiable and f ′(ẑ) 6 κ this in fact implies
that E[W+W−P(Poi(zW−) = C − 1)1C>1] is bounded away from one in a neighborhood
of ẑ. Thus, the formulation here is more general and covers more settings.

Remark 5. In [5] bootstrap percolation on Chung-Lu random graphs with fixed thresh-
olds was studied, and the resulting formulas, in particular for the determination of the
fixpoint (6) and the final fraction (7), have some similarity. In particular, the formulas in
[5] depend only on the (single) distribution of the weights and the fixed threshold, while
in the present setting there naturally appears a dependency on all weight and threshold
distributions. Our proof also shares some similarities with the one in [5], especially in the
beginning, where we study the process on finitary weight sequences. However, the analysis
of the general setting is much more involved and requires due to the multidimensionality
of the parameters several new tools and ideas that are developed in Section 5.

In the light of many applications, not only the number of finally infected vertices is of
interest, but also related quantities. For example one might be interested in

n−1
∑
i∈An

1{w−i (n), w+
i (n) > w},

the number of large (with weight > w) vertices that get infected. Alternatively, each
vertex might have a certain relevance for the system, for example by providing some
service to the system itself or to the outside. Let ri > 0 be the relevance of vertex i ∈ [n].
If the relevance varies dramatically across vertices, the number of finally infected vertices
might not be a good measure to consider. We should consider instead

(
∑
i∈An

ri)
/

(
∑
i∈[n]

ri), (8)
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the fraction of the absolute relevance lost due to the percolation process. In [16], where
a financial network is studied, the number ri comprises several properties that make a
financial institution relevant to society, as for example the amount of debt issued to the
real economy or its contribution to the infrastructure of the payment system. In Section 7
we demonstrate how our results can be extended to that setting.

Applications In our main application we investigate under which conditions even a
very small set of infected vertices can cause a large fraction of infected vertices at the
end of the process. Let as before (w−,w+, c) be regular with limiting distribution F and
(W−,W+, C) a random variable with distribution F .

Our model for studying the effect of very small initially infected sets is as follows.
We assume that P(C = 0) = 0, that is, (asymptotically) there are no initial infections.
Moreover, we assume that some vertices i ∈ [n] are being infected ex post. In this process
all vertices i ∈ [n] receive a binary mark mi, which is either 1 or 0, where 1 means that
the vertex keeps its initial infection threshold and 0 that it becomes infected. Let m be
the sequence of marks. We define the function F̄n(x, y, `,m) : R×R×N∞0 ×{0, 1} → [0, 1]
by

F̄n(x, y, `, k) = n−1
∑
i∈[n]

1{w−i (n) 6 x,w+
i (n) 6 y, ci(n) 6 `,mi(n) 6 k}

and assume in the rest of this section that limn→∞ F̄n(x, y, `,m) = F̄ (x, y, `,m) for each
continuity point (x, y, `,m) of some distribution function F̄ . Let (W−,W+, C,M) be a
random vector distributed according to F̄ .

The following proposition investigates under which condition the fraction of infected
vertices at the end of the process can be bounded away from 0 independently of M .

Theorem 6. Assume that (W−,W+, C) is such that P(C = 0) = 0 and that there exists
z0 > 0 such that for any 0 < z < z0

E[W+ψC(zW−)] > z. (9)

Let M be such that P(M = 0) > 0. Let An be the set of finally infected vertices in
Gn(w−,w+, c), where ci(n) = ci(n)mi(n), for all i ∈ N. Then with high probability

n−1 |An| > E[ψC(W−z0)] > 0. (10)

Networks that fulfill the assumption of the last proposition are very prone to small
initial infections, as n−1 |An| is bounded away from zero regardless of P(M = 0). We
provide several examples. In particular, in Example 23 we show that (9) often holds even
if P(C = 1) = 0, that is, when there are no weak vertices with infection threshold equal
to 1; the crucial property driving E[W+ψC(zW−)] up in this case is the non-existence
of the second moment of the distribution of W−. This result complements our view on
systemic risk and provides a new global feature that enables us to study the vulnerability
of networks. In particular, in previous works [19, 4] the same bootstrap percolation process
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was studied on random graphs that are generated according to the configuration model,
where the sequence of degrees has a bounded second moment. There it was shown that
an initially small infection can propagate to a big part of the graph if and only if the
subgraph induced by the so-called contagious edges is large; an edge (i, j) is contagious
if j is weak, that is, cj = 1. Moreover, especially in the context of financial mathematics
a key concept in studying the effect of initial defaults is precisely that of contagious
edges [18, 20]. Our results enhance this picture and our analysis reveals that in general,
even if ci 6= 1 for all i ∈ [n] and P(C = 0) > 0 arbitrarily small, the initial shock can
propagate to large parts of the system.

Theorem 6 generalizes earlier research yet in another direction by not only showing
the existence of a lower bound but explicitly determining it. Furthermore, we show in
Section 6 that the bound is best possible and can not be improved in general. In contrast
to earlier proofs of similar results using combinatorial methods, our proof of Theorem 6
is purely analytic and provides additional insight into the role the functional f plays in
determining the spread of infection.

We continue by studying (essentially) all remaining cases and showing a reverse answer
to Theorem 6, describing the situation when the network is resilient. Since the condition
looks at first sight different, see the discussion after the next theorem for the connection
to Theorem 6.

Theorem 7. Assume that (W−,W+, C) is such that P(C = 0) = 0 and such that there
exists z0 > 0 such that for any 0 < z < z0

E[W+W−P(Poi(zW−) = C − 1)1{C>1}] < 1. (11)

Let {M (j)}j∈N with limj→∞ P(M (j) = 0) = 0 be a sequence of ex post infections, and let

A(j)
n be the set of finally infected vertices in Gn(w−,w+, c(j)), where c

(j)
i (n) = ci(n)m

(j)
i (n),

for all i ∈ [n] and j ∈ N. Then, for any ε > 0, there exists jε such that for j > jε with
high probability

n−1
∣∣A(j)

n

∣∣ 6 ε. (12)

To see why this complements Theorem 6, note that W+W−P(Poi(zW−) = C −
1)1{C>1} is non-negative. Thus, by Fubini’s theorem E[W+W−P(Poi(zW−) = C −
1)1{C>1}] is the weak derivative of E[W+ψC(zW−)], and Assumption (11) implies that

E[W+ψC(zW−)] < z (13)

for any 0 < z < z0, which is exactly the complement of (9).
A network for which the assumption of the theorem holds can be considered as being

resilient to small infections, since the final fraction of infected vertices will still be small.
In Example 24 we describe a family of graphs that is resilient. Condition (11) is satisfied
by Lemma 31 if f is differentiable on (0, z0) for some z0 > 0 and f ′(z, (W−,W+, C)) < 0
for z ∈ (0, z0).
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3 Degree Distribution

In this section we study some basic properties of directed inhomogeneous random graphs,
as the in- and out degrees of a single vertex and the degree sequence. Suppose that
(w−(n),w+(n))n>1 is a regular weight sequence with limiting distribution function F ,
and consider the sequence of graphs Gn(w−,w+). Denote by Xi,j = Xi,j(n) the indicator
function that there is a directed edge from vertex i to vertex j. Furthermore, define the
in-degree D−i and out-degree D+

i of vertex i ∈ [n] by

D−i =
∑
j 6=i

Xj,i and D+
i =

∑
j 6=i

Xi,j.

We first compute the typical number of edges in Gn(w−,w+). In the following let
(W−,W+) be a random vector with distribution F , and set E[W−] = λ− and E[W+] = λ+.

Lemma 8. Denote by e(Gn(w−,w+)) the number of edges in Gn(w−,w+). Then

n−1e(Gn(w−,w+))
p−→ λ−λ+. (14)

Proof. We first calculate limn→∞ E[e(Gn(w−,w+))]. By linearity

E[e(Gn(w−,w+))] 6
∑

i,j∈[n],i 6=j

w+
i w
−
j

n
6
∑
i∈[n]

w+
i

∑
j∈[n]

w−j
n
. (15)

By Definition 1, n−1
∑

j∈[n]w
−
j = λ− + o(1) and n−1

∑
j∈[n] w

+
j = λ+ + o(1). This implies

that the right hand side of (15) equals n(λ+λ− + o(1)). To derive a lower bound for
E[e(Gn(w−,w+))], note that in order to have w+

i w
−
j > n and the minimization to 1 in (1)

to be relevant, at least one of the two factors w+
i and w−j has to be greater than

√
n. So,

E[e(Gn(w−,w+))] > n−1
∑

i∈[n],w+
i 6
√
n

w+
i

∑
j∈[n]\{i},w−i 6

√
n

w−j . (16)

By Conditions 1,2 of Definition 1 it follows readily that

lim
n→∞

n−1
∑

w−j >
√
n

w−j = lim
n→∞

E[W−
n 1W−n >

√
n] = 0.

This, together with the same argument for the sum involving the w+
i ’s and using that

maxi∈[n] w
−
i = o(n) shows that the right hand side of (16) equals n(λ+λ− + o(1)) and

therefore
lim
n→∞

n−1E[e(Gn(w−,w+))] = λ+λ−.

Since e(Gn(w−,w+)) is the sum of independent indicator functions, it follows that

Var(e(Gn(w−,w+))) 6 E[e(Gn(w−,w+))]

and Chebyshev’s inequality establishes the claim.
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Before stating the next theorem we need the following definition (see [21] for a treat-
ment of uni-variate mixed Poisson distributions).

Definition 9. Multivariate mixed Poisson distribution: A vector X = (X1, . . . , Xn)
of random variables has a mixed Poisson distribution with mixing distribution FY , if for
every k = (k1, . . . , kn) ∈ Nn

0 ,

P(X = k) = E

[ ∏
16i6n

e−Yi
Y ki
i

ki!

]
, (17)

where Y = (Y1, . . . , Yn) is a random vector with distribution function FY .

In the following we denote by Poi(Y ) a random vector having a mixed Poisson distri-
bution with mixing vector Y . It can be easily seen that E[Poi(Yi)] = E[Yi]. The following
Theorem 10 and Lemma 11 are directed versions of known results for undirected inhomo-
geneous random graphs (see [29, Thm. 6.7., Cor. 6.9] or [11, Thm. 3.13]). Let Pn(k, j) be
the random distribution function defined by

Pn(k, j) = n−1
∑
i∈[n]

1{D−i =k,D+
i =j}, ∀k, j ∈ N0. (18)

Theorem 10. Let pn(k, j) be the probability mass function of the mixed Poisson random
variable (Poi(W−λ+),Poi(W+λ−)) given by

p(k, j) = E
[
e−(W−λ++W+λ−) (W−λ+)k(W+λ−)j

k!j!

]
. (19)

Then for all ε > 0, as n→∞

P

(∑
k,j

|p(k, j)− Pn(k, j)| > ε

)
→ 0. (20)

Proof. Using Lemma 11 below, the proof in [11, Thm. 3.13] or [29, Thm. 6.10.] can be
applied with some minor changes reflecting the in- and out weights and the minimization
with respect to 1 in (1).

Lemma 11. Let k ∈ [n]. There exists couplings (D−k , Z
−
k ) and (D+

k , Z
+
k ), where Z−k and

Z+
k are Poisson random variables with parameters w−k λ

+ and w+
k λ
−, such that

P(D−k 6= Z−k ) 6 o
(
(w−k )2 + w−k

)
(21)

P(D+
k 6= Z+

k ) 6 o
(
(w+

k )2 + w+
k

)
. (22)

Proof. We provide the proof for D−k only, as the argument for D+
k is similar. Denote by

Be(x) for x > 0 a Bernulli distributed random variable with mean min{x, 1}. Define the

random variables D
−
k and D−k by

D−k :=
∑

j∈[n]\{k},w−k w
+
j 6n

Be

(
w−k w

+
j

n

)
and D

−
k :=

∑
j∈[n]

Be

(
w−k w

+
j

n

)
. (23)
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Then D−k � D−k � D
−
k , where � denotes stochastic ordering. Consider Poisson random

variables V −k and V
−
k with parameters

n−1
∑

j∈[n]\{k},w−k w
+
j 6n

w−k w
+
j and n−1

∑
j∈[n]

w−k w
+
j (24)

respectively. Recall that maxi∈[n] w
+
i = o(n). Then, by the standard coupling between

Poisson and Bernulli distributed random variables and Definition 1

P(D−k 6= V −k ) 6
∑
j∈[n]

(w+
j )2(w−k )2

n2
6 (w−k )2 ·max

i∈[n]
w+
i

∑
j∈[n]

w+
j

n2
= o((w−k )2). (25)

The same estimate holds with D−k and V −k replaced by D
−
k and V

−
k . To complete the

proof we will couple V
−
k and V −k to a Poisson random variable Z−k with parameter w−k λ

+.
Define

η−k := w−k

λ+ − n−1
∑
j∈[n]

w+
j

 and η−
k

:= w−k

n−1
∑

j∈[n]\{k},w−k w
+
j >n

w+
j

+
w−k w

+
k

n
.

(26)

It follows from Definition 1 that η−k = o(w−k ) and η−
k

= o(w−k ). If η−k > 0, let Y
−
k be a

Poisson random variable with parameter η−k and we define Z−k := Y
−
k +V

−
k . If η−k < 0, we

may assume that V
−
k is the sum of two independent Poisson random variables Z−k and Y

−
k

with parameters w−k λ
+ and −η−k . In any case Z−k is Poisson distributed with parameter

w−k λ
+ and

P(Z−k 6= V
−
k ) = P(Poi(

∣∣η−k ∣∣) > 1) 6 E[Poi(
∣∣η−k ∣∣)] =

∣∣η−k ∣∣ , (27)

due to Markov’s inequality. By a similar observation we find that P(V −k 6= V
−
k ) 6 η−

k
.

Then

P(D−k 6= Z−k ) 6 P(D−k 6= Z−k ) + P(D
−
k 6= Z−k )

6 P(D−k 6= V −k ) + P(V −k 6= V
−
k ) + 2P(Z−k 6= V

−
k ) + P(D

−
k 6= V

−
k ).

The claim follows by combining the considerations above.

4 Bootstrap Percolation for Finitary Vertex Type Sequences

In this section we study bootstrap percolation in directed inhomogeneous random graphs
with so-called finitary vertex sequences that are defined below. We extend the results
later in Section 5 by approximating the general weight sequences by finitary ones.

Definition 12. (Regular finitary vertex sequence) We call a regular vertex sequence
(w−,w+, c) finitary if there exist positive integers l1, l2, cmax ∈ N such that the following
conditions are satisfied.
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1. There exist weight levels 0 < w̃−1 < w̃−2 < · · · < w̃−l1 and 0 < w̃+
1 < w̃+

2 < · · · < w̃+
l2

such that ∀i ∈ [n], w−i ∈ ∪
l1
j=1{w̃−j } and w+

i ∈ ∪
l2
j=1{w̃+

j }, that is, the weights take only
finitely many values.

2. ∀i ∈ [n], either ci 6 cmax or ci =∞.

Observe that for a finitary vertex sequence there exists a partition of [n] given by

[n] =
⋃

16j6l1,16k6l2
m∈[cmax]∪{0,∞}

Ij,k; m , (28)

into subsets with constant threshold and in- and out-weights, i.e. Ij,k;m := {i ∈ [n] |
(w−i , w

+
i ) = (w̃−j , w̃

+
k ), ci = m}. Furthermore due to the regularity, there exist γj,k;m with

1 =
∑
γj,k;m such that |Ij,k;m| = γj,k;mn(1 + o(1)).

Before we state the main theorem of this section we define some functions that will
play a crucial role in the subsequent analysis. Let (X, Y, Z) : Ω → R+ × R+ × N∞0 be a
random variable defined on some probability space Ω such that E[Y ] < ∞. Define the
function f : R+ → R by

f(z; (X, Y, Z)) := E[Y ψZ(Xz)]− z, (29)

where ψ is as in (5). Further, define the function g : R+ → R by

g(z; (X,Z)) := E[ψZ(Xz)]. (30)

We will use these functions without further reference in the rest of the section. We shall
make use of the following simple property.

Lemma 13. The functions f(z; (X, Y, Z)) and g(z; (X,Z)) are continuous. Furthermore,
the equation f(z; (X, Y, Z)) = 0 has a smallest solution ẑ ∈ [0,E[Y ]].

Proof. For continuity, first observe that z 7→ Y ψZ(Xz) is continuous point-wise, which
implies

lim
h→0
|Y (ψZ(X(z + h))− ψZ(Xz))| = 0.

Furthermore, |Y (ψZ(X(z + h))− ψZ(Xz))| is bounded by Y , and by assumption E[Y ] <
∞. The Dominated Convergence Theorem yields that

lim
h→0
|E[Y ψZ(X(z + h))]− E[Y ψZ(Xz)]| = 0,

from which continuity of f follows. By a similar argument g is continuous.
Regarding the solutions of f(z; (X, Y, Z)) = 0, first observe that f(0; (X, Y, Z)) > 0

and E[Y ψZ(Xz)] 6 E[Y ] for all z ∈ R, and therefore f(E[Y ]; (X, Y, Z)) 6 0, which implies
that a solution exists by the continuity of f(z; (X, Y, Z)). Let D := {z ∈ [0,E[Y ] | f(z) =
0}. Again by the continuity of f the infimum of D must be attained and therefore
ẑ := inf D is the smallest solution of f(z; (X, Y, Z)) = 0.
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In the following we shall often drop the reference to the random variable (X, Y, Z)
when it becomes clear from the context. We then write f(z) instead of f(z; (X, Y, Z)).
The next theorem is the special case of our main result (Theorem 3) about the size of the
final set of infected vertices for finitary vertex sequences.

Theorem 14. Let (w−,w+, c) be a finitary regular vertex sequence and (W−,W+, C)
with P(C = 0) > 0 a random vector with distribution equal to the limiting distribution of
(w−,w+, c). Let further ẑ be the smallest positive solution of

f(z; (W−,W+, C)) = 0.

Let An be the final set of infected vertices in Gn(w−,w+, c). Then the following holds:

1. For all ε > 0 with high probability n−1 |An| > E[ψC(W−ẑ)]− ε.

2. If f ′(ẑ; (W−,W+, C)) < 0, then

n−1 |An|
p−→ E[ψC(W−ẑ)], as n→∞. (31)

For the proof we will need the following rough estimate.

Lemma 15. Let D− := maxi∈[n] D
−
i and D+ := maxi∈[n] D

+
i denote the maximal in-

and out-degrees in Gn(w−,w+), where (w−,w+) is finitary. Then P(D+, D− 6 log n) =
1− o(n−3).

Proof. We shall prove the bound for D−, the bound for D+ is analogue. Let w :=
max{w̃−l1 , w̃

+
l2
} and observe that

P(D− > k) 6 n

(
n− 1

k

)(
w2

n

)k
6 n

w2k

k!
.

But for k > log n and large n we have k! > (k/e)k > n5w2k, and the proof is completed.

Proof of Theorem 14. We first show 1. We shall determine the size of the final set of
infected vertices by sequentially exposing the neighbors of all vertices that are either
infected initially or become infected during the process. Informally, at the beginning
we declare all initially infected vertices as unexposed. At each step a single unexposed
vertex i ∈ [n] is considered and its neighbors are considered asfollows: if a neighbor j
of i becomes infected due to the new edge that is sent from i, it is added to the set of
unexposed vertices. Otherwise, the threshold value of j is reduced by 1. Finally, i is
removed from the set of unexposed vertices; we say that i is exposed.

To describe the process formally at each step t ∈ [n] ∪ {0} we keep track of the
following:

1. The set U(t) of unexposed vertices. We set U(0) := {i ∈ [n] | ci = 0}.
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2. The set U(t) of newly infected vertices at step t in order to update U(t). We set
U(0) := ∅.

3. The sets I lj,k;m(t) for 1 6 j 6 l1, 1 6 k 6 l2, 0 6 l < m 6 cmax of vertices with
weight levels w̃−j and w̃+

k , percolation threshold m and l edges from exposed vertices.
Moreover, set

I0
j,k;m(0) := Ij,k;m and I lj,k;m(0) := ∅ for l > 0.

At step t ∈ [n] these sets are updated by the following procedure:

1. For 1 6 j 6 l1, 1 6 k 6 l2, 0 6 l < m 6 cmax set I lj,k;m(t) := ∅ and U(t) := ∅.

2. Chose a vertex v ∈ U(t− 1) uniformly at random.

3. Consider all neighbors of v in ⋃
16j6l1,16k6l2
06l<m6cmax

I lj,k;m(t− 1).

Let w ∈ I lj,k;m(t − 1). If there is no edge send from v to w (Xv,w = 0), place w in

I lj,k;m(t). If there is an edge (Xv,w = 1) and l = m− 1, place w in U(t). If there is an

edge (Xv,w = 1) and l < m− 1, then place w in I l+1
j,k;m(t).

4. Set U(t) := (U(t− 1) \ {v}) ∪ U(t).

Edges that are sent to already infected vertices are not exposed. The above steps are
repeated until step t̂, the first time U(t) is empty. Note that t̂ is the final number of
infected vertices.

Define clj,k;m(t) :=
∣∣I lj,k;m(t)

∣∣ for 1 6 j 6 l1, 1 6 k 6 l2, 0 6 l < m 6 cmax and
u(t) := |U(t)|. Because we need to keep track of the total out weight in the set U(t), we
additionally define w(t) :=

∑
i∈U(t)w

+
i . Further we use h(t) to describe the state of the

entire system, that is

h(t) =

(
u(t), w(t), {clj,k;m(t)} j∈[l1],k∈[l2]

06l<m6cmax

)
.

First observe that for n sufficiently large, we can ignore the minimization in (1), since
w+
i w
−
i is bounded for finitary weight sequences and the denominator in (1) is n. Condi-

tioning on the weight of the selected vertex and using the law of total expectation one
obtains that the expected evolution of the system is governed by the following equations:

E[u(t)− u(t− 1)|h(t− 1)] = −1 + n−1
∑
j

(∑
k,m

cm−1
j,k;m(t− 1)

)
w̃−j w(t− 1)

u(t− 1)
,

E[w(t)− w(t− 1)|h(t− 1)] = −w(t− 1)

u(t− 1)
+ n−1

∑
k

w̃+
k

(∑
j,m

cm−1
j,k;m(t− 1)

w̃−j w(t− 1)

u(t− 1)

)
,
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and for the index set 1 6 j 6 l1, 1 6 k 6 l2, 1 6 m < cmax and 0 6 l < m

E[clj,k;m(t)− clj,k;m(t− 1)|h(t− 1)]

= n−1
(
1{l 6=0}c

l−1
j,k;m(t− 1)− clj,k;m(t− 1)

)(w̃−j w(t− 1)

u(t− 1)

)
.

We will approximate the components of h(t)/n using the method proposed in [30] by a
vector valued function (

ν(τ), µ(τ), {γlj,k;m(τ)}16j6l1,16k6l2
06l<m6cmax

)
(32)

solving the following system of ordinary differential equations:

dν(τ)

dτ
= −1 +

∑
j

(∑
k,m

γm−1
j,k;m(τ)

)
w̃−j µ(τ)

ν(τ)
, (33)

dµ(τ)

dτ
= −µ(τ)

ν(τ)
+
∑
k

w̃+
k

(∑
j,m

γm−1
j,k;m(τ)

w̃−j µ(τ)

ν(τ)

)
, (34)

dγlj,k;m(τ)

dτ
=

(
1{l 6=0}γ

l−1
j,k;m(τ)− γlj,k;m(τ)

)(w̃−j µ(τ)

ν(τ)

)
, (35)

with initial conditions

ν(0) = P(C = 0), (36)

µ(0) =
∑
k

w̃+
k P(W+ = w̃+

k , C = 0), (37)

γ0
j,k;m(0) = P(W− = w̃−j ,W

+ = w̃+
k , C = m), (38)

γlj,k;m(0) = 0, for 0 < l < m. (39)

For δ1, δ2 > 0 we consider the domain

Dδ1,δ2 =
{

(τ, ν, µ, γlj,k;m) ∈ Rb+1 | −δ1 < τ < 1,−δ1 <
µ

ν
< 2w̃+

l2
,

−δ1 < γlj,k;m < γj,k;m + δ1,

δ2 < ν < 1 + δ1, 0 < µ < 2w̃+
l2

}
. (40)

The system (33)-(35) fulfills a Lipschitz condition on Dδ1,δ2 for δ2 > 0 as can be easily
seen by calculating the partial derivatives. Further, in order to apply [30, Thm. 2] we
have to show that there are functions λ(n) = λ with λ → ∞ and ω(n) = ω such that
λ4 log n < ω < n2/3/λ and

P
(
‖h(t+ 1)− h(t)‖∞ >

√
ω

λ2
√

log n
| h(t)

)
= o(n−3), (41)
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where ‖·‖∞ denotes the maximum norm. We choose λ(n) = n1/8 and ω(n) = n25/48, then

√
ω

λ2
√

log n
= n1/96/

√
log n, (42)

and, since all weights are bounded, it remains to show that the maximal degree is bounded
by o(n1/96/

√
log n) with probability 1−o(n−3); but this follows from Lemma 15. According

to [30, Thm. 2] we get

clj,k;m(t)/n = γlj,k;m(t/n) + op(1) (43)

u(t)/n = ν(t/n) + op(1) (44)

w(t)/n = µ(t/n) + op(1) (45)

where γlj,k;m(τ), ν(τ) and µ(τ) solve (34)-(35) and where (43)-(45) holds until the solution
leaves Dδ1,δ2 . Since δ2 can be chosen arbitrarily close to 0, it is clear that the solution can
be extended to the region Dδ1,0.

An easy but tedious calculation shows that the components of (32) are given by

ν(τ) = ν(0)− τ +
∑
j,k

(∑
m

γ0
j,k;m(0)P

[
Poi
(
w̃−j z(τ)

)
> m

])
(46)

µ(τ) = µ(0)−
∫ τ

0

µ(s)

ν(s)
ds+

∑
j,k,m

w̃+
k γ

0
j,k;m(0)P

[
Poi
(
w̃−j z(τ)

)
> m

]
(47)

and
γlj,k;m(τ) = γ0

j,k;m(0)P
[
Poi
(
w̃−j z(τ)

)
= l
]

(48)

with z(τ) :=
(∫ τ

0
µ(s)
ν(s)

ds
)

. Define

τDδ1,δ2 = min{τ | (τ, ν(τ), µ(τ), γlj,k;m(τ)) /∈ Dδ1,δ2)}. (49)

Observe that f(z(τ); (W−,W+, C)) = µ(τ) for τ < τDδ1,0 . Since z is strictly increasing in

τ as long as (τ, ν(τ), µ(τ), γlj,k;m(τ)) ∈ Dδ1,0 the function z is injective. We need to ensure
that we can choose δ2 small enough such that the process can be approximated arbitrarily
close to τ̂ , which is such that z(τ̂) equals ẑ, the smallest zero of f . Observe that ẑ > 0,
since P(C = 0) > 0 implies that f(0) > 0.

Therefore we need to show that for any given ε we can chose δ2 small enough such
that there exists τε < τDδ1,δ2 with

ẑ − ε <
∫ τε

0

µ(s)

ν(s)
ds. (50)

Since ẑ is assumed to be the first zero of f and since f is continuous on the compact set
[0, ẑ − ε] it attains its minimum at some point zmin ∈ [0, ẑ − ε]. Further, observe that

the electronic journal of combinatorics 26(3) (2019), #P3.12 17



we have ν(τ) > µ(τ)/w̃+
l2

deterministically as the maximum weight is bounded such that
choosing

0 < δ2(ε) < f(zmin)/w̃+
l2

(51)

ensures that there exists τε < τDδ1,δ2(ε) such that the inequality in (50) holds and the
convergence in (43)- (45) holds at least until τε. Since ε can be chosen arbitrarily close
to 0, we can conclude that µ(τ) converges to 0 as z(τ) approaches ẑ by continuity of f .
Because w̃+

1 ν(τ) 6 µ(τ) 6 w̃+
l2
ν(τ) on Dδ1,0 we know that also ν(τ) converges to 0. For

any given ε we get that
u(bτεnc)/n = ν(τε) + op(1). (52)

From ν(τ̂) = 0 it follows that

τ̂ = ν(0) +
∑
j,k

(∑
m

γ0
j,k;m(0)P

[
Poi
(
w̃−j z(τ̂)

)
> m

])

= ν(0) +
∑
j,k

(∑
m

γ0
j,k;m(0)P

[
Poi
(
w̃−j ẑ

)
> m

])
= E[ψC(W−ẑ)]. (53)

Since |An| /n > τ̂ + op(1), the claim follows.
In order to prove 2. we need to show that the process u(t) becomes zero soon after the

τεn steps or equivalently, that the remaining infections triggered by U(bτεnc) are negligible.
In contrast to the proof of 1., here we shall expose all remaining vertices in U at once and
bound the number of infections triggered this way. Denote by W :=

⋃
j,k,m I

m−1
j,k;m(bτεnc)

the set of (weak) vertices that need only one more infected neighbor to become infected
and by S :=

⋃
j,k,m>l+2 I

l
j,k;m(bτεnc) the set of (strong) vertices that need at least two

more infected neighbors to become infected. Further, denote Nl ⊂ W ∪ S the (random)
set of vertices that become infected in the l-th round (generation) after exposing U(bτεnc)
and define

Wl := W ∩Nl, Sl := S ∩ Nl .

Note that in contrast to the sequential exploration done for the first bτεnc vertices, now in
generation l a single vertex can receive edges from multiple vertices infected in generation
l− 1. In the following we want to bound n−1

∑
l>0 E[|Wl|+ |Sl|] by a geometric series and

then apply the first moment method. Since (W−,W+, C) takes only finitely many values,
differentiation under the integral can be justified by the dominated convergence theorem
and we get

f ′(z) = E[W+W−P(Poi(zW−) = C − 1)1{C>1}]− 1 (54)

=
∑
j,k,m

γ0
j,k;m(0)w̃−j w̃

+
k P(Poi(zw̃−j ) = m− 1)1{m>1} − 1. (55)

Moreover, for τ < τ̂ we can rewrite f ′(z(τ)) using (48) as

f ′(z(τ)) =
∑
j,k,m

γm−1
j,k;m(τ)w̃−j w̃

+
k − 1, (56)
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and it follows by the assumption f ′(z(τ̂)) = κ < 0 and by continuity of f ′ that we can
chose εκ > 0 such that for 0 < ε < εκ(∑

j,k,m

γm−1
j,k;m(τε)w̃

−
j w̃

+
k

)
6 1 + κ/2 < 1.

Further observe that
∑

j,k,m γ
m−1
j,k;m(τε) < 1 for 0 < ε 6 εκ. Set

c1 := max
{

1 + κ/2,
∑
j,k,m

γm−1
j,k;m(τεκ)

}
< 1

and chose 0 < c2, c < 1 such that 0 6 c1 + c2 6 c < 1. Further define

C1 := 2 max{w̃−l1 , 1},

C2 := max
{(
w̃−l1
)2
,
(
w̃−l1w̃

+
l2

)2} C2
1

1− c
,

C3 := max
{
w̃−l1w̃

+
l2
, 1
}
,

and chose x0 such that C2x
2 6 ((c1c2c)/C3)x for 0 < x < x0. Chose further ε0 such that

2µ(τε) 6 x0 for ε < ε0. Let the event A be defined by A := {w(bτεnc)/n 6 2µ(τε)} and
observe that limn→∞ P(Ac) = 0. We shall prove by induction on l that for ε < ε0

n−1E[|Wl| · 1A] 6 c1c
l−1µ(τε)C1 (57)

n−1E[|Sl| · 1A] 6 C2µ(τε)
2cl−2 6 (c2/C3)cl−1µ(τε). (58)

The estimates (57) and (58) especially imply that

n−1E[(|Wl|+ |Sl|) · 1A] 6 clC1µ(τε)

and

n−1

(∑
l

E[(|Wl|+ |Sl|) · 1A]

)
6

C1

1− c
µ(τε). (59)

By (59) and Markov’s inequality we get

P

(
n−1

∑
16l6n

(|Wl|+ |Sl|) · 1A >

√
C1

1− c
µ(τε)

)
6

√
C1

1− c
µ(τε). (60)

Since |An| /n 6 τ̂ + (
∑

l |Wl|+ |Sl|) /n and limn→∞ P(Ac) = 0, the claim in (31) follows
from (60) together with (53).

To show (57) we start with l = 1. Observe that for a vertex x ∈ W the probability on
A to become infected by vertices in U(bτεnc), is bounded by w̃−l1µ(τε)2 and thus

n−1E[|W1| · 1A] 6
∑
j,k,m

γm−1
j,k;m(τε)w̃

−
l1
µ(τε)2 6 c1µ(τε)C1. (61)
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Further, on A the probability for a vertex to be in S1 is bounded by (w̃−l1µ(τε)2)2 and thus
choosing ε < ε0 such that 2µ(τε) < x0 yields E[|S1| · 1A]/n 6 C2µ(τε)

2 6 c2/C3µ(τε) by
definition of C2 and x0 for n > n0.

Assume now that (57) and (58) hold for 1 6 k 6 l − 1. For a vertex x ∈ W to be in
Wl it needs to have at least one neighbor in Nl−1. By the union bound this implies that

n−1E[|Wl| · 1A] 6
1

n

∑
x∈W,y∈W∪S

P(Xx,y = 1)P(y ∈ Nl−1,A)

6
1

n

(∑
x∈W

w−x

) ∑
y∈W∪S

w+
y P(y ∈ Nl−1,A)

n
.

We shall show the slightly stricter recursion for Wl, namely

1

n

(∑
x∈W

w−x

) ∑
y∈W∪S

w+
y P(y ∈ Nl−1,A)

n
6 c1c

l−1µ(τε)C1,

from which clearly (57) follows (note that for l = 1 this was captured in (61) already).
First observe that

1

n

(∑
x∈W

w−x

) ∑
y∈W∪S

w+
y P(y ∈ Nl−1,A)

n

=
1

n

(∑
x∈W

w−x

)∑
y∈W

w+
y P(y ∈ Wl−1,A)

n
+

1

n

(∑
x∈W

w−x

)∑
y∈S

w+
y P(y ∈ Sl−1,A)

n

6
1

n

(∑
x∈W

w−x

)∑
y∈W

w+
y P(y ∈ Wl−1,A)

n
+

1

n
w̃−l1w̃

+
l2
E[|Sl−1| · 1A]

6
1

n

(∑
x∈W

w−x

)(∑
y∈W

w+
y w
−
y

n

) ∑
z∈W∪S

w+
z P(z ∈ Nl−2,A)

n
+

1

n
w̃−l1w̃

+
l2
E[|Sl−1| · 1A].(62)

The middle factor in the first summand is bounded by c1 by definition of c1. The induction
step then implies that (62) is bounded by

c1c1c
l−2µ(τε)C1 + C3C2µ(τε)

2cl−2 6 c1c
l−1µ(τε)C1.

To calculate E[|Sl| · 1A], we first observe that for a vertex to be in Sl it needs to have at
least one neighbor in Nl−1 and one in ∪k6l−1Nk. Using E[|Wk|·1A] =

∑
x∈W P(x ∈ Wk,A)

and E[|Sk| · 1A] =
∑

x∈S P(x ∈ Sk,A), we find

E[|Sl| · 1A] 6 n(w̃−l1w̃
+
l2
/n)2

∑
x∈W∪S

P(x ∈ Nl−1,A)
∑

x∈W∪S

P(x ∈ ∪k6l−1Nk,A).

However, by the induction step we know that∑
x∈W∪S

P(x ∈ Nl−1,A) 6 ncl−2µ(τε)C1
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and ∑
x∈W∪S

P(x ∈ ∪k6l−1Nk,A) 6
∑
k6l−1

nckC1µ(τε) 6 n
C1

1− c
µ(τε).

This yields
n−1E[|Sl| · 1A] 6 C2c

l−2µ(τε)µ(τε) 6 (c2/C3)cl−1µ(τε),

proving (58).

5 General Vertex Sequences

In this section we prove Theorem 3, that is, we show that Theorem 14 extends to non-
finitary vertex sequences. We use the results of the last section to approximate general
vertex sequences by two finitary ones in a tailor-made way. The approximation is such
that one sequence ultimately generates a graph that gives a lower bound for the final
fraction of infected vertices, while the second sequence generates a graph that provides
an upper bound. A sandwich type argument then allows us to determine |An| in Sec-
tion 5.4. For this argument we first show that the functions defined in (29) and (30)
depend continuously on the random variables involved. For bounded domains, the nec-
essary results are provided by the Helly-Bray theorem, which states that if a sequence of
distributions F i converges point-wise to F and the function h is continuous and bounded,
then

∫
hdF i → hdF . However, the integrands in the definition of (29) and (30) are

unbounded. Therefore the Helly-Bray theorem cannot be applied directly and we use
a tailor-made approximation of F that ensures that the integrals over several functions
relevant in the following analysis are convergent.

Let (W−,W+, C) be a random vector with distribution function F fulfilling the prop-
erties of Theorem 3. To avoid confusion we use the expectation operator E only with
respect to the measure defined by F on R+ × R+ × N∞0 . For the approximating mea-
sures we use the integral notation. For the approximation we can restrict to the set
R+×R+×N0 ⊂ R+×R+×N∞0 , since all involved functions have ψr(x) as a factor, which
is zero for r =∞. Define the sets

Di := {(x, y, l) ∈ R+ ×R+ ×N0 | x, y, l 6 i}, D∞ := R+ ×R+ ×N0 and Dc
i := D∞\Di.

(63)

Definition 16. Let H be a set of functions such that each h ∈ H maps from R×R×N0

to R. A sequence {F i}i∈N of distribution functions defined on R × R × N0 is called F -
convergent with respect to H if each F i assigns measure to only finitely many values and
in addition the following properties hold:

1. ∀ (x, y, l) ∈ R× R× N0, F
i(x, y, l)→ F (x, y, l), as i→∞.

2. Uniformly over H:

(a) limi→∞

∣∣∣∫Dci h(x, y, l)dF i(x, y, l)
∣∣∣ = 0.
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(b) limi→∞

∣∣∣∫Di h(x, y, l)dF i(x, y, l)−
∫
Di
h(x, y, l)dF (x, y, l)

∣∣∣ = 0.

Property 1 is the usual convergence in distribution, while 2a and 2b ensure that the
integral/expectation of several functions needed in the following converge. Note that for
bounded domains D ⊂ D∞ and a continuous function h it follows from Property 1 and
Helly’s theorem that

lim
i→∞

∣∣∣∣∫
D

h(x, y, l)dF i(x, y, l)−
∫
D

h(x, y, l)dF (x, y, l)

∣∣∣∣ = 0 (64)

However, the crucial point of Property 2b is that the integration domain is becoming
larger. In order to understand Property 2a, note that for an integrable function h we
trivially have that limi→∞ |

∫
Dci
h(x, y, l)dF (x, y, l)| = 0. Property 2a ensures that this

convergence holds if F is replaced by F i; as i→∞ the tail probabilities of the measures
implied by F i are decreasing fast enough for our purpose.

In the following the functions F i will be the limiting distribution functions of fini-
tary vertex sequences (w−,w+, c)i for which Theorem 14 holds. With increasing inte-
ger i the granularity is increasing, that is, there are more weight levels in the sequence
and at the same time the approximated range will become larger. The construction
of the sequence is done in Section 5.2 and incorporates the set H, which will contain
unbounded functions and therefore the Helly-Bray theorem does not allow to conclude
convergence of the integral. The assumption that the convergence in Property 2a and
2b is uniform will simplify the following analysis. Observe that we do not assume that

limi→∞

∣∣∣∫Dci h(x, y, l)dF (x, y, l)
∣∣∣ = 0 uniformly over H.

5.1 Convergence of Some Relevant Functions

We saw already in Theorem 14 that the functions g and f defined in (29) and (30)
play a crucial role in determining the final fraction of infected vertices. We show in
Proposition 18 that the convergence stated in Definition 16 ensures a certain convergence
of these quantities. We begin with the following lemma.

Lemma 17. Let {F i}i∈N be F -convergent with respect to a set of functions H and H̃ ⊂ H

such that uniformly over H̃

lim
i→∞

∣∣∣∣∣
∫
Dci

h(x, y, l)dF (x, y, l)

∣∣∣∣∣ = 0. (65)

Then uniformly over H̃,

lim
i→∞

∣∣∣∣∫
D∞

h(x, y, l)dF i(x, y, l)−
∫
D∞

h(x, y, l)dF (x, y, l)

∣∣∣∣ = 0. (66)
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Proof. Let h ∈ H̃. By the triangle inequality and since D∞ = Di ∪Dc
i , Di ∩Dc

i = ∅∣∣∣∣∫
D∞

h(x, y, l)dF i(x, y, l)−
∫
D∞

h(x, y, l)dF (x, y, l)

∣∣∣∣
6

∣∣∣∣∫
Di

h(x, y, l)dF i(x, y, l)−
∫
Di

h(x, y, l)dF (x, y, l)

∣∣∣∣+

∣∣∣∣∣
∫
Dci

h(x, y, l)dF i(x, y, l)

∣∣∣∣∣(67)

+

∣∣∣∣∣
∫
Dci

h(x, y, l)dF (x, y, l)

∣∣∣∣∣ , (68)

where the terms in (67) converge to zero uniformly over H̃ since H̃ ⊂ H and {F i}i∈N
is F -convergent with respect to the set H. The term in (68) converges uniformly by
Assumption (65). This implies (66).

We proceed to define the set of functions H. Let h1,z(x, y, l) := yψl(xz), h2,z(x, y, l) :=
ψl(xz) and h3,z(x, y, l) := xyP(Poi(zx) = l−1) and observe that we can use these functions
to describe the functionals relevant in Theorem 3 by

f(z; (W−,W+, C)) = E[W+ψC(W−z)]− z = E[h1,z(W
−,W+, C)]− z

g(z; (W−, C)) = E[ψC(W−z)] = E[h2,z(W
−,W+, C)]

E[W+W−P(Poi(zW−) = C − 1)1C>1] = E[h3,z(W
−,W+, C)].

Further recall that ẑ is the smallest positive solution of f(z; (W−,W+, C)) = 0 and if
Condition 2 of Theorem 3 holds, there exists δ such that for z ∈ (ẑ − δ, ẑ + δ)

E[W+W−P(Poi(zW−) = C − 1)1C>1] < κ < 1.

If Condition 2 holds we define H to be

H :=
(
∪z∈[0,2ẑ]h1,z(x, y, l)

)
∪
(
∪z∈[0,2ẑ]h2,z(x, y, l)

)
∪
(
∪z∈(ẑ−δ,ẑ+δ)h3,z(x, y, l)

)
and otherwise to be

H :=
(
∪z∈[0,2ẑ]h1,z(x, y, l)

)
∪
(
∪z∈[0,2ẑ]h2,z(x, y, l)

)
.

Let {F i}i∈N be F -convergent with respect to H. To shorten notation we set

f i(z) := f(z; (W−,W+, C)i) and f(z) := f(z; (W−,W+, C))

and gi(y) and g(y) accordingly, where (W−,W+, C)i is a random vector with distribution
function F i and (W−,W+, C) a random vector with distribution function F .1

The following proposition provides the necessary convergence properties of the func-
tions f and g for a F−convergent sequence with respect to H. The construction of such
a sequence is outlined in Section 5.2.

1Since the sequence index i is attached to the entire vector and not to each component, our notation
(W−,W+, C)i gives rise to ambiguity in statements about single components of (W−,W+, C)i. However,
in the following, we shall only consider the entire vector and there is no risk of confusion.
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Proposition 18. Let {F i}i∈N be F -convergent with respect to the set H defined above.
Let ẑ be the smallest positive zero of f and ẑi the smallest positive zero of f i(z). Then,

lim inf
i→∞

ẑi > ẑ (69)

lim inf
i→∞

gi(ẑi) > g(ẑ). (70)

Furthermore, if Condition 2 of Theorem 3 holds, that is, there exists δ > 0 such that

E[W+W−P(Poi(zW−) = C − 1)1C>1] < κ < 1 (71)

for z ∈ (ẑ − δ, ẑ + δ), then (f i)′(zi) < 0 and

lim
i→∞

ẑi = ẑ and lim
i→∞

gi(ẑi) = g(ẑ).

Proof. We prove the claim if Condition 2 of Theorem 3 holds. The lower bounds in (69)
and (70) without this assumptions can be shown by similar means, observing that the
functions gi are monotonically increasing in z.

First observe that since f(z) > 0 for z ∈ (0, ẑ − δ) we can chose δ0 as small as we like
such that

f(ẑ − δ0) > 0.

We apply Lemma 17 with the set H̃ := {h1,z}z∈[0,2ẑ], where condition (65) can be easily
seen to be satisfied. By the definition of h1,z we can conclude that

lim
i→∞

sup
z∈[0,2ẑ]

∣∣f i(z)− f(z)
∣∣ = lim

i→∞
sup

z∈[0,2ẑ]

∣∣(f i(z) + z)− (f(z) + z)
∣∣ = 0.

This observation especially implies that

2f(ẑ − δ0) > f i(ẑ − δ0) > 0,

for i > i0. Furthermore, since the integrand is positive∣∣∣∣∫
D∞

xyP(Poi(zx) = l − 1)dF i(x, y, l)

∣∣∣∣ (72)

=

∣∣∣∣∫
Di

xyP(Poi(zx) = l − 1)dF i(x, y, l)

∣∣∣∣+

∣∣∣∣∣
∫
Dci

xyP(Poi(zx) = l − 1)dF i(x, y, l)

∣∣∣∣∣ .
By Assumption (71) there exists a neighborhood (ẑ − δ, ẑ + δ) such that∫

Di

xyP(Poi(zx) = l− 1)dF (x, y, l) 6
∫
D∞

xyP(Poi(zx) = l− 1)dF (x, y, l) 6 κ < 1 (73)

for z ∈ (ẑ − δ, ẑ + δ). Choose now δ1, δ2 > 0 with κ+ δ1 + δ2 < 1 and i1 such that∣∣∣∣∣
∫
Dci

h(x, y, l)dF i(x, y, l)

∣∣∣∣∣ < δ1
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for each i > i1 and h ∈ H. This i1 exists by the Property 2a of a F -convergent sequence.
Further, choose i2 such that∫

Di

xyP(Poi(zx) = l − 1)dF i(x, y, l) 6 κ+ δ2,

for i > i2 which exists by Property 2b of a F -convergent sequence and observation (73).
This implies that for i > max{i1, i2}, (72) is bounded by κ+ δ1 + δ2 < 1. Note that i1 and
i2 do not depend on the δ0 above. Differentiating f i(z), where differentiation under the
integral sign is justified by the fact that F i assigns measure only to finitely many values,
implies that (f i)′(z) < κ+ δ1 + δ2 − 1 < 0 for i > max{i1, i2} for z ∈ (ẑ − δ, ẑ + δ).

Now chose δ0 < δ such that −f(ẑ−δ0)/(κ+δ1 +δ2−1) < δ, which exists by continuity
of f and f(ẑ) = 0 and define δ̄0 := −f(ẑ − δ0)/(κ+ δ1 + δ2 − 1), then

f i(ẑ − δ0 + δ̄0) 6 f(ẑ − δ0) + max
{z∈(ẑ−δ,ẑ+δ)}

{(f i)′(z)}δ̄0

6 f(ẑ − δ0) + (κ+ δ1 + δ2 − 1)δ̄0 6 0

by the choice of δ̄0 and f i has a zero in (ẑ − δ0, ẑ − δ0 + δ̄0) ⊂ (ẑ − δ, ẑ + δ). Denote by
ẑi the first zero of f i(z). We need to show that limi→∞ ẑ

i = ẑ. Assume for the sake of
contradiction that there exists a sub-sequence {ki} with ẑki ∈ [0, ẑ − δ0]. Since [0, ẑ − δ0]
is compact there exists a limit point z̄ approached by some subsub-sequence {lki} such
that limi→∞ ẑ

lki = z̄ 6 ẑ − δ0. By continuity, the function f attains its minimum M on
[0, ẑ − δ0]. However, by observation (5.1), since f is continuous and by∣∣f lki (ẑlki )− f(z̄)

∣∣ =
∣∣(f lki (ẑlki )− f(ẑlki )) + (f(ẑlki )− f(z̄))

∣∣
6

∣∣f lki (ẑlki )− f(ẑlki )
∣∣+
∣∣f(ẑlki )− f(z̄)

∣∣
it follows that

lim
i→∞

∣∣f lki (ẑlki )− f(z̄)
∣∣ = 0.

On the other hand, however,
∣∣f lki (ẑlki )− f(z̄)

∣∣ = f(z̄) >M , providing the contradiction.
Since δ0 can be chosen arbitrarily small it follows that

lim
i→∞

ẑi = ẑ.

Further, since ẑi ∈ (ẑ − δ, ẑ + δ) for i large, it also follows that (f i)′(ẑi) < 0 for i large.

Again, applying Lemma 17 with the set H̃ := {h2,z}z∈[0,2ẑ] shows that

lim
i→∞

∣∣gi(z)− g(z)
∣∣ = 0

uniformly over z ∈ [0, 2ẑ]. Together with limi→∞ ẑ
i = ẑ and the continuity of g, this

implies that

lim
i→∞

∣∣gi(zi)− g(ẑ)
∣∣ 6 lim

i→∞

(∣∣gi(zi)− g(zi)
∣∣+ |g(zi)− g(ẑ)|

)
= 0.
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5.2 Constructing an F -convergent Sequence

The following lemma is crucial in our construction of F -convergent sequences.

Lemma 19. Let h be a function defined on [zmin, zmax]×R×R×N0, such that for each
l ∈ N0 the function hl(z, x, y) := h(z, x, y, l) is continuous. Let D ⊂ R×R×N0 be of the
form D = [xmin, xmax]× [ymin, ymax]× [lmin, lmax] for some xmin, xmax, ymin, ymax ∈ R and
lmin, lmax ∈ N. Further let {F i}i∈N a sequence of distribution functions on R × R × N0,
such that for each (x, y, l) ∈ D, limi→∞ F

i(x, y, l) = F (x, y, l). Then for every ε > 0, there
exists i0 ∈ N such that for each i > i0∣∣∣∣∫

D

h(z, x, y, l)dF i(x, y, l)−
∫
D

h(z, x, y, l)dF (x, y, l)

∣∣∣∣ 6 ε, (74)

for every z ∈ [zmin, zmax].

Proof. Choose a step function ĥ(z, x, y, l) with lm steps hk,j, 0 6 j 6 l, 0 6 k 6 m such
that

ĥ(z, x, y, l) = hk,j, for (z, x, y, l) ∈ Jk × Ij

where Ij are equally sized rectangles with D = ∪jIj and Jk equally sized intervals

with [zmin, zmax] = ∪jJk such that
∣∣∣ĥ(z, x, y, l)− h(z, x, y, l)

∣∣∣ 6 ε/3 on D for every

z ∈ [zmin, zmax]. This choice is possible due to the fact that both, D and [zmin, zmax]
bounded and closed and hl(z, x, y) continuous for each l. Then for all i∣∣∣∣∫

D

ĥ(z, x, y, l)− h(z, x, y, l)dF i(x, y, l)

∣∣∣∣ 6 ε/3,

and ∣∣∣∣∫
D

ĥ(z, x, y, l)− h(z, x, y, l)dF (x, y, l)

∣∣∣∣ 6 ε/3.

Observe that for z ∈ Jk∫
D

ĥ(z, x, y, l)dF i(x, y, l)−
∫
D

ĥ(z, x, y, l)dF (x, y, l) =
∑
j

hk,j(µ
i(Ij)− µ(Ij)),

where µi and µ are the measures implied by F i and F respectively. Since limi→∞ µ
i(Ij) =

µ(Ij), by the fact that the Ij are intervals (i.e. the measures µi(Ij) and µ(Ij) are deter-
mined by the values of F i and F at the endpoints of Ij), there exists i0 such that for
i > i0 ∑

j

hk,j(µ
i(Ij)− µ(Ij)) 6 ε/3.

By the triangle inequality it can be easily seen that (74) holds for i > i0.
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Clearly the previous lemma can easily be extended to a finite set of functions H, where
each h ∈ H fulfills the very same assumptions and the bound (74) then holds for every
h ∈ H; an observation we shall use in our construction below.

In a first step we construct two F -convergent sequences of finitary distribution func-
tions {F i

A}i∈N and {F i
B}i∈N with respect to a given set H of functions. One sequence is

such that it generates random graph with asymptotically less infections than in a random
graph with limiting distribution G and the second with asymptotically more infections.
In a second step we couple a vertex sequence (w−,w+, c) with limiting distribution F
to sequences with limiting distribution F i

A and F i
B for each i ∈ N. This coupling allows

for a sandwich type argument in the proof of Theorem 3. For simplicity we pose the
following restriction on the limiting distribution of the vertex sequence. The restriction
is not mandatory but simplifies the exposition.

Assumption 20. The limiting distribution F : R× R× N∞0 → [0, 1] of the regular vertex
sequence (w−,w+, c) is such that for each l the function Fl(x, y) := F (x, y, l) is continuous
in [w0,∞)× [w0,∞).

Defining a F -convergent sequence of finitary distribution functions is rather straight-
forward under Assumption 20, but we need a very particular sequence later in the proof
of Theorem 3. For this let H be the set of functions defined in Section 5.1 and observe
that each h ∈ H is such that hl(x, y) := h(x, y, l) is continuous for each l. For a given
i ∈ N we determine two distribution functions F i

A(x, y, l) and F i
B(x, y, l) for random vec-

tors (W−,W+, C)iA and (W−,W+, C)iB, respectively. The random vector (W−,W+, C)iA
is constructed in a way such that random graphs approximating (W−,W+, C)iA have more
edges and lower threshold values, and in turn allows to approximate the number of in-
fected vertices from above. The random vector (W−,W+, C)iB is constructed such that a
random graph with limiting distribution (W−,W+, C)iB will have fewer infections than a
random graph approximating (W−,W+, C) and can be used to approximate the number
of infected vertices from below.

Recall that according to Definition 1 (3) the in- and out weights of the sequence are
lower bounded by some w0 > 0. For each i ∈ N we partition [w0, i] × [w0, i] into L(i)2

equally spaced half open squares Di
k,j := [pk, pk+1)× [pj, pj+1), 1 6 j, k 6 L(i), where L(i)

is chosen such that ∀h ∈ H∣∣∣∣∫
Di

h(x, y, l)dF̃ (x, y, l)−
∫
Di

h(x, y, l)dF (x, y, l)

∣∣∣∣ 6 1/i, for F̃ ∈ {F̃ i
B, F̃

i
A}, (75)

for F̃ i
A and F̃ i

B defined on Di by

F̃ i
A(x, y, l) := F (pk, pj, l) if (x, y) ∈ Di

k,j, (76)

F̃ i
B(x, y, l) := F (pk+1, pj+1, l) if (x, y) ∈ Di

k,j. (77)

To guarantee the existence of such an L(i) one can use Lemma 19 for each of the
families {hq,z}, q ∈ {1, 2, 3}, and chose the maximum in an obvious way.

Define the function γ : N→ R+ by

γ(i) = P
(
{W+ > i} ∪ {W− > i} ∪ {∞ > C > i}

)
. (78)
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Observe that γ(i) 6 P(W+ > i) + P(W− > i) + P(∞ > C > i) and limi→∞ γ(i) = 0.
Now define distribution functions {F i

B}i∈N by

F i
B(x, y, l) :=


0, if (x < w0) ∨ (y < w0)

F̃ i
B(min{x, i},min{y, i},min{l, i}), if (l <∞) ∧ (x, y > w0)

1, if (l =∞) ∧ (x, y > w0),

where ∧ denotes logical and and ∨ logical or. To specify F i
A, we determine for each i a

value w̄+
i such that

w̄+
i γ(i) = 2

∫
Dci

ydF (x, y, l), (79)

and observe that limi→∞ w̄
+
i γ(i) = 0. Define now {F i

A}i∈N by

F iA(x, y, l) :=


0, if (x < w0) ∨ (y < w0)

F̃ iA(min{x, i},min{y, i},min{l, i}), if (l <∞) ∧ (x > w0) ∧ (w̄+
i > y > w0)

γ(i) + F̃ iA(min{x, i}, i,min{l, i}), if (l <∞) ∧ (x > w0) ∧ (y > w̄+
i )

1, if (l =∞) ∧ (x > w0) ∧ (y > w0)

.

The idea behind the choice of F i
A is the following: The approximation of F in the area Di

which covers γ(i) of the probability mass is such that a random vector (W−,W+, C)iA with
distribution function F i

A can be coupled to (W−,W+, C) and with probability 1−γ(i), the
vector (W−,W+, C)i is larger or equal to (W−,W+, C) in the first two dimensions and
equal in the third. The approximation in Dc

i ensures P((W−,W+, C)i = (w0, w̄
+
i , 0)) =

γ(i). The level w̄+
i is chosen to ensure that infected vertices send more edges on average

than in the graph parametrized by (W−,W+, C). This will allow for the required coupling
argument in the next subsection.

Proposition 21. The sequences {F i
A}i∈N, {F i

B}i∈N are F−convergent with respect to H.

Proof. Property 1 of Definition 16 is obvious from the construction of the two sequences
{F i

A}i∈N and {F i
B}i∈N. Further by Lemma 19 and the construction we know that the

uniform convergence holds over the domain Di, which is exactly Property 2b. We need to
show that Property 2a holds. For F i

B by construction
∫
Dci

dF i
B(x, y, l) = 0, and therefore

for any function h it follows that
∫
Dci
h(x, y, l)dF i

B(x, y, l) = 0. For F i
A we find∫

Dci

1dF i
A(x, y, l) = γ(i) (80)∫

Dci

ydF i
A(x, y, l) = w̃+γ(i) = 2

∫
Di

ydF (x, y, l) (81)∫
Dci

xyP(Poi(zx) = l − 1)dF i
A(x, y, l) 6

∫
Dci

xydF i
A(x, y, l) = w̃+

i w0γ(i), (82)

and all the quantities on the right hand side converge to 0. Since they are only finitely
many, they converge uniformly. An analysis of the definition of h1,z, h2,z and h3,z shows
that the Dc

i contribution to the integral of these functions with respect to F i
A can be

bounded using the above quantities, such that Property 2a holds.
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5.3 Coupling to the Original Vertex Sequence

To allow for a sandwich type argument that squeezes our original sequence with limit-
ing distribution (W−,W+, C) between two finitary ones, we will develop a specific cou-
pling. Let as above (w−,w+, c) be a regular vertex sequence with limiting distribution
F : R×R×N∞0 → [0, 1] and further (W−,W+, C) a random vector with distribution func-
tion F . Recall the definition of Di in (63) and the partitions Di

k,j, 1 6 k, j 6 L(i)defined
in the last subsection. For any given i ∈ N we construct two finitary regular vertex
sequences (w−,w+, c)iA and (w−,w+, c)iB on the same index set [n] with limiting distri-
butions F i

A, F
i
B : R× R× N0 → [0, 1] as follows:

1. Define Dc
i := {m ∈ [n] | (w−m(n), w+

m(n), cm(n)) ∈ Dc
i}. We consider a partition of

[n]\Dc
i into i·L(i)·L(i) parts Di

k,j,l := {m ∈ [n] | (w−m(n), w+
m(n)) ∈ Di

k,j, cm(n) = l},
where L(i) is the number of half open intervals chosen in the definition of F i

A and
F i
B (see (75)).

2. Construct a sequence (w−,w+, c)iB on [n] by (w−m, w
+
m, cm)iB = (pk, pj, l) for m ∈

Di
k,j,l and (w−m, w

+
m, cm)iB = (w0, w0,∞) for m ∈ [n]\Dc

i .

3. Construct a sequence (w−,w+, c)iA on [n] by (w−m, w
+
m, cm)iA = (pk+1, pj+1, l) for

m ∈ Di
k,j,l and (w−m, w

+
m, cm)iA = (w0, w̄

+
i , 0) for m ∈ [n]\Dc

i .

It can easily be seen that the resulting sequences have the required convergence properties,
i.e. are regular vertex sequences. In 2., the choice of the in- and outweights is irrelevant for
vertices with percolation threshold infinity since they cannot spread the contagion process.
In 3., for vertices with percolation threshold equal to 0, the in-weight is irrelevant and
was chosen in order to have a bound on the integral in (82) and the resulting uniform
convergence property for the functions h3,z.

5.4 Proof of Theorem 3

Denote now by An(w−,w+, c) the set of infected vertices for G(w−,w+, c), and by
An((w−,w+, c)iA) and An((w−,w+, c)iB) those for G((w−,w+, c)iA) and G((w−,w+, c)iB)
respectively.

Proof of Theorem 3. Again we consider only the slightly more complicated result when f
is differentiable and f

′
(ẑ) < 0. The vertex sequence (w−,w+, c)iB has been constructed

such that for each vertex m ∈ ∪Di
k,j,l the threshold value agrees with its counterpart in

(w−,w+, c) and its in- and outweights are lower. Furthermore, the vertices in [n]\∪Di
k,j,l

are uninfectable in G((w−,w+, c)iB). These considerations imply that G((w−,w+, c)) and
G((w−,w+, c)iB) can be coupled such that

An((w−,w+, c)iB) � An((w−,w+, c)), (83)

where � denotes stochastic ordering.
To compare An((w−,w+, c)iA) with An((w−,w+, c)), first note that for each m ∈

∪Di
k,j,l the threshold values are the same for (w−,w+, c) and (w−,w+, c)iA but in- and
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outweights are larger in (w−,w+, c)iA. Further any m ∈ [n]\
(
∪Di

k,j,l

)
is an infected vertex

in G((w−,w+, c)iA). The total out-weight of the vertex set [n] \
(
∪Di

k,j,l

)
in (w−,w+, c)iA

is 2n
∫
Dci
ydF (x, y, l)(1 + o(1)) while in (w−,w+, c) it is n

∫
Dci
ydF (x, y, l)(1 + o(1)). This

implies that for each vertex v ∈ ∪Di
k,j,l with in-weight w−, the in-degree D−v and D−v,A of v

in Dc
i can be coupled (similar as in the proof of Theorem 11) to Poisson random variables

Zv and Zv,A (depending on i) with parameter w−2
∫
Dci
ydF (x, y, l) and w−

∫
Dci
ydF (x, y, l),

respectively, such that

P(D−v 6= Zv) 6 ((w−)2 + w−)o(1) = o(1) (84)

P(D−v,A 6= Zv,A) 6 ((w−)2 + w−)o(1) = o(1). (85)

Since P(Zv > l) < P(Zv,A > l) for all l ∈ N, and w−v and cv are bounded by i, it follows
that P(D−v > l) < P(D−v,A > l) for l 6 i. Since all vertices in Dc

i are infected in the
random graph G((w−, w+, c)iA), the probability that the vertex v has egdes to at least
l infected vertices in Dc

i for l 6 i is larger in G((w−,w+, c)iA) than in G((w−,w+, c)).
These considerations imply that

An((w−,w+, c)iB) � An((w−,w+, c)) � An((w−,w+, c)iA)). (86)

Let (W−,W+, C)iA and (W−,W+, C)iB be random vectors distributed according to F i
A and

F i
B respectively. By Proposition 21, the sequences {F i

A}i∈N and {F i
B}i∈N are F -convergent

and we can chose two sub-sequences {lA,i}i∈N ⊂ N and {lB,i}i∈N ⊂ N for F i
A and F i

B as

provided by Proposition 18 such that limi→∞ ẑ
lA,i
A = limi→∞ ẑ

lB,i
B = ẑ, where ẑ

lA,i
A and ẑ

lB,i
B

are the smallest zeros of f(z, (W−,W+, C)
lA,i
A ) and f(z, (W−,W+, C)

lB,i
B ) respectively.

Additionally it holds that

lim
i→∞

g(ẑ
lA,i
A , (W−,W+, C)

lA,i
A ) = lim

i→∞
g(ẑ

lB,i
B , (W−,W+, C)

lB,i
B ) = g(ẑ).

By Theorem 14 together with (86), it follows that for all ε > 0 and all i ∈ N

lim
n→∞

P
(
g(ẑ

lB,i
B , (W−,W+, C)

lB,i
B )− ε 6 n−1

∣∣An(w−,w+, c)
∣∣

6 g(ẑ
lA,i
A , (W−,W+, C)

lA,i
A ) + ε

)
= 1,

proving Theorem 3.

6 Applications

6.1 Quantifying Systemic Risk

We begin with the proof of Theorem 6.

Proof of Theorem 6. Define CM := CM . Since ψ0(x) = 1 for x > 0 and especially
ψ0(x) > ψr(x) for r ∈ N∞ and further W+ strictly positive, it follows that

E[W+ψCM (zW−)] > E[W+ψC(zW−)] > z, (87)
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such that E[W+ψCM (zW−)] > 0 for z ∈ (0, z0]. To see that the left inequality in (87) is
really strict, choose w̄ with P((W− 6 w̄)∧ (M = 0)) > P(CM = 0)/2, then it follows that

E[W+ψCM (zW−)]− E[W+ψC(zW−)] > w0(1/2)P(CM = 0)(1− ψ1(zw̄)) > 0.

By continuity of E[W+ψC(zW−)] (compare with the proof of Lemma 13) it is easy to
see that E[W+ψC(zW−)] > 0 for z ∈ (0, z0 + δ] for some δ > 0. Furthermore, since
P(CM = 0) > 0 and W+ > w0, it follows that E[W+ψCM (0W−)] > 0. Let ẑ be the
smallest positive solution of

f(z; (W−,W+, CM)) = 0.

The above considerations imply that ẑ > z0. Similarly as above we get E[ψCM (W−ẑ)] >
E[ψC(W−ẑ)] and by monotonicity of g(z; (W−, C)) that

E[ψC(W−ẑ)] = g(ẑ; (W−, C)) > g(z0; (W−, C)) = E[ψC(W−z0)].

By Theorem 3 for any ε > 0

lim
n→∞

P(n−1 |An| < E[ψCM (W−ẑ)]− ε) = 0.

Choose ε = E[ψCM (W−ẑ)]− E[ψC(W−z0)] > 0 and (10) follows.

A sufficient condition for the assumptions of Theorem 6 to hold is that f is right-
differentiable in 0 with positive derivative. To see that the bound in (10) can in general
not be improved, consider a vertex sequence with limiting distribution (W−,W+, C) ful-
filling (9) with f continuously differentiable and such that f ′(ẑ; (W−,W+, C)) < 0, where
ẑ > 0 is the smallest strictly positive solution of

f(z; (W−,W+, C)) = 0.

Now infect ex post all vertices i.i.d. with probability p > 0. The resulting vertex sequence
is close to (W−,W+, CMp) with CMp := CMp, where Mp is a Bernoulli random variable
independent of all others with success probability 1− p. Conditioning on Mp shows that

f(z; (W−,W+, CMp)) = (1− p)E[W+ψC(zW−)] + pE[W+]− z.

Choose δ0 > 0 such that f ′(z; (W−,W+, C)) < 0 for all z ∈ (ẑ− δ0, ẑ+ δ0). Since we have
that

∂

∂z
E[W+ψC(zW−)] = E[W+W−P(Poi(zW−) = C − 1)1{C>1}] (88)

> E[W+W−P(Poi(zW−) = CMp − 1)1{CMp>1}] =
∂

∂z
E[W+ψCMp (zW−)] (89)

it follows that
f ′(z; (W−,W+, CMp)) 6 f ′(z; (W−,W+, C)) < 0, (90)
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for z ∈ (ẑ−δ0, ẑ+δ0). Let ẑp > ẑ be the first positive solution of f(z; (W−,W+, CMp)) = 0.
Then one observes that limp→0 ẑp = ẑ and limp→0 E[W+ψCMp (ẑpW

−)] = E[W+ψC(ẑW−)].
This implies that there exists p0 > 0 such that ẑp ∈ (ẑ−δ0, ẑ+δ0) for p < p0 and therefore
f ′(ẑp; (W−,W+, CMp)) < 0 by (90). By Theorem 3, for any δ > 0 there exists p such that
with high probability

n−1 |An| 6 E[ψC(W−ẑ)] + δ,

which shows that the bound in (10) is best possible. The following corollary shows that
in a network satisfying the requirements of Theorem 6 a sublinear set of initially infected
vertices is sufficient for the infection to spread to a linear set.

Corollary 22. Let (w−,w+, c) be a regular vertex sequence with limiting distribution
(W−,W+, C). Assume that (W−,W+, C) satisfies (9) for z < z0. Then, there exists a
sequence ε(n) with limn→∞ ε(n) = 0 such that if we infect each vertex i ∈ [n] independently
with probability ε(n), then with high probability

n−1 |An| > E[ψC(W−z0)] > 0,

where An is the final set of infected vertices.

Proof. Let εi := 1/i and as before Mεi a Bernoulli random variable independent of all
other variables with success probability 1 − εi. By Theorem 6, we can define ni > ni−1

such that
P
(
n−1 |An| < E[ψC(W−z0)]

)
6 1/i

for n > ni in the random graph parametrized by (W−,W+, CMεi
). Define ε(n) = εi for

ni 6 n < ni+1.

We proceed with the proof of Theorem 7.

Proof of Theorem 7. Let ε > 0, choose δ such that g(z; (W−,W+, C)) 6 ε/2 for z ∈ [0, δ].
This choice is possible since g is continuous by Lemma 13 and g(0; (W−,W+, C)) = 0. In
order to prove the claim, we first show that there exists j0 such that f(z, (W−,W+, CM(j)))
has a zero at ẑM(j) 6 δ for j > j0 with

E[W+W−P(Poi(ẑM(j)W−) = CM(j) − 1)1{C
M(j)>1}] < 1. (91)

Let δ2 := min{δ, z0}. By (13), we have that f(δ2, (W
−,W+, C)) < 0, since δ2 6 z0.

Further,

f(δ2, (W
−,W+, CM(j)))

= f(δ2, (W
−,W+, C)) + E[W+(ψC

M(j)
(δ2W

−)− ψC(δ2W
−))]

6 f(δ2, (W
−,W+, C)) + E[W+1{M(j)=0}] (92)

Since limi→∞ P(M (j) = 0) = 0 it follows that limi→∞ E[W+1{M(j)=0}] = 0 as by Defini-
tion 1 (2) E[W+] <∞. This observation allows us to select a j0 such that

E[W+1{M(j)=0}] < −f(δ2, (W
−,W+, C))
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and the right hand side of (92) is strictly smaller than 0. This ensures ẑM(j) 6 δ2 for
j > j0, where ẑM(j) is the first positive zero of f(z, (W−,W+, CM(j))). Furthermore, by
the choice of δ2

E[W+W−P(Poi(ẑM(j)W−) = C − 1)1{C>1}] < 1.

As a consequence, since P ((CM(j) = C) ∪ (CM(j) = 0)) = 1,

E[W+W−P(Poi(ẑM(j)W−) = CMi
− 1)1{C

M(j)>1}] < 1.

The monotony of g and ẑM(j) < δ implies g(ẑM(j) ; (W−,W+, C)) < g(δ; (W−,W+, C)) 6
ε/2. Further

g(ẑM(j) ; (W−,W+, CMi
)) 6 g(ẑM(j) ; (W−,W+, C)) + P(M (j) = 0), (93)

and choosing jε > j0 such that P(M (j) = 0) < ε/2 for all j > jε the claim follows again
by Theorem 3.

6.2 Examples

In this section we give some example distributions for random vectors (W−,W+, C). The
first example considers the case of (W−,W+) having no second moment and a threshold
value r ∈ N that is the same for all vertices (i.e. P(C = r) = 1). It turns out that (9) can
be satisfied and accordingly the network is non resilient no matter how large r is chosen.
As we discuss below, this is in stark contrast to the case where W+ and W− have a second
moment – there the network is always resilient if r > 2.

Example 23. Assume that W = W− = W+ and P(C = r) = 1 for some r > 2.
Furthermore, let W be power-law distributed with exponent β ∈ (2, 3), that is, the
density h(w) is given by

h(w) :=

{
cw−β, if w > 1
0, else

,

where c is a normalizing constant. Since ψr(zW ) > e−zW (zW )r

r!
, it follows for any z ∈ (0, 1)

and for some c1, c2, c3 > 0 independent of z

E[W+ψC(zW−)] > c1 z
r

∫ ∞
1

w(r+1)−βe−zwdw

> c1 z
r

∫ 1/z

1

w(r+1)−βe−zwdw

> c2 z
r

∫ 1/z

1

w(r+1)−βdw > c3(zβ−2 − zr).

Since β < 3 and r > 2 we may choose z0 ∈ (0, 1) such that c3(zβ−2−zr) > z for z ∈ (0, z0).

The last example can be easily generalized to the situation where P(C = r) > 0 for
some r > 2 and W |(C = r) is power-law distributed with parameter β ∈ (2, 3). In
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contrast, note that if we choose the exponent of the power-law to be > 3, then a simple
calculation shows that the assumptions of Theorem 7 are satisfied, and thus the network
will be always resilient.

In our next example E [W+W−P (Poi(zW−) = C − 1) 1C>0] 6 κ < 1 in a neighbor-
hood of ẑ. Then Theorem 3 allows us to determine the exact fraction of infected vertices
at the end of the process. A particularly interesting case in this example is given by
choosing W power law distributed with some parameter α and W−|W and W+|W both
Poisson distributed with parameter W . Then both W− and W+ are power law distributed
with parameter α (see e.g. [29] for a related situation).

Example 24. Let (Ω,F ,P) be a probability space with a positive random variable
W ∈ R and a random vector (W−,W+, C) ∈ R+ × R+ × N defined. Assume that
W+ ∈ Lp, p > 1, is independent of {W−, C} given W and let C|W,W− be uniformly
distributed on {0, 1, 2, . . . , dW−e}. Further, we assume that there exists a p > 1 such
that E[(W+)p(W−)p−1] <∞.

Let ẑ be the first positive zero of f . We show that f ′(ẑ, (W−,W+, C)) < 0. In order
to differentiate f(z, (W−,W+, C)), we need to justify differentiation below the integral
sign. Note that

E
[
∂W+ψC(zW−)

∂z

]
= E

[
W+W−P

(
Poi(zW−) = C − 1

)
1C>0

]
. (94)

Conditioning on W and using that W+ is then independent of W−, C

E
[
(W+W−P

(
Poi(zW−) = C − 1

)
1C>0)p

]
= E

[
E[(W+)p | W ] · E[(W−P

(
Poi(zW−) = C − 1

)
1{C>0})

p | W ]
]

= E
[
E[(W+)p|W ] · E[E[(W−P

(
Poi(zW−) = C − 1

)
1{C>0})

p | W,W−] | W ]
]
. (95)

Since the distribution of C|W,W− is uniform on {0, 1, 2, 3, . . . , dW−e}

E[(W−)pP(Poi(zW−) = C − 1)p1C>0|W,W−]

= (W−)pE[P(Poi(zW−) = C − 1)p1C>0|W,W−]

= (W−)p
dW−e∑
c=1

P(Poi(zW−) = c− 1)p

dW−e+ 1

6 (W−)p−1.

These considerations imply that

E[(W+W−P
(
Poi(zW−) = C − 1

)
1C>0)p] 6 E[(W+)p(W−)p−1] <∞ (96)

for all z, which justifies differentiation under the integral sign by the Vitali convergence
theorem and shows that

f ′(z, (W+,W−, C)) = E
[
E
[
W+|W

]
E
[

W−

dW− + 1e
P
(
Poi(zW−) 6 dW−e − 1

)]
|W
]
− 1.

(97)
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It follows that the derivative is strictly decreasing in z. Furthermore, since P(C = 0) > 0,
it follows that f(0, (W+,W−, C)) > 0 and by f(ẑ) = 0 that f ′(z, (W+,W−, C)) < 0 in a
neighborhood of ẑ. It follows that

E
[
W+W−P

(
Poi(zW−) = C − 1

)
1C>0

]
< 1

uniformly in a neighborhood of z.
The example can be adjusted by choosing C|W,W− uniform on {1, 2, 3, . . . , dW−e},

then P(C = 0) = 0 and analog observations as above show that for E[W+] < 1 the
derivative f

′
(z, (W+,W−, C)) is negative for all z and the network is resilient according to

Theorem 7. Furthermore, one easily observes that the assumption E[(W+)p(W−)p−1] <∞
can be dropped if C|W,W− is uniformly distributed on {0, 1, 2, . . . , d(W−)pe} for some
p > 1.

In our final example (9) is satisfied and therefore any small infection spreads to a
positive fraction of the random graph. In contrast to Example 23, the infection is spread
mainly by vertices with threshold function 1 and the distribution of (W−,W+) can have
all moments.

Example 25. Let (Ω,F ,P) be a probability space with a positive random variable W
and (W−,W+, C) such that P(C = 0) = 0. Assume further that W+ is independent of
{W−, C} given W and P(C = 1|W,W−) = (1 + δ)/W− for some δ > 0. Furthermore,
assume that E[W+] > 1. To see that Condition 9 holds, observe that

E
[
W+P(Poi(εW−) > C)

]
= E

[
E[W+P(Poi(εW−) > C) | W ]

]
= E

[
E[W+ | W ]E[P(Poi(εW−) > C) | W ]

]
= E

[
E[W+ | W ]E[E[P(Poi(εW−) > C) | W,W−] | W ]

]
> E

[
E[W+ | W ]E[P(Poi(εW−) = 1)(1 + δ)/W− | W

]
= E[E[W+|W ]E[e−εW

−
εW−(1 + δ)/W− | W ]

= εE[W+e−εW
−

(1 + δ)]

> εE[W+e−εw̄(1 + δ)1{W−6w̄}]

> εe−εw̄(1 + δ)E[W+1{W−6w̄}],

by the properties of (W+,W−, C). Choose w̄ such that E[W+1{W−6w̄}] > (1− δ1)E[W+]
for some δ1 with (1 − δ1)(1 + δ) > 1. Because of E[W+] > 1, there exists ε0 and c > 1
such that for ε 6 ε0,

E
[
W+P(Poi(εW−) > C)

]
> εe−εw̄(1 + δ)E[W+1{W−6w̄}]

> εe−εw̄(1 + δ)(1− δ1)E[W+] > εc.

Condition 9 follows.
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7 Extensions

In order to define measures of resilience that incorporate the relevance of each vertex we
shall extend the setting of a regular vertex sequences and state an extension of Theorem 3
and Theorem 7 for this setting. In addition to the weights and threshold values, we
assume now that each vertex i ∈ [n] is associated with a relevance value ri ∈ R+. As
in the case of weights and threshold values, we assume that we are given a sequence
r(n) = (r1(n), . . . , rn(n)) ∈ (N0)nof relevances. Let

Rn =
∑
i∈An

ri

be the loss in relevance due to the infection. As mentioned in Section 2 we will be
interested in limn→∞(Rn

/∑
i∈[n] ri), the fractional loss in relevance. Theorem 3 will then

arise as a special case by choosing ri = 1 for i ∈ [n]. Since the proof can be done without
any further mathematical difficulties but notation complicates, we shall only outline the
changes necessary in Sections 4, 5 and 6.1. As in the previous proofs we again need some
kind of regularity conditions.

Definition 26 (Regular Extended Vertex Sequence). We call (w−,w+, r, c) a reg-
ular extended vertex sequence if (w−,w+, c) is a regular vertex sequence and there exists
a distribution function F : R3×N∞0 → [0, 1] such that for all points (v, x, y, l) ∈ R3×N∞0
for which F (v, x, y, l) is continuous in (v, x, y) we have limn→∞ Fn(v, x, y, l) = F (v, x, y, l),
where Fn(v, x, y, l) is the empirical distribution function defined by

Fn(v, x, y, l) = n−1
∑
i∈[n]

1{w−i (n) 6 v, w+
i (n) 6 x, ri(n) 6 y, ci(n) 6 l},

∀(v, x, y, l) ∈ R3 × N∞0 .

Our results are summarized in the following theorem, which is a generalization of
Theorem 3; note the similarity in the assumptions and in the conclusions, in particular
how the relevance sneaks in.

Theorem 27. Let (w−,w+, r, c) be an extended regular vertex sequence with limiting
distribution F : R2 × R+ × N∞0 → [0, 1] such that F (v, x, y, l) is continuous in (v, x, y).
Further, assume that E[R] < ∞ and P(C = 0) > 0. Denote by ẑ the smallest positive
solution of

f(z; (W−,W+, C)) = 0,

with f as defined in (29). Then the following holds:

1. For all ε > 0 with high probability:

n−1Rn > E[RψC(W−ẑ)]− ε.
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2. If there exists δ such that E[W+W−P(Poi(zW−) = C − 1)1C>1] < κ < 1 for z ∈
(ẑ − δ, ẑ + δ), then

n−1Rn
p−→ E[RψC(W−ẑ)], as n→∞.

Proof sketch. Let (W−,W+, R, C) be a random variable distributed according to F . A
careful analysis of the proof of Theorem 14 shows that in addition to the sets I lj,k;m(t)
for 1 6 j 6 l1, 1 6 k 6 l2, 0 6 l < m 6 cmax we can also define Imj,k;m(t) for 1 6 j 6
l1, 1 6 k 6 l2,m 6 cmax, as the set of infected vertices with weight levels w̃−j and w̃+

k and
percolation threshold m. That way we also keep track of the types of defaulted vertices
and not only their average weight. Define further cmj,k;m(t) :=

∣∣Imj,k;m(t)
∣∣. Their expected

evolution is then given by

E
[
cmj,k;m(t)− cmj,k;m(t− 1) | h(t− 1)

]
= n−1

(
1{l 6=0}c

m−1
j,k;m(t− 1)

)(w̃−j w(t− 1)

u(t− 1)

)
,

where h(t) is now the state of the extended system:

h(t) =

(
u(t), w(t), {clj,k;m(t)} j∈[l1],k∈[l2]

06l6m6cmax

)
.

The functions γmj,k;m, 1 6 j 6 l1, 1 6 k 6 l2,m 6 cmax approximating the additional
quantities solve the differential equation

dγmj,k;m(τ)

dτ
=
(
1{l 6=0}γ

m−1
j,k;m(τ)

)(w̃−j µ(τ)

ν(τ)

)
.

As
u(t) =

∑
j∈[l1],k∈[l2]

06l6m6cmax

cmj,k;m(t)− t,

one easily observes from (46) and (47) that

γmj,k;m(τ) = γ0
j,k;m(0)P

[
Poi
(
w̃−j z(τ)

)
> m

]
.

The remainder of the proof of Theorem 3 can then be applied without major changes.
Assuming that

E[W+W−P(Poi(zW−) = C − 1)1C>1] < κ < 1 for z ∈ (ẑ − δ, ẑ + δ) (98)

and some δ > 0, the convergence properties inherent in Definition 26 allow to conclude
that

n−1Rn = n−1
∑
i∈An

ri

= (1 + op(1))
∑

j∈[l1],k∈[l2]
06l6m6cmax

γ0
j,k;m(0)P

[
Poi
(
w̃−j z(τ̂)

)
> m

]
E[R|(W−,W+, C)] (99)

= (1 + op(1))E[RψC(W−ẑ)]
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where γ0
j,k;m(0) = P(W− = w̃−j ,W

+ = w̃+
k , C = m). It follows that

n−1Rn
p−→ E[RψC(W−ẑ)], as n→∞.

In case (98) does not hold, Equation (99) becomes an inequality (6) and it follows that
for all ε > 0 with high probability:

n−1Rn > E[RψC(W−ẑ)]− ε.

This shows a counterpart of Theorem 14 for Rn instead of |An|. Note that in the steps
outlined above it was not used that R attains only finitely many values as it is the case
for W− and W+ in Sections 4. This is due to the fact that the relevance factor R has
no influence on the infection process. For this reason a generalization to general weight
sequence can be done exactly as before with a sequence {(W−,W+, R, C)i}i∈N, where the
third entry can have the original marginal distribution of R for all i ∈ N.

Let as before (w−,w+, r, c) be an extended regular vertex sequence and let F be its
limiting distribution, and further (W−,W+, R, C) a random variable with distribution F .
Similarly we state extensions of Theorem 6 and Theorem 7.

Theorem 28. Assume that (W−,W+, C) is such that P(C = 0) = 0 and there exists
z0 > 0 such that for any 0 < z < z0

E[W+ψC(zW−)] > z. (100)

Let M be such that P(M = 0) > 0. Let Rn be the loss in relevance in Gn(w−,w+, c),
where ci(n) = ci(n)mi(n), for all i ∈ N. Then with high probability

n−1Rn > E[RψC(W−z0)] > 0. (101)

Theorem 29. Assume that (W−,W+, C) is such that there exists z0 > 0 such that for
any 0 < z < z0

E[W+W−P(Poi(zW−) = C − 1)1{C>1}] < 1.

Then, for any sequence of ex post infections {M (j)}j∈N with limj→∞ P(M (j) = 0) = 0,

let R(j)
n be the loss in relevance in Gn((w−,w+, r, cj)), where c

(j)
i = ci(n)m

(j)
i (n) for all

i ∈ [n] and j ∈ N. Then for any ε > 0, there exists jε such that for j > jε with high
probability

n−1R(j)
n 6 ε. (102)

For the changes necessary in the proof of Theorem 7 one should observe that the
zeros ẑM(j) used in the proof are not affected by the relevance variable R. Further by
integrability of R it follows that limi→∞ E[R1{M(j)=0}] = 0. Together with the continuity
of the function h(z) := E[RψC(zW−)] it follows that limi→∞ E[RψC

M(j)
(ẑM(j)W−)] = 0

which implies (102).
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A Notes on the Derivative of f

In this section we show that the requirements on E[W+W−P(Poi(zW−) = C − 1)1C>1]
in 2. of Theorem 3 and in Theorem 7 are satisfied if f is differentiable with negative
derivative around ẑ and 0, respectively. In fact, as the following two lemmas show, if
E[W+W−] <∞, the assumptions in Theorem 3 and in Theorem 7 could have equally be
stated in terms of the derivative of f . However, when E[W+W−] = ∞ the function f is
not necessarily differentiable.

Lemma 30. If E[W+(W−)1/2] <∞ (respectively E[W+W−] <∞) then f is continuously
differentiable in (0,∞) (respectively in [0,∞)) and

f ′(z; (W−,W+, C)) = E[W+W−P(Poi(zW−) = C − 1)1C>1]− 1 (103)

in the respective domains.
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Proof. As for l > 1

∂

∂z
ψl(xz) =

∂

∂z

(
∞∑
r=l

e−xz
(xz)r

r!

)
= xe−xz

(xz)l−1

(l − 1)!
= xP(Poi(zx) = l − 1)

and ∂
∂z
ψ0(xz) = 0, formally differentiating f below the integral sign provides

f ′(z; (W−,W+, C)) = E[W+W−P(Poi(zW−) = C − 1)1C>1]− 1. (104)

Since P(Poi(x) = y) is maximized for y = x and P(Poi(x) = x) = (1/
√

2πx)(1 + o(1)) by
Stirling’s formula, it follows that

W+W−P(Poi(zW−) = C − 1)1C>1 6 W+W− 1

(zW−)1/2
D 6 (ẑ − δ0)−1/2W+(W−)1/2D,

(105)
for suitable chosen D and for z > ẑ − δ0. By Assumption E[W+(W−)1/2] < ∞ it
follows that E[(ẑ − δ0)1/2W+(W−)1/2] = (ẑ − δ0)1/2E[W+(W−)1/2] < ∞ and therefore
W+W−P(Poi(zW−) = C − 1)1C>1 is uniformly bounded by an integrable function for
z ∈ (ẑ − δ0,∞). This justifies differentiation under the expectation and proves equal-
ity (104) for z ∈ (0,∞) since δ0 can be chosen arbitrarily small. By continuity of
W+W−P(Poi(zW−) = C − 1)1C>1 in z and again the uniform bound in (105) it fol-
lows by the Dominated Convergence Theorem that

E[W+W−P(Poi(zW−) = C − 1)1C>1] (106)

is continuous and f(z; (W−,W+, C)) continuously differentiable in (0,∞). In the case
E[W+W−] < ∞, one can simply bound the left hand side of (105) by W+W− for z ∈
[0,∞) as P(Poi(zW−) = C − 1)1C>1 6 1 and apply the same arguments.

Lemma 31. Let P(C = 0) > 0 and ẑ be the first positive solution of

f(z; (W−,W+, C)) = 0.

If f is differentiable and f ′(z; (W−,W+, C)) < κ < 0 in some neighborhood of ẑ or f
continuously differentiable in some neighborhood of ẑ and f ′(ẑ; (W−,W+, C)) < 0, then
there exists δ1 > 0 such that

E[W+W−P(Poi(zW−) = C − 1)1C>1] < κ < 1, for z ∈ (ẑ − δ1, ẑ + δ1). (107)

If, on the contrary, P(C = 0) = 0 and further, f differentiable and

f ′(z; (W−,W+, C)) < 0

for z ∈ (0, δ) and some δ > 0, or f continuously differentiable in [0, δ) and

f ′(0; (W−,W+, C)) < 0

for some δ > 0, then

E[W+W−P(Poi(zW−) = C − 1)1C>1] < 1 (108)

uniformly for z ∈ (0, δ1) for some δ1 > 0.
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Proof. We consider the case P(C = 0) > 0. Note that if f is continuously differentiable
in some neighborhood of ẑ and f ′(ẑ; (W−,W+, C)) < 0, then also f ′(z; (W−,W+, C)) <
κ < 0 in some neighborhood of ẑ and it is sufficient to prove (107) under this Assumption.

Since f
′
(z; (W−,W+, C)) < κ < 0 for z ∈ (ẑ − δ1, ẑ + δ1) and some δ1, it follows by

the definition of f that

lim
h→0

h−1
(
E[W+ψC((z + h)W−)]− E[W+ψC((z)W−)]

)
< κ < 1

for z ∈ (ẑ − δ1, ẑ + δ1). Furthermore, for l > 1

∂

∂z
ψl(xz) =

∂

∂z

(
∞∑
r=l

e−xz
(xz)r

r!

)
= xe−xz

(xz)l−1

(l − 1)!
= xP(Poi(zx) = l − 1)

and ∂
∂z
ψ0(xz) = 0. Therefore it is possible to write

E[W+W−P(Poi(zW−) = C − 1)1C>1] = E
[

lim
h→0

W+ψC((z + h)W−)− ψC(zW−)

h
1C>1

]
,

where W+ (ψC((z + h)W−)− ψC(zW−)) 1C>1/h > 0 for every h, z > 0. By Fatou’s
lemma, this allows us to conclude that for any sequence {hi}i∈N, with limi→∞ hi = 0

E[lim inf
i→∞

W+
(
ψC((z + hi)W

−)− ψC(zW−)
)
1C>1/hi]

6 lim inf
i→∞

E[W+
(
ψC((z + hi)W

−)− ψC(zW−)
)
1C>1/hi]

= lim
i→∞
{
(
E[W+ψC((z + hi)W

−)]− E[W+ψC(zW−)]
)
/hi}

= f ′(z; (W−,W+, C)) < κ < 1,

for z ∈ (ẑ − δ1, ẑ + δ1).
We consider the case P(C = 0) = 0. There f continuously differentiable in [0, δ1) and

f ′(0; (W−,W+, C)) < 0 implies that f ′(z; (W−,W+, C)) < 0 for z ∈ (0, δ1) and for some
δ1 > 0. With this observation the bound in (108) can then be shown by essentially the
same reasoning as in the case P(C = 0) > 0.

An interesting observation can be made for the case P(C = 0) = 0. Assume there
exists z0 > 0 such that

f ′(z) = E[W+W−P(Poi(z ·W−) = C − 1)1C>1]− 1,

for z ∈ [0, z0), that is f is differentiable and f ′ equals its candidate obtained by differ-
entiation under the expectation sign, and further f ′ continuous in this domain. This is
especially the case if E[W+W−] <∞ as shown in Lemma 30. Note that

E[W+W−P(Poi(0 ·W−) = C − 1)1C>1] = E[W+W−P(Poi(0) = C − 1)1C=1] (109)

as P(Poi(0) = c− 1) = 0 for c > 1. By continuity of f ′,

E[W+W−P(Poi(0) = C − 1)1C=1] < 1
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implies that
E[W+W−P(Poi(z ·W−) = C − 1)1C>1] < 1

for z in some neighborhood of 0 and thus resilience depends only on vulnerable vertices.
This shows that the functional f has a delicate behaviour in 0 if there are only few or no
vulnerable vertices but the network is non-resilient. In fact, if E[W+W−P(Poi(0W−) =
C − 1)1C=1] < 1 and the network is non-resilient, then often limz→0 f

′(z) =∞.
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