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Université de Reims Champagne-Ardenne
Laboratoire de Mathématiques FRE 2011
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Abstract

We study the class of Uglov bipartitions and prove a generalization of a con-
jecture by Dipper, James and Murphy. We give two consequences concerning the
computation of canonical bases in affine type A and the description of decomposition
matrices for Hecke algebras of type Bn in arbitrary characteristic.

Mathematics Subject Classifications: 20C08, 05E10, 17B37

1 Introduction

Uglov bipartitions are a class of combinatorial objects which were first defined in the
context of the representation theory of quantum groups. More precisely, in the case of
the affine special linear group ŝle, these pairs of integer partitions are known to naturally
label the crystal graph of the irreducible highest weight modules (of level two) and thus
their canonical bases. Since their introduction by Uglov in [17], they have appeared in
various (but connected) situations:

• the representation theory of Cherednik algebras [4, 5] (as the bipartitions indexing
the standard modules which are not killed by the KZ functor in type Bn),

• the representation theory of Hecke algebras [8] (as the bipartitions labelling the so
called canonical basic sets in characteristic 0),

• the Harish-Chandra theory for unitary groups [9] (as the bipartitions labelling cer-
tain weak Harish-Chandra series).

∗Supported by ANR project ANR-16-CE40-0010-01.
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The definition of these bipartitions depends on the choice of a pair of integers s =
(s1, s2) ∈ Z2. If s ∈ Z2 and s′ ∈ Z2 are in the same orbit modulo an action of an extended
affine symmetric group, the associated classes of bipartitions are in bijection. For a certain
choice of s ∈ Z2, the associated bipartitions are known as FLOTW bipartitions (a special
case of “cylindric bipartitions”), for another choice (called asymptotic), the associated
bipartitions are known as Kleshchev bipartitions. Both types of bipartitions have been
extensively studied in recent years. In the general case, even if these bipartitions have
a nice and relatively easy recursive definition (see §3.2), it can be difficult to character-
ize them explicitly or to study their properties. In [13], a new combinatorial (but still
recursive) definition has been given (it concerns in fact the more general class of Uglov
multipartitions). As a consequence, an old conjecture by Dipper, James and Murphy
has been deduced but only for the class of Kleshchev multipartitions (the papers [10, 11]
consider special cases of this conjecture). This result shows that the Kleshchev multipar-
titions may be easily obtained as the maximal elements with respect to the lexicographic
order on bipartitions in certain combinatorial expressions. Note also that the tableaux
theoretic version in section 4.4 provide lower bounds for the dimensions of simple modules
for the Hecke algebra1.

The aim of this note is to continue the work of [13] and to obtain a general proof
of the Dipper-James-Murphy conjecture for the whole class of Uglov bipartitions (see
Theorem 15 or its reformulation in Corollary 24). To do this, we use the fact that this
conjecture may be easily proved for the class of FLOTW bipartitions and we use the
bijections between classes of Uglov bipartitions that we have already studied and defined
in a number of papers. We in particular obtain a different proof of the conjecture for the
class of Kleshchev bipartitions than the one presented in [2]. We note that, even if some
of the results of [13] are used in this paper, our result is essentially independent of [13].
In particular, it does not use the notion of staggered sequence which is used to prove the
conjecture for the Kleshchev multipartitions in this paper. One of the main interest of this
conjecture lies in its application. We here give two consequences of this result. The first
one (which has been already mentioned in [13]) concerns the computation of canonical

bases for irreducible highest weight modules fo ŝle. The second one concerns the form
of the decomposition matrices for Hecke algebras of type Bn in arbitrary characteristic.
Thanks to our main result, we give an elementary proof for the existence of canonical basic
sets for these algebras. Recently, such a result has been also obtained by C. Bowman using
the theory of Cherednik algebras [4] (even in the wider context of Ariki-Koike algebras).
In general, this was previously only known assuming the validity of certain Lusztig’s
conjectures on Hecke algebras with unequal parameters (see [7]).

2 Several definitions

In this part, we recall several combinatorial notions concerning Young diagrams, most of
them can be already found in [13].

1we thank the referee for pointing this to us
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2.1 Extended Nodes of a bipartition

A partition λ of rank n ∈ Z>0 is a sequence of non negative and non increasing integers
λ = (λ1, . . . , λr) such that we have |λ| :=

∑
16i6r λi = n. The unique partition of rank 0,

the empty partition, is denoted by ∅. We denote by `(λ) the minimal integer such that
λ`(λ)+1 = 0 with the convention that `(∅) = 0. We will be interested here on the set of
bipartitions of rank n:

P2(n) := {(λ1, λ2) | |λ1|+ |λ2| = n}.

The nodes of the bipartition λ are the elements (a, b, c) where c ∈ {1, 2}, a ∈ {1, . . . , `(λc)},
b ∈ {1, . . . , λca}. The set of all nodes of λ is denoted by Y(λ). It is called the Young
diagram of λ. The extended nodes of the bipartition λ are the following elements of
Z>0 × Z>0 × {1, 2}:

1. the elements of Y(λ),

2. the elements of the form (0, b, c) where b > λc1 and c ∈ {1, 2},

3. the elements of the form (a, 0, c) where a > `(λc) and c ∈ {1, 2}.

The set of all extended nodes of λ is called the extended Young diagram of λ and it is
denoted by Yext(λ). It thus contains the Young diagram of λ. One can represent it as a
collection of boxes. Each box then corresponds to an extended node of the bipartition as
in the following example.

Example 1. We consider the bipartition (3.3.1, 2.1) of n = 10. The extended Young
diagram is given as follows.

(
. . . . . .

• • •
• • •
•

...

...

, . . . . . .

• •
•

...

...

)

The boxes containing a bullet correspond to the boxes of the usual Young diagram.

Let e ∈ Z>1 t {∞}. We now fix s = (s1, s2) ∈ Z2. One can attach to each extended
node γ = (a, b, c) of the extended Young diagram its content (depending on the choice of
s):

cont(γ) = b− a+ sc ∈ Z.

the electronic journal of combinatorics 26(3) (2019), #P3.14 3



By definition, the residue (depending on the choice of s and e) res(γ) of the extended node
γ is the content modulo e if e is finite and the content if e =∞. Throughout the paper,
we set I := Z/eZ (which will be identified with {0, . . . , e− 1}) if e is finite and I := Z if
e =∞. If res(γ) = j then we say that γ is a (extended) j-node. In this paper, we will use
“roman” letters for contents and “mathfrak” letters for residues to avoid confusion.

The boundary of the extended Young diagram is by definition given by the extended
nodes (a, b, c) ∈ Yext(λ) such that:

• (a, b + 1, c) is not in Yext(λ). Such nodes constitute the vertical boundary of the
extended Young diagram.

• (a+ 1, b, c) is not in Yext(λ). Such nodes constitute the horizontal boundary of the
extended Young diagram.

The extended nodes which are in the vertical or horizontal boundary without being in the
Young diagram are called virtual.

A node γ = (a, b, c) of Y(λ) is said to be removable for λ if Y(λ) \ {γ} is the Young
tableau of a bipartition µ. If γ = (a, b, c) ∈ Z>0×Z>0×{1, . . . , l} is such that Y(λ)t{γ}
is the Young tableau of a bipartition µ then it is said to be addable for λ.

The intersection between the vertical and the horizontal boundary is given by the set
of removable nodes. We see also that there always exists one unique extended node in a
fixed component with a given content which is either addable, or in the boundary of λ.
For j ∈ I, we will denote by Ej(λ) the set consisting of:

• addable j-nodes of λ, we say that these nodes are of nature A.

• extended j-nodes of the boundary of λ. Such node may be either removable (we then
say that they are of nature R), or in the vertical boundary without being removable
(we say that they are of nature Bv) or in the horizontal boundary without being
removable (of nature Bh)

Given the nature of a node of content j in a component c ∈ {1, 2} of a bipartition,
there is always only two possibilities for the nature of the nodes with content j − 1 and
j + 1 in the same component, in respectively Ej−1(λ) and Ej+1(λ). They are given in the
following table:

Possible nature Nature Possible nature
of the node of content j − 1 of the node of content j of the node of content j + 1

Bv or R A Bh or R
Bh or A R Bv or A
Bv or R Bv Bv or A
Bh or A Bh Bh or R

Example 2. We consider the bipartition λ = (3.3.1, 2.1) of n = 10 and s = (0, 1), e = 3.
Here is the associated extended Young diagram with the residue of each node written in
the associated box:
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(
1 2 0 . . . . . .

0 1 2

2 0 1

1

2

1

0
...
...

, 1 2 0 . . . . . .

1 2

0

1

0

2
...
...

)

E2(λ) consists in the following extended nodes:

• the nodes (0, 5 + 3k, 1) with k ∈ N which are of nature Bh.

• the nodes (0, 4 + 3k, 2) with k ∈ N which are of nature Bh.

• the nodes (4 + 3k, 0, 1) with k ∈ N which are of nature Bv.

• the nodes (5 + 3k, 0, 2) with k ∈ N which are of nature Bv.

• (1, 3, 1) which is of nature Bv, (3, 2, 1) which is of nature A, (1, 2, 2) which is of
nature R and (3, 1, 2) which is of nature A.

2.2 Order on nodes of a bipartition

Let λ be a bipartition and γ1 (resp. γ2) be an extended node of λ or an addable node of
λ. We write γ1 <s γ2 if and only if

• cont(γ1) < cont(γ2) or,

• cont(γ1) = cont(γ2), c1 = 2 and c2 = 1.

Let now j ∈ I. Then the nodes in Ej(λ) are all comparable and we see that we have
γ1 <s γ2 for such two nodes and that these two nodes are consecutive if we are in one of
the following two cases:

• cont(γ1) = cont(γ2), c1 = 2, c2 = 1,

• cont(γ1) + e = cont(γ2), c1 = 1, c2 = 2, (if e is finite, if e =∞ only the above case
occurs because we only have two nodes with a given content).
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2.3 Order on bipartitions

We now define a total order �s on the set of bipartitions depending on s. To do this, let
λ ∈ P2(n), consider the set of all the nodes on the vertical boundary of λ and write them
in decreasing order with respect to <s (such nodes are always comparable because there
are no two nodes of the same content within the vertical boundary of a given component).
We obtain an infinite sequence (γi(λ))i∈Z>0 which will be called the boundary sequence.
We write λ �s µ if and only λ = µ or if there exists j > 0 such that

∀0 < i < j, γi(λ) = γi(µ), and γj(λ) <s γj(µ).

This ordering works for arbitrary charges. In a special case, this specialises to the more
familiar lexicographic ordering of Dipper–James–Mathas, as we will now show. Consider
the lexicographic order on the set of bipartitions, that is, λ 6 µ if and only λ = µ or if
there exists j > 0 such that

∀0 < i < j, λ1
i = µ1

i , and λ1
j < µ1

j

or λ1 = µ1 and there exists j > 0 such that

∀0 < i < j, λ2
i = µ2

i , and λ2
j < µ2

j .

We write λ ≺s µ if λ �s µ and λ 6= µ. We have the following particular case.

Proposition 3. Assume that s = (s1, s2) is such that s1 − s2 > n− 1 then we have

λ �s µ ⇐⇒ λ 6 µ.

Proof. Assume that s1 − s2 > n− 1 then if γ = (a, b, c) and η = (a′, b′, c′) are two nodes
on the vertical boundary of λ we have that γ 6s η if and only if:

• c′ = 1 and c = 2,

• c = c′ and a < a′.

This implies that the order �s is the same as the usual lexicographic order on bipartitions.

Remark 4. Of course, the order �s strongly depends on the choice of s and it does not
correspond to the lexicographic order in general if s1 − s2 6 n− 1.

2.4 Boundary sequence and nature of nodes

We study in details the relations between the boundary sequence and the nature of some
nodes of a bipartition. Let λ = (λ1, λ2) be a bipartition and s = (s1, s2) ∈ Z2. For each
j ∈ Z and each component, there is a unique extended node with content j which is in
this component and which is either addable, or in the boundary of λ.
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Also note that this node is of nature Bv or R if and only if j appears in the boundary
sequence. As a consequence, one may easily obtain the boundary sequence from a table,
called the table of natures, listing all the nature of the extended nodes associated with each
j ∈ Z (representing the content of the node) and c ∈ {1, 2} (representing the component
of the node) as in the following examples.

Example 5. Let s = (0, 1) and consider the bipartition λ = (6.1, 2.2).(
7 . . . . . .

0 1 2 3 4 5

−1

−3
...
...

, 4 5 6 7 . . . . . .

1 2

0 1

−2

−3
...

)

The table of natures gives the nature of all the (extended) nodes which are either
addable, or in the boundary, of content between −3 and 6 written in increasing order
with respect to (0, 1) for λ. The nodes of content greater than 6 are all virtual nodes of
the horizontal boundary and the nodes of content less than −3 are all virtual nodes of
the vertical boundary

Component 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
Content −3 −3 −2 −2 −1 −1 0 0 1 1 2 2 3 3 4 4 5 5 6 6
(6.1, 2.2) Bv Bv Bv A A R Bh A R Bh Bv Bh A Bh Bh Bh Bh R Bh A

From this, we can write the infinite sequence of §2.3 which allows to compare biparti-
tions with respect to �s. If a node is of nature Bv or R, then this means that this node
is in this sequence otherwise, it is not. For example, take the bipartition (6.3, 2.1) then
with respect to (0, 1) we have:

Component 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
Content −3 −3 −2 −2 −1 −1 0 0 1 1 2 2 3 3 4 4 5 5 6 6
(6.3, 2) Bv Bv Bv A Bv Bh A Bh Bh R R A A Bh Bh Bh Bh R Bh A

and we immediately see that (6.1, 2.2) ≺(0,1) (6.3, 2).

In µ is another bipartition, then we say that the two extended or addable nodes of λ
and µ with the same content and in the same component has the same general nature if
the nature of these nodes are both in {R,Bv} or both in {A,Bh}. Hence, one can compare
two bipartitions with respect to ≺s by looking at the table of natures of µ and λ and by
checking when, starting from the left, the general nature of extended or addable nodes
differs for λ and µ. In the above case, this happens for the content 1 and component 1.

3 Uglov bipartitions

In this section, we define the notion of Uglov bipartitions, recall the context in which they
appear and recall several properties.
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3.1 Definition

Let ge be the quantum affine algebra of type A
(1)
e−1. Let s ∈ Z2. For each n ∈ Z>0, we

have a C-vector space:

Fn =
⊕

λ∈P2(n)

Cλ.

The Fock space of level two is then the following C-vector space:

F =
⊕
n∈Z>0

Fn.

There is an action of g on F which gives a structure of an integrable module. In particular,
the action of the Chevalley operators ej and fj (with j ∈ I) on the Fock space are given
by:

∀j ∈ I,∀λ ∈ P2(n), fjλ =
∑

Y(µ)=Y(λ)t{γ}, res(γ)=j

µ, ejλ =
∑

Y(λ)=Y(µ)t{γ}, res(γ)=j

µ.

The submodule Vs generated by the empty bipartition is then an irreducible highest weight
module with weight Λs1 + Λs2 (where the Λi’s, i ∈ I, denote the fundamental weights).

3.2 Canonical bases

Let λ be a bipartition, and j ∈ I. We consider the set of addable and removable j-nodes of
λ. We define a word obtained by reading these nodes in the increasing order with respect
to ≺s. If a removable j-node appears just before an addable j-node, we delete both and
continue the same procedure as many times as possible. In the end, we reach a word of
nodes such that the first p nodes are addable and the last q nodes are removable, for some
p, q ∈ N. If p > 0, let γ be the rightmost addable j-node. If it exists, the node γ is called
the good j-node of λ.

By definition, λ is said to be an Uglov bipartition of rank n > 0 if there exists a sequence
of bipartitions λ[1] := (∅,∅), λ[2], . . . , λ[n] := λ such that for each j ∈ {1, . . . , n}, the
bipartition λ[j] is in P2(j) and such that for each j ∈ {2, . . . , n} λ[j] is obtained by adding
a good j-node to λ[j−1].

The set of Uglov bipartitons of rank n is denoted by Φe
s(n) and the set of all Uglov

bipartitions by Φe
s. Note that (∅,∅) is the unique Uglov bipartition with rank 0.

Let us come back to the submodule Vs of the Fock space. By [8, Th 6.6.14] (this is a
result by Uglov using Kashiwara-Lusztig theory of canonical bases for quantum groups),
there exists a basis, called the canonical basis for Vs (as a C-vector space) which is labeled
by the set of Uglov bipartitions:

{G(λ, s) | λ ∈ Φe
s}.

In fact, we even get that the set

{G(λ, s) | λ ∈ Φe
s(n)}
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is a basis of Vs ∩ Fn.
This basis enjoys nice properties which we not recall here (see [8, Th. 6;6;11]). All we

need in the folllowing is:

Proposition 6 (Uglov [17]). For each λ ∈ Φe
s(n), we have:

G(λ, s) = λ + Linear combination of µ of rank n with µ ≺s λ.

Lemma 7. For all sequences of residues (j1, . . . , jn) ∈ In, the maximal element with
respect to ≺s in fj1 . . . fjn .∅ is an Uglov bipartition of rank n.

Proof. Each canonical basis element is a linear combination of bipartitions and the maxi-
mal one with respect to �s is an Uglov bipartition. As fj1 . . . fjn .∅ is a linear combination
of these canonical basis elements, the results follows

3.3 Bijections between Uglov bipartitions

Let Ŝ2 be the (extended) affine symmetric group. We denote by P2 := Z2 the Z-module

with standard basis {y1, y2}. We denote by σ1 the generator of Z/2Z. Then Ŝ2 can be
seen as the semi-direct product P2 o Z/2Z where the relations are given by σ1y1σ1 = y2.
This group acts faithfully on Z2 by setting for any s = (s1, s2) ∈ Z2:

σ1.(s1, s2) = (s2, s1),
y1.(s1, s2) = (s1 + e, s2),
y2.(s1, s2) = (s1, s2 + e).

Set τ := σ1y1 then Ŝ2 is generated by σ1 and τ . Moreover, we have a fundamental domain
for this action given by:

Se :=
{

(s1, s2) ∈ Z2 | 0 6 s1 6 s2 < e
}
.

If s is in Se, the set Φe
s has a nice non recursive definition (see [8, Def. 5.7.8]) but such

definition is not available in the general case. Nevertheless, one can use the following
method to compute the sets Φe

s in the general case.

We know that if s1 and s2 are in the same class modulo the action of Ŝ2 then both
modules Vs1 and Vs2 are isomorphic and there is a bijection

Ψe
s1→s2

: Φe
s1
→ Φe

s2
,

which enjoys nice properties with respect to the module structure. In particular, this is
a crystal isomorphism. This means that if λ ∈ Φe

s1
and if λ′ ∈ Φe

s1
is obtained from λ

by removing a good j-node. Then Ψe
s1→s2

(λ) admits a removable good j-node and if we
remove it, we obtain a bipartition µ′ satisfying Ψe

s1→s2
(λ′) = µ′.

• if s2 = τ.s1, by [12, Prop. 3.1(2)], we have

Ψe
s1→s2

(λ1, λ2) = (λ2, λ1).
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• if s2 = σ1.s1, the bijection has been combinatorially described in [12]. We don’t
need the explicit form of this bijection but only some properties which will be recall
once we need them.

Otherwise, the map Ψe
s1→s2

is a composition of maps of the above form. If λ ∈ Φe
s1

then

the Uglov bipartitions µ ∈ Φe
σ.s1

such that Ψe
s1→σ.s1(λ) = µ for all σ ∈ Ŝ2 are said to be

the bipartitions in the isomorphism class of λ.

Example 8. Take s = (0, 1) and e = 3. We consider the bipartition λ = (6.1, 2.2) which

is in Φe
s. Then one can compute Ψe

s→σ.s(λ) for σ ∈ Ŝ2 using the algorithm in [12] or one
can use the program given in [14]. We get for all k ∈ Z:

Ψe
(0,1)→(1+3k,0)(λ) =

 (5.2.1, 3) if k > 0
(2.2, 6.1) if k = −1

(2.1, 6.1.1) if k < −1
Ψe

(0,1)→(0,1+3k)(λ) =

{
(3, 5.2.1) if k > 1

(6.1.1, 2.1) if k < 0

Thus one may recover the set of Uglov bipartitions Φe
s for all s ∈ Z2 from the set Φe

s′

where s′ ∈ Se is in the orbit of s modulo the above action and from the use of the above
known bijections.

Finally, note that, given a bipartition λ ∈ Φe
s, the isomorphism Ψe

s→σ.s affects the table
of natures for the j-nodes. In fact, this table may be easily obtained from the one of λ
in the case where σ := τ : we just have to translate the natures of the nodes by one box
to the right for the nodes in component 2. For the nodes in component 1, we have to
translate them by 2e− 1 boxes. Here is an example for e = 2

Component . . . 2 1 2 1 2 1 2 1 2 1 . . .

Content . . . −2 −2 −1 −1 0 0 1 1 2 2 . . .

λ . . . X1 X2 X3 X4 X5 X6 X7 X8 X9 . . . .

Ψe
s→τ.s(λ) . . . ? X1 ? X3 X2 X5 X4 X7 X6 X9 . . .

Such table is less elementary in the case σ = σ1 but a table in [13, §6.1.2] explains
the different possibilities: for a given content j ∈ Z and two addable or extended nodes
j-nodes γ2 and γ1 of content j in component 2 and 1, the natures of the two associated
nodes in component 1 and 2 are transformed into nodes with specific natures:

For example if γ2 is of nature R and γ1 of nature Bh then the nodes γ′2 and γ′1 of
content j in component 2 and 1 of Ψe

s→σ1.s(λ) may be of nature R and Bh, or Bh and R.
Note however that there is a nice property which is verified by the bijection Ψe

s→σ1.s:
by [15], this bijection does not depend on e and we thus have Ψe

s→σ.s = Ψ∞s→σ.s.

Example 9. Consider the bipartition λ = (6.1, 2.2) which is in Φ3
(0,1). We have already

seen that µ := Ψ3
(0,1)→(1,0)(5.2.1, 3). Write the Young tableau of these two bipartitions

with the associated content:
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Nodes in λ Nodes in Ψe
s→σ1.s

(λ)

Component 2 Component 1 Component 2 Component 1

R R R R
A R A R

Bv R
R Bv

Bv R
Bh R Bh R

R A
R A
Bh Bv

A A A A

Bv A
Bv A
A Bv

Bh A Bh A

R Bh
R Bh

Bh R

A Bh
A Bh

Bh A

Bv Bh

R A
Bv Bh

Bh Bv

Bh Bh Bh Bh

R Bv R Bv

A Bv A Bv

Bv Bv Bv Bv

Bh Bv Bh Bv

(
7 . . . . . .

0 1 2 3 4 5

−1

−3
...
...

, 4 5 6 7 . . . . . .

1 2

0 1

−2

−3
...

)

(
7 8 . . .

1 2 3 4 5

0 1

−1

−3
...

, 4 5 6 7 . . .

0 1 2

−2

−3
...
...

)
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The following table gives the nature of all the nodes of content between −3 and 6
written in increasing order with respect to (0, 1) for λ and (1, 0) for µ

Component 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
Content −3 −3 −2 −2 −1 −1 0 0 1 1 2 2 3 3 4 4 5 5 6 6
(6.1, 2.2) Bv Bv Bv A A R Bh A R Bh Bv Bh A Bh Bh Bh Bh R Bh A
(5.2.1, 3) Bv Bv Bv A A R Bh A Bh R R A A Bh Bh Bh Bh R Bh A

Remark 10. The isomorphism between Vs1 and Vs2 implies the following fact. Assume that
(j1, . . . , jn) is a sequence of element in I then fj1 . . . fjn .∅ writes as a linear combinaison
of the canonical basis elements:

fj1 . . . fjn .∅ =
∑
λ∈Φe

s1

aλG(λ, s1)

Then we have:
fj1 . . . fjn .∅ =

∑
λ∈Φe

s1

aλG(Ψe
s1→σ.s1(λ), s2)

In the case where s ∈ Se, the Uglov bipartitions are then known as FLOTW biparti-
tions and they have a non recursive description given as follows:

Proposition 11 (Foda-Leclerc-Okado-Thibon-Welsh). Assume that s = (s1, s2) ∈ Se.
The set Φe

s of Uglov bipartitions is the set of bipartitions λ = (λ1, λ2) such that:

1. for all i ∈ Z>0, we have:

λ1
i > λ2

i+s2−s1 ,

λ2
i > λ1

i+e+s1−s2 ;

2. for all k > 0, among the residues of the nodes of the vertical boundary of the form
(a, λca, c) with a ∈ Z>0, c ∈ {1, 2} and λca = k, at least one element of {0, 1, . . . , e−1}
does not occur.

3.4 Properties of Uglov bipartitions

In the following, we will need several technical properties of Uglov bipartitions. Let s ∈ Z2

and λ ∈ Φe
s.

12. Assume that for j ∈ I, we have a list of exactly m normal j-nodes:

η1 <s η2 <s . . . <s ηm,

then if follows from the definition of the crystal isomorphism (see §3.3) that for all s′ ∈ Z2

and Ψe
s→σ.s′(λ) =: µ, we have a list of exactly m normal j-nodes in µ:

η′1 <s η
′
2 <s . . . <s η

′
m

For all 1 6 i 6 m, one can thus canonically associate to the normal j-node ηi of λ the
normal j-node ηi of µ.
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13. Let γ <s γ
′ be two removable j-nodes with j ∈ I. We say that γ and γ′ are (1)-

connected if we have the following property: if we remove γ′ from λ then there exists a
set of nodes (γ1, . . . , γe) in the vertical boundary of the extended Young diagram of the
resulting bipartition λ′, with for all i ∈ {1, . . . , e− 1}, we have cont(γi+1) = cont(γi) + 1
and ci+1 > ci. In this case, we say that we have period in µ and we have λ′ /∈ Φe

s by [15,
Prop. 5.1]. In particular, it is easy to see that having a period for a bipartition satisfying
(1) in Def. 11 is equivalent to violate the condition (2) in Def. 11.

Assume in addition that γ and γ′ are normal j-nodes. Let s′ be in the orbit of s and
take µ := Ψe

s→s′(λ). Then γ and γ′ correspond to two normal nodes in µ which we denote
by η and η′. It follows from the combinatorial description of the bijections that we cannot
have a j-node of the vertical boundary η′′, consecutive to η and such that η ≺s η

′′. Indeed,
in this case, one may check that we obtain a period in µ which contradicts the fact that
µ ∈ Φe

s′

Example 14. The following example illustrates how the bijection Ψe
s→σ1s acts on the

property of being (1)-connected. is
Let s = (0, 1), e = 3 and consider λ = (3.2.2.1.1, 3.3.1).(

1 . . . . . .

0 1 2

2 0

1 2

0

2

0
...
...

, 2 . . . . . .

1 2 0

0 1 2

2

1

0

2
...
...

)

We see that the node (1, 3, 1) is (1)-connected to (3, 2, 1) which is itself (1)-connected to
(5, 1, 1); and (2, 3, 2) is (1)-connected to (3, 2, 1). Note that Ψ3

(0,1)→(1,0)(3.2.2.1.1, 3.3.1) =

(3.3.2.2.1.1, 3.1). (
2 . . . . . .

1 2 0

0 1 2

2 0

1 2

0

2

0
...
...

, 2 . . . . . .

0 1 2

2

0

2
...
...

)

We see that the node (2, 3, 1) is (1)-connected to (4, 2, 1) which is itself (1)-connected
to (6, 1, 1); and (1, 3, 2) is (1)-connected to (4, 2, 1).
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3.5 Main result

The main result of this paper is:

Theorem 15 (Generalized Dipper-James-Murphy’s conjecture). Let e ∈ Z>1 t {∞} and
s ∈ Z2 then λ ∈ Φe

s(n) if and only if there exists a sequence of residues i1, . . . , in in I and
integers cλ,µ for µ ∈ P2(n) such that:

fi1 . . . fin .∅ = cλ,λλ +
∑
µ≺sλ

cλ,µµ.

with cλ,λ 6= 0.

See also section 4.4, for a reformulation of this result. We will also see several conse-
quences of this result. The aim of this rest of the paper is to prove this Theorem thanks
to the previous preparatory materials and to present two consequences.

4 Proof of the main result

We now prove Theorem 15. The main point is to associate to each Uglov bipartition, a
certain sequence of residues which will play the role of the sequence i1, . . . , in in I in the
Theorem. The important property about this sequence is that it will be an invariant on
the isomorphism class of an Uglov bipartition.

4.1 Admissible residue sequence: FLOTW case

In this subsection, we let s = (s1, s2) ∈ Se and λ ∈ Φe
s. First let us give another definition

which will be necessary to define our sequence of nodes. Let γ1 := (a, b, c) be a removable
j-node for some j ∈ I.

• If c = 1 and λ1
a = λ2

a+s2−s1 then we set γ2 = (a+ s2 − s1, λ
2
a+s2−s1 , 2).

• If c = 2 and λ2
a = λ1

a+e+s1−s2 then we set γ2 = (a+ e+ s1 − s2, λ
1
a+e+s1−s2 , 1).

then we say that γ1 and γ2 are (2)-connected. If γ and η are two removable j-nodes then
we set γ ≡ η if γ and η are (1) or (2) connected and we consider the transitive closure of
this relation.

Now let λ = (λ1, λ2) be in Φe
s. Consider the maximal removable node γ1 = (a, b, c)

with respect to <s and denote by j its residue. Note that by the definition of FLOTW
l-partition, there cannot exist a node on the vertical boundary with the same residue
greater than γ1. We now consider the sequence of removable j-nodes given by all the
removable j-nodes in the equivalence class. We write it (γ1, . . . , γr) (written in increasing
order).

Proposition 16. Under the above hypotheses, we have the following properties:
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1. for all k = 1, . . . , r the bipartition obtained by removing the j-nodes (γk, . . . , γr) from
λ is in Φe

s.

2. γ1 is greater than any addable j-node of λ and any j-node of the vertical boundary
of λ

3. if there exists a non virtual j-node of the horizontal boundary which is greater than
γ1 then γ1 is (1) connected with a node of the sequence (γ2, . . . , γr−1)

Proof. Point 1 just follows from the definition of FLOTW bipartitions. Point 2 has already
been stated (it also follows from [13, Lemma 4.2.5] and [13, Lemma 4.2.6]). Let us consider
the last point. Assume that there exists a non virtual j-node of the horizontal boundary
which is greater than γ1 and take the smallest such node (note that such node cannot be
greater than γr). This situation occurs only in the case where this node is between two
nodes γi and γj, with j < i which are (1)-connected. From the properties of FLOTW
bipartitions, we see that γj must be (1)-connected with a node γk, with k < j etc. (if it
is (1)-connected to its successive node then it must be (1)-connected with another by the
definition of FLOTW bipartitions) and then the result follows.

Example 17. We illustrate the above proof with an example : let e = 3, s = (0, 2) and
λ = (3.1.1, 3.2.2.1.1) which is in Φe

s. Write its extended Young diagram:

(
1 . . . . . .

0 1 2

2

1

2
...
...

, 2 . . . . . .

2 0 1

1 2

0 1

2

1

2
...
...

)

We here have γ1 = (5, 1, 2), γ2 = (3, 1, 1), γ3 = (3, 2, 2), γ4 = (1, 3, 2). We have a node
(1, 2, 1) of nature Bh between γ3 and γ4 and we see that γ1 is (1)-connected with γ3 which
is itself (1)-connected to γ4.

The admissible residue sequence Adm(λ) of λ is then defined recursively as follows.
Let λ′ be the FLOTW bipartitions obtained after removing the j-nodes (γ1, . . . , γr) from
λ

Adm(λ) = Adm(λ′), j, . . . , j︸ ︷︷ ︸
r times
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4.2 Admissible residue sequence: general case

We now explain how one can extend the notion of an admissible residue sequence to the
case of an arbitrary Uglov bipartition.

Lemma 18. Let s = (s1, s2) ∈ Z2 and and let λ be in Φe
s. For j ∈ I, denote by

γ1 <s γ2 <s . . . <s γN

the normal j-nodes of λ. Let σ ∈ Ŝ2. Then µ := Ψe
s→σ.s(λ) admits exactly N normal

j-nodes:
η1 <σ.s η2 <σ.s . . . <σ.s ηN .

Assume that there exists 1 6 m 6 N such that, for all N > k > m, the bipartition λ′

obtained by removing γm, . . .γN from λ is in Φe
s. Then the bipartition µ′ obtained by

removing ηm, . . . ηN from µ is in Φe
σ.s and we have µ′ = Ψe

s→σ.s(λ
′)

Proof. First note that it is sufficient to prove the lemma in the case where σ = σ1 (in the
case where s1 6 s2) and σ = τ . The lemma is trivial in the case where σ = τ because
then µ = (λ2, λ1) and the bijection leave the order on j-nodes invariant (see [13, §6.1.1]).
Let us thus consider the case σ = σ1 and s1 6 s2. Taking the notations of the theorem,
we need to show that Ψe

s→σ.s(λ
′) is the bipartition obtained by removing the N −m + 1

greatest normal j-nodes of µ. To do this, we will essentially use the main result of [15],
which has been already mentioned and which asserts that the isomorphism Ψe

s→σ.s does
not depend on e. We can thus take e =∞ to compute it. In this case, the residue of the
node becomes its content and we thus have only two possible nodes with a given residue.

Assume that the node γm is on component 1 and that its content is j ∈ Z. By [15,
Prop. 4.1.1], we have that λ ∈ Φ∞s and γm is a good j-node for e = ∞. Moreover, we
have µ = Ψ∞s→σ.s(λ) and the bipartition µ′ obtained by removing the unique j-node from
µ satisfies µ′ = Ψ∞s→σ.s(λ

′) where λ′ is the bipartition obtained by removing γm from λ.
This follows from the fact that Ψ∞s→σ.s = Ψe

s→σ.s is a crystal isomorphism. In addition, we
have µ′ = Ψe

s→σ.s(λ
′) as this map does not depend on e.

If γm is on component 2 and if its content is j ∈ Z and if there is no other removable
node of content j, we conclude in the same manner. If we have two removable nodes γm
and γm+1 with content j ∈ Z, we argue again in the same manner by removing these
two nodes (which are are successively good nodes in the case e = ∞). We conclude by
induction.

Let s = (s1, s2) ∈ Z2. Let µ be in Φe
s. Let s′ be the element in Se which is in the

orbit of s modulo the action of Ŝ2. Let λ := Ψe
s→s′(µ). Consider the admissible residue

sequence of λ, then we define the admissible residue sequence of µ to be this residue
sequence. We know that the normal j-nodes:

γ1 <s′ γ2 <s′ . . . <s′ γN

associated to the admissible residue sequence of λ are canonically associated to normal
j-nodes:

η1 <s η2 <s . . . <s ηN
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of µ. By the result above, if we remove these nodes from µ then we still have an Uglov
bipartition which is in the isomorphism class of the bipartition obtained by removing
(γ1, γ2, . . . , γN) from λ. This sequence of nodes have others interesting properties.

Proposition 19. Under the above hypotheses,

1. there is no addable j-node in µ greater than η1.

2. If there is a non virtual j-node of nature Bh greater than η1 in µ then there is no
j-node of nature Bv greater than η1.

Proof. We argue by contradiction and assume first that there is a non virtual j-node of
nature Bh and a j-node of nature Bv greater than η1. We have a sequence of bipartitions:

λ[1] := λ,λ[2], . . . ,λ[m] := µ

and a sequence of elements in Z2:

s[1] := s, s[2], . . . , s[m] := s′

where s[j] := σ.s[j − 1] with σ = σ1 or τ and such that λ[j] = Ψe
s[j−1]→s[j](λ[j − 1]) for

j = 2, . . . ,m. Keeping the notation of this section, by the table in §3.3, there is a non
virtual j-node of nature Bh greater than γ1. Thus by Proposition 16, γ1 must be (1)-
connected with one of the other nodes γj Now, by the definition of the vertical boundary,
with the node of nature Bv comes two nodes on the vertical boundary with residue j and
j− 1. By the discussion in §13, there exists k ∈ {1, . . . ,m}, such that in λ[k] ∈ Φe

s[k], we

have a j-node γ′1 associated to γ1 which is (1)-connected with another node and such that
there exist a j-node of the vertical boundary η which is consecutive to γ′1 and such that
γ′1 <s η. By the discussion in §13, this is impossible for an Uglov bipartition.

The first point follows in fact from the second: if we have such an addable node, this
means that there exists j ∈ {1, . . . ,m} such that in λ[j], the associated j-nodes

η′1 <s η2 <s . . . <s η
′
N

are such that we have a sequence of two consecutive nodes of nature, respectively Bv

and Bh greater than η′1 (see the table in §3.3). This is thus impossible by the above
discussion.

Example 20. Take s = (0, 1) and e = 3. We consider the bipartition λ = (6.1, 2.2) which

is in Φe
s. Then one can compute Ψe

s→σ.s(λ) for σ ∈ Ŝ2 using the algorithm in [12] or one
can use the program given in [14]. We get for all k ∈ Z:

Ψe
(0,1)→(1+3k,0)(λ) =

 (5.2.1, 3) if k > 0
(2.2, 6.1) if k = −1

(2.1, 6.1.1) if k < −1
Ψe

(0,1)→(0,1+3k)(λ) =

{
(3, 5.2.1) if k > 1

(6.1.1, 2.1) if k < 0

We can compute the admissible sequence of residues associated to λ and thus to all the
bipartitions in its isomorphism class. It is given by:

1, 0, 2, 2, 1, 1, 2, 0, 1, 1, 2.
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(
1 . . . . . .

0 1 2 0 1 2

2

0
...
...

, 1 . . . . . .

1 2

0 1

1
...
...

)

4.3 The proof

To prove our theorem, we will show the following result. Let e ∈ Z>1 t {∞} and s ∈ Z2.
Let λ ∈ Φe

s(n) and denote Adm(λ) = i1, . . . , in. Then there exist integers cλ,µ for µ ∈
P2(n) such that:

fin . . . fi1 .∅ = cλ,λλ +
∑
µ≺sλ

cλ,µµ.

with cλ,λ 6= 0.
Note that the admissible sequence of residue is by definition an invariant on the iso-

morphism class of an Uglov bipartition. Thus, it suffices to prove the following three
properties:

1. The theorem is true in the case where s = (s1, s2) ∈ Se,

2. If the theorem is true for all Uglov bipartitions λ ∈ Φs
e(n) with s = (s1, s2) ∈ Z2

such that s1 6 s2 then it is true for all Uglov bipartitions λ ∈ Φσ1.s
e (n).

3. If the theorem is true for all Uglov bipartitions λ ∈ Φs
e(n) with s = (s1, s2) ∈ Z2

such that s1 > s2 then it is true for all Uglov bipartitions λ ∈ Φτ.s
e (n).

Point 1 is in fact a weak version of [8, Lemma 5.7.20] (the partial order �m used in the
book satisfies λ �m µ ⇒ λ ≺s µ). So we need to prove 2 and 3. To do this, assume
that s = (s1, s2) ∈ Z2. Let n ∈ Z>0. One may assume that our result is true for all Uglov
bipartitions λ ∈ Φs

e(n). We show that the result is still true for the Uglov bipartitions
Ψe

s→σ1.s(λ) =: λσ (in which case we assume s1 6 s2) and Ψe
s→τ.s(λ) =: λτ (in which case

we assume s1 > s2).
By the argument above, it suffices to consider σ ∈ {σ1, τ}. We remove the ak greatest

removable jk-nodes from λσ. Let λ̃
σ

be the resulting Uglov bipartition. Assume that µσ

is the maximal element with respect to ≺σ.s appearing in fa1i1
. . . fakik

.∅ and that µσ 6= λσ.
The aim is to show a contradiction.

By induction, we have that µ̃σ ≺s λ̃
σ
. This implies that there exists j ∈ Z and a

component c ∈ {1, 2} such that:

• The node of λ̃
σ

with content j and component c is of nature Bv or Bh,

• The node of µ̃σ with content j and component c is of nature A and the node of µσ

with content j and component c is of nature R.
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• All the nodes in λσ and µσ greater than the one of content j and component c have
the same general nature.

21 (Case 1). The node of λ̃
σ

with content j and component c is of nature Bh.

• Assume that c = 2, the table of natures reads as follows:

Component . . . 2 1 2 1 . . .
Content . . . j − 1 j − 1 j j . . .

µσ . . . X1 X2 R X3 . . .
λσ . . . Y1 Y2 Bh Y3 . . .

As we have µ̃σ ≺σ1.s λ̃
σ

and because of our assumptions, we must have the following
table of natures:

Component . . . 2 1 2 1 . . .
Content . . . j − 1 j − 1 j j . . .

µ̃σ . . .

{
Bv

R

{
Bh

A
A

{
Bh

R
. . .

λ̃
σ

. . .

{
Bh

A

{
Bv

R
Bh

{
Bv

A
. . .

Assume that the node of λ̃
σ

with content j in component 1 is of nature A then
the one in µ̃σ is of nature Bh and we have Y3 = R and X3 = Bh, we thus have
µσ ≺σ.s λσ.

Assume that the node of λ̃
σ

with content j in component 1 is of nature Bv. Then
Y3 = Bv and X3 = R. We immediately see that µσ1 ≺σ1.s λσ1 . Let us consider the
case σ = τ . By Proposition 19, we have that the node of nature Bh in component 2
of λ̃

τ
is virtual. Thus the node in component 1 and content j − e of λ̃ is of nature

Bh and virtual. This implies that the node in component 1 and content j − e of λ
is of nature Bh and virtual.

Note that we have s2 > s1, so one may consider the map Ψe
σ1.s→s which has been

explicitly described combinatorially (because then σ1.s =: (s2, s1)). The algorithm
for the computation of this bijection shows the following. If a pair of consecutive
nodes in components 2 and 1 are transformed into a pair of nodes in components
2 and 1 with nature X ∈ {A,R,Bh, Bv} and Bh (with Bh virtual), this implies
that the two nodes are of nature Bh (with Bh virtual). We deduce that the node
in component 1 and content j − e of λ is also of nature Bh and virtual. But then
Y3 6= Bv and we get a contradiction.

• Assume that c = 1, the table of natures reads as follows:

Component . . . 2 1 2 1 . . .
Content . . . j − 1 j − 1 j j . . .

µσ . . . X1 X2 X3 R . . .
λσ . . . Y1 Y2 Y3 Bh . . .
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If X3 ∈ {Bv, R} then we immediately see that that λσ1 ≺σ1.s µσ. If X3 ∈ {A,Bh}
then if Y3 ∈ {A,Bh}, we again conclude in the same manner. We have to consider
the case where Y3 ∈ {Bv, R}, we again conclude that λσ1 ≺σ1.s µσ1 (because of the
table giving the modification of the nature of nodes by isomorphism, the nature of
the nodes of content j in component 1 must be R for µσ1 and Bh for λσ1). Thus we
have λσ1 <σ1.s µ

σ1 . The result is clear for µτ and λτ .

22 (Case 2). The node of λ̃
σ

with content j and component c is of nature Bv.

• Assume that c = 2, the node of content j in component 2 in µ is R thus it implies
that the node of content j − 1 in component 2 in µ is Bh or A. As the node of
content j in component 2 in λ is Bv thus it implies that the node of content j − 1
in component 2 in λ is Bv or R.

Component . . . 2 1 2 1 . . .
Content . . . j − 1 j − 1 j j . . .

µσ . . .

{
Bh

A
X1 R X2 . . .

λσ . . .

{
Bv

R
Y1 Bv Y2 . . .

But as X2 and Y2 have the same general nature, we must have Y1 ∈ {Bh, A} and
X1 ∈ {Bv, R}. This implies that Y2 ∈ {R,Bh} and X2 ∈ {A,Bv}. But Y2 = R is
impossible and Y2 = Bh implies X2 = A which contradicts the maximality of µσ.

• Assume that c = 1, again, we see that we have the following configuration:

Component . . . 2 1 2 1 . . .
Content . . . j − 1 j − 1 j j . . .

µσ . . . X1

{
Bh

A
X2 R . . .

λσ . . . Y1

{
Bv

R
Y2 Bv . . .

We have that X2 ∈ {R,Bv} and Y2 ∈ {A,Bh}. One can obtain the desired contra-
diction using the same reasoning as in case 1 with c = 2.

Remark 23. Of course, one can ask if a similar result and proof can be obtained in the
case of multipartitions. Most of the results presented in the last sections are still true but
one cannot argue as in this section to conclude.

4.4 Reformulation

One can rephrase the main result as follows in terms of Young diagrams (see [8, §3.5.10]).
To do this, let us introduce some more notations. Let λ be a bipartition of n. A bijection
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s : Y(λ) → {1, . . . , n} is called a λ-tableau and we also say that λ is the shape of s.
A λ-tableau s is called row-standard if the sequence s(a, 1, c), s(a, 2, c), . . . is strictly
increasing for each a and c ∈ {1, 2}. The residue sequence of a λ-tableau s is defined by
ηe(s) = (i1, . . . , in) where ij is the residue of the node which is filled by the number j in
s. The theorem now becomes:

Corollary 24. Let e ∈ Z>1 t {∞} and s ∈ Z2 then λ is in Φe
s if and only if for all

bipartition µ admitting a row standard µ-tableau s such that ηe(s) = Adm(λ), we have
µ ≺s λ.

5 Consequences

We quickly show how we obtain an application on the computation of canonical bases
(this application is exactly the same as the one presented in [13]). Let s := (s1, s2) ∈ Z2

and λ ∈ Φe
s, consider the associated admissible residue sequence:

Adm(λ) = j1, . . . , j1︸ ︷︷ ︸
a1

, . . . , jk, . . . , jk︸ ︷︷ ︸
ak

,

where jm ∈ I and am ∈ Z>0 for all m ∈ {1, . . . , k} and where we assume that jm 6= jm+1

for all s ∈ {1, . . . , k − 1}. We have now to work on the quantum group Uv of affine type
A (which can be seen as a deformation of ge). It acts on the Fock space (where v is an
indeterminate). With the same proof as [8, Thm 6.4.2], we obtain that

f
(a1)
j1

. . . f
(ak)
jk

∅ = λ +
∑
µ≺sλ

cλ,µ(v)µ,

for Laurent polynomials cλ,µ(v) and where the f
(a)
i ’s for a ∈ Z>0 stand for the divided

powers of the Chevalley operators (see [8]). The specialization at v = 1 of the above
expression corresponds to the elements of the Theorem. As a consequence, as in [13], we
obtain a LLT algorithm-like for the computation of the canonical basis elements.

One can also deduce from that the existence of basic sets for Hecke algebras of type Bn.
We refer to [8] for motivations and results around this theory. Let u be an indeterminate,
let V1 and V2 be two indeterminates, let R be a commutative ring with unit such that
Z ⊂ R ⊂ C and let A := R[u±1, V1, V2]. Let K be the field of fractions of A let Hn be the
Hecke algebra of type Bn over A with generators {Ti | i = 0, . . . , n− 1} and relations:

• (Ti − u)(Ti + 1) = 0 for i = 1, . . . , n− 1,

• (T0 − V1)(T0 − V2) = 0,

• the type B braid relations: TiTj = TjTi with |i − j| > 1, TiTi+1Ti = Ti+1TiTi+1 for
1 6 i 6 n− 2, and T0T1T0T1 = T1T0T1T0.
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Let us denote HK,n = K ⊗A Hn then the simple HK,n-modules are parametrized by the
set of bipartitions. By Tits deformation theorem (see [8, §1.2]), we have:

Irr(HK,n) = {Eλ | λ ∈ P2(n)}

Let θ : A→ L is a specialisation for a field L and assume that:

θ(u) 6= 1, θ(V1) = θ(u)s1 , θ(V2) = θ(u)s2

Let e > 1 be the order of θ(u) ∈ L×. The associated specalized HL,n = L ⊗A Hn is non
semisimple in general and the representation theory is controled by the decomposition
matrix.

For each λ ∈ Φe
s, one can define the representation of HK,n:

Pλ = Eλ ⊕
⊕
µ≺sλ

cλ,µE
µ.

The set of representations
{Pλ | λ ∈ Φe

s}

satisfies the hypotheses of [8, Prop. 3.4.5]. This implies that Hk,n admits a basic set
which is given by:

{Eλ | λ ∈ Φe
s}

with respect to the partial order ≺s. This means that the associated decomposition matrix
is lower unitriangular and thus that Φe

s(n) is a natural parametrization set for the simple
HL,n-modules. Note that this result is independent of the characteristic. We refer to [4]
for an analogous result obtained by a completely different process.
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