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Abstract

We construct sequencings for many groups that are a semi-direct product of an
odd-order abelian group and a cyclic group of odd prime order. It follows from
these constructions that there is a group-based complete Latin square of order n if
and only if n ∈ {1, 2, 4} or there is a non-abelian group of order n.

Mathematics Subject Classifications: 05B15

1 Introduction

A Latin square of order n is an n×n array of symbols from a set of size n with each symbol
appearing once in each row and once in each column. A Latin square is row-complete or
Roman if each pair of distinct symbols appears in adjacent positions in a row once in each
order. It is complete if both it and its transpose are row-complete.

Interest in complete and row-complete Latin squares was originally prompted by their
usefulness in the design of experiments where neighboring treatments, whether in space
or time, might interact. See, for example, [4].

The Cayley table of a finite group of order n is a Latin square. The principal question
for this work is to determine at what orders there is a group for which it is possible to
permute the rows and columns of its Cayley table to give a complete Latin square. To this
end, consider the following definition. Let G be a group of order n and a = (a1, a2, . . . , an)
be an arrangement of the elements of G. Define b = (b1, b2, . . . , bn−1) by bi = a−1i ai+1 for
each i. If b includes each non-identity element of G exactly once then b is a sequencing
of G and a is a directed terrace for G. Call a group that admits a sequencing sequenceable.

∗Supported by a Marboro College Faculty Professional Development Grant.
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Theorem 1. [11] The rows and columns of the Cayley table of a group G of order n may
be permuted to give a complete Latin square if and only if G is sequenceable.

Proof idea. Let (g1, . . . , gn) and (h1, . . . , hn) be arrangements of the elements of G and let
the (i, j)-entry of a Cayley table of G be given by gihj. Then it is a complete Latin square
if and only if (g−11 , g−12 , . . . , g−1n ) and (h1, h2, . . . , hn) are both directed terraces for G.

Let Zn = {0, 1, . . . , n− 1} be the additively written cyclic group of order n. When n
is even,

(0, n− 1, 1, n− 2, 2, n− 3, . . . , n/2)

is a directed terrace for Zn. The first use of a “zig-zag” construction of this type is
Walecki’s in 1892 [19]; see [1] for more of its history. The first use of it to control neighbor
balance in Latin squares seems to be due to Williams in 1949 [29].

The systematic consideration of sequenceability for arbitrary groups was initiated by
Gordon [11] where, as well as proving Theorem 1, it is shown that an abelian group is
sequenceable if and only if it has exactly one involution. Hence if n is even there is a
group-based complete Latin square of order n. The result also implies that for odd orders
we must turn our attention to non-abelian groups. Several families of groups of odd order
are known to be sequenceable, including: a group of order pm for each odd prime p and
each m > 3 [26]; many groups of order pq for distinct primes p and q [16, 26]; and a
group of each order 3m where m is powerful (i.e. for each prime p dividing m, p2 also
divides m) [21].

We construct sequencings for some semi-direct products ZqnA where A is an abelian
group of odd order and q is an odd prime, including all possible such groups when A is
cyclic. These constructions allow us to determine the full spectrum of orders at which a
group-based complete Latin square exists:

Theorem 2. There is a group-based complete Latin square of order n if and only if n = 1,
n is even, or there exists a non-abelian group of order n. That is, if and only if n = 1,
n is even, or n has either a prime divisor p with p3|n or a prime-power divisor pk such
that pk ≡ 1 (mod q) for some prime divisor q of n.

This result also gives the spectrum for group-based row-complete Latin squares. How-
ever, whereas all known complete Latin squares are group-based, there are alternative
methods known for constructing row-complete squares. Row-complete Latin squares are
known to exist at orders 1 and 2 and at every composite order [13, 29]. They are known
not to exist at order 3, 5 or 7. Recently, Darcy Best and Ian Wanless have shown that
there is no row-complete square of order 11 [25]. The question remains open at other odd
primes.

On the question of which groups are sequenceable, the abelian case is settled as men-
tioned above, and the three non-abelian groups of orders 6 and 8 are not sequenceable.
Keedwell’s Conjecture is that all other non-abelian groups are sequenceable. In addition
to those already mentioned, groups known to satisfy Keedwell’s Conjecture include dihe-
dral groups [15, 18], soluble groups with a single involution [3], and groups of order at
most 255 [22]. See [20] for a survey of this and related problems.
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In the next section we develop a framework for constructing sequencings of groups of
the form G = ZqnA for prime q and odd-order abelian A. In Section 3 we show that the
framework can be successfully completed for a variety of choices of A, whence Theorem 2.

2 The construction

Let A be an abelian group of order m with an automorphism α of prime order q. Let

G = Zq nα A = {(u, v) : u ∈ Zq, v ∈ A}, (u, v)(x, y) = (u+ x, αx(v) + y).

This is a group of order n = mq. Let λ be a primitive root of q such that λ/(λ − 1) is
also a primitive root; Wang [26] shows that the existence of such a λ follows from results
of [6].

Here is the template we use for a proposed directed terrace of G:

(0, g1), (0, g2), . . . , (0, gt),
(1, h11), (λ

q−2, h21), (λ
q−3, h31), . . . , (λ, hq−1,1),

(1, h12), (λ
q−2, h22), (λ

q−3, h32), . . . , (λ, hq−1,2),
...

(1, h1,m−1), (λ
q−2, h2,m−1), (λ

q−3, h3,m−1), . . . , (λ, hq−1,m−1),
(λ, 0), (λ2/(λ− 1), 0), (λ3/(λ− 1)2, 0), . . . , (λq−2/(λ− 1)q−3, 0), (λ− 1, 0),
(0, gt+1), (0, gt+2), . . . , (0, gm).

This generalizes the structures of directed terraces in [21] and [26] (each of which grew
out of that of [16]).

The corresponding sequencing (terms immediately after a semi-colon correspond to
quotients formed from terms on different rows):

(0, g2 − g1), (0, g3 − g2), . . . , (0, gt − gt−1); (1, h11 − α(at)),

(λq−2 − 1, h21 − αλ
q−2−1(h11)), (λ

q−3 − λq−2, h31 − αλ
q−3−λq−2

(h21)), . . . ,

(λ− λ2, hq−1,1 − αλ−λ
2
(hq−2,1)); (1− λ, h12 − α1−λ(hq−1,1)),

(λq−2 − 1, h22 − αλ
q−2−1(h12)), (λ

q−3 − λq−2, h32 − αλ
q−3−λq−2

(h22)), . . . ,

(λ− λ2, hq−1,2 − αλ−λ
2
(hq−2,2)); (1− λ, h13 − α1−λ(hq−1,2)),

...

(λq−2 − 1, h2,m−1 − αλ
q−2−1(h1,m−1)), (λ

q−3 − λq−2, h3,m−1 − αλ
q−3−λq−2

(h2,m−1)), . . . ,

(λ− λ2, hq−1,m−1 − αλ−λ
2
(hq−2,m−1)); (0,−hq−1,m−1),

(λ2/(λ− 1)− λ, 0), (λ3/(λ− 1)2 − λ2/(λ− 1), 0), . . . ,
(λ− 1− λq−2/(λ− 1)q−3, 0); (−(λ− 1), gt+1),

(0, gt+2 − gt+1), (0, gt+3 − gt+2), . . . , (0, gm − gm−1).

What requirements must we satisfy to ensure these are a directed terrace and sequenc-
ing?

Observe that

λ2/(λ− 1)− λ, λ3/(λ− 1)2 − λ2/(λ− 1), . . . , λ− 1− λq−2/(λ− 1)q−3
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lists all of the elements Zq \{0, 1}. We therefore require that h11−α(gt) = 0 so that every
element of the form (x, 0), for x ∈ Zq \ {0}, appears in the sequencing.

We need that g1, g2, . . . , gm includes every element of A exactly once and that each of
the following sequences list all elements of A \ {0}:

h11, h12, . . . , h1,m−1
h21, h22, . . . , h2,m−1

...
hq−1,1, hq−1,2, . . . , hq−1,m−1
g2 − g1, g3 − g2, . . . , gt − gt−1,−hq−1,m−1, gt+2 − gt+1, . . . , gm − gm−1
h21 − αλ

q−2−1(h11), h22 − αλ
q−2−1(h12), . . . , h2,m−1 − αλ

q−2−1(h1,m−1)

h31 − αλ
q−3−λq−2

(h21), h32 − αλ
q−3−λq−2

(h22), . . . , h3,m−1 − αλ
q−3−λq−2

(h2,m−1)
...

hq−1,1 − αλ−λ
2
(hq−2,1), hq−1,2 − αλ−λ

2
(hq−2,2), . . . , hq−1,m−1 − αλ−λ

2
(hq−2,m−1)

h12 − α1−λ(hq−1,1), h13 − α1−λ(hq−1,2), . . . , h1,m−1 − α1−λ(hq−1,m−2), gt+1

In order to meet these requirements, we introduce two auxilliary types of sequence.
Let a = (a1, a2, . . . , am−1) be an arrangement of the non-identity elements of A and
define b = (b1, b2, . . . , bm−1) by bi = ai+1−ai, where the indices are calculated modulom−1
(so bm−1 = a1 − am−1). If b also contains all of the non-identity elements of A, then b
is a rotational sequencing or R-sequencing of A and a is the associated directed rotational
terrace or directed R-terrace.

Similarly, let c = (c1, c2, . . . , cm−1) be an arrangement of the non-identity elements
of A and define d = (d1, d2, . . . , dm−1) by di = ci + ci+1, where, again, the indices are
calculated modulo m− 1 (so dm−1 = cm−1 + c1). If d also contains all of the non-identity
elements of A, then a is a #-harmonious sequence and A is #-harmonious.

Both of these objects are of interest in their own right. For example, the existence
of either a rotational sequencing or a #-harmonious sequence for a group implies that
that group has a complete mapping and hence its Cayley table has an othogonal mate.
Rotational sequencings were introduced by Ringel [24] and studied extensively in [9].
They have various different but equivalent formulations in the literature. The notion of
#-harmonious sequences was introduced and studied in [5] and studied further and named
in [27]. In each case, the existence question is completely settled in abelian groups (each
of them may also be studied in non-abelian groups, which is not relevant here):

Theorem 3. [2, 5, 9] An abelian group has a rotational sequencing if and only if it does
not have exactly one involution. An abelian group has a #-harmonious sequence if and
only if it is not Z3 and does not have exactly one involution.

We shall see some aspects of the known construction methods for rotational sequenc-
ings and #-harmonious sequences in the next section. Here we see how to combine them
to make the task of completing the template successfully more tractable:
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Theorem 4. Let A be an abelian group of odd order m with an automorphism α of odd
prime order q and let λ be a primitive root of q such that λ/(λ−1) is also a primitive root
of q. Let a = (a1, a2, . . . , am−1) be a directed rotational terrace and c = (c1, c2, . . . , cm−1) be
a #-harmonious sequence for A. If a1 = c1 +cm−1−αq−1(c1) and am−1 = a1−αλ−1(cm−1)
then G = Zq nα A is sequenceable.

Proof. First, we use a and c to assign values to the gi and hij in the template. We shall
see that the difference/sum properties they have, combined with the extra conditions,
allow us to satisfy all of the constraints.

Let g1 = αq−1(c1) and let gi = ai−1 + αq−1(c1) for i > 1. As a is a directed rotational
terrace the sequence g1, g2, . . . gm includes every element of A once.

For odd i set hij = cj; for even i set hij = −αλ−1(cj). Set t = 1. This gives

h11 − α(gt) = c1 − α(αq−1(c1)) = 0

as required. We now need to consider the sequences that are required to contain all of
the non-zero elements of A. With the assignments of the gi, hij and t, these become:

c1, c2, . . . , cm−1
αλ−1(c1), α

λ−1(c2), . . . , α
λ−1(cm−1)

αλ−1(cm−1), a2 − a1, a3 − a2, . . . , am − am−1
−αλ−1(c1)− αλ

q−2−1(c1),−αλ−1(c2)− αλ
q−2−1(c2), . . . ,−αλ−1(cm−1)− αλ

q−2−1(cm−1)

c1 + αλ
q−3−λq−2

(αλ−1(c1)), c2 + αλ
q−3−λq−2

(αλ−1(c2)), . . . , cm−1 + αλ
q−3−λq−2

(αλ−1(cm−1))
...

−αλ−1(c1)− αλ−λ
2
(c1),−αλ−1(c2)− αλ−λ

2
(c2), . . . ,−αλ−1(cm−1)− αλ−λ

2
(cm−1)

c2 + c1, c3 + c2, . . . , cm−1 + cm−2, a1 + αq−1(c1).

The first two each contain the non-zero elements of A as c is a #-harmonious se-
quence. The third does because it comprises all of the rotational sequencing elements
apart from a1 − am−1 and in its place we have αλ−1(cm−1) = a1 − am−1.

That each of the fourth through to the penultimate sequences have the required el-
ements follows from the properties of the automorphism α and that c1, c2, . . . , cm−1 are
distinct and non-zero.

Finally, the last one is satisfied because we have all the sums of the #-harmonious
sequence c, except cm−1 + c1, and in its place we have a1 + αq−1(c1) = c1 + cm−1.

Theorem 4 is not the only way to successfully complete the template. For example,
in [26] there is an alternative scheme for assigning the hij elements when A is cyclic of
prime order and in [21] a different way of assigning the gi elements is used when q = 3.
These alternatives (and others) have potential for proving the sequenceability of more
groups than we consider in the next section.

3 The directed terraces

The target for this section is the proof of Theorem 2. First we consider some structural
properties of groups. The following is well-known; see, for example, [23].
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Lemma 5. Let n = pa11 · · · patt , where the pi are distinct odd primes. There is a nonabelian
group of order n if and only if one of the following conditions applies:

1. ai > 3 for some i,

2. n is cube-free and pi ≡ 1 (mod pj) for some i, j,

3. n is cube-free and p2i ≡ 1 (mod pj) for some i, j.

We are able to meet all of these orders using groups of the form Zq n A for prime q
and abelian A. When A ∼= Zm there is the necessary automorphism of order q when
either q2|m or p|m for some prime p ≡ 1 (mod q). These groups cover the first two cases
of Lemma 5. For the third case we use groups of the form A ∼= Z2

p × B where p2 ≡ 1
(mod q) and p - |B|. As it is little extra work, when 3 - |B| we consider groups of the
form A ∼= Zkp ×B for any k > 2.

We shall need an explicit construction for rotational sequencings for cyclic groups.
Define a graceful permuation of length k to be an arrangement (g1, g2, . . . , gk) of the
integers {1, 2, . . . , k} such that the absolute differences h = (h1, h2, . . . , hk−1) given by
hi = |gi+1 − gi| are distinct. This is equivalent to a graceful labeling of a path; graceful
labelings of graphs are well-studied, see [10] for details.

For example, (1, k, 2, k−1, . . . , bk/2c+ 1) is a graceful permutation of length k known
as the Walecki Construction, see [1].

Here is the connection between graceful permutations and rotational sequencings:

Lemma 6. [9] If (g1, g2, . . . , gk) is a graceful permutation then

(g1, g2, . . . , gk, gk + k, gk−1 + k, . . . , g1 + k)

is a directed rotational terrace for Z2k+1.

We also need the following fact:

Lemma 7. [8, 12] There is a graceful permutation (g1, g2, . . . , gk) with g1 = x for each 1 6
x 6 k.

To extend rotational sequencings to non-cyclic groups we need a strengthening of the
definition. Let a = (a1, a2, . . . , am−1) be a directed R-terrace. If ai = ai−1 + ai+1 for
some i then a is a directed R∗-terrace and its associated rotational sequencing is an R∗-
sequencing. If i = 1 then both the directed R∗-terrace and the R∗-sequencing are standard.
Any directed R∗-terrace may be made standard by re-indexing.

Theorem 8. [9] Suppose 3 - 2k + 1 and A is an abelian group of odd order m. If A is
R∗-sequenceable then so is A× Z2k+1.

Proof Construction. Let (a1, a2, . . . , am−1) be a standard directed R∗-terrace for A.
Exactly as in [9] we list the sequences of first and second coordinates of a standard

directed R∗-terrace for A× Z2k+1 separately.
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The first coordinates are given by a1, a2, . . . am−1, followed by k copies of the length-m
sequence

a1, a1, a2, a3, . . . am−1

and then k copies of the length-m sequence

0, 0, a2, a3, . . . am−1.

The second coordinates are given by m− 2 0s, followed by

2k, 1, 2k, 1, . . . , 2k, 1, 2
2k − 1, 2, 2k − 1, 2, . . . , 2k − 1, 2, 4
...
1, 2k, 1, 2k, . . . , 1, 2k, 2k − 1

(where each line has m elements starting with (m− 1)/2 pairs of the form x,−x and the
last element of each line is obtained by adding 2 to the last element of the previous line)
and then one final 0.

The requirement that m is odd in Theorem 8 is unnecessary, but we do not require
the construction for the even case. We particularly need:

Corollary 9. [9] Let A and B be abelian groups of odd order. Suppose that A has a
standard directed R∗-terrace (a1, . . . , am−1) and 3 - |B|. Then for any i with 1 6 i 6 m−3,
the group A×B has a standard directed R∗-terrace.

Proof. We may write B as the direct product of cyclic groups of odd order. The result
follows from repeated applications of the construction in the proof of Theorem 8.

Call the process of Theorem 8 and Corollary 9 the FGM Construction.
To construct #-harmonious sequences we need the closely-related notion of a harmo-

nious sequence. Let c = (c1, c2, . . . , cm) be an arrangement of the elements of an abelian
group A and define d = (d1, d2, . . . , dm) by di = ci + ci+1 where the indices are calculated
modulo m (so dm = cm + c1). If d is also an arrangement of the elements of A then c is
a harmonious sequence and A is harmonious.

Lemma 10. [5] Every odd-order abelian group except Z3 is #-harmonious.

Proof Construction. Let A be an abelian group of odd order other than Z3 and write

A = B × Zr1 × Zr2 × · · · × Zrk

where B is either Z2
3 or cyclic of order greater than 3. The construction is by induction.

We in fact show that these groups are harmoniously matched, meaning that they have
a harmonious sequence and a #-harmonious sequence that start with the same element
as each other and end with the same element as each other.
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To see that Z2
3 is harmoniously matched, consider the #-harmonious sequence

(1, 1), (2, 0), (2, 1), (0, 2), (2, 2), (1, 0), (1, 2), (0, 1)

and the harmonious sequence

(1, 1), (2, 1), (0, 2), (1, 2), (2, 2), (0, 0), (1, 0), (2, 0), (0, 1).

For r = 4`+ 1 the #-harmonious sequence

2`, 2`− 2, . . . , 2, 4`, 4`− 2, . . . , 2`+ 2, 2`+ 1, 2`+ 3, . . . , 4`− 1, 1, 3, . . . , 2`− 1

is matched with the harmonious sequence

2`, 2`+ 1, . . . , 4`, 0, 1, 2, . . . , 2`− 1.

For r = 4`+ 3 with ` > 0 the #-harmonious sequence

2`+ 1, 2`− 1, . . . , 1, 4`+ 1, 4`− 1, . . . , 2`+ 3, 2`+ 2, 2`+ 4, . . . , 4`+ 2, 2, 3, . . . , 2`

is matched with the harmonious sequence

2`+ 1, 2`+ 2, . . . , 4`2, 0, 1, 2, . . . , 2`.

Note also that (0, 1, 2) is a harmonious sequence for Z3.
Let C and D be abelian groups of odd order with (c1, c2, . . . , cm−1) and (c′1, c

′
2, . . . , c

′
m) a

matched #-harmonious and harmonious sequence for C and (d1, d2, . . . , dn) a harmonious
sequence for D, indexed so that d1 = 0. Then

(c1, d1), (c2, d1), . . . , (cm−1, d1); (c′1, d2), (c
′
2, d2), . . . , (c

′
m, d2); . . . ; (c′1, dn), . . . , (c′m, dn)

is a #-harmonious sequence for C ×D and

(c′1, d1), (c
′
2, d1), . . . , (c

′
m, d1); (c′1, d2), (c

′
2, d2), . . . , (c

′
m, d2); . . . ; (c′1, dn), . . . , (c′m, dn)

is a harmonious sequence. These may be re-indexed to be matched (for example, by
taking endpoints (c′1, d2) and (c′2, d2)).

Call a #-harmonious sequence constructed via the proof of Lemma 10 a BGJH #-
harmonious sequence.

We can now move to the main results. First, we consider the case when A is cyclic.

Theorem 11. Let q be an odd prime. Let A = Zm, where m is odd and either q2|m
or p|m for some prime p ≡ 1 (mod q) and let α be an automorphism of Zm of order q.
Then G = Zq nα Zm is sequenceable.
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Proof. We aim to satisfy the conditions of Theorem 4. The arithmetical conditions on m
ensure that we are considering exactly those m for which there is a value r such that
multiplication by r is an automorphism of order q of Zm. Let α be multiplication by r
and let λ be a primitive root of q such that λ/(λ− 1) is also a primitive root.

Let m = 2k+ 1. The BGHJ #-harmonious sequence for Zm has 1 and −2 as adjacent
elements. As gcd(k+ 1,m) = 1, multiplication by r1−λ(k+ 1) is an automorphism of Zm.
Apply this automorphism to the BGHJ #-harmonious sequence to get one with r1−λ(k+1)
and −2r1−λ(k+1) adjacent. Index this #-harmonious sequence so that c1 = −2r1−λ(k+1)
and cm−1 = r1−λ(k + 1).

Suppose that c1 + r1−λ(k + 1) − rq−1c1 6= 0. Let g1 be c1 + r1−λ(k + 1) − rq−1c1
or c1 + r1−λ(k + 1) − rq−1c1 − k, whichever, when considered as an integer, is in the
range 1 6 g1 6 k. Let g be a graceful permutation with first element g1 (which exists
by Lemma 7), and let a = (a1, a2, . . . , am−1) be either the directed rotational terrace
constructed from g via Lemma 6 or its reverse, so that a1 = c1 + r1−λ(k + 1)− rq−1c1.

Now, a1 = c1 + cm−1 − αq−1(c1) and, as a1 − am−1 = k + 1, we have am−1 = a1 −
αλ−1(cm−1), and the conditions of Theorem 4 are satisfied.

If c1+r1−λ(k+1)−rq−1c1 = 0, then reversing the initial roles of 1 and −2 and running
the same process gives alternative values for the variables such that c1 + r1−λ(k + 1) −
rq−1c1 6= 0 and the argument goes through as before.

Next we move to non-cyclic A. We shall need certain facts about the automorphism
groups of abelian groups. A comprehensive description of their structure can be found
in [14].

Given two elements g and h of an abelian group, say that they are independent if
〈g〉 ∩ 〈h〉 = {0}. Let (g1, h1) and (g2, h2) be pairs of independent elements in an abelian
group A. If all four elements have the same prime order, then there is an automorphism
of A that maps g1 to g2 and h1 to h2.

We shall be considering groups of the form A = Zkp × B where p is prime, k > 2 and
p - |B|. If pk ≡ 1 (mod q), for some prime q, then A has an automorphism of order q with
the restriction of‘α to Zkp, denoted α �Zkp, also of order q. Further, we limit our attention
to α of this form such that α �Zkp (which is a subgroup of GL(k, p)) is not diagonalisable,
of which there is always at least one.

Suppose α and β are two automorphisms of A. If α and β are conjugate then ZqnαA ∼=
Zqnβ A. We may therefore assume that α �Zkp, which we think of as a matrix in GL(k, p)
multiplying elements of A (considered as column vectors) from the left, is in rational
canonical form. That is, it is a block-diagonal matrix where each block has 1s on the
subdiagonal and 0s everywhere else except for the last column, see [7, Chapter 12]. In
fact, as α and β are conjugate if and only if αc and βc are conjugate for positive c, we
shall usually assume that a particular power of α � Zkp is in rational canonical form.

The first non-cyclic case we consider is when 3 - |A|:
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Theorem 12. Let p and q be odd primes with p 6= 3 and pk ≡ 1 (mod q). Let B be
an abelian group of odd order with 3 - |B|. Let α be an automorphism of Zkp × B of
order q such that α � Zkp is of order q and not diagonalisable. Then G = Zq nα (Zkp × B)
is sequenceable.

Proof. The non-diagonalisable condition implies that k > 2. As noted before the state-
ment of the theorem, we may assume that some non-trivial power of α � Zkp is in rational
canonical form with the additional condition that the (1, 1)-entry is 0. Let λ be a primi-
tive root of q such that λ/(λ− 1) is also a primitive root and assume that αλ−1 � Zkp is in
this form.

To apply Theorem 4, we require a directed R-terrace (a1, . . . am−1) and a #-harmonious
sequence (c1, . . . , cm−1) such that a1 = c1 + cm−1− αq−1(c1) and am−1 = a1− αλ−1(cm−1).
It is sufficient to find a directed R-terrace with a1 and am−1 a pair of independent elements
of prime order and a #-harmonious sequence with c1 + cm−1 − αq−1(c1) and c1 + cm−1 −
αq−1(c1)− αλ−1(cm−1) also a pair of independent elements of prime order.

The group Zkp has a directed R∗-terrace [9]. Any arrangement of the elements of Zkp\{0}
unavoidably has many pairs of adjacent independent elements and hence any directed R∗-
terrace does too. Using this in the FGM construction gives a directed R∗-terrace with
a pair of independent elements of order p which, by re-indexing, we may set to be a1
and am−1.

As noted in the proof of Theorem 11, the BGHJ #-harmonious sequence for Zp has −2
and 1 as adjacent elements. Further, using the BGHJ construction, we find that Zkp × B
has a #-harmonious sequence with (−2, 0, . . . , 0) and (1, 0, . . . , 0) adjacent. Our target is
to show that the condition

αλ−1(cm−1) 6∈ 〈c1 + cm−1 − αq−1(c1)〉

holds, which implies the result we require. We may re-index the #-harmonious sequence
so that

{c1, cm−1} = {(−2, 0, . . . , 0), (1, 0, . . . , 0)}
and there are two ways to do so.

We have that αλ−1((1, 0, . . . , 0)) = (0, 1, 0, . . . , 0). For the condition to fail in the
case cm−1 = (1, 0, . . . , 0) we must have αq−1((−2, 0, . . . , 0)) = (1, x, 0, . . . , 0) for some
x ∈ Zp. For the condition to fail in the case cm−1 = (−2, 0, . . . , 0) we must have
αq−1((1, 0, . . . , 0)) = (1, y, 0 . . . , 0) for some y ∈ Zp. But as αq−1((−2, 0, . . . , 0)) =
−2αq−1((1, 0, . . . , 0)), at least one of the two potential allocations of c1 and cm−1 does
not violate the condition.

Lastly we cover the cases where 3 | |A| but 27 - |A|.

Theorem 13. Let p and q be odd primes with p 6= 3 and p2 ≡ 1 (mod q). Let B be an
abelian group of odd order with 3 - |B|. If α is an automorphism of Z2

p×Z3×B of order q
such that α � Z2

p is of order q and not diagonalisable, then G1 = Zq nα (Z2
p × Z3 × B) is

sequenceable. If α is an automorphism of Z2
p × Z9 × B of order q such that α � Z2

p is of
order q and not diagonalisable, then G2 = Zq nα (Z2

p × Z9 ×B) is sequenceable.
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Proof. The structure of the proof is much the same as for Theorem 12 in that we are look-
ing for a directed R-terrace (a1, . . . , am−1) and a #-harmonious sequence (c1, . . . , cm−1)
for Z2

p×Z3×B (or Z2
p×Z9×B) such that a1 and am−1 are a pair of independent elements

of prime order p and c1 + cm−1− αq−1(c1) and c1 + cm−1− αq−1(c1)− αλ−1(cm−1) are also
a pair of independent elements of order p.

The argument for the existence of the latter of these is identical to that of Theorem 12.
The difficulty arises in the former case as the FGM construction for R∗-terraces does not
directly apply. In order to use the FGM construction we need to move the Z3 or Z9 factor
into the base case and find directed R∗-terraces for Z2

p × Z3 and Z2
p × Z9 that have the

independent pairs of adjacent elements we need.
First consider Z2

p × Z3 ≡ Z3p × Zp. The directed R-terrace (a1, . . . a3p−1) for Z3p

constructed from the Walecki Construction using Lemma 6 is in fact a directed R∗-terrace
with a2p the sum of its neighbors [9]. It also has a4 = 3(p − 1)/2 and a5 = 3, which are
elements of order p. Now, applying the construction of Theorem 8 we find a directed
R∗-terrace of Z3p × Zp with (3(p − 1)/2, 1) and (3,−1) adjacent, which are independent
elements of order p. From here we can re-index and follow the method of Theorem 12 to
get the sequencing for G1.

Now consider Z2
p × Z9 ≡ Z9p × Zp. For this case we need part of the more complex

constructions of [2]. However, as the aspects of that construction that we require are
clearly stated within the paper, we do not recapitulate the full construction. They use a
device that they call “the gadget” [2, Definition 3.5] which when used on a directed R∗-
terrace of a group G and a group H that has orthomorphisms with an additional property,
it produces a directed R∗-terrace for G × H. Further, if ai = ai−1 + ai+1 gives the R∗

property in the directed R∗-terrace of G then we have (ai, 0) = (ai−1, 0) + (ai+1, 0) doing
the same for the resulting directed R∗-terrace of G×H [2, Lemma 3.7]. It is allowable to
take G = Zp and H = Z9 in this construction [2, Corollary 3.8], which gives a standard
directed R∗-terrace (a1, . . . , a9p−1) for Z9p with a1, a2 and a9p−1 all of order p.

We may now use the FGM Construction to give a directed R∗-terrace for Z9p × Zp.
This gives us adjacent elements of the form (a1, 1) and (a1,−1), which are independent
elements of order p. Re-index and follow the method of Theorem 12 to get a sequencing
for G2.

Taken together with Lemma 5, Theorems 11, 12 and 13 prove Theorem 2. While they
also make some progress towards Keedwell’s Conjecture, a full proof does not appear to be
on the horizon. Progress on the spectrum of not-necessarily-group-based complete Latin
squares will require a totally different approach.
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[12] P. Gvözdjak, On the Oberwolfach problem for cycles with multiple lengths (PhD the-
sis), Simon Fraser University, (2004).

[13] J. Higham, Row-complete Latin squares of every composite order exist, J. Combin.
Des. 6 (1998) 63–77.

[14] C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math.
Monthly 114 (2007) 917-923.

[15] J. Isbell, Sequencing certain dihedral groups, Discrete Math. 85 (1990) 323–328.

[16] A. D. Keedwell, On the sequenceability of non-abelian groups of order pq, Discrete
Math. 37 (1981) 203–216.

[17] A. D. Keedwell, On the R-sequenceability and Rh-sequenceability of groups, Ann.
Discrete Math. 18 (1983) 535–548.

[18] P. Li, Sequencing the dihedral groups D4k, Discrete Math. 175 (1997) 271–276.
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