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Abstract

We consider the graph classes Grounded-L and Grounded-{L, L} correspond-
ing to graphs that admit an intersection representation by L-shaped curves (or L-
shaped and L-shaped curves, respectively), where additionally the topmost points
of each curve are assumed to belong to a common horizontal line. We prove that
Grounded-L graphs admit an equivalent characterisation in terms of vertex order-
ing with forbidden patterns.

We also compare these classes to related intersection classes, such as the grounded
segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or
the outer-1-string graphs. We give constructions showing that these classes are all
distinct and satisfy only trivial or previously known inclusions.
Mathematics Subject Classifications: 05C62, 05C10, 05C75

1 Introduction

An intersection representation of a graph G = (V,E) is a map that assigns to every vertex
x ∈ V a set sx in such a way that two vertices x and y are adjacent if and only if the
two corresponding sets sx and sy intersect. The graph G is then the intersection graph of
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the set system {sx; x ∈ V }. Many natural graph classes can be defined as intersection
graphs of sets of a special type.

One of the most general classes of this type is the class of string graphs, denoted
String. A string graph is an intersection graph of strings, which are bounded continuous
curves in the plane. All the graph classes we consider in this paper are subclasses of the
class of string graphs.

A natural way of restricting a string representation is to impose geometric restrictions
on the strings we consider. This leads, for instance, to segment graphs, which are inter-
section graphs of straight line segments, or to L-graphs, which are intersection graphs of
L-shapes, where an L-shape is a union of a vertical segment and a horizontal segment, in
which the bottom endpoint of the vertical segment coincides with the left endpoint of the
horizontal one. Apart from L-shapes, we shall also consider L-shapes, which are obtained
by reflecting an L-shape along a vertical axis.

Apart from restricting the geometry of the strings, one may also restrict a string
representation by imposing conditions on the placement of their endpoints. Following the
terminology of Cardinal et al. [4], we will say that a representation is grounded if all the
strings have one endpoint on a common line (called grounding line) and the remaining
points of the strings are confined to a single open halfplane with respect to the grounding
line. We will usually assume that the grounding line is the x-axis, and the strings extend
below the line. The endpoint belonging to the grounding line is the anchor of the string.

Similarly, a string representation is an outer representation, if all the strings are con-
fined to a disk, and each string has one endpoint on the boundary of the disk. The
endpoint on the boundary is again called the anchor of the string. One may easily see
that a graph admits a grounded string representation if and only if it admits an outer-
string representation. Such graphs are known as outer-string graphs, and we denote their
class by Outer-string.

Our first main result, Theorem 1 in Section 2, is a characterisation of the class of
grounded L-graphs by vertex orderings avoiding a pair of forbidden patterns. Our next
main result, presented in Section 3, is a collection of constructions providing separations
between the classes in Figure 1, showing that there are no nontrivial previously unknown
inclusions among them.

Let us now formally introduce the graph classes we are interested in, and briefly review
some relevant previously known results.

1-string graphs are the graphs that admit a string representation in which any two
distinct strings intersect at most once. The class of 1-string graphs is denoted 1-String.

Outer-1-string graphs (denoted Outer-1-string) are the graphs that have a string
intersection representation which is simultaneously a 1-string representation and an outer-
string representation. Note that not every graph from 1-string∩Outer-string is
necessarily in Outer-1-string, as we shall see in Section 3.

L-graphs (L) are the intersection graphs of L-shapes. This type of representation has
received significant amount of interest lately. A notable recent result is a theorem of
Gonçalves, Isenmann and Pennarun [9] showing that every planar graph is an L-graph.
Since it is known that L-graphs are a subclass of segment graphs [12], this result strength-

the electronic journal of combinatorics 26(3) (2019), #P3.17 2



Per

Circle ⇔

Grounded-L

Grounded-{L, L}

Grounded-seg

Outer-1-string

Outer-string

Mpt

IntOuterplanar⇔ ⇔

Figure 1: Graph classes considered in this paper. Arrows indicate inclusions. We will
see in Section 3 that there are no other inclusions among these classes apart from those
implied by the depicted arrows. In particular, the classes are all distinct.

ens an earlier result of Chalopin and Gonçalves [6] showing that all planar graphs are
segment graphs.

Max point-tolerance graphs (Mpt), also known as monotone L-graphs, are the graphs
with an L-representation in which all the bends of the L-shapes belong to a common
downward-sloping line. This class was independently introduced by Soto and Thraves
Caro [15], by Catanzaro et al. [5] and by Ahmed et al. [1]. Apart from the above inter-
section representation by L-shapes, it admits several other equivalent characterisations.
Notably, Mpt graphs can be characterised as graphs that admit a vertex ordering that
avoids a certain forbidden pattern [1, 5, 15]. This graph class is known to be a superclass
of several important graph classes, such as outerplanar graphs and interval graphs, among
others [1, 5, 15].

Grounded segment graphs (Grounded-seg) are the intersection graphs admitting a
grounded segment representation. Cardinal et al. [4] proved that these are also precisely
the intersection graphs of downward rays in the plane. Note that any grounded segment

the electronic journal of combinatorics 26(3) (2019), #P3.17 3



graph also admits an outer-segment representation, but the converse does not hold, as
shown by Cardinal et al. [4]. They also showed that outer-segment graphs form a proper
subclass of the class of outer-1-string graphs. This strengthens an earlier result of Cabello
and Jejc̆ic̆ [3], who showed that outer-segment graphs are a proper subclass of the class
of outer-string graphs.

Grounded L-graphs (Grounded-L) are the intersection graphs of grounded L-shapes,
that is, L-shapes with top endpoint on the x-axis. This class of graphs was first consid-
ered by McGuinness [11], who represented them as intersection graphs of upward-infinite
L-shapes. These graphs can also equivalently be represented as intersection graphs of
L-shapes inside a disk, with the top endpoint of each L-shape anchored to the bound-
ary of the disk. McGuinness showed that this class is χ-bounded, that is, these graphs
have chromatic number bounded from above by a function of their clique number. The
χ-boundedness result was later generalized to all outer-string graphs by Rok and Wal-
czak [14].

Grounded {L, L}-graphs (Grounded-{L, L}) are analogous to grounded L-graphs, but
their representation may use both L-shapes and L-shapes. An argument of Middendorf
and Pfeiffer [12] shows that Grounded-{L, L} is a subclass of Grounded-Seg.

Circle graphs (Circle) are the intersection graphs of chords inside a circle, or equiv-
alently, the intersection graphs of L-shapes drawn inside a circle, so that both endpoints
of each L-shape touch the circle. Circle graphs include all outerplanar graphs [16].

Interval graphs (Int) are the intersection graphs of intervals on the real line. Equiv-
alently, we may easily observe that these are exactly the graphs with an intersection
representation which is simultaneously an Mpt-representation and a Grounded-L-repre-
sentation. But note that not every graph from the intersection of Mpt and Grounded-L
is an interval graph, as witnessed, for example, by any cycle Cn of length n > 4.

Permutation graphs (Per) are the intersection graphs of segments between a pair of
parallel lines, with each segment having one endpoint on each of the two lines. Equiva-
lently, we may observe that these are exactly the graphs admitting an L-representation
in which the top endpoints of all the L-shapes are on a common horizontal line and the
right endpoints are on a common vertical line.

We will always assume implicitly that the intersection representations we deal with
satisfy certain non-degeneracy assumptions. In particular, we will assume that the strings
have no self-intersections, that any two strings intersect in at most finitely many points
(except for interval representations), and that any intersection of two strings is a proper
crossing. In particular, an endpoint of a string does not belong to another string. More-
over, we will assume that every segment in a segment representation is non-degenerate,
that is, it has distinct endpoints. This also applies to horizontal and vertical segments
forming an L-shape or L-shape. These assumptions imply, in particular, that in any {L, L}-
representation, each intersection is realized as a crossing of a horizontal segment with a
vertical one.

Note that in any grounded representation with a horizontal grounding line, the left-to-
right ordering of the anchors on the grounding line defines a linear order on the vertex set
of the represented graph. We say that this linear order is induced by the representation.
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interval graphs comparability graphs chordal graphs max point-tolerance graphs

Figure 2: Forbidden order patterns for various graph classes [2, 5, 7]. The solid arcs
denote compulsory edges and the dotted arcs are forbidden edges.

P1 P2

Figure 3: The two forbidden ordering patterns for the class Grounded-L.

Similarly, for an Mpt representation, we can define the induced order by following the
top-left to bottom-right order of the bends along their common supporting line. Induced
vertex orders play an important role both in characterising graphs in a given class and in
separating different classes.

2 Vertex orders with forbidden patterns

Our main result is a characterisation of grounded L-graphs as graphs that admit vertex
orderings avoiding a pair of four-vertex patterns. Let us begin by formalising the key
notions.

An ordered graph is a pair (G,<), where G = (V,E) is a graph and < is a linear order
on V . A pattern of order k is a triple P = (W,C, F ) whereW is the set {1, 2, . . . , k} while
C and F are two disjoint subsets of

(
W
2

)
. The set W is the vertex set of the pattern P ,

C is the set of compulsory edges of P , and F is the set of forbidden edges.
For an ordered graph (G,<) with G = (V,E), we say that (G,<) contains a pattern

P = (W,C, F ) of order k if G contains k distinct vertices x1 < x2 < · · · < xk such that
for every {i, j} ∈ C the vertices xi and xj are adjacent in G, while for every {i, j} ∈ F ,
xi and xj are non-adjacent in G. If (G,<) does not contain P , we say that it avoids P .
For simplicity, we will often write an edge {i, j} as ij.

Many important graph classes can be characterised in terms of vertex orderings with
forbidden patterns, that is, for a class C there is a pattern PC such that a graph G = (V,E)
is in C if and only if it admits a linear order < such that (G,<) avoids PC; see Figure 2 for
examples of classes with their forbidden patterns. The forbidden pattern characterisation
of Mpt was found independently by at least three groups of authors [1, 5, 15].

As our first main result, we show that Grounded-L is characterised by a pair of
forbidden patterns.
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Theorem 1. Consider the two patterns P1 = ({1, 2, 3, 4}, {13, 24}, {12, 23}) and P2 =
({1, 2, 3, 4}, {12, 14, 23}, {13}); see Figure 3. A graph G = (V,E) is a grounded L-graph if
and only if it has a vertex ordering that avoids both P1 and P2. In fact, a linear order <
on V avoids the two patterns P1 and P2 if and only if G has a grounded L-representation
which induces the linear order <.

Proof. Suppose first that G has a grounded L-representation. Let `1, `2, . . . , `n be the
L-shapes used in the representation, ordered left to right according to the positions of
their anchors. Let hi and vi denote, respectively, the horizontal and vertical segment
of `i. Let xi be the vertex represented by `i. We will show that the vertex ordering
x1 < x2 < · · · < xn avoids the two patterns P1 and P2.

Assume that (G,<) contains P1, and let xp < xq < xr < xs be the four vertices forming
a copy of P1. Since xqxs is an edge, the two L-shapes `q and `s intersect. Let R be the
rectangle whose vertices are the anchors of `q and `s, the bend of `q and the intersection
of `q and `s. Since neither xp nor xr is adjacent to xq, we see that `p is completely outside
of R, while vr is inside R. It follows that `p and `r are disjoint, and fail to represent the
compulsory edge 13 of P1.

Suppose now that (G,<) contains P2, and let xp < xq < xr < xs now be the four
vertices forming a copy P2. Since xpxs is an edge, the segment hp intersects vs. Moreover,
vq intersects hp, while vr does not intersect hp, and in particular, `q and `r fail to represent
the compulsory edge 23 of P2. We conclude that any grounded L-representation of G
induces a vertex order that avoids P1 and P2.

To prove the converse, assume that G is a graph with a vertex ordering x1 < x2 <
· · · < xn which avoids both P1 and P2. We will construct a grounded L-representation
`1, `2, . . . , `n of G inducing the order <, with `i being the L-shape representing the ver-
tex xi.

We fix the anchor of `i to be the point (i, 0) on the horizontal axis. Next, we process
the vertices left to right, and for a vertex xi we define the representing shape `i, assuming
`1, `2, . . . , `i−1 have already been defined, and assuming further that for any j < i such
that xjxi is an edge of G, the horizontal segment hj of `j reaches to the right of the
point (i, 0).

To define `i, we first describe its vertical segment vi. Let N−i be the set of vertices
xj such that j < i and xjxi ∈ E. If N−i is empty, choose the vertical segment vi to be
shorter than any of v1, . . . , vi−1. In particular, vi will not intersect any of the L-shapes
constructed in previous steps. If N−i is nonempty, let xp be a vertex from N−i chosen so
that vp is as long as possible (and therefore hp is as low as possible). Then define vi to be
slightly longer than vp, so that vi intersects hp (recall that hp reaches to the right of (i, 0))
but does not intersect any L-shape whose horizontal segment is below hp. This choice of
vi guarantees that vi intersects hj for any xj ∈ N−i .

It remains to define the segment hi. Let j be the largest index such that j > i and
xixj ∈ E. If no such j exists, set j = i. The horizontal segment hi then has length
j − i+ 1

2
, and in particular, its right endpoint has horizontal coordinate j + 1

2
.

Having defined the L-shapes `1, . . . , `n as above, let us verify that their intersection
graph is G. If xjxi is an edge of G with j < i, then the definitions of vi and hj guarantee
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Figure 4: An ordered graph G, and an example of its cycle extension H.

that vi intersects hj, and therefore the two L-shapes `j and `i intersect.
To prove the converse, suppose for contradiction that for some j < i the two L-shapes

`j and `i intersect while xjxi is not an edge of G. Choose such a pair i, j so that i is the
smallest possible. There must be an index k > i such that xjxk is an edge of G, otherwise
hj would be too short to intersect vi. Similarly, there must be an index m < i such that
xmxi is an edge of G, and vm is longer than vj, otherwise vi would not be long enough to
intersect hj.

We now distinguish two cases depending on the relative position of m and j. If m < j,
then `m and `j are disjoint (recall that vm is longer than vj) and hence xmxj is not an
edge of G. It follows that the four vertices xm < xj < xi < xk form the pattern P1, a
contradiction. Suppose now that j < m. It follows that `j intersects `m, and therefore
xjxm is an edge of G, by the minimality of i. Thus, the four vertices xj < xm < xi < xk
form the pattern P2, which is again a contradiction.

3 Separations between classes

Consider again the classes in Figure 1. The inclusions indicated by arrows are either easy
to observe or follow from known results that we have pointed out in the introduction.
Our goal now is to argue that there are no other inclusions among these classes except
those that follow by transitivity from the depicted arrows. In particular, the classes are
all distinct.

As our main tool, we will use a lemma which is a slight modification of the ‘Cycle
Lemma’ of Cardinal et al. [4]. The lemma allows us to prescribe the cyclic order of a
subset of vertices in an outer-1-string representation of a graph. Let G = (VG, EG) be a
graph on n vertices x1, x2, . . . , xn, and let < be the linear order x1 < x2 < · · · < xn. The
cyclic shift of < is the linear order <s defined as xn <s x1 <s x2 <s · · · <s xn−1. The
reversal of <, denoted <r, is defined as xn <r xn−1 <r · · · <r x1. We say that two linear
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Figure 5: Extending the representation of G into a representation of a cycle extension for
grounded L-representations (left) and Mpt representations (right).

orders of V are equivalent if one can be obtained from the other by a sequence of cyclic
shifts and reversals.

A cycle extension of the ordered graph (G,<) is an (unordered) graph H = (VH , EH)
with the following properties (see Figure 4):

• VH is the disjoint union of the sets VG = {x1, . . . , xn} and VC = {y1, . . . , y5n}. The
vertices VG induce the graph G (in particular, EG ⊆ EH), and VC induce a cycle of
length 5n with edges y1y2, y2y3, . . . , y5n−1y5n, y5ny1.

• For each vertex xi ∈ VG, either xi is adjacent to y5i and has no other neighbors in
VC , or xi is adjacent to y5i−1 and y5i and has no other neighbors in VC .

For the classes of graphs we consider, an intersection representation of a graph G
inducing an order < can always be extended into a representation of a cycle extension of
G, without modifying the curves representing G. This is formalised by the next lemma.

Lemma 2. Given a graph class C∈{Grounded-L,Grounded-{L, L},Grounded-seg,
Mpt,Outer-1-string}, for every C-representation of a graph G inducing an order <
on VG there is a cycle extension H of (G,<) such that a C-representation of H can be
constructed by adding the curves representing the vertices of VH \ VG into the given C-
representation of G.

Proof. Suppose we are given a C-representation of G. It is easy to see that we can add the
curves representing the cycle VC close enough to the grounding line; see Figure 5. Note
that for Mpt-representations, each original L-shape may have to be intersected by two
consecutive L-shapes from the added cycle. In all the other types of representations, each
vertex xi of G will have a unique neighbor y5i among the VC .

Recall that two linear orders are equivalent if one can be obtained from the other by
a sequence of cyclic shifts and reversals. The key property of cycle extensions of (G,<)
is that they restrict the possible vertex orders of the G-part to an order equivalent to <,
as shown by the next lemma.

Lemma 3. If (G,<) is an ordered graph with a cycle extension H, then in every grounded
1-string representation of H, the order of the vertices of G induced by the representation
is equivalent to the order <.
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Proof. The proof follows the same ideas as the proof of the Cycle Lemma of Cardinal et
al. [4, Lemma 4].

Suppose (G,<) is an ordered graph with vertex set VG = {x1 < x2 < · · · < xn} and
edge set EG, and H is its cycle extension, with vertices VH = VG ∪ VC as in the definition
of cycle extension and VC = {y1, . . . , y5n}. When working with the indices of the vertices
in VC , we will assume that arithmetic operations are performed modulo 5n, so 5n+1 = 1,
etc. Suppose that H has a grounded 1-string representation. We may transform this
representation into an outer-1-string representation, while preserving the induced vertex
order up to equivalence. Suppose then that an outer-1-string representation of H is
given, inside a disk whose boundary is a circle B. Let cj be the string representing yj,
and let pj,j+1 be the intersection point of cj and cj+1. The subcurve of cj between the
two intersection points pj−1,j and pj,j+1 is the central part of cj, denoted center(j). The
part of cj between the anchor and the first point of center(j) is the initial part of cj,
denoted start(j). Let pj be the common endpoint of start(j) and center(j). Note that pj
is equal to pj−1,j or to pj,j+1. The sequence of curves center(1), center(2), . . . , center(5n)
forms a closed Jordan curve, denoted by C. Note that C contains all the points pk,k+1 for
k = 1, . . . , 5n. Let RC be the interior region of C.

Consider now a vertex xi, represented by a string si. Note that si can intersect the
curve C only at a point of center(5i) or possibly center(5i− 1). Let Ri be the planar
region bounded by the union of the following four curves: start(5i− 3), start(5i+ 2), the
arc of C between p5i−3 and p5i+2 that contains center(5i− 1) ∪ center(5i), and the arc of
B between the anchors of c5i−3 and c5i+2 that contains the anchors of c5i−1 and c5i.

Note that si is the only string among the strings representing VG that can intersect
the boundary of Ri. Note also that the string c5i cannot intersect the boundary of Rk for
k 6= i, and therefore c5i is contained in Ri ∪ RC . Since si intersects c5i, and since si also
cannot cross the boundary of Rk for k 6= i, it follows that si is also contained in RC ∪Ri,
and in particular, the anchor of si is in Ri∩B. Therefore, the anchors of s1, . . . , sn appear
on B in the order which, up to equivalence, corresponds to the order < on VG.

We will now use Lemmas 2 and 3 to construct graphs that have no representation in
a given intersection class. Our goal is to show that there are no inclusions missing in
Figure 1. The classes Int, Circle, Outerplanar and Per are well studied [2], and
simple examples show that there are no inclusions among them other than those depicted
in Figure 1.

Catanzaro et al. [5, Observation 6.9] observed that the graph K2,2,2 (the octahedron)
is a permutation graph not in Mpt, and therefore neither Per nor any superclass of Per
is contained in Mpt. Cardinal et al. [4] showed that Grounded-seg is a proper subclass
of Outer-1-string. To complete the hierarchy, we only need the following separations.

Theorem 4. The following properties hold.

(i) The class Grounded-{L, L} is not a subclass of Grounded-L.

(ii) The class Grounded-seg is not a subclass of Grounded-{L, L}.

(iii) The class Mpt is not a subclass of Outer-1-string.
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x1 x2 x3 x4 x1 x2 x3 x4 x5 x6 x1

x2

x3

x4

x5
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Figure 6: The three intersection representations used to prove Theorem 4. In each case, a
representation cannot be replaced by a representation from a smaller class while preserving
the induced vertex order. Left: a Grounded-{L, L} representation which cannot be
replaced by a Grounded-L one. Middle: a Grounded-seg representation which cannot
be replaced by a Grounded-{L, L} one. Right: an Mpt representation which cannot be
replaced by an Outer-1-string one.

Proof. We first prove part (i) of the theorem. Consider the graph G = (V,E) with
V = {x1, x2, x3, x4} and E = {x1x2, x2x3, x1x4}. Figure 6 (left) shows a grounded {L, L}-
representation of G which induces the order < defined as x1 < x2 < x3 < x4 on V . Note
that there is no grounded L-representation of G that would induce the vertex order <,
because (G,<) contains the pattern P2 of Theorem 1.

Let (G′, <′) be the ordered graph obtained by putting (G,<) and the mirror image
of (G,<) side by side. Formally, (G′, <′) has vertex set V ′ = {x1, x2, x3, x4, y1, y2, y3, y4},
edge set E ′ = {x1x2, x2x3, x1x4, y1y2, y2y3, y1y4} and vertex order x1 <′ x2 <′ x3 <′

x4 <′ y4 <′ y3 <′ y2 <′ y1. Finally, let (G′′, <′′) be the ordered graph obtained by
placing two disjoint copies of (G′, <′) side by side. Clearly G′′ has a grounded {L, L}-
representation which induces the vertex order <′′. However, G′′ has no grounded L-
representation inducing a vertex order equivalent with <′′, since in any vertex order
equivalent with <′′ there are four consecutive vertices forming a copy of P2.

By Lemma 2, the ordered graph (G′′, <′′) has a cycle extension H that admits a
grounded {L, L}-representation. By Lemma 3, any grounded 1-string representation (and
therefore any grounded L-representation) of H induces on V ′′ an order which is equivalent
with <′′. It follows that H has no grounded L-representation, and therefore Grounded-
{L, L} is not a subclass of Grounded-L, as claimed.

For the other two parts of the theorem, the argument is analogous, the main difference
is in the choice of the initial ordered graph (G,<). To prove part (ii), consider the graph
G on six vertices whose Grounded-seg representation is in the middle of Figure 6, and
let < be the vertex order induced by the depicted representation.

Let us argue thatG has no grounded {L, L}-representation inducing the vertex order <.
For contradiction, suppose that such a representation exists, and let `i denote the L-shape
or L-shape representing xi in this representation. Let hi and vi be the horizontal and
vertical segments of `i, respectively. Assume, without loss of generality, that v1 is longer
than v6. Since `1 and `6 intersect, h6 must intersect v1, and `6 is a L-shape. Since `2
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intersects both `1 and `6, v2 must be longer than v6, and v2 intersects h6. But this means
that `3 must intersect either `2 or `6 in order to intersect `1, a contradiction.

Note that the graph (G,<) is isomorphic to its reversal. Consider the ordered graph
(G′, <′) obtained by placing two copies of (G,<) side by side: note that in any vertex
order equivalent to <′, G′ contains a copy of (G,<), and therefore there is no grounded
{L, L}-representation of G′ inducing a vertex order equivalent to <′. We apply Lemmas 2
and 3 to (G′, <′) and obtain its cycle extension H, which is in Grounded-seg but not
in Grounded-{L, L}.

To prove part (iii), consider the graph G whose Mpt-representation is depicted in
the right part of Figure 6, and let < be the vertex order induced by the representation.
We claim that there is no grounded 1-string representation of G inducing the order <.
For contradiction, suppose that such a representation exists, and let si be the string
representing the vertex xi. Additionally, let ai denote the anchor of si, and for a pair of
intersecting strings si, sj let pij denote their intersection.

Assume, without loss of generality, that when we follow s4 starting at a4, we encounter
p24 before we encounter p46. Let C be the closed Jordan curve obtained as the union of the
subcurve of s1 between a1 and p17, the subcurve of s7 between p17 and p37, the subcurve
of s3 between p37 and a3, and the segment a1a3 of the grounding line. Note that s2 is
inside C (except a2, which lies on C), and both a4 and s6 are outside C. Therefore, s4
must intersect C at least twice: once between a4 and p24, and once between p24 and p46.
However, s4 can only intersect C in the point p34, a contradiction.

To complete the proof, we first observe that G has no grounded 1-string representation
inducing a vertex order equivalent with <, since such a representation could be trivially
transformed into a grounded 1-string representation inducing <. We apply Lemmas 2
and 3 to G, to obtain a graph H which is in Mpt but not in Outer-1-string.

Note that these results imply that Outer-string is a proper superclass of both Mpt
and Outer-1-string.

We remark that Mpt is clearly a subclass of 1-string and of Outer-string, but
it is not a subclass of Outer-1-string, as we just saw.

4 Concluding remarks

We have seen that the vertex orders induced by grounded L-representations can be char-
acterised by a pair of forbidden patterns. Previously, a characterisation by a single forbid-
den pattern has been found for vertex orders induced by Mpt representations [1, 5, 15].
Another related result, due to Pach and Tomon [13], provides a characterisation by a
single forbidden pattern for the so-called semi-comparability graphs, which include the
complements of the intersection graphs of grounded y-monotone curves. It is an open
problem whether a characterisation by forbidden patterns can be obtained for other sim-
ilar grounded intersection classes, such as the class Grounded-{L, L}.

Another problem concerns the recognition complexity of the graph classes we con-
sidered. Recognition of max point-tolerance graphs is mentioned as a prominent open
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problem by Ahmed et al. [1], by Catanzaro et al. [5], as well as by Soto and Thraves
Caro [15]. For the classes Grounded-L and Grounded-{L, L}, recognition is open as
well. On the other hand, the recognition problem for Grounded-seg is known to be
∃R-complete, as shown by Cardinal et al. [4]. In particular, Grounded-seg cannot be
characterised by finitely many forbidden vertex order patterns, unless ∃R is equal to NP.

The characterisation of Grounded-L by forbidden vertex order patterns might con-
ceivably be helpful in designing a polynomial recognition algorithm, but note that even a
graph class characterised by a forbidden vertex order pattern may have NP-hard recog-
nition [8], although it is known that recognition is decidable in polynomial time for all
classes described by a set of forbidden patterns of order at most three [10].
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