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Abstract

Much work has been done to count the number of domino tilings for Aztec
diamonds and augmented Aztec diamonds. Augmented Aztec rectangles and their
chains are generalizations of these shapes. In this paper, we use Delannoy paths to
count the number of domino tilings for these rectangles and their chains.

Mathematics Subject Classifications: 05A15, 05B45, 05C70

1 Introduction

The Aztec diamond of order n is the union of unit squares with integral corners (x, y)
satisfying |x|+ |y| 6 n+1 in the Cartesian coordinate system of R2. A domino is a 1-by-2
or 2-by-1 rectangle. A domino tiling of a region is a set of non-overlapping dominoes
covering the region. Examples are shown in Figure 1.

The enumeration of domino tilings for the Aztec diamond is a problem of rich content
in both enumerative combinatorics and statistical mechanics. This object appears first
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Figure 1: Domino tilings for the Aztec diamond and the augmented Aztec diamond of
order 4

in [8] to present exact results for the asymptotic molecular freedom of square lattices of
non-standard boundary shapes. Indeed, the number of domino tilings for a region is very
sensitive to boundary conditions [11, 12]. Furthermore, from the viewpoint of statistical
mechanics, tilings for large Aztec diamonds exhibit a striking feature: the Arctic circle
theorem proved by Jockusch, Propp and Shor [9] says that a random domino tiling for a
large Aztec diamond tends to be frozen outside a certain circle.

The Aztec diamond theorem, proved first by Elkies, Kuperberg, Larsen and Propp [4],
states that the number of domino tilings for the Aztec diamond of order n is equal to
2n(n+1)/2. Later, simpler proofs are given in [1, 2, 3, 5]. More interesting patterns related
to the Aztec diamond with some squares removed have been studied and Propp gave a
survey of these works [13].

The augmented Aztec diamond is obtained from the Aztec diamond by replacing the
two long rows in the middle with three rows. See Figure 1. The number of domino tilings
for the augmented Aztec diamond of order n is shown by Sachs and Zernitz [14] to be∑n

k=0

(
n
k

)
·
(
n+k
k

)
, which is known as the Delannoy numbers .

In this paper, we consider three variants of the augmented Aztec diamond, which are
augmented Aztec rectangles and their vertical and horizontal chains shown in Figure 2.
We count the number of domino tilings for each of these variants.

The augmented Aztec rectangle, which is a slanted rectangular variation of the aug-
mented Aztec diamond, will be treated in Section 2. We show that the number of domino
tilings for the augmented Aztec rectangle is the two-variable Delannoy number by con-
structing a bijection between domino tilings and Delannoy paths.

In Section 3, a chain of augmented Aztec rectangles is defined as the union of aug-
mented Aztec rectangles overlapping vertically or horizontally, and we count the number
of domino tilings for this shape.

2 Augmented Aztec rectangle

Let p and q be positive integers. An augmented Aztec rectangle of size (p, q), denoted
R(p,q), is a natural generalization of the augmented Aztec diamond, which is the region
having p and q diagonally consecutive squares on its southwest and northwest sides, re-
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Figure 2: Three variants of the augmented Aztec diamond

spectively. See Figure 3 for R(6,4). We mention that R(p,q) has three squares on both
leftmost and rightmost columns and two squares on both top and bottom rows. In par-
ticular, R(p,p) is an augmented Aztec diamond of order p. Note that R(p,q) is the union of
2(pq + p+ q) unit squares.

We now color the squares of R(p,q) black and white so that any two adjacent squares
have opposite colors as the checkerboard and that the middle square of the leftmost
column is colored black. This middle black square is called a pivot (black) square. Note
that the middle square of the rightmost column is colored white. The ‘imaginary’ black
square which is not contained in R(p,q) but adjacent to this white square is called a ghost
(black) square. See Figure 4.

Now we rotate R(p,q) counter-clockwise by 45◦, shrink in uniform scaling by 1√
2
, and

place the center of the pivot black square at (0, 0) in the Cartesian coordinate so that the
center of each black square has non-negative integer coordinates. From now on, by R(p,q),
we mean this rotated augmented Aztec rectangle.

We define the dual lattice graph of R(p,q), denoted Γ(p,q), to be the graph whose vertices
correspond to the center points of black squares and an extra point (p, q), and two vertices
are connected by an edge whenever the corresponding points are at distance 1 or a pair
{(i, j), (i+1, j+1)}, as drawn in the upper picture in Figure 4. The center points (0, 0) and
(p, q) of the pivot and ghost black squares are called pivot and ghost vertices , respectively.

To tile R(p,q), we need pq + p + q dominoes of four types as the lower pictures in
Figure 4. A domino is called an sw -, nw -, se- or ne-domino, depending on whether the
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p

q

Figure 3: R(6,4)

(0,0)

(6,4)

pivot square

ghost square

Figure 4: Γ(6,4) and four dominoes

white square is located in the southwest, northwest, southeast or northeast of the black
square. For two adjacent squares A and B, if A is located in the southwest of B, then A
is said to be sw-adjacent to B and B is said to be ne-adjacent to A.

A Delannoy path in Γ(p,q) is a lattice path with steps in {(0, 1), (1, 0), (1, 1)} from
(0, 0) to (p, q) as drawn in Figure 5. The number of Delannoy paths in Γ(p,q) is known as
Delannoy number D(p, q), which is given by

D(p, q) =

min{p,q}∑
k=0

(
p+ q − k

p

)(
p

k

)
.

We define a map Φ from the set of domino tilings for R(p,q) to the set of subgraphs of
Γ(p,q) by using the following:
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p

q

Figure 5: A Delannoy path

Delannoy Path Replacement. We replace each nw-, se- or ne-domino of a domino
tiling for R(p,q) by an edge of Γ(p,q) corresponding to the step (0, 1), (1, 0) or (1, 1), respec-
tively, and starting at the center of the black square of the domino as drawn in Figure 6,
while we ignore sw-dominoes.

Figure 6: Delannoy path replacement of dominoes

The map Φ is called the Delannoy path map and nw-, se- and ne-dominoes are called
D-dominoes . The following theorem provides a useful property of the Delannoy path map;
its image of a domino tiling for R(p,q) is a Delannoy path running from (0, 0) to (p, q). So
we restrict the codomain of the Delannoy path map to the set of Delannoy paths from
(0, 0) to (p, q). Let ρ(p,q) denote the number of domino tilings for R(p,q).

Theorem 1. Delannoy path map Φ is a bijection between domino tilings for an augmented
Aztec rectangle R(p,q) and Delannoy paths from (0, 0) to (p, q). Therefore the number of
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domino tilings for R(p,q) is given by

ρ(p,q) =

min{p,q}∑
k=0

(
p+ q − k

p

)(
p

k

)
.

Proof. The following two claims show that the image of Φ when applied to a domino tiling
T for R(p,q) is exactly a Delannoy path from (0, 0) to (p, q).

Claim 2. Φ(T ) contains a Delannoy path from the pivot vertex (0, 0) to the ghost vertex
(p, q).

Proof. In T , the pivot vertex (0, 0) must be covered by a D-domino, say D1, since the pivot
black square cannot be covered by an sw-domino. By the Delannoy path replacement of
D1, we get a single-edge path P1 in Γ(p,q), starting at (x0, y0) = (0, 0) and ending at
the vertex (x1, y1), where (x1, y1) is (0, 1), (1, 0) or (1, 1) according to whether D1 is an
nw-domino, se-domino or ne-domino.

Next, we consider the black square whose center is (x1, y1). It is indeed ne-adjacent
to the white square of D1. Then this black square must be covered by another D-domino,
say D2, in T . We extend P1 to a new path P2 by adjoining the edge obtained by the
Delannoy path replacement of D2 as before. Note that the terminal point (x2, y2) of P2

is given by

(x2, y2) =


(x1, y1 + 1) if D2 is an nw-domino,

(x1 + 1, y1) if D2 is an se-domino,

(x1 + 1, y1 + 1) if D2 is an ne-domino.

(2.1)

We continue this process to construct a sequence of paths P1, P2, . . . so that Pk+1 is
obtained from Pk by adjoining a single edge of Γ(p,q) corresponding to the D-domino Dk+1

which covers the terminal point (xk, yk) of Pk. The terminal point (xk+1, yk+1) of the new
path Pk+1 is determined by (xk, yk) and Dk+1 in a similar way as (2.1). In particular, if
this black square is located at the boundary on the right/top side of R(p,q), then Dk+1

is always an nw-/se-domino and so Pk+1 is obtained from Pk by adjoining a (0, 1)/(1, 0)
step.

It is clear that the above process stops in finite steps since the region R(p,q) is bounded.
More precisely, we cannot continue this process when the terminal point (xk, yk) does not
belong to any black square in R(p,q). In R(p,q), every white square Sw has a black square
which is ne-adjacent to Sw, as long as the center of Sw is not (p − 1

2
, q − 1

2
). Therefore

this process stops when Pk reaches the ghost vertex (p, q).

Let P be the Delannoy path constructed in Claim 2. Assume that there is a D-domino
D′ away from P . By using the above process, we can construct another path P ′ starting
at the center of the black square of D′.

Claim 3. The above two paths P and P ′ in Φ(T ) do not intersect.
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Proof. Assume that P and P ′ intersect. Let (a, b) be the first vertex at which they meet
(clearly (a, b) 6= (0, 0)). Let Sb be the black square centered at (a, b) (or the ghost black
square if (a, b) = (p, q)) and Sw be the white square centered at (a − 1

2
, b − 1

2
). Since Sb

is either covered by a D-domino or the ghost black square, Sw cannot be covered by an
sw-domino. Therefore Sw must be covered by a D-domino D in T , which is adjacent to
Sb. The center (a′, b′) of the black square of D must be uniquely determined to be one of
(a− 1, b), (a, b− 1) or (a− 1, b− 1). This contradicts the choice of (a, b) because both P
and P ′ pass through (a′, b′).

The proof of Claim 2 shows that P ′ must terminate at (p, q), contradicting Claim 3.
Therefore the dominoes in T away from P are all sw-dominoes. As desired, this implies
that Φ(T ) itself is the Delannoy path P .

It remains to show that the map Φ is bijective. The injectivity follows immediately
from the recipe of the Delannoy path replacement. We next show that Φ is surjective.
We will construct a domino tiling of R(p,q) from a given Delannoy path P in Γ(p,q) by
reversing the Delannoy path replacement. Suppose that P consists of m steps s1, . . . , sm
in order. Replace each step si by a D-domino Di in such a way that the center of its black
square is placed at the starting point of si and that

Di =


an nw-domino if si = (0, 1),

an se-domino if si = (1, 0),

an ne-domino if si = (1, 1).

Notice that the black square of Di has its center at the starting point of si and the white
square of Di is next to the ending point of si in the southwest direction (see Figure 6). Two
distinct D-dominoes Di and Dj cannot share a square since the starting (resp. ending)
points of si and sj are different. Therefore the D-dominoes D1, . . . , Dm do not overlap.
Let RP be the subregion of R(p,q) consisting of these D-dominoes.

Let Rc
P be the complementary region of RP . It is enough to show that Rc

P can always
be tiled only by sw-dominoes. Take any white square Sw in Rc

P (so not centered at
(p− 1

2
, q− 1

2
)). Let Sb be the black square which is ne-adjacent to Sw. If Sb is contained in

RP , then the center of Sb is the ending point of some step si in P . From the construction
of RP , Sw is the white square of the D-domino Di corresponding to si and so it must
be contained in RP , a contradiction. Therefore both squares Sw and Sb are contained in
Rc

P , and we can cover them by an sw-domino. This implies that Rc
P can be tiled only by

sw-dominoes since it has the same number of white squares and black squares. The proof
of [1, Proposition 6.1] provides a similar proof of the bijectivity in a slight different point
of view.

3 Chains of augmented Aztec rectangles

In this section, we consider a chain of augmented Aztec rectangles , a region R1 ∪ R2 ∪
· · · ∪ Rn obtained by arranging finitely many augmented Aztec rectangles in such a way
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that Rk and Rk+1 overlap for each k. See Figure 2. As in Section 2, we view these
rectangles after rotating them counter-clockwise by 45◦ and shrinking in uniform scaling
by 1√

2
. Here, Rk = R(pk,qk)(ak, bk) is an augmented Aztec rectangle R(pk,qk), the center of

whose pivot black square is placed at (ak, bk) with integer coordinates.
We say that two consecutive rectangles Rk and Rk+1 overlap vertically if{

ak < ak+1 6 ak + pk < ak+1 + pk+1,

bk+1 < bk 6 bk+1 + qk+1 < bk + qk,
(3.1)

and they overlap horizontally if{
ak < ak+1 6 ak + pk < ak+1 + pk+1,

bk < bk+1 6 bk + qk < bk+1 + qk+1.
(3.2)

In Figure 7, two rectangles overlap vertically in the left figure and overlap horizontally
in the right figure, (Clockwise rotation by 45◦ recovers their original positions, which are
vertical and horizontal). For each case, we give an example of domino tilings and its
corresponding Delannoy path family.

Figure 7: Overlapping augmented Aztec rectangles

Lemma 4. When two augmented Aztec rectangles overlap vertically or horizontally, their
checkerboard colorings match in the overlapping region. Also, the overlapping region (and
hence the total region) has the same number of black and white squares.

Proof. Suppose that two augmented Aztec rectangles

R(pk,qk)(ak, bk) and R(pk+1,qk+1)(ak+1, bk+1)

overlap vertically or horizontally. The center of each black square of the two rectangles
has integer coordinates, while the center of each white square has half integer coordinates.
This implies that their checkerboard colorings match in the overlapping region.
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One can easily count the number of the black and white squares in the overlapping
region. Actually the overlapping region has the same number of black and white squares
which is (ak + pk − ak+1 + 1)(bk+1 + qk+1 − bk + 1) if they overlap vertically, and is
(ak + pk − ak+1 + 1)(bk + qk − bk+1 + 1)− 1 if they overlap horizontally.

A union
⋃n

k=1R(pk,qk)(ak, bk) is called a vertical chain of augmented Aztec rectangles
if all pairs of consecutive augmented Aztec rectangles overlap vertically. Similarly we
define a horizontal chain. Furthermore, a vertical chain is said to be simple if we have
ak+1 = ak + pk and bk = bk+1 + qk+1 in (3.1) for all k so that two consecutive rectangles
share exactly a pair of adjacent black and white squares. Similarly, a horizontal chain is
said to be simple if we have ak+1 = ak +pk and bk+1 = bk + qk in (3.2) for all k so that two
consecutive rectangles are not laid overlapping each other but just adjacent. See Figure 8.

Figure 8: Two simple vertical and horizontal chains (clockwise rotation by 45◦ recovers
their original vertical and horizontal positions)

3.1 Vertical chains of augmented Aztec rectangles

The dual lattice graph Γv of a vertical chain is defined as the union of the dual lattice
graphs of all augmented Aztec rectangles, that is, Γv =

⋃n
k=1 Γ(pk,qk)(ak, bk). It has n pivot

vertices {(ak, bk)} and n ghost vertices {(ak + pk, bk + qk)}. The vertical chain in Figure 2
and its dual lattice graph are drawn together in Figure 9.

Recall that ρ(p,q) is calculated in Theorem 1. Each (i, j)-entry ρ(aj+pj−ai,bj+qj−bi) of the
matrix in the next theorem is the number of Delannoy paths from the i-th pivot vertex
(ai, bi) to the j-th ghost vertex (aj + pj, bj + qj) in Γv. Here, we define

ρ(p,q) =

{
0 if p < 0 or q < 0,

1 if min{p, q} = 0.

It is natural to define ρ(p,0) = 1 because there is only one domino tiling for the configuration
inside the dotted circle in Figure 9.
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Figure 9: A vertical chain and its dual lattice graph Γv

Theorem 5. There is a bijection between domino tilings for a vertical chain

n⋃
k=1

R(pk,qk)(ak, bk)

and families of n non-intersecting Delannoy paths, each running from (ak, bk) to (ak +
pk, bk + qk) in its dual lattice graph Γv. Furthermore, the number of domino tilings for
this chain is given by the determinant of the n× n matrix

det
[
ρ(aj+pj−ai,bj+qj−bi)

]
16i,j6n

.

Proof. As before, we define a map Φv from the set of domino tilings for this vertical chain
to the set of subgraphs of Γv by using the Delannoy path replacement.

We first show that its image of a domino tiling T is a family of n non-intersecting
Delannoy paths, each running from (ak, bk) to (ak + pk, bk + qk). We can apply the
same path extension process starting from each pivot vertex (ak, bk) as in the proof of
Theorem 1 to get a uniquely defined Delannoy path Pk running from (ak, bk) to a ghost
vertex (ak′ + pk′ , bk′ + qk′) for some k′ = 1, 2, . . . , n by Claim 2. The indices k and k′

may be different because the path Pk may leave the rectangle R(pk,qk)(ak, bk) and go into
another rectangle R(pk′ ,qk′ )

(ak′ , bk′).
By Claim 3, Φv(T ) is a family of non-intersecting Delannoy paths P1, . . . , Pn, obviously

each from (ak, bk) to (ak + pk, bk + qk) in Γv. Also, the dominoes in T away from these
paths are all sw-dominoes.
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The injectivity of Φv follows immediately from the Delannoy path replacement. A
similar argument as in the proof of Theorem 1 establishes the surjectivity as follows. We
construct a domino tiling of the chain from a given family of n non-intersecting Delannoy
paths P1, . . . , Pn in Γv by reversing the Delannoy path replacement. As before, for each k,
the union of the D-dominoes which correspond to the steps of Pk defines a subregion RPk

.
Note that any two of these subregions do not overlap. Let Rc⋃

Pk
be the complementary

region of
⋃n

k=1RPk
. By Lemma 4, the union

⋃n
k=1R(pk,qk)(ak, bk) has the same number

of black and white squares, and so does Rc⋃
Pk

. As before, for any white square in Rc⋃
Pk

,
the black square which is ne-adjacent to the white square is also contained in Rc⋃

Pk
.

This implies that Rc⋃
Pk

can be tiled only by sw-dominoes, giving a domino tiling of⋃n
k=1R(pk,qk)(ak, bk) whose image under Φv is the family of n non-intersecting Delannoy

paths P1, . . . , Pn.
Applying Lindström-Gessel-Viennot lemma [6, 7, 10], the number of the families of

these n non-intersecting Delannoy paths is given by the determinant

det
[
ρij
]
16i,j6n

,

where ρij denotes the number of Delannoy paths from (ai, bi) to (aj + pj, bj + qj). This
number ρij is indeed ρ(aj+pj−ai,bj+qj−bi).

Corollary 6. The number of domino tilings for a simple vertical chain
⋃n

k=1R(pk,qk)(ak, bk)
is given by the determinant of the n× n matrix

det


ρ(p1,q1) 1 0 . . . 0

1 ρ(p2,q2) 1 . . . 0
0 1 ρ(p3,q3) . . . 0
...

...
...

. . .
...

0 0 0 1 ρ(pn,qn)

 .

3.2 Horizontal chains of augmented Aztec rectangles

The dual lattice graph of a horizontal chain R1∪R2∪ · · · ∪Rn is defined as the union
of the dual lattice graphs of all augmented Aztec rectangles with 2(n− 1) extra edges,

Γh =
n⋃

k=1

Γ(pk,qk)(ak, bk) ∪
n−1⋃
k=1

{ek, e′k},

where each edge ek connects two vertices (ak+1− 1, bk + qk) and (ak+1, bk + qk + 1) and e′k
connects (ak + pk, bk+1 − 1) and (ak + pk + 1, bk+1).

Unlike the vertical chain case, it has only one pivot vertex (a1, b1) and only one ghost
vertex (an + pn, bn + qn). Also, we need the extra edges ek (and e′k) because the black
square centered at (ak+1−1, bk+qk) and the white square centered at (ak+1− 1

2
, bk+qk+ 1

2
)

are possibly covered by an ne-domino which is contained in neither Rk nor Rk+1 but in
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e1

e1

e2

e2

Figure 10: A horizontal chain and its dual lattice graph Γh

Rk∪Rk+1. The edge ek is obtained from the Delannoy path replacement of this ne-domino.
The horizontal chain in Figure 2 and its dual lattice graph are shown in Figure 10.

Consider a broken line segment lk (k = 1, 2, . . . , n−1) which divides Γh into two pieces
as drawn in Figure 11. The lines lk serve as frontiers that need to be crossed, and every
path is characterized first by the set of points where these frontiers are crossed, and then
by the ways to interpolate paths between successive crossings, the latter being counted
by Delannoy numbers. Each lk, which starts and ends at the midpoints of the edges
ek and e′k, is broken into a diagonal segment and (if necessary) a horizontal or vertical
segment. More precisely, it starts with a diagonal segment proceeding until horizontal
or vertical alignment with the end point is obtained, after which a horizontal or vertical
segment toward that end point is added if needed. Each Delannoy path from (a1, b1)
to (an + pn, bn + qn) in Γh always passes through lk exactly once. Let Mk be the number
of intersection points of Γh with lk, and mk the number of intersection points of Γh with
the diagonal part of lk. Then{

Mk = 2 max{ak + pk − ak+1, bk + qk − bk+1}+ 3,

mk = 2 min{ak + pk − ak+1, bk + qk − bk+1}+ 3,

and we define M0 = Mn = 1 for convenience.
We take two families {v(k, 1), . . . , v(k,Mk)} and {w(k, 1), . . . , w(k,Mk)}, of vertices

on either side of lk with the property that for each i either two vertices v(k, i) and w(k, i)
are the same point in lk or span an edge bisected by lk. See Figure 11. More precisely,
for 1 6 i 6 mk, we have{

v(k, i) =
(
ak+1 +

⌊
i−2
2

⌋
, bk + qk −

⌊
i−1
2

⌋)
,

w(k, i) =
(
ak+1 +

⌊
i−1
2

⌋
, bk + qk −

⌊
i−2
2

⌋)
,
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and for mk < i 6Mk, we have either{
v(k, i) =

(
ak+1 +

⌊
i−2
2

⌋
, bk+1 − 1

)
,

w(k, i) =
(
ak+1 +

⌊
i−1
2

⌋
, bk+1

)
if ak + pk − ak+1 > bk + qk − bk+1 or{

v(k, i) =
(
ak + pk, bk + qk −

⌊
i−1
2

⌋)
,

w(k, i) =
(
ak + pk + 1, bk + qk −

⌊
i−2
2

⌋)
if ak+pk−ak+1 < bk+qk−bk+1 (with the figure corresponding to this case). The pivot and
ghost vertices are given by w(0, 1) = (a1, b1) and v(n, 1) = (an + pn, bn + qn), respectively.

lk w(k,1)w(k,1)

w(k,2)w(k,2)
w(k,3)w(k,3)

w(k,4)w(k,4)
w(k,5)w(k,5)

w(k,6)w(k,6)
w(k,7)w(k,7)

w(k,8)w(k,8)
w(k,9)w(k,9)

w(k,10) = w(k,11)w(k,10) = w(k,11)

w(k,12) = w(k,13)w(k,12) = w(k,13)

v(k,1)v(k,1)
v(k,2)v(k,2)

v(k,3)v(k,3)
v(k,4)v(k,4)

v(k,5)v(k,5)
v(k,6)v(k,6)

v(k,7)v(k,7)
v(k,8)v(k,8)

v(k,13)v(k,13)

v(k,9) = v(k,10)v(k,9) = v(k,10)

v(k,11) = v(k,12)v(k,11) = v(k,12)

Figure 11: Two families of vertices near lk

In the next theorem,
[
ρv(k,j)−w(k−1,i)

]
is anMk−1×Mk matrix whose entries ρv(k,j)−w(k−1,i)

indicate the number of Delannoy paths from w(k − 1, i) to v(k, j) in Γ(pk,qk)(ak, bk). For
example, when 1 6 i 6 mk−1 and 1 6 j 6 mk,

ρv(k,j)−w(k−1,i) = ρ(ak+1−ak−b i+1
2 c+b j2c, bk−bk−1+qk−qk−1+b i

2c−b j+1
2 c).

Theorem 7. There is a bijection between domino tilings for a horizontal chain
n⋃

k=1

R(pk,qk)(ak, bk)

and Delannoy paths from (a1, b1) to (an +pn, bn +qn) in its dual lattice graph Γh. Further-
more, the number of domino tilings for this chain is equal to the sole entry of the 1 × 1
matrix obtained by multiplying n matrices

n∏
k=1

[
ρv(k,j)−w(k−1,i)

]
16i6Mk−1,16j6Mk

.
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Proof. As before, we define a map Φh from the set of domino tilings for this horizontal
chain to the set of Delannoy paths from (a1, b1) to (an + pn, bn + qn) in Γh.

Given a domino tiling T , we perform the path extension process starting from the pivot
vertex (a1, b1). Then we get the uniquely defined Delannoy path P reaching the ghost
vertex (an + pn, bn + qn) by Claim 2. Note that P goes through an extra edge ei (or e′i)
whenever the black square centered at (ai+1−1, bi +qi) (or (ai +pi, bi+1−1), respectively)
is covered by an ne-domino in T . As in the proof of Theorem 1, the dominoes in T away
from P are all sw-dominoes. Therefore Φh(T ) is a Delannoy path in Γh.

The injectivity of Φh follows immediately from the Delannoy path replacement. For the
surjectivity, we construct a domino tiling for the horizontal chain from a given Delannoy
path P from (a1, b1) to (an+pn, bn+qn) in Γh by reversing the Delannoy path replacement.
As before, letRP be the union of the D-dominoes that cover P andRc

P the complementary
region of RP . By Lemma 4, the union

⋃n
k=1R(pk,qk)(ak, bk) has the same number of black

and white squares, and so does Rc
P . For any white square in Rc

P , the black square which is
ne-adjacent to the white square is also contained in Rc

P . This implies that Rc
P can be tiled

only by sw-dominoes, which guarantees that there is a domino tiling of
⋃n

k=1R(pk,qk)(ak, bk)
whose image under Φh is the Delannoy path P .

From now on, we count the number of Delannoy paths from (a1, b1) to (an + pn, bn +
qn) in Γh. First we consider n + 1 families of points in Γh, C0 = {c(0, 1) = (a1, b1)},
Ck = {c(k, 1), c(k, 2), . . . , c(k,Mk)} where c(k, i) = v(k,i)+w(k,i)

2
for k = 1, 2, . . . , n− 1, and

Cn = {c(n, 1) = (an + pn, bn + qn)}. Note that c(k, 1) and c(k,Mk) are the center points
of ek and e′k, respectively.

The crucial point is that any Delannoy path P from (a1, b1) to (an + pn, bn + qn) in Γh

always passes through lk at exactly one point, say c(k, ik), of Ck for each k = 1, 2, . . . , n−1.
Let c(0, i0) = c(0, 1) and c(n, in) = c(n, 1). The points c(k, ik) break P into n consecutive
subpaths Pk, k = 1, 2, . . . , n, starting at c(k−1, ik−1) and ending at c(k, ik). See Figure 12.
The number of such subpaths Pk joining c(k − 1, ik−1) and c(k, ik) equals the number of
Delannoy paths from w(k − 1, ik−1) to v(k, ik) in Γ(pk,qk)(ak, bk). This number is exactly
ρv(k,ik)−w(k−1,ik−1) by Theorem 1. We write ρkik−1ik

for ρv(k,ik)−w(k−1,ik−1) in short.
Therefore the total number of Delannoy paths from w(0, 1) = (a1, b1) to v(n, 1) =

(an + pn, bn + qn) in Γh is

M1∑
i1=1

M2∑
i2=1

· · ·
Mn−1∑
in−1=1

ρ11i1ρ
2
i1i2
· · · ρn−1in−2in−1

ρnin−11
,

which equals the sole entry of the 1× 1 matrix obtained by the matrix multiplication

n∏
k=1

[
ρkij
]
16i6Mk−1,16j6Mk

.

This completes the proof.
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w(k-1,1)w(k-1,1)
w(k-1,2)w(k-1,2)

w(k-1,3)w(k-1,3)

w(k-1,4)w(k-1,4)
w(k-1,5)w(k-1,5)

w(k-1,6) = w(k-1,7)w(k-1,6) = w(k-1,7)

v(k,1)v(k,1)
v(k,2)v(k,2)

v(k,3)v(k,3)
v(k,4)v(k,4)

v(k,5)v(k,5)
v(k,6) = v(k,7)v(k,6) = v(k,7)

Figure 12: Subpaths Pk

Corollary 8. The number of domino tilings for a simple horizontal chain

n⋃
k=1

R(pk,qk)(ak, bk)

equals the sole entry of the 1× 1 matrix obtained by multiplying n matrices

A1A2 · · ·An,

where
A1 =

[
ρ(p1−1,q1) ρ(p1,q1) ρ(p1,q1−1)

]
,

An =
[
ρ(pn,qn−1) ρ(pn,qn) ρ(pn−1,qn)

]T
,

and

Ak =

ρ(pk−1,qk−1) ρ(pk,qk−1) ρ(pk,qk−2)
ρ(pk−1,qk) ρ(pk,qk) ρ(pk,qk−1)
ρ(pk−2,qk) ρ(pk−1,qk) ρ(pk−1,qk−1)


for k = 2, . . . , n− 1.

Proof. For each k = 1, . . . , n − 1, since ak+1 = ak + pk and bk+1 = bk + qk, we have
mk = Mk = 3. Furthermore, v(k, 1) = (ak+1 − 1, bk + qk), w(k, 1) = (ak+1, bk + qk + 1),
v(k, 2) = w(k, 2) = (ak+1, bk + qk), v(k, 3) = (ak+1 + 1, bk + qk − 1) and w(k, 3) = (ak+1 +
1, bk + qk). Recall that M0 = Mn = 1, w(0, 1) = (a1, b1) and v(n, 1) = (an + pn, bn + qn).

A simple calculation shows that for k = 1, . . . , n[
ρv(k,j)−w(k−1,i)

]
16i6Mk−1,16j6Mk

= Ak,

where Ak is as stated in this corollary.
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