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Abstract

We introduce a generalization of Smirnov words in the context of labeled binary
trees, which we call Smirnov trees. We study the generating function for ascent-
descent statistics on Smirnov trees and establish that it is e-positive, which is akin
to the classical case of Smirnov words. Our proof relies on an intricate weight-
preserving bijection.

Mathematics Subject Classifications: 05E05, 05A19

1 Introduction

The study of permutation statistics has been an active area of research since the sem-
inal work of MacMahon [9]. A particular permutation statistic that plays a prominent
role in algebraic combinatorics is the descent statistic. The associated integer sequence
obtained by counting permutations according to their number of descents is the well-
known sequence of Eulerian numbers. Rather than giving an exhaustive list of areas in
mathematics where this sequence makes an appearance, we refer the reader to [11] for a
beautiful book exposition. Given that permutations may be considered to be linear trees,
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it is natural to consider generalizations of classical permutation statistics in the context
of labeled plane binary trees.

Gessel [6] was the first to study the analogue of the descent statistic for labeled binary
trees, and he further pointed out intriguing connections to the enumerative theory of
Coxeter arrangements. There has been a flurry of activity towards understanding these
connections better, and the reader is referred to [2, 3, 4, 7, 19, 20] for more details.
Gessel-Griffin-Tewari [7] investigated these connections from the perspective of symmetric
functions; they attach a multivariate generating function tracking ascent-descents over
all labeled binary trees and subsequently prove that this generating function expands
positively in terms of ribbon Schur functions. This result is part of the motivation for
our article. The rest of it stems from recent work of Shareshian-Wachs [13] on chromatic
quasisymmetric functions, which we discuss next.

Stanley [16] introduced chromatic symmetric functions of graphs as a way to generalize
chromatic polynomials of graphs. In the case where the graph has n nodes and no edges,
the chromatic polynomial is the sum of xw where w ranges over all words of length n.
Here, and throughout the rest of this article, set xw := xw1 · · ·xwn if w = w1 . . . wn,
where x = {x1, x2, . . . } is an alphabet with commuting indeterminates. It is worth
remarking that the refined version tracking the distribution of descents over the set of all
words of length n is ribbon Schur-positive. This motivates studying an analogue of the
descent statistic for general graphs in tandem with the chromatic symmetric function,
and this was done by Shareshian and Wachs in [13], wherein they introduced chromatic
quasisymmetric functions. In the special case where the underlying graph is a path on n
nodes, the chromatic quasisymmetric function tracks descents in Smirnov words of length
n, i.e. words where two adjacent letters are distinct. More importantly, in contrast to the
ribbon-positivity in the case where the graph was completely disconnected, the chromatic
quasisymmetric function of the path graph is e-positive, i.e. it can be expressed as a non-
negative integer linear combination of elementary symmetric functions. This raises the
following natural questions:

1. Is there an analogue of Smirnov words and the descent statistic in the context of
labeled binary trees?

2. If yes, is the generating function tracking the distribution of descents e-positive?

In this article, we provide answers to both these questions in the positive by introducing
Smirnov trees — labeled rooted plane binary trees with the property that if the parent
has the same label as one of its children, then the left child must have a larger label than
the right child. Denote the set of all Smirnov trees by T . For any labeled binary tree T ,
let lasc(T ), ldes(T ), rasc(T ) and rdes(T ) denote the number of ascents and descents in the
labeling to the left and right, such that rasc and lasc are determined by weak inequalities,
whereas rdes and ldes are strict. See Subsection 2.2 for details. We associate a monomial
xT with T as follows. For a node v ∈ T labeled i, let xv be xi. Then

xT =
∏
v∈T

xv.
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Consider the formal power series in x with coefficients in Q[ρ̄, ρ, λ̄, λ],

G := G(ρ̄, ρ, λ̄, λ) =
∑
T∈T

ρ̄rasc(T )ρrdes(T )λ̄lasc(T )λldes(T )xT .

It is not immediate that G is a symmetric function in x with coefficients in Q[ρ̄, ρ, λ̄, λ].
We establish the preceding fact via the following functional equation satisfied by G, which
is also our first main result.

Theorem 1. Let Wn be the set of Smirnov words of length n. Then we have

G(ρ̄, ρ, λ̄, λ) =
∑
n>1

∑
w∈Wn

(ρ̄λ̄G+ ρ̄+ λ̄)asc(w)(ρλG+ ρ+ λ)des(w)xw.

Theorem 1 follows from an intricate weight-preserving bijection between the sets⋃
n>1

Wn × (T ∪ {D,U})n−1

and T , and this forms the technical crux of our article.
Let en := en(x) denote the n-th elementary symmetric function, and let E(z) :=∑
n>0 enz

n. It is well known [13, Theorem C.4] that the generating function tracking
ascents and descents over all Smirnov words is e-positive. This fact in conjunction with
Theorem 1 implies the following theorem.

Theorem 2. G(ρ̄, ρ, λ̄, λ) is e-positive.

In fact, we provide a combinatorially explicit description for the coefficients in the basis
of elementary symmetric functions. Additionally, we establish the following functional
equation satisfied by G.

Theorem 3.

(1 + ρ̄G)(1 + λ̄G)

(1 + ρG)(1 + λG)
=
E(ρ̄λ̄G+ ρ̄+ λ̄)

E(ρλG+ ρ+ λ)
.

Outline of the article: In Section 2, we provide the necessary definitions for Smirnov
words and Smirnov trees. In Section 3, we outline how we prove Theorem 1, how e-
positivity follows from the functional equation, and how to compute the coefficients in
the e-expansion. We give a proof of Theorem 3 as well. Finally, in Section 4, we construct
an intermediate bijection. The bijection that proves the main result is then the result of
successive applications of this intermediate bijection. We provide many examples and a
technical proof.

2 Background

We denote the set of positive integers by N. For n ∈ N, set [n] := {1, . . . , n}. In particular,
[0] = ∅. For any undefined terms, we refer the reader to [17].
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2.1 Words

Let N∗ denote the set of all words in the alphabet N. Given w = w1 . . . wn ∈ N∗, we call
n the length of w. An index i ∈ [n − 1] is called a descent of w if wi > wi+1 and an
ascent otherwise. We denote the set of descents (respectively ascents) of w by Des(w)
(respectively Asc(w)) and denote |Des(w)| (respectively |Asc(w)|) by des(w) (respectively
asc(w)).

A word w = w1 . . . wn is a Smirnov word if adjacent letters are different, i.e. if wi 6=
wi+1 for i ∈ [n − 1]. The set of all Smirnov words is denoted by W and the set of all
Smirnov words of length n byWn. Consider the multivariate generating function tracking
the distribution of ascents and descents over Wn

Qn(s, t) =
∑
w∈Wn

sasc(w)tdes(w)xw,

and let Q(z; s, t) :=
∑

n>0Qn(s, t)zn.

2.2 Smirnov trees

A plane binary tree is a rooted tree in which every node has at most two children, of which
at most one is called a left child and at most one is called a right child . Henceforth, we
simply say binary tree instead of plane binary tree. A labeled plane binary tree (or simply
a labeled binary tree) is a binary tree whose nodes have labels drawn from N. We assign
a weight to labeled binary trees as follows. An edge between a parent (resp. a left child)
with label a and its right child (resp. its parent) with label b is weighted ρ̄ (resp. λ̄) if
a 6 b and ρ (resp. λ) if a > b. In other words, if the edge is between a parent and the
right child, we use rho (for right), and if it is between a parent and its left child, we use
lambda (for left). We add the bar if the nodes form a weak ascent when reading from left
to right (either diagonally up or down). A node with label a has weight xa. The weight
of a binary tree T , denoted by wt(T ), is the product of the weights of all its edges and
nodes.

A labeled binary tree is called Smirnov if the following holds:

• if the left (resp. right) child has the same label i as its parent, then the parent must
also have a right (resp. left) child with label < i (resp. > i).

In other words, if the parent has the same label as its child, the left child must have a
larger label than the right child. Smirnov trees inherit a weight function from the one
defined for ordinary labeled binary trees. In the case where the binary tree underlying
a Smirnov tree has the property that every node (except the leaf) has only a right child
(we can force this by setting λ = λ̄ = 0), the earlier condition guarantees that the label
on any node is different from the label on its child. In other words, the word obtained
by reading the labels from root to leaf is a Smirnov word. Thus, Smirnov trees generalize
Smirnov words.

Denote the set of all Smirnov trees by T , and the set of all Smirnov trees whose root
has label c by T c. If T ∈ T , define its principal path P(T ) as follows: it starts at the root;
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if the current node has no right child, stop; if the current node has a left child with the
same label (and therefore a right child with a smaller label), move down left; otherwise,
move down right. The last node on the principal path is called the principal node and is
denoted α(T ); its label is a(T ). The maximal label on P(T ) is M(T ), and the minimal
label is m(T ).

Example 4. As an example, let T be the binary tree in Figure 1. There are two nodes

3

3

33

3 3 2

2 1

1

4 4

1

Figure 1: A Smirnov tree with principal path in bold.

with a child with the same label; in both cases, the parent has both children, and the
left label is larger than the right label. Therefore T is Smirnov. In particular, T ∈ T 3.
The edges lying on the principal path P(T ) are thickened, and the labels on P(T ) are
3, 3, 4, 1, 3. So a(T ) = 3, M(T ) = 4, and m(T ) = 1. The principal node α(T ) is gray.
Furthermore,

wt(T ) = ρ̄4ρ3λ̄2λ3 x3
1x

2
2x

6
3x

2
4.

As mentioned in the introduction, we prove Theorem 1 by establishing a weight-preser-
ving bijection between

⋃
n>1Wn × (T ∪ {D,U})n−1 and T . We have already described

how to assign weights to elements of the latter, so we proceed to describe weights assigned
to elements of the former. For the sake of brevity, set

X :=
⋃
n>1

Wn × (T ∪ {D,U})n−1 .

Given a statement P , let [P ] equal 1 if P is true and 0 otherwise. If a, b are distinct
positive integers and Y ∈ T ∪ {D,U}, define

f(a, b, Y ) :=

{
ρ̄λ̄wt(T ) [Y ∈ T ] + ρ̄ [Y = D] + λ̄ [Y = U ] if a < b,
ρλwt(T ) [Y ∈ T ] + ρ [Y = D] + λ [Y = U ] if a > b.

This given, consider (w, S) ∈ X , and let w := w1 . . . wn and S := S1 . . . Sn−1. The weight
of (w, S), denoted by wt(w, S), is defined as follows.

wt(w, S) := xw
∏

16i6n−1

f(wi, wi+1, Si).
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Example 5. Consider the Smirnov word w = 42534242 ∈ W8 and the sequence

S =

 1 , D, 2 , D,D, U,

2

2 1

 ∈ (T ∪ {D,U})7

Then we have

f(w1, w2, S1) = ρλ x1

f(w2, w3, S2) = ρ̄

f(w3, w4, S3) = ρλ x2

f(w4, w5, S4) = ρ̄

f(w5, w6, S5) = ρ

f(w6, w7, S6) = λ̄

f(w7, w8, S7) = ρ2λ̄λ x1x
2
2.

It follows that
wt(w, S) = ρ̄2ρ5λ̄2λ3 x2

1x
6
2x3x

3
4x5.

It is straightforward to see that∑
(w,S)∈X

wt(w, S) =
∑
n>1

∑
w∈Wn

(ρ̄λ̄G+ ρ̄+ λ̄)asc(w)(ρλG+ ρ+ λ)des(w)xw. (1)

Note that the right hand side in equation (1) is exactly the right hand side of the equality in
Theorem 1. This explains why it suffices to exhibit a weight-preserving bijection between
T and X in order to prove Theorem 1.

3 Bijection and applications

3.1 Outline of the bijection

Our weight-preserving bijection between T and X uses an intermediate bijection that we
call Φ. Consider a triple (T, S, b), where S ∈ T ∪{D,U} and b ∈ N is such that a(T ) 6= b.
Recall that a(T ) is the label of the principal node of T . We assign a weight to (T, S, b)
as follows:

wt(T, S, b) = xb wt(T )f(a(T ), b, S).

Our map Φ, whose precise description we postpone to Section 4, satisfies the following.

Theorem 6. The map Φ is a well-defined weight-preserving bijection from the set of
triples (T, S, b) in T × (T ∪ {D,U}) × N satisfying a(T ) 6= b to the set of Smirnov trees
with at least 2 nodes, and the principal node of the image has label equal to the third
argument. In other words, wt(Φ(T, S, b)) = wt(T, S, b) and a(Φ(T, S, b)) = b.
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The proof of Theorem 6, which is fairly involved, is also presented in Section 4. For
the moment, we describe how Theorem 1 follows from Theorem 6, and subsequently we
discuss various applications.

Proof. (of Theorem 1) By applying Φ successively, we construct a weight-preserving bi-
jection

Ψ: X −→ T ,
which proves our main theorem. If w ∈ W1, let Ψ(w, ∅) be the binary tree with a single
node labeled w1. Here ∅ denotes the empty sequence. If n > 2, w = w1 · · ·wn ∈ Wn,
S = (S1, . . . , Sn−1) ∈ (T ∪ {D,U})n−1, define w′ = w1 · · ·wn−1, S ′ = (S1, . . . , Sn−2), and

Ψ(w, S) = Φ(Ψ(w′, S ′), Sn−1, wn).

We prove by induction on n that for w ∈ Wn and S ∈ (T ∪ {D,U})n−1, Ψ(w, S) is well
defined and a(Ψ(w, S)) = wn. For n = 1, this is obvious, and if it holds for n − 1, then
a(Ψ(w′, S ′)) = wn−1 6= wn, so Φ(Ψ(w′, S ′), Sn−1, wn) is well defined, and by Theorem 6,
a(Φ(Ψ(w′, S ′), Sn−1, wn)) = wn.

As far as the weight-preserving aspect of Ψ is concerned, note that

wt(w, S) = xwn · wt(w′, S ′) · f(wn−1, wn, Sn−1) (2)

Furthermore,

wt(Ψ(w, S)) = wt(Φ(Ψ(w′, S ′), Sn−1, wn))

= xwn · wt(Ψ(w′, S ′)) · f(wn−1, wn, Sn−1). (3)

In going from the first equality to the second, we have utilized the fact that Φ is a weight-
preserving bijection. Induction along with a comparison of equations (2) and (3) implies
that Ψ is weight preserving. Bijectivity of Ψ also follows from the bijectivity of Φ.

3.2 e-positivity and bleeding trees

To write an explicit expression for Qn(s, t), we invoke [13, Theorem C.4] which states
that the generating function for Smirnov words of length n is e-positive. More precisely,
Shareshian and Wachs prove that

∑
w∈Wn

tdes(w)xw =

bn+1
2
c∑

m=1

∑
k1,...,km>2∑
ki=n+1

e(k1−1,k2,...,km)t
m−1

m∏
i=1

[ki − 1]t, (4)

where [a]t = 1 + t+ · · ·+ ta−1 for a ∈ N. For example, it is easy to check that∑
w∈W3

tdes(w)xw = (1 + t+ t2)e3 + te21,

which agrees with the formula.
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It immediately follows from equation (4) that

Qn(s, t) = sn−1

bn+1
2
c∑

m=1

∑
k1,...,km>2∑
ki=n+1

e(k1−1,k2,...,km)(t/s)
m−1

m∏
i=1

[ki − 1]t/s

=

bn+1
2
c∑

m=1

∑
k1,...,km>2∑
ki=n+1

e(k1−1,k2,...,km)s
m−1tm−1

m∏
i=1

(ski−2 + ski−3t+ · · ·+ tki−2)

=

bn+1
2
c∑

m=1

∑
k1,...,km>2∑
ki=n+1

e(k1−1,k2,...,km)(s
k1−2+sk1−3t+· · ·+tk1−2)

m∏
i=2

(ski−1t+ski−2t2+· · ·+stki−1)

(5)

Our main result Theorem 1 states that the generating function for Smirnov trees
satisfies the functional equation

G =
∑
n>1

∑
w∈Wn

sasc(w)tdes(w)xw = Q(1; s, t)− 1, (6)

where
s = ρ̄ λ̄ G+ ρ̄+ λ̄, t = ρ λG+ ρ+ λ.

From equations (5) and (6), it follows that G is e-positive. Our goal is to describe
cπ = [eπ]G, the coefficient of eπ in the e-expansion of G, for an arbitrary partition π. We
will describe cπ in terms of certain trees. For motivation, let us extract the coefficient at
e321.

Among the terms in (6) (with s and t as above) there are

e132 · 1 · (s2t+ st2) · (st) and e123 · 1 · (st) · (s2t+ st2)

corresponding to compositions (k1, k2, k3) = (2, 3, 2), (k1, k2, k3) = (2, 2, 3). For every
occurrence of s (resp. t), we can select either ρ̄ λ̄ G (resp. ρ λG) or ρ̄ + λ̄ (resp. ρ + λ).
Of course, selecting a term with G means that the resulting symmetric function will have
degree > 6, so the two terms contribute

2((ρ̄+ λ̄)2(ρ+ λ) + (ρ̄+ λ̄)(ρ+ λ)2)((ρ̄+ λ̄)(ρ+ λ))

to c321.

There are other terms in c321, however. For example, among the terms in (5) there is
also

e32 · (s2 + st+ t2)(st),
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corresponding to the composition (k1, k2) = (4, 2). Since e321 = e32e1, the contribution of
this term to c321 is equal to the coefficient of e1 in (s2 + st+ t2)(st). This is equal to

([e1](s2 + st+ t2))([1](st)) + ([1](s2 + st+ t2))([e1](st)).

The function e1 in s · s+ s · t+ t · t comes from selecting one of the three summands, and
then selecting e1 from the first or the second term in the product. Therefore

[e1](s2 + st+ t2) = 2(ρ̄ λ̄ c1)(ρ̄+ λ̄) + (ρ̄ λ̄ c1)(ρ+ λ) + (ρ̄+ λ̄)(ρ λ c1) + 2(ρ λ c1)(ρ+ λ).

It is clear that c1, the coefficient of e1 in G, is 1. We also have

[1](st) = (ρ̄+ λ̄)(ρ+ λ),

[1](s2 + st+ t2) = (ρ̄+ λ̄)2 + (ρ̄+ λ̄)(ρ+ λ) + (ρ+ λ)2,

[e1](st) = ρ̄ λ̄ (ρ+ λ) + (ρ̄+ λ̄) ρ λ,

which gives further terms of c321.

We can distill the above reasoning into the following definition which efficiently encodes
the recursive extraction of the coefficient cπ from the functional equation. Note that it
follows from (5) that in computing cπ, we must pick a part of π that will play the role
of k1. That is the meaning of red edges below. The weights p(r, k) and p̄(r, k) appearing
below arise as we expand powers of s and t.

Definition 7. A bleeding tree is an unordered rooted tree with the following properties:

• nodes at even depth (including the root) are red and unlabeled, nodes at odd depth
are black and labeled with positive integers

• every red node has children, and it is connected with a red edge with exactly one of
them; all other edges in the tree are black

• if a black node is connected to its parent with a black edge, the number of children
it has is less than or equal to its label, which cannot be 1; otherwise, it is strictly
smaller than its label (in particular, it has no children if its label is 1).

For a partition π, we denote by Bπ the (clearly finite) set of bleeding trees whose labels
(with repetitions) are precisely the parts of π.
We give black nodes weights. Assume that a black node has label r and k children.

• If the edge to its parent is black, its weight is

p(r, k) =
r−1∑
i=1

i∑
j=0

(
i

j

)(
r − i

r − k − j

)
(ρ̄ λ̄)i−j(ρ̄+ λ̄)j(ρ λ)k−i+j(ρ+ λ)r−k−j
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• If the edge to its parent is red, its weight is

p̄(r, k) =
r−1∑
i=0

i∑
j=0

(
i

j

)(
r − 1− i

r − 1− k − j

)
(ρ̄ λ̄)i−j(ρ̄+ λ̄)j(ρ λ)k−i+j(ρ+ λ)r−1−k−j

The weight wt(U) of a bleeding tree U is defined as the product of the weights of all its
black nodes and the number of ways to draw a bleeding tree in the plane so that red edges
always come first.

For example, the bleeding tree with one red node, three black nodes with labels 1,
2 and 3, and a red edge between the red node and the node with label 1 has weight
2p̄(1, 0)p(2, 0)p(3, 0), with the factor 2 coming from drawings

1 3 2 1 2 3 .

Note that the requirement that a black node with a black edge to its parent cannot
have label 1 is superfluous, as the weight of such a node would be the empty sum, i.e. 0.
The requirement about the number of children being smaller than (or equal to) the label
is also not needed, as the second binomial coefficient in the sums would be 0 in that case.
In other words, given the weighting of trees, only the first two assumptions are necessary
for a tree to be bleeding.

Example 8. Figure 2 depicts a bleeding tree in B4332222111 with weight

4p̄(3, 2)p(2, 1)p(2, 1)p̄(2, 0)p(4, 2)p̄(1, 0)p̄(3, 0)p̄(2, 0)p̄(1, 0)p̄(1, 0).

3

3

22

2 1

11

4 2

Figure 2: A bleeding tree in B4332222111.

All trees in B321 are shown in Figure 3.

Given the straightforward yet cumbersome details of the induction, we omit the proof
of the following.
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1 1 1 1 1

1

11111

1

2 2 2 2

2

2

22

22

2

23

3 3 3 3 3

3

3

3

33

3

Figure 3: All trees in B321.

Theorem 9. The generating function for Smirnov trees is e-positive, with coefficients in
N[ρ̄, ρ, λ̄, λ]. More precisely, we can write

G =
∑
π

(∑
U∈Bπ

w(U)

)
eπ,

where the sum is over all partitions π, |π| > 1.

In fact, the coefficient of eπ in G is a polynomial with positive integer coefficients in
the “variables” ρ̄ λ̄, ρ̄ + λ̄, ρ λ, ρ + λ. Thus, our Theorem 9 may be interpreted as an
instance of Schur-γ-nonnegativity defined in [14]. See also [1] for more on this theme.
The first few terms of the expansion are

e1 + (ρ̄+ ρ+ λ̄+ λ)e2 + (ρ̄2 + ρ̄ρ+ ρ2 + 2ρ̄λ̄+ ρλ̄+ λ̄2 + ρ̄λ+ 2ρλ+ λ̄λ+ λ2)e3

+ (ρ̄ρ+ ρ̄λ̄+ ρλ̄+ ρ̄λ+ ρλ+ λ̄λ)e21 + · · ·
Figure 3 allows us to quickly compute the coefficient at e321:

2p̄(1, 0)p(3, 0)p(2, 0) + p̄(3, 1)p(2, 0)p̄(1, 0) + p̄(3, 0)p(2, 1)p̄(1, 0) + p̄(2, 1)p(3, 0)p̄(1, 0)

+ p̄(2, 0)p(3, 1)p̄(1, 0) + p̄(1, 0)p(3, 1)p̄(2, 0) + p̄(1, 0)p(2, 1)p̄(3, 0) + p̄(3, 1)p(2, 0)p̄(1, 0)

+ 2p̄(3, 2)p̄(2, 0)p̄(1, 0) + p̄(3, 1)p̄(2, 1)p̄(1, 0) + p̄(2, 1)p̄(1, 0)p(3, 0) + p̄(2, 1)p̄(3, 1)p̄(1, 0)

= 2ρ̄3ρ2 + 2ρ̄2ρ3 + 12ρ̄3ρλ̄+ 18ρ̄2ρ2λ̄+ 8ρ̄ρ3λ̄+ 6ρ̄3λ̄2 + 28ρ̄2ρλ̄2 + 18ρ̄ρ2λ̄2 + 2ρ3λ̄2 + 6ρ̄2λ̄3

+12ρ̄ρλ̄3 +2ρ2λ̄3 +8ρ̄3ρλ+18ρ̄2ρ2λ+12ρ̄ρ3λ+12ρ̄3λ̄λ+56ρ̄2ρλ̄λ+56ρ̄ρ2λ̄λ+12ρ3λ̄λ+28ρ̄2λ̄2λ

+56ρ̄ρλ̄2λ+18ρ2λ̄2λ+12ρ̄λ̄3λ+8ρλ̄3λ+2ρ̄3λ2 +18ρ̄2ρλ2 +28ρ̄ρ2λ2 +6ρ3λ2 +18ρ̄2λ̄λ2 +56ρ̄ρλ̄λ2

+ 28ρ2λ̄λ2 + 18ρ̄λ̄2λ2 + 18ρλ̄2λ2 + 2λ̄3λ2 + 2ρ̄2λ3 + 12ρ̄ρλ3 + 6ρ2λ3 + 8ρ̄λ̄λ3 + 12ρλ̄λ3 + 2λ̄2λ3
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3.3 Another functional equation and exponential specialization

We now give a proof of the functional equation satisfied by G stated in Theorem 3, and
then relate it to earlier work of Gessel.

Proof. (of Theorem 3) Recall that Q(z; s, t) tracks the distribution of ascents and descents
over the set of all Smirnov words, and we have

Q(z; s, t) = 1 + s−1
(
Q(sz; 1, ts−1)− 1

)
. (7)

From [13, Theorem C.3], it follows that

Q(z; 1, t)− 1 =
E(z)− E(zt)

E(zt)− tE(z)
. (8)

From (8) and (7), we obtain

Q(1; s, t)− 1 =
E(s)− E(t)

sE(t)− tE(s)
.

Set s = ρ̄λ̄G+ ρ̄+ λ̄ and t = ρλG+ ρ+ λ henceforth. By Theorem 1, we have

G = Q(1; s, t)− 1,

which in turn implies (1+ρ̄G)(1+λ̄G) = 1+Gs = s(Q(1; s, t)−1)+1 and (1+ρG)(1+λG) =
1 +Gt = t(Q(1; s, t)− 1) + 1. Thus we obtain

(1 + ρ̄G)(1 + λ̄G)

(1 + ρG)(1 + λG)
=
s E(s)−E(t)
sE(t)−tE(s)

+ 1

t E(s)−E(t)
sE(t)−tE(s)

+ 1
=
E(s)

E(t)
. (9)

This establishes the claim.

While the equality in Theorem 3 is less transparent than Theorem 1, it immediately
allows us to establish a result present in unpublished work of Gessel, and then proved in
[8] and [4]. We call a labeled binary tree on n nodes standard if the labels are all distinct
and drawn from [n]. Note that a standard labeled binary trees is necessarily Smirnov.
Gessel considered the following generating function that tracks the distributions of ascents
and descents over standard labeled binary trees:

B := B(ρ̄, ρ, λ̄, λ) =
∑
n>1

∑
T standard

ρ̄rasc(T )ρrdes(T )λ̄lasc(T )λldes(T )x
n

n!
. (10)

Consider the homomorphism ex from the ring of symmetric functions to Q[[x]] defined by
setting ex(en) = xn

n!
for n ∈ N. A key property of ex is the following. Given a symmetric

function f , we have [x1 · · ·xn]f = [x
n

n!
]ex(f). It follows that ex(G) = B, and we obtain

the following corollary.

Corollary 10.
(1 + ρ̄B)(1 + λ̄B)

(1 + ρB)(1 + λB)
= e((λ̄ρ̄−λρ)B+ρ̄+λ̄−ρ−λ)x.
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4 The gory details

The crucial ingredient of the proof of Theorem 1 is the map

Φ: {(T, S, b) ∈ T × (T ∪ {D,U})× N : a(T ) 6= b} −→ T ,

which we define as follows. Take a Smirnov tree T ; S, which is either a Smirnov tree,
a down step D or an up step U ; and an integer b that is different from the label of the
principal node of T . Write α = α(T ), a = a(T ), P = P(T ), M = M(T ), and m = m(T ).
By definition, a 6= b, and α has no right child. If S ∈ T , let c be the label of its root. If
a < b (resp. a > b), let δ be the last node on P with label > b (resp. 6 b), and let d be
its label. If there are no such nodes on P , δ and d are undefined. For example, if T is the
tree from Figure 1 and b = 2, then d = 1, and if b = 5, d is undefined. Note that saying,
for example, M < b is equivalent to saying that all the labels on the principal path of the
tree are smaller than b, and M > b means that at least one label on the principal path is
at least b.

a

b

c

a a a

c

b

d

a

d

a

b

c

b

a a

b

b

c

b

a a

b

c

b

1a–1c 2a–2d

3a–3d 4a–4b 5a–5b

Figure 4: The map Φ.

The map Φ is illustrated in Figure 4, and the formal definition is as follows.

1. If

(1a) S = D or

(1b) S ∈ T c & a, c < b or

(1c) S ∈ T c & a, c > b,
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then Φ(T, S, b) is the tree we obtain if we add a right child β with label b to α. If
S = D, β has no children, and if S ∈ T c, β has S as its left subtree.

2. If

(2a) S = U & a,M < b or

(2b) S = U & a,m > b or

(2c) S ∈ T c & a,M < b 6 c or

(2d) S ∈ T c & a,m > b > c,

then Φ(T, S, b) is the tree we obtain if we add a new root β with label b, and make
T its left subtree. If S ∈ T c, we make S the right subtree of α.

3. If

(3a) S = U & a < b 6M & d > b or

(3b) S = U & a > b > m & d < b or

(3c) S ∈ T c & a < b 6 c,M & d > b or

(3d) S ∈ T c & a > b > c,m & d < b,

then Φ(T, S, b) is the tree we obtain if we replace the right subtree of δ with a new
node β with label b; β has no right child, and its left subtree is the previous right
subtree of δ. Furthermore, if S ∈ T c, we make S the right subtree of α.

4. If

(4a) S = U & a < b 6M & d = b or

(4b) S ∈ T c & a < b 6 c,M & d = b,

then Φ(T, S, b) is the tree we obtain if we replace the left subtree of δ with a new
node β with label b; β has no right child, and its left subtree is the previous left
subtree of δ. Furthermore, if S ∈ T c, we make S the right subtree of α.

5. If

(5a) S = U & a > b > m & d = b or

(5b) S ∈ T c & a > b > c,m & d = b,

then Φ(T, S, b) is the tree we obtain if we replace the left subtree of δ with its right
subtree, and its right subtree with a new node β with label b; β has no right child,
and its left subtree is the previous left subtree of δ. Furthermore, if S ∈ T c, we
make S the right subtree of α.

Remark 11. Let us emphasize that while the map is complicated, there is not much
freedom if we want to preserve weights and Smirnovness, and if we want the new principal
path to end in the node with the newly added label.
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Let us illustrate the simplest rule, rule 1. See Figure 5. We take the same tree T for
all four examples, with the principal node α = α(T ) being the left child of the right child
of the root, and a = a(T ) = 3 (again, the principal node is gray). By definition, b cannot
equal 3. If S = D, we simply add a right child to α, with label b. The weight of T is
multiplied by xb and, if a < b (resp. a > b), by λ̄ (resp. λ); the edge that contributes
this weight is red. The situation is similar if S is a tree with root label c, and b is either
larger or smaller than both a and c. In that case, add a right child with label b to α, and
this right child has S as its left subtree (light gray). The weight of T is multiplied by xb,
wt(S), and λ̄ ρ̄ (resp. λ ρ) if a < b (resp. a > b); the edges that contribute these weights
are red. Note that in all three cases, the principal path is extended by one right step, and
a(Φ(T, S, b)) = b.

T S a b c d M m rule Φ(T, S, b) T S a b c d M m rule Φ(T, S, b)

2

4

1

3

3 1

D 3 4 1a

2

4

1

3

3

4

1

2

4

1

3

3 1

D 3 2 1a

2

4

1

3

3

2

1

2

4

1

3

3 1

2

2 1

3 4 2 1b

2

4

1

3

3

4

2

2 1

1

2

4

1

3

3 1

3

2 1
3 2 3 1c

2

4

1

3

3

2

3

2 1

1

Figure 5: An illustration of rule 1.

Let us present examples of rule 2, which is the only case when we produce a new root.
See Figure 6. Again, we can take T to be the same tree throughout. If S = U , and either
a < b and b is larger than all labels on the principal path (i.e. M < b), or a > b and b is
smaller than all the labels on the principal path (i.e. m > b), create a new root with label
b, with no right child, and with the entire T as its left subtree. The subcases 2c and 2d
are similar. We have a tree S with root label c, and either a,M < b 6 c or a,m > b > c.
In addition to the new root, we attach the tree S as the right subtree of α. The new
root multiplies the weight of the tree by xb, and if S is a tree, the weight is multiplied by
wt(S). Furthermore, the edge to the new root adds λ̄ if a > b and λ if a < b; if S is a
tree, the edge between α and its new right child adds the weight ρ̄ if a > b and ρ if a < b.

For rule 3, let us take a slightly larger example; note that the T ’s Figure 7 differ only
in the root label. Unlike in rule 2, there is a label on the principal path that is > b if
a < b and 6 b if a > b. Recall that δ is the last node on the principal path with that
property (the root in all our four examples), with label d. The crucial assumption now
is that d 6= b. If S is a tree, its root label must be > b if a < b and 6 b if a > b (since
otherwise we would use rule 1). Now break up the tree: add a new node β as the right
child of δ. The new node has no right child, and its left subtree is the old right subtree
of δ. Again, if S is a tree, add it as the right subtree of α.
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T S a b c d M m rule Φ(T, S, b) T S a b c d M m rule Φ(T, S, b)

2

4

1

3

3 1

U 3 4 3 2a

4

2

4

1

3

3 1

2

4

1

3

3 1

U 3 1 2 2b

1

2

4

1

3

3 1

2

4

1

3

3 1

4

2 1
3 4 4 3 2c

4

2

4

1

3

3

4

2 1

1

2

4

1

3

3 1

1

2 1
3 1 1 2 2d

1

2

4

1

3

3

1

2 1

1

Figure 6: An illustration of rule 2.

T S a b c d M m rule Φ(T, S, b) T S a b c d M m rule Φ(T, S, b)

6

4

1

3

5

2

4

4 2

U 4 5 6 6 3a

6

4

1

5

3

5

2

4

4 2

1

4

1

3

5

2

4

4 2

U 4 2 1 1 3b

1

4

1

2

3

5

2

4

4 2

6

4

1

3

5

2

4

4 2

5

2 1

4 5 5 6 6 3c

6

4

1

5

3

5

2

4

4

5

2 1

2

1

4

1

3

5

2

4

4 2

2

2 1
4 2 2 1 1 3d

1

4

1

2

3

5

2

4

4

2

2 1

2

Figure 7: An illustration of rule 3.

Rules 4 and 5 deal with the case when d = b. Now δ becomes a node with the same
label as one of its children: left if a < b and right if a > b. If a > b, the subtrees of δ are
flipped (and we also insert β and S).

As an example of the use of Ψ, consider the Smirnov word w = 42534242 ∈ W8 and
the sequence

S =

 1 , D, 2 , D,D, U,

2

2 1

 ∈ (T ∪ {D,U})7 . (11)

Then successive applications of Φ are depicted in Figure 9. The last tree obtained is T
from the example for rule (5b), and S = S7 and b = w8 also match that example, so
Ψ(w,S) is the Smirnov tree in Figure 10.

Proof of Theorem 6. We are given a Smirnov tree T ; write α = α(T ), a = a(T ), M =
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T S a b c d M m rule Φ(T, S, b) T S a b c d M m rule Φ(T, S, b)
5

4

1

3

5

2

4

4 2

U 4 5 5 5 4a

5

5

4

1

3

5

2

4

4 2

2

4

1

3

5

2

4

4 2

U 4 2 2 2 5a

2

3

5

2

4

4 2

2

4

1

5

4

1

3

5

2

4

4 2

5

2 1
4 5 5 5 5 4b

5

5

4

1

3

5

2

4

4

5

2 1

2

2

4

1

3

5

2

4

4 2

2

2 1
4 2 2 2 2 5b

2

3

5

2

4

4

2

2 1

2

2

4

1

Figure 8: An illustration of rules 4 and 5.

4
1 , 2−−→
2d

2

4

1

D, 5−−→
1a

2

4

1

5
2 , 3−−→
3d

2

4

1

3

5

2

D, 4−−→
1a

2

4

1

3

5

2

4

D, 2−−→
1a

2

4

1

3

5

2

4

2

U, 4−−→
4a

2

4

1

3

5

2

4

4 2

Figure 9: Φ applied to a certain element of X .

M(T ), and m = m(T ). We also have S ∈ T ∪ {D,U} and b 6= a. We prove that for every
appropriate choice of T, S, b, exactly one of the rules applies and the result is a Smirnov
tree T ′ with a(T ′) = b and weight wt(T ′) = wt(T, S, b).
The first case is when S = D. In that case, rule (1a) applies. Since a 6= b and the principal
node α has no right child by definition, we can give it a right child β with label b. This
creates a new right edge in the tree; if a < b, then its weight is ρ̄, and if a > b, then its
weight is ρ. In both cases, the weight of the new tree, which is clearly Smirnov, equals the
weight of (T, S, b), which is ρ̄wt(T )xb or ρwt(T )xb, depending on whether a < b or a > b.
It is also clear that the principal path is the same as before with an added right step at
the end. So the new principal node has label b, as claimed. Note that in case (1a), the
new principal node has no children, and its left parent has a different label. (Statements
in italics will be crucial in the construction of the inverse of Φ.)

2

3

5

2

4

4

2

2 1

2

2

4

1

Figure 10: The Smirnov tree corresponding to w = 42534242 and S as in (11).

the electronic journal of combinatorics 26(3) (2019), #P3.22 17



Now assume that S = U and a < b. The principal path contains a node with label < b,
and either M , the maximum of all labels on the principal path, is < b, or it is > b. The
first case gives rule (2a). Indeed, since M < b, the root label is also < b. When we add a
new root β with label b and make T its left subtree, we create a new edge with weight λ̄,
so the weight changes as claimed. The new tree is also obviously Smirnov. The principal
path contains only the root, and the new principal node again has label b. Note that in
case (2a), the root of the new tree is the principal node with a left child, and all the labels
on the principal path of its left subtree are smaller than the root label.
The next case is when S = U , a < b, and M > b. On the principal path, there is at
least one node with label at least b. Let δ be the last node on the principal path with
that property, and let d > b be its label. The children of δ must have a label different
from d (otherwise, the node after δ on the principal path is its child with the same label,
and therefore δ is not the last node on the principal path with label > b). That means
that the principal path goes right from δ. Again, we have two options, d > b and d = b.
The first case gives rule (3a). Since d 6= b, we can replace the right child of δ with a new
node β with label b, and make the old right subtree of δ the left subtree of the new node
(which has no right child). Since d > b, the edge between δ and its new right child has
label ρ; since all the labels on the principal path of the right subtree of δ in T are < b by
the selection of δ, the old edge between δ and its right child had weight ρ, and the new
edge between β and its left child has label λ̄. In other words, the weight of the new tree
is the previous weight times λ̄ xb, as required. Also, the new principal path again ends
at β, which has label b. Note that in case (3a), the new principal node is a right child
whose parent has a larger label, and all the labels on the principal path of its (nonempty)
left subtree are smaller.
The other option is that S = U , a < b, M > b, and d = b. This gives rule (4a): we insert
a new node β with label b on the edge between δ and its left child (if δ has no left child,
we just add a left child with label b). Since the right child of δ has label < b, and the left
child of δ has label 6= d, the new tree is Smirnov. We added an edge between β and δ,
which has, since both have labels b, weight λ̄. The new principal path now goes to the
left after δ, and stops there. The label of the new principal node is b. Note that in case
(4a), the new principal node is a left child, and its label is larger than all the labels on the
principal path of its parent’s (nonempty) right subtree.
This completes the analysis of the case S = U , a < b. The analysis for S = U , a > b is
similar (the major difference being in the case d = b) and we will provide fewer details.
The principal path contains a node with label > b, and m, the minimum of all labels on
the principal path, can be > b or 6 b. The first case gives rule (2b): add a new root, and
make T its left subtree. The new edge has label λ, so the weight changes as required.
Note that in case (2b), the root is the principal node, and all the labels on the principal
path of its (nonempty) left subtree are larger than the root label.
If S = U , a > b, and m 6 b. On the principal path, there is at least one node with label
at most b. Let δ be the last node on the principal path with that property, and let d 6 b
be its label. Again, the children of δ must have a label different from d, and that means
that the principal path goes right from δ. Again, we have two options, d < b and d = b.
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The first case gives rule (3b). Replace the right child of δ with a new node β with label b,
and make the old right subtree of δ the left subtree of the new node (which has no right
child). The new tree is Smirnov and its weight is the previous weight times λxb. The
new principal path again ends at β, which has label b. Note that in case (3b), the new
principal node is a right child whose parent has a smaller label, and all the labels on the
principal path of its (nonempty) left subtree are larger.
On the other hand, if S = U , a > b, m 6 b, and d = b, we have rule (5a). We insert
a new node β with label b as a right child of δ (not left child as in case (4a)!), make its
left subtree the old left subtree of δ, and make the old right subtree of δ its left subtree.
Since the root of the old right subtree of δ has label > b, this is still a Smirnov tree.
The difference in weights comes from the edge between δ and its new left child, which
has weight λ, and, as always, from the new node β. The new principal path ends at β.
Note that in case (5a), the new principal node is a right child, and its label is the same
as its parent’s label and smaller than all the labels on the principal path of its parent’s
(nonempty) left subtree. The new principal node might have no children (if δ had no left
child in T ).
This leaves us with the case when S is a tree with, say, root label c. The analysis is
similar and we will be brief.
The first case is when c is “on the same side” of b as a, i.e. if a, c < b (use (1b)) or a, c > b
(use (1c)). Apart from adding the new node β as the right child of α, we also add the tree
S as the left subtree of β. If a < b, the new edges have weights ρ̄ and λ̄, and if a > b, the
weights are ρ and λ. Of course, we also added the tree S, which contributes wt(S) to the
weight of the new tree. Thus in both cases, the weight of the new tree equals wt(T, S, b),
and the new principal node is β. Note that in case (1b), the new principal node is a right
child and has a left child, and its label is larger than the labels of its parent and its left
child. In case 1c, the new principal node is a right child and has a left child, and its label
is smaller than the labels of its parent and its left child.
Otherwise, c is “on the other side” of b as a: we have either a < b 6 c or a > b > c. Let
us assume that a < b 6 c. Again, we look at the labels on the principal path of T . If they
are all smaller than b, we have case (2c). Apart from adding the new root and making
T its left subtree, we also add S as the right subtree of α. The new edges have weights
λ̄ (since the principal label is < b) and ρ̄ (since a < c), which ensures that the weight of
the new tree is wt(T, S, b). Note that in case (2c), the root is the principal node, its label
is larger than the label of its left child, but there is a node on the principal path of its left
subtree (the root of S!) that has a label at least as large.
We can also have nodes on the principal path that have labels > b. Again, let δ be the
last such node, and let d > b be its label (different from the nodes of δ’s children). If
d > b, we have rule (3c): do the same as in case (3a), but also add the tree S as the
right subtree of α. In case (3c), the new principal node is a right child whose parent has
a larger label, the left child has a smaller label, and there is a node on the principal path
of its left subtree with a label that is at least as large.
If, however, d = b, we are in case (4b), which is similar to (4a). In case (4b), the new
principal node is a left child and its label is larger than the label of its parent’s right child,
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but there is a label on the principal path of its parent’s right subtree with a label that is at
least as large.
This leaves us with the analysis of the cases when S ∈ T c and a > b > c. If m > b, we
have case (2d), which has the same construction as (2c), but new edge weights λ and ρ
instead of λ̄ and ρ̄. Of course, this is consistent with the requirement that a > b, S ∈ T
adds weight λ ρw(S)xb. In case (2d), the root is the principal node, its label is smaller
than the label of its left child, but there is a node on the principal path of its left subtree
that has a label at most as large.
If m 6 b and d < b, we have case (3d). Again, do the same thing as in case (3c). Note
that in case (3d), the new principal node is a right child whose parent has a smaller label,
the left child has a larger label, and there is a node on the principal path of its left subtree
with a label that is at most as large.
Finally, consider the case m 6 b, d = b, which is rule (5b). The situation is similar as in
(5a), except that we add the tree S as the right child of α. In case (5b), the new principal
node is a right child, its label is the same as its parent’s label and smaller than the label of
its parent’s left child, but there is a label on the principal path of its parent’s left subtree
with a label that is at most as large. The new principal node might not have children.
This concludes the proof that Φ is a well-defined weight-preserving map. The proof is
finished if we construct the inverse. The detailed analysis of the previous paragraphs
makes that easy.
We are given a tree T ′ with at least two nodes, and we want to see that there is a unique
triple (T, S, b) with Φ(T, S, b) = T ′. Clearly, b must be a(T ′); denote α(T ′) by β.
As the principal node, β cannot have a right child. Let us first assume that it has no
parent, i.e. that it is the root of T ′. Since T ′ is not a single node, it must have a nonempty
left subtree T . We obtain T ′ by applying one of the two rules to T or to T with a subtree
removed. More precisely, if all the labels on the principal path of the left subtree of
the root are smaller (resp. larger) than b, then T ′ = Φ(T, U, b) is the result of rule (2a)
(resp. (2b)). If, however, the left child of the root has a label that is smaller (resp. larger)
than b, but there is a node on the principal path of T whose label is > b (resp. 6 b),
denote the first such node γ. Then we obtain T by applying rule (2c) (resp. (2d)) to
(T \ S, S, b), where S is the subtree of T with root γ.
Now assume that β is not a root. The first case is that it is a left child. By construction
of the principal path and the fact that T ′ is Smirnov, that must mean that its parent’s
label is also b, and that the parent has a right child with a smaller label. If all the labels
on the principal path of β’s parent’s right subtree are smaller than b, we obtain T ′ by
applying rule (4a) to (T, U, b), where T is obtained from T by deleting the node β (if β
has a left subtree, simply make this subtree β’s parent’s left subtree). If, on the other
hand, γ is the first node on the principal path of β’s parent’s right subtree with label > b
and S is the subtree of T ′ with root γ, then T ′ = Φ(T \ S, S, b).
The last (and most common, as the principal path prefers the right direction) case is
when β is the right child. The first case is when its parent’s label is also b. That must
necessarily mean that β’s parent has a left child with label > b. If all the labels on the
principal path of β’s parent’s left subtree are > b, we obtain T ′ as an application of rule
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(5a) to (T, U, b), where T is the tree we obtain if we remove β and swap the resulting left
and right trees of β’s parent. Otherwise, T ′ results by using rule (5b).
Now we can assume that β is the right child, and its parent has a different label. If β
has no children, we can produce it by using rule (1a) on (T ′ \ {β}, D, b). If β has a left
child, it will necessarily have a different label. If the labels of β’s parent and child are
both smaller than b, T ′ is obtained by rule (1b), and if they are both larger than b, by
rule (1c).
That leaves us with the case when one of the labels is larger and the other one is smaller.
If the parent’s label is larger (resp. smaller) and all the labels on the principal path of
β’s left subtree are smaller (resp. larger), we applied rule (3a) (resp. (3b)) to get T ′.
If, however, the parent’s label is larger (resp. smaller), the left child’s label is smaller
(resp. larger), but there is a node on the principal path of β’s child whose label is at least
b (resp. at most b), we applied rule (3c) (resp. (3d)). This completes the construction of
the inverse, and the proof of the theorem.

A suggested exercise for the reader is to take the tree drawn just before the proof and
reproduce the word w and the sequence S.

5 Final remarks

1. As mentioned in the introduction, Smirnov words can be interpreted as proper
colorings of path graphs. Smirnov trees, on the other hand, are a labeled tree-
analogue of Smirnov words. This raises the natural question of constructing labeled
(binary) tree analogues for graphs other than path graphs, and see if one can define
ascent-descent statistics on these tree analogues that relate to the Shareshian-Wachs
chromatic quasisymmetric function. Another potential avenue is to consider the
directed or cyclic analogue of the aforementioned question given the recent work of
Ellzey-Wachs [5] and Panova-Alexandersson [10].

2. As established in Subsection 3.3, the exponential specialization of G tracks ascents-
descents in standard labeled binary trees. In particular, this implies the equalto
preserveities

[x1 . . . xn]G(1, 1, 1, 1) = n!× Catn,

[x1 . . . xn]G(1, 1, 1, 0) = (n+ 1)n−1,

where Catn denotes the nth Catalan number. It is unclear to us how one could derive
these equalities starting from our e-positive expansion for G in terms of weights of
bleeding trees.

3. The h-positivity of ωG (here ω is the standard involution on the algebra of symmetric
functions) raises the question of constructing a natural permutation representation
that realizes ωG as its Frobenius characteristic. Stanley [15, Proposition 7.7], using
a recurrence due to Procesi [12], established that ωG(ρ̄, ρ, 0, 0) can be realized as the
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generating function of the Frobenius characteristic of the representation of Sn on the
cohomology of the toric variety associated with the Coxeter complex of type An−1.
Stembridge [18] also constructed a symmetric group representation which realizes
ωG(ρ̄, ρ, 0, 0) as the Frobenius characteristic via a bijection from permutations to
what he calls codes. It would be interesting to generalize these results to Smirnov
trees.

The following are the characters that such permutation representations would have.
For example, there are 288 standard trees on five nodes that have weight ρ̄2λ̄λ (i.e.,
that have two right ascents, one left ascent and one left descent). According to line
7 of the last table, 94 of them should be fixed under the action of a transposition,
8 under the action of a 4-cycle etc.

111 21 3
ρ̄2, ρ2, λ̄2, λ2 1 1 1
ρ̄ρ, ρ̄λ, ρλ̄, λ̄λ 4 2 1

ρ̄λ̄, ρλ 5 3 2

1111 211 22 31 4
ρ̄3, ρ3, λ̄3, λ3 1 1 1 1 1

ρ̄2ρ, ρ̄2λ, ρ̄ρ2, ρ̄λ2, ρ2λ̄, ρλ̄2, λ̄2λ, λ̄λ2 11 5 3 2 1
ρ̄2λ̄, ρ̄λ̄2, ρ2λ, ρλ2 17 9 5 5 3
ρ̄ρλ̄, ρ̄ρλ, ρ̄λ̄λ, ρλ̄λ 44 16 8 5 2

11111 2111 221 311 32 41 5
ρ̄4, ρ4, λ̄4, λ4 1 1 1 1 1 1 1

ρ̄3ρ, ρ̄3λ, ρ̄ρ3, ρ̄λ3, ρ3λ̄, ρλ̄3, λ̄3λ, λ̄λ3 26 12 6 5 3 2 1
ρ̄3λ̄, ρ̄λ̄3, ρ3λ, ρλ3 49 25 13 13 7 7 4

ρ̄2ρ2, ρ̄2λ2, ρ2λ̄2, λ̄2λ2 66 22 10 6 4 2 1
ρ̄2λ̄2, ρ2λ2 146 60 26 26 12 12 6

ρ̄2ρλ, ρ̄ρ2λ̄, ρ̄λ̄λ2, ρλ̄2λ 237 73 29 18 10 5 2
ρ̄2ρλ̄, ρ̄2λ̄λ, ρ̄ρ2λ, ρ̄ρλ̄2, ρ̄ρλ2, ρ̄λ̄2λ, ρ2λ̄λ, ρλ̄λ2 288 94 36 27 13 8 3

ρ̄ρλ̄λ 824 228 80 50 24 12 4
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