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Abstract

Given the adjacency matrix of an undirected graph, we define a coupling of the
spectral measures at the vertices, whose moments count the rooted closed paths in
the graph. The resulting joint spectral measure verifies numerous interesting prop-
erties that allow to recover minors of analytic functions of the adjacency matrix from
its generalized moments. We prove an extension of Obata’s Central Limit Theo-
rem in growing star-graphs to the multivariate case and discuss some combinatorial
properties using Viennot’s heaps of pieces point of view.

Mathematics Subject Classifications: 05C50,05C83

Keywords: graph; excursions; Slater determinant; cumulants; heaps of pieces

1 Introduction

A powerful tool to study the spectral properties of the adjacency matrix A of a graph G is
given by the concept of spectral measure at a vertex, which encapsulates some information
on the graph as seen from a particular vertex. This probability measure is fundamental
in the study of the asymptotic spectrum distribution of random matrices [1, 2] and is
related to the Benjamini-Schramm convergence of random rooted graphs [3]. In quantum
mechanics, it is associated to quantum measurements with the adjacency matrix of the
graph as the observable [4, 5].

The spectral measure at a vertex allows to define a random variable with values in
the spectrum of A and whose moments have simple combinatorial interpretations in term
of closed paths. While it can be defined for every vertex of the graph, no multivariate
extension have been proposed in the literature to our knowledge. This could be explained
by the current lack of interpretation of a joint distribution in quantum mechanics, where
Positive Operator Valued Measures [6] prevail as the most natural way to deal with the
spectral measures simultaneously. In this paper, we address the question of looking for a
natural coupling of these random variables. We introduce a joint spectral distribution in
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the form of a quasi-probability, that is, a signed measure with total mass 1. This results in
a quasi-random permutation X of the spectrum of the adjacency matrix A which verifies
numerous interesting properties. In particular, the minors of Ak, k ∈ N can be expressed as
generalized moments of X. Moreover, if the graph has no self-loop, the covariance matrix
under the joint spectral measure is the Laplacian of the graph. We show this formalism to
be compatible with the interpretation of the wave function of a multi-fermionic system as
Slater determinants [7], which appear naturally when calculating multivariate marginal
distributions of the joint spectral measure, up to permutations.

Limit theorems on the spectral measures have been investigated for several types of
growing graphs such as star graphs [8] or comb graphs [9]. We extend Obata’s result on
star graphs to the multivariate case by considering the joint spectral measure in a graph
obtained by merging a subset of vertices in n copies of a graph, and letting n tend to
infinity. We show that, as in the univariate case, the limit only depends on the immediate
neighborhood of the subset of vertices in the remaining part of the graph.

We explore some combinatorial properties that emerge from the joint distribution of
a subset of the quasi-random variables in term of paths on the graph. Precisely, we show
that the moment generating function of the quasi-random variables enumerates particular
objects which can be described in terms of excursions on the graph, using Viennot’s heaps
of pieces point of view [10].

The paper is organized as follows. In the first section, we introduce the joint dis-
tribution and derive some properties related to its generalized moments. We prove the
multivariate extension of Obata’s Central Limit Theorem on star graphs in Section 3.
Then, we discuss a combinatorial aspect in relation with heaps of cycles and excursions
on the graph. Finally, technical proofs of some of the results are presented in the Ap-
pendix.

2 The joint spectral measure

Let A =
(
aij
)
i,j=1,...,N

be a symmetric matrix with real coefficients. The local spectral

measure of A at i ∈ {1, . . . , N} is defined as the unique real measure µi with moments∫
R
xkdµi(x) =

(
Ak
)
ii
k = 0, 1, 2, . . .

Recall that, because A is symmetric, its eigenvalues λ1, . . . , λN are real and there exists
an eigendecomposition A = PΛP> with Λ = Diag(λ1, . . . , λn) a diagonal matrix and
P = (pij)i,j=1,...,n an orthogonal matrix. Without loss of generality, we will always assume
det(P ) = 1, and λ1 6 λ2 6 · · · 6 λn. One verifies easily that µi is the probability measure

µi =
n∑
k=1

p2ikδλk ,

where δλk is the Dirac measure at λk. This measure has a combinatorial interpretation
when A is the adjacency matrix of a graph, in which case the k-th moment of µi counts
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the number of walks of length k from i to itself on the graph. In this context, µi is called
the spectral measure at root (or vertex) i. This can be generalized to any symmetric
matrix viewing A as the weighted adjacency matrix of a graph (possibly the complete
graph). Then, the k-th moment of µi is equal to the sum of the weights of all walks of
length k from i to itself, where the weight of a walk is the product of the entries of A over
the edges that compose it.

In this paper, we define a joint spectral measure on RN whose marginal distributions
are the univariate spectral measures µ1, . . . , µN . Let SN be the set of permutations on
{1, . . . , N} and π the signed measure on SN with density (with respect to the counting
measure)

π(σ) = ε(σ)
N∏
j=1

pjσ(j) σ ∈ SN

where ε(.) denotes the signature. Alternatively, π(σ) = det(P �Mσ) where Mσ is the
permutation matrix associated to σ and � is the Hadamard product. Remark that π is a
quasi-probability distribution, i.e. a signed-measure with total mass 1, in view of

∑
σ∈SN

π(σ) =
∑
σ∈SN

ε(σ)
N∏
j=1

pjσ(j) = det(P ) = 1.

Throughout the paper, λ = (λ1, . . . , λN) designates the vector of eigenvalues of A (which
may contain multiple occurrences). For σ ∈ SN , we define λσ :=

(
λσ(1), . . . , λσ(N)

)
the

associated vector of permuted eigenvalues.

Definition 1. The joint spectral measure µ of A is the push-forward measure of π by the
application σ 7→ λσ. In particular, µ has support {λσ : σ ∈ SN} and density

µ
(
λσ
)

=
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

pjτ(j) σ ∈ SN .

If all eigenvalues λi are distinct, then simply µ
(
λσ
)

= π(σ) = ε(σ)
∏N

j=1 pjσ(j). The
definition is more general to account for multiple eigenvalues.

Although the definition involves the transformation matrix P , the joint spectral mea-
sure µ actually does not depend on the choice of the eigendecomposition. Precisely, if
A has some multiple eigenvalues and A = PΛP> = QΛQ> are two eigendecompositions
with det(P ) = det(Q) = 1, then

∀σ ∈ SN
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

pjτ(j) =
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

qjτ(j).

For a direct combinatorial proof of this statement see Section 4.1 in the Appendix. Al-
ternatively, it suffices to show that the generalized moments:

∀k1, . . . , kN ∈ N m[k1, . . . , kN ] :=

∫
RN
xk11 . . . xkNN dµ(x1, . . . , xN)
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do not depend on the eigendecomposition (µ is characterized by its generalized mo-
ments as a signed measure on RN with finite support). In fact, the generalized mo-
ments m[k1, . . . , kN ] have a rather simple expression, as we show in Lemma 2 below.
Let A[k1, . . . , kN ] denote the matrix whose i-th column is the i-th column of Aki for
i = 1, . . . , N (with the convention A0 = I, the identity matrix).

Lemma 2. For all k1, . . . , kN > 0, m[k1, . . . , kN ] = det
(
A[k1, . . . , kN ]

)
.

Proof. By definition,

m[k1, . . . , kN ] =
∑
σ∈SN

λk1σ(1) . . . λ
kN
σ(N)µ

(
λσ
)

=
∑
σ∈SN

ε(σ)
N∏
i=1

piσ(i)λ
ki
σ(i).

Since AkP = PΛk for all k = 0, 1, . . ., it follows that
(
AkP

)
ij

= pijλ
k
j for all i, j = 1, . . . , N

and k > 0. Hence,

m[k1, . . . , kN ] =
∑
σ∈SN

ε(σ)
N∏
i=1

(
AkiP

)
iσ(i)

= det
(
A[k1, . . . , kN ]P

)
= det

(
A[k1, . . . , kN ]

)
.

For ease of readability, we shall still use the standard notations for probability measures
such as the probability P(.) of an event or the expectation E(.) defined similarly by
integrating against µ. To this aim, we introduce a quasi-random vector X = (X1, . . . , Xn)
with distribution µ, denoting e.g. E

(
f(X)

)
=
∫
RN f(x)dµ(x) for any integrable function

f : RN → R. Quasi-random variables are common in quantum probability where they
have a physical interpretation, typically for Wigner phase-space representations [11].

Proposition 3. The marginal distributions of µ are the rooted spectral measures µ1, . . . ,
µN . In particular, if all eigenvalues λ1, . . . , λN are distinct,

P(Xi = λk) = p2ik ∀i, k = 1, . . . , N.

Proof. The i-th marginal distribution of µ is characterized by the moments E(Xk
i ) =

m[0, . . . , 0, k, 0, . . . , 0] for k = 1, 2, . . . placed at position i. By Lemma 2,

E
(
Xk
i

)
= det

(
A[0, . . . , 0, k, 0, . . . , 0]

)
= (Ak)ii,

ending the proof.

The explicit formula of the generalized moments provides a powerful tool to prove some
interesting properties of the joint spectral measure. For instance, expressing the (i, j)-
minor of Ak in function of the moments of Xi, Xj, we obtain

cov
(
Xk
i , X

k
j

)
:= E

(
Xk
i X

k
j )− E(Xk

i )E(Xk
j ) = −

(
Ak
)2
ij
i 6= j k ∈ N.

This shows in particular that Xk
i and Xk

j are always non-positively correlated for i 6= j.
When A is the adjacency matrix of an undirected graph G with aij ∈ {0, 1} for all
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i, j = 1, . . . , N , − cov
(
Xk
i , X

k
j

)
gives the squared number of walks of length k from i to

j. If we assume moreover that the graph contains no self-loop (i.e. A has zero diagonal),
we can verify by direct calculation that the covariance matrix of µ is the Laplacian of the
graph:

var(X) = E
(
XX>)− E(X)E(X)> = L,

where Lij = −aij for i 6= j and Lii is the degree of the vertex i in G.
Another straightforward consequence of Lemma 2 concerns the minors of A, which are

linked to the quasi-random variables Xi by the identity det
(
Auu

)
= E

( ∏
i∈uXi

)
, where u

is a subset of {1, . . . , N} and Auu the corresponding submatrix. The cycle decomposition
of the determinant shows a relation between the cumulants of Xi, i ∈ u and the simple
cycles with vertex set u. Consider the set P(u) of all the partitions of u, that is, all the
collections of subsets {π1, . . . , πk} with k > 1 such that πi ∩ πj = ∅ for all i 6= j and
∪kj=1πj = u. Let c(u) denote the sum of all simple cycles on G with vertex set u, we have
the well-known equality

det
(
− Auu

)
=

∑
(π1,...,πk)∈P(u)

(−1)kc(π1)× . . .× c(πk).

On the other hand, the multivariate first-order cumulants κ(πj) associated to the variables
Xi, i ∈ πj are defined in such a way that

E
( ∏

i∈u

Xi

)
=

∑
(π1,...,πk)∈P(u)

κ(π1)× . . .× κ(πk).

It follows that κ(u) = (−1)|u|−1c(u) where |u| is the size of u.
The identity equating a minor of A to a generalized moment can be extended to

any power Ak, k ∈ N, e.g. det
(
(Ak)uu

)
= E

(∏
i∈uX

k
i

)
, as another direct consequence

of Lemma 2. In fact, a similar result holds for any analytic transformations f(A) =∑
k>0 γkA

k.

Proposition 4. Let f : x 7→
∑

k>0 γkx
k be an analytic function with radius of convergence

ρ > max{|λj|, j = 1, . . . , N} and u ⊆ {1, . . . , N},

det
(
f(A)uu

)
= E

(∏
i∈u

f(Xi)

)
.

Proof. Assume without loss of generality that u = {1, . . . , p} with 1 6 p 6 N . By
multilinearity of the determinant

det
(
f(A)uu

)
= det

(∑
k>0

γk(A
k)uu

)
=

∑
k1,...,kp>0

γk1 . . . γkp det
(
A[k1, . . . , kp, 0, . . . , 0]

)
.

Using Lemma 2, we get

det
(
f(A)uu

)
= E

( ∑
k1,...,kp>0

γk1 . . . γkpX
k1
1 . . . Xkp

p

)
= E

(∏
i∈u

f(Xi)

)
,

ending the proof.
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The same equality holds for the trace tr
(
f(A)uu

)
= E

(∑
i∈u f(Xi)

)
although it only

pertains to the marginal distributions µi. This particular coupling somewhat allows to
obtain a similar property for the determinant. This shows moreover that the quasi-random
variables Xi, i ∈ u encapsulate the information on the spectrum of the submatrix f(A)uu,
for any analytic transformation of A. Specifically, the eigenvalues of f(A)uu are the roots
of the characteristic polynomial

z 7→ E
(∏

i∈u

(
z − f(Xi)

))
= det

(
zI − f(A)uu

)
.

Proposition 5. Assume that the eigenvalues λ1, . . . , λN of A are distinct. Let u, v be two
subsets of {1, . . . , N},

P
(
{Xi : i ∈ u} = {λj : j ∈ v}

)
= det

(
Puv
)2
,

where Puv is the submatrix of P with rows in u and columns in v (in any particular order).

Proof. Since the ordering of the eigenvalues λj is arbitrary, we may assume u = v without
loss of generality (note that the condition det(P ) = 1 is not an issue here as it can be
ensured without changing the order of the eigenvalues). We have

P
(
{Xi : i ∈ u} = {λj : j ∈ v}

)
=

∑
σ:σ(u)=u

ε(σ)
N∏
i=1

piσ(i),

where the sum runs over all permutations σ that stabilize u. Such permutations can
be associated with the pair (σu, σu) of permutations over u and u = {1, . . . , N} \ u
respectively, corresponding to the restrictions of σ to u and u. Noticing that ε(σ) =
ε(σu)ε(σu), we get

P
(
{Xi : i ∈ u} = {λj : j ∈ v}

)
=

∑
σu∈S(u)

ε(σu)
N∏
i∈u

piσu(i) ×
∑

σu∈S(u)

ε(σu)
N∏
i∈u

piσu(i),

where S(u) and S(u) are the sets of permutations over u and u. Thus,

P
(
{Xi : i ∈ u} = {λj : j ∈ u}

)
= det

(
Puu
)

det
(
Puu
)
.

We conclude by Jacobi’s Identity (see e.g. Equation (11) in [12]):

det
(
Puu
)

= det
(
Puu
)
/ det(P ).

This last result can also be shown directly, together with a stronger property giving
the multidimensional marginal distributions of µ, see Section 4.2 in the Appendix.

In quantum mechanics, the last expression corresponds (up to a normalization con-
stant) to the square of the wave function Ψu(λv) := det(Puv) known as Slater determinant
[7]. In this context, the coupling µ provides a non-local interpretation of the quantum
wave-function from a quasi-probability, where the square emerges naturally from marginal
distributions.
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3 A multivariate central limit theorem for star graphs

In this section, we generalize a result of Obata [8] on the asymptotic behavior of the
spectral measure in star graphs. Let us first recall the original result: let G be a rooted
graph (that is a graph given with a special vertex o called the root) with adjacency matrix
A, and G(n) the star product defined by taking n copies of G and merging all the roots.
Let µ

(n)
o be the spectral measure of G(n) at the root o and do the degree of o in G.

Theorem 6 (Theorem 3.7 [8]). The (normalized) spectral measure µ
(n)
o converges weakly

as n→∞ with
1√
n
µ(n)
o

( .√
n

)
−⇀
n→∞

1

2

(
δ−
√
do + δ√do

)
.

The proof relies on showing the convergence of moments via the Szëgo-Jacobi sequence
derived from the adjacency matrix of G(n). Obata’s result can be stated equivalently as
the convergence in distribution

X(n)

√
n

d−−−→
n→∞

B
√
d0,

where X(n) is a random variable with distribution µ
(n)
o and B is a Rademacher random

variable: P(B = 1) = P(B = −1) = 1/2. We show a multivariate version of this result,
where G(n) is the the graph obtained by merging the n copies of G at p > 1 vertices, say
u1, . . . , up. For simplicity and without loss of generality, we assume that u1, . . . , up are the
first p vertices of G. As a result, the adjacency matrix A(n) of G(n) contains p+ n(N − p)
rows and columns and can be decomposed by blocks as

A(n) =


Auu Auu . . . Auu
Auu Auu 0 0

... 0
. . . 0

Auu 0 0 Auu


where u = {u1, . . . , up} and u = {1, . . . , N} \ u. We consider the joint spectral measure

µ
(n)
u of the first p vertices in the graph G(n). For quasi-random variables, the convergence

in distribution signifies the weak convergence of the signed measures.

Theorem 7. Let X(n) =
(
X

(n)
1 , . . . , X

(n)
p

)
be a quasi-random vector with distribution µ

(n)
u ,(

X
(n)
1 , . . . , X

(n)
p

)
√
n

d−−−→
n→∞

(
B1

√
Y1, · · · , Bp

√
Yp
)
,

where Y = (Y1, . . . , Yp) is a quasi-random vector with distribution the joint spectral mea-
sure of D = AuuAuu and B1, . . . , Bp are iid Rademacher random variables, independant
of Y .
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Proof. Recall that the X(n) takes values in the permutations of the eigenvalues of A(n).
Let ‖.‖ and ‖.‖F denote respectively the Euclidean and Frobenius norms, we have

‖X(n)‖2 = ‖A(n)‖2F 6 n‖A‖2F . (1)

Thus, ‖X(n)‖/
√
n 6 ‖A‖F almost-surely. To prove the weak convergence, it now suffices

to prove the convergence of the moments

m(n)
u [k1, . . . , kp] := E

((
X

(n)
1√
n

)k1
. . .

(
X

(n)
p√
n

)kp)
=

1
√
n
k1+...+kp

det
(
A(n)[k1, . . . , kp, 0, . . . , 0]

)
where the last equality follows from Lemma 2. By Schur’s complement formula applied

to I − zA(n), the (u, u)-block of the resolvent satisfies

R(n)
u (z) :=

((
I − zA(n)

)−1)
uu

=
(
I − zAuu − nz2Auu

(
I − zAuu

)−1
Auu

)−1
.

R(n)
u

( z√
n

)
=

(
I − z√

n
Auu − z2Auu

(
I − z√

n
Auu

)−1
Auu

)−1
= I + z

(
A(n)

)
uu√

n
+ z2

(
A(n)2

)
uu√

n
2 + . . .

−−−→
n→∞

(
I − z2D

)−1
= I + z2D + z4D2 + . . .

where we recall D = AuuAuu. The sub-multiplicativity of the Frobenius norm combined

with Eq. (1) gives
∥∥(A(n)

)k
uu

∥∥
F
/
√
n
k 6 ‖A‖kF . Thus, the series has positive convergence

radius and by continuity of the determinant, we deduce

m(n)
u [k1, . . . , kp] −→

n→∞

{
det
(
D
[
k1/2, . . . , kp/2

])
if k1, . . . , kp are even,

0 otherwise.

For (z1, . . . , zp) in a sufficiently small neighborhood of 0, the moment generating function
verifies

E
( p∏

i=1

1

1− ziX(n)
i /
√
n

)
=

∞∑
k1,...,kp=0

zk11 . . . zkpp m(n)
u [k1, . . . , kp]

−→
n→∞

∞∑
k1,...,kp=0

z2k11 . . . z2kpp det
(
D[k1, . . . , kp]

)
= E

( p∏
i=1

1

1− z2i Yi

)
where Y = (Y1, . . . , Yp) is a quasi-random vector with distribution the joint spectral
measure of D. Finally, let B1, . . . , Bp be iid Rademacher variables independent of Y , we
have by Fubini’s theorem

E
( p∏

i=1

1

1− ziBi

√
Yi

)
= E

( p∏
i=1

[
1

2

1

1− zi
√
Yi

+
1

2

1

1 + zi
√
Yi

])
= E

( p∏
i=1

1

1− z2i Yi

)
.

Hence,
(
X

(n)
1 /
√
n, . . . , X

(n)
p /
√
n
)

converges in distribution towards (B1

√
Y1, . . . , Bp

√
Yp
)
.
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Remark that because D = AuuAuu is positive definite, Yi is always non-negative
almost-surely and

√
Yi is well-defined. The entry Duiuj gives the number of vertices

in u that are adjacent to both ui and uj. Obata’s result corresponds to the particular
case u = {o} where D is equal to the degree do of the root o in G and the associated joint
spectral measure is a Dirac mass at do.

4 Combinatorial properties

In this section, we investigate the combinatorial aspects of the joint spectral measure via
its relations with paths enumeration on a graph G. Thus, A is viewed here as the (possibly
weighted) adjacency matrix of an undirected graph G = (V,E) which may contain self-
loops, with vertex set V = {1, . . . , N} and edge set E. As usual when one is interested
in enumerating paths in G, the entries aij of A may be thought of as formal variables
whenever (i, j) is an edge and aij = 0 otherwise. A path of length n from i to j in G is a
succession of n contiguous edges w = aii1ai1i2 . . . ain−1j

. The length of a path w is denoted
by `(w). By convention, the null path 1 is a path of length 0 from one vertex to itself.

A simple cycle is a closed path in the graph that does not visit the same vertex twice
before its return to its starting vertex. When endowed with a specific partially commu-
tative rule, product of cycles form well studied algebraic objects originally introduced as
circuits by Cartier and Foata [13] later revisited as heaps of cycles by Viennot [10] or
hikes [14]. The free partially commutative monoid (or trace monoid) of hikes consists of
all finite products of simple cycles h = c1 . . . cn (some cycles may be repeated), allowing
to permute two consecutive cycles only if they have no vertex in common. For instance,
ab2 = bab = b2a if a and b are vertex disjoint in G but all three terms all different if a
and b share at least one vertex (and a 6= b). This somewhat peculiar structure is heavily
related to the spectral properties of the graph. In particular, letting H denote the set of
hikes in G, the zeta function of H (or characteristic function) is the determinant of the
resolvent R(z) = (I − zA)−1

ζ(z) :=
∑
h∈H

hz`(h) = det
(
R(z)

)
,

where `(h) is the length of h, that is the added length of all cycles composing h. Equiv-
alently, the (slightly modified) characteristic polynomial of A is the Mobiüs function of
H,

M(z) :=
1

ζ(z)
= det

(
I − zA

)
,

whose expression in terms of products of vertex-disjoint cycles is well known. Due to
the numerous similarities with their number theoretic counterparts, simple cycles have
been described as the prime elements in H. The representation of a hike as a product
of simple cycles is its prime decomposition, which is unique up to permuting consecutive
vertex-disjoint cycles [14]. We say that d ∈ H is a right divisor of a hike h if there exists
h′ ∈ H such that h = h′d.
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While all closed paths are hikes, the reverse is clearly not true. Viennot remarked
that closed paths can be characterized as hikes with a unique prime right divisor, called
pyramids in the context of heaps of pieces (see Proposition 7 in [10]). However, when
viewed as a hike, a closed path w loses the information of its starting point. In fact, the
vertices in the unique prime right divisor of w are the possible starting points of a closed
path. Thus, the number of closed paths that are associated with the same hike is equal
to the length of the unique right prime divisor. This observation gave rise to the so-called
hike von-Mangoldt function

Λ(h) :=

{
`(p) if h has p as its unique prime right divisor of h

0 otherwise,

whose associated generating function is given by the trace of the resolvent∑
h∈H

Λ(h)hz`(h) = tr
(
R(z)

)
= tr

(
I + zA+ z2A2 + · · ·

)
.

More details can be found in [14].

Definition 8. An excursion on a proper subset u of vertices in G is a path that starts
and ends in u but does not visit u in between. Formally, a path w = aii1ai1i2 . . . ain−1j

is
an excursion on u in G if i, j ∈ u and ik ∈ u,∀k = 1, . . . , n− 1.

Let Eij(u) denote the set of excursions from i to j on u in G and Eu(z) the matrix
generating function of the excursions on u. Since an excursion on u in G can be decom-
posed uniquely as the concatenation of an edge from u to u followed by a path (possibly
empty) in u and a edge from u to u, one verifies easily that

Eu(z) :=
( ∑
w∈Eij(u)

w z`(w)
)
i,j∈u

= zAuu + z2Auu
(
I − zAuu

)−1
Auu.

From this expression, it is apparent that I −Eu(z) is in fact the Schur complement of the
block I − zAuu in I − zA. Hence, excursions emerge naturally from submatrices of the

resolvent R(z) =
(
I − zA

)−1
by(

I − Eu(z)
)−1

=
(
R(z)

)
uu

=: Ru(z). (2)

The associated minor of the resolvent,

ru(z) := det
(
I − Eu(z)

)−1
= det

(
Ru(z)

)
is a generating function of a certain type a hikes, as we show in Proposition 9 below.
Minors of the resolvent can also be expressed as generalized moments of the joint spectral
measure. A direct application of Proposition 4 to f(x) = 1/(1− zx),

ru(z) = det
(
Ru(z)

)
= E

(∏
i∈u

1

1− zXi

)
,
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shows that ru(z) is the (homogenous) moment generating function of (Xi)i∈u. Remark
that the series ru(z) is not the hike zeta function in the induced subgraph G(u). The
latter is simply given by

ζu(z) := det
((
I − zAuu

)−1) 6= det
((
I − zA

)−1
uu

)
.

Proposition 9. The series ru(z) is the generating function of hikes whose right divisors
all intersect u.

Proof. Recall that I −Eu(z) is the Schur complement of the block I − zAuu in I − zA, in
particular

det
(
I − zA

)
= det

(
I − zAuu

)
det
(
I − Eu(z)

)
,

or equivalently ru(z) = ζ(z)/ζu(z). By Proposition 5 in [10], multiplication of ζ(z) by
the Mobiüs function on G(u) cancels out all hikes with at least one right prime divisor in
G(u).

The link between ru(z) and the excursions comes from the fact that a hike has all its
right divisors intersecting u if and only if it can be decomposed as a product of excursions
on u. Similarly, a closed path w starting from a vertex in u can be divided into a succession
of excursions that eventually returns to its starting point. For the next result, let `u(h)
denote the number of excursions on u that compose a hike h, or equivalently the number
of vertices in u visited by h, counted with multiplicity. We define the function

Λu(h) :=

{
`u(p) if h has p as its unique prime right divisor of h

0 otherwise
, h ∈ H,

generated by the trace of the (u, u)-block of the resolvent:
∑

h∈H Λu(h)hz`(h) = tr
(
Ru(z)

)
.

Proposition 10. We have

log
(
ru(z)

)
=
∑
h∈H

Λu(h)

`u(h)
hz`(h),

with the convention Λu(h)/`u(h) = 0 if `u(h) = 0.

Proof. From Eq. (2), log
(
ru(z)

)
= − log

(
det
(
I − Eu(z)

))
= tr

(
− log(I − Eu(z))

)
. By

a Taylor expansion of − log(1− x) at x = 0, we get

log
(
ru(z)

)
= tr

(
Eu(z) +

Eu(z)2

2
+
Eu(z)3

3
+ · · ·

)
.

We now identify each path in the series. The denominator `u(h) results from the diagonal
entries of Eu(z)k which enumerate the closed paths that can be written as a product of
k excursions on u. The numerator Λu(h) is due to the trace, which counts the number of
possible starting points of each path.
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Let us investigate the particular case u = {i}. An excursion on {i} is a closed paths
starting (and ending) at i that do not visit i in between. Since every closed paths from i
to i can be decomposed uniquely as a product of excursions on {i}, we verify easily the
relations

R{i}(z) =
∑
w:i→i

wz`(w) =
1

1− E{i}(z)
= 1 + E{i} + E2

{i} + · · ·

Remark that a hike whose right divisors all intersect {i} is a closed path, as two primes
having a common vertex do not commute. Hence, Proposition 10 is trivially true in this
case with

r{i}(z) = det
(
R{i}(z)

)
= R{i}(z).

Following [15], E{i}(z) corresponds to the B-transform associated to moment generating
function r{i}(z). Hence, the Boolean cumulants of Xi enumerate the excursions on {i}.

In the case u = {i}, Λ{i}(h) ∈ {0, 1} with the value 1 if and only if h is a closed path
starting from i. Thus, Proposition 10 yields

log
(
R{i}(z)

)
=
∑
h∈H

Λ{i}(h)

`{i}(h)
hz`(h) =

∑
w:i→i

1

`{i}(w)
wz`(w).

In other words, the logarithm of the i-th diagonal entry of the resolvent is the generating
series of closed paths starting from i, divided by their number of visits to i.

Appendix

4.1 Unicity of the joint spectral measure

We give a direct proof that, although its definition involves a basis matrix P , the joint
spectral measure µ does not depend on the choice of the eigendecomposition of A. We
start with the following lemma.

Lemma 11. Let C = (cij)i,j=1,...,N be a block diagonal matrix with entries one in each
block (and zero elsewhere) and B = (bij)i,j=1,...,N a block diagonal matrix with support
included in the support of C, i.e. such that cij = 0 ⇒ bij = 0. Then, for all matrix
M = (mij)i,j=1,...,N ,

(MB)� C = (M � C)B.

Proof. Note that bkjcij = bkjcik for all i, j, k = 1, . . . , N since the two sides of the equality
are non-zero only if i, j, k belong to the same block. Thus,

(
(MB)� C

)
ij

=
N∑
k=1

mikbkjcij =
N∑
k=1

mikbkjcik =
(
(M � C)B

)
ij

for all i, j = 1, . . . , N .
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Let A = PΛP> = QΛQ> be two eigendecompositions of A with det(P ) = det(Q) = 1.
Without loss of generality, we may assume that equal eigenvalues are ordered consecutively
in λ. By a play on the indices of the sum and product, the joint spectral measure can be
written as

µ
(
λσ
)

=
∑

τ :λτ=λσ

ε(τ)
N∏
j=1

pjτ(j)

=
∑
τ :λτ=λ

ε(τ ◦ σ)
N∏
j=1

pjτ◦σ(j)

= ε(σ)
∑
τ∈SN

ε(τ)
N∏
j=1

pσ−1(j)τ(j)1{λj = λτ(j)},

where 1{.} is the indicator function. Define the block diagonal matrix C =
(
1{λi =

λj}
)
i,j=1,...,N

, we thus have

µ(λσ) = ε(σ) det
(
(M>

σ P )� C
)

where Mσ is the permutation matrix associated to σ. Because the columns of P and Q
are eigenvectors of the symmetric matrix A, the i-th column of P is orthogonal to the
j-th column of Q whenever λi 6= λj. Therefore, B := Q>P and C satisfy the conditions
of Lemma 11. Applying the lemma to M = M>

σ Q, we get

det
(
(M>

σ P )� C
)

= det
(
(M>

σ QB)� C
)

= det
((

(M>
σ Q)� C

)
B
)

= det
(
(M>

σ Q)� C
)
,

in view of det(B) = det(Q>P ) = 1. We conclude that µ does not depend on the basis
matrix used in the eigendecomposition.

4.2 Multivariate marginal distributions

In this section, we give an expression of the multivariate marginal distributions of µ. We
will assume for simplicity that A has only simple eigenvalues.

Proposition 12. Let s = {s1, . . . , sk} and t = {t1, . . . , tk} be two subsets of vertices and
σ a permutation on Sk,

P
(
Xs1 = λtσ(1) , . . . , Xsk = λtσ(k)

)
= ε(σ) det

(
Pst
) k∏
j=1

psjtσ(j) .

Proof. By definition

P
(
Xs1 = λtσ(1) , . . . , Xsk = λtσ(k)

)
=

∑
τ :τ(sj)=tσ(j)

ε(τ)
N∏
j=1

pjτ(j),
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where the sum runs over all permutations τ such that τ(sj) = tσ(j) for j = 1, . . . , k. Let
s = {s1, . . . , sN−k} = {1, . . . , N} \ s and define t similarly. Let σst ∈ SN be the unique
permutation such that σst(sj) = tσ(j) and σst(sj) = tj for all j. We verify easily that
ε(σst) = ε(σ). Letting τ ′ = τ ◦ σst in the equation above, we obtain

P
(
Xs1 = λtσ(1) , . . . , Xsk = λtσ(k)

)
=

k∏
j=1

psjtσ(j)
∑

τ ′:τ ′(tj)=tj

ε(σst)ε(τ
′)
N−k∏
j=1

psjτ ′(tj)

= ε(σ)
k∏
j=1

psjtσ(j) det
(
Pst
)
.

By Jacobi’s Identity (Equation (11) in [12]), det
(
Pst
)

= det
(
Pst
)
/ det(P ) = det

(
Pst
)
,

which concludes the proof.
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