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Abstract

Fix positive integers k and d. We show that, as n→∞, any set system A ⊂ 2[n]

for which the VC dimension of {4k
i=1Si | Si ∈ A} is at most d has size at most

(2d mod k + o(1))
(

n
bd/kc

)
. Here 4 denotes the symmetric difference operator. This

is a k-fold generalisation of a result of Dvir and Moran, and it settles one of their
questions.

A key insight is that, by a compression method, the problem is equivalent to an
extremal set theoretic problem on k-wise intersection or union that was originally
due to Erdős and Frankl.

We also give an example of a family A ⊂ 2[n] such that the VC dimension of
A∩A and of A∪A are both at most d, while |A| = Ω(nd). This provides a negative
answer to another question of Dvir and Moran.

Mathematics Subject Classifications: 05D05
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1 Introduction

Let A ⊂ 2X be a family of subsets of some set X. As usual, we say that Y ⊂ X is shattered
by A if the family A ∩ Y = {S ∩ Y | S ∈ A} is 2Y . Moreover, we denote by sh(A) the
set of all subsets of X which are shattered by A. Recall that the VC dimension of A,
denoted by VC-dim(A), is the cardinality of the largest Y ⊂ X in sh(A). We shall assume
throughout that X = [n] := {1, . . . , n}. Let

(
[n]
6t

)
denote the family {S ⊂ [n] | |S| 6 t}

and
(
n
6t

)
its size.

A foundational result regarding the VC dimension of set systems is the Sauer–Shelah–
Perles Lemma, also known as the Sauer–Shelah Lemma. A marginally weaker version of
this result was established earlier by Vapnik and Červonenkis [13].

Theorem 1 (Sauer [11], Perles and Shelah [12]). Let d 6 n be positive integers. For
every A ⊂ 2[n] with VC-dim(A) 6 d, we have |A| 6

(
n
6d

)
.

It is easy to see that this bound is sharp by taking, for example, A =
(
[n]
6d

)
. This bound has

fundamental importance and wide applicability, e.g. in machine learning, model theory,
graph theory, and computational geometry.

Let ? be a binary set-operation in {∩,∪,4}, where4 denotes the symmetric difference
operator. We also write ?Ak = {S1 ? · · · ? Sk | Si ∈ A,∀i ∈ [k]}. Motivated by an
application in PAC learnability, Dvir and Moran [2] recently investigated how large A
can be assuming A ? A = {S ? T | S, T ∈ A} has bounded VC dimension. Using the
polynomial method, they proved that |A| 6 2

(
n

6bd/2c

)
provided VC-dim(A4A) 6 d.

They also asked whether an analogous result might hold assuming VC-dim(4Ak) 6 d,
particularly for k = 3 [2, Qu. 2].

It turns out that this last problem is equivalent to an extremal set theoretic problem
about k-wise (n − d)-union families, as we detail in Section 2. The provenance of the
latter problem is long, predating the notion of VC dimension itself. For example, through
this equivalence, we can observe the following as a consequence of a result of Katona from
1964 [9].

Theorem 2. Let d < n be positive integers with d ≡ r (mod 2) for some r ∈ {0, 1}. For
every A ⊂ 2[n] with VC-dim(A4A) 6 d, we have |A| 6 2r

(
n−r

6bd/2c

)
.

This is a best possible form of the result of Dvir and Moran [2].
In fact, the question of Dvir and Moran is closely related to a long-standing conjecture

of Erdős and Frankl [4]. The question is answered by a bound on k-wise (n − d)-union
families that is tight if the ground set [n] is large enough. That bound is an asymptotic
form of Erdős and Frankl’s conjecture and it yields the following theorem. We provide
a proof in Section 3, but remark that it was shown by Frankl [3] a few years before his
conjecture with Erdős.

Theorem 3. Let k, d be positive integers with d ≡ r (mod k) for some 0 6 r 6 k −
1. There exists n0 = n0(d, k) such that, for every n > n0 and every A ⊂ 2[n] with
VC-dim(4Ak) 6 d, we have |A| 6 2r

(
n−r

6bd/kc

)
.
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This bound is sharp and it completely settles the aforementioned question of Dvir and
Moran for every k. Theorem 3 may be seen as an asymptotic generalisation of Theorems 1
(k = 1) and 2 (k = 2). Unlike in those two cases, however, the bound in general fails
without assuming large enough n.

Dvir and Moran noted that the two simple examples
(
[n]
6d

)
and

(
[n]

>n−d

)
preclude ana-

logues of Theorem 2 if ? ∈ {∩,∪}. However, since S4T = (S ∪ T ) \ (S ∩ T ) for any sets
S, T , one might wonder if bounding the VC dimension of both A ∩ A and A ∪ A could
still lead to a significantly better bound on |A|. In Section 4, we show that this is not the
case. Indeed, we construct a family A ⊂ 2[n] satisfying |A| = Ω(nd), VC-dim(A∪A) 6 d
and VC-dim(A∩A) 6 d. This answers another question of Dvir and Moran [2, Qu. 1] in
the negative.

2 An extremal set theoretic equivalence

In this section, we prove that the question of Dvir and Moran [2, Qu. 2] is equivalent to
two older problems in extremal set theory.

For brevity, we define the following parameters, given integers k, t, d, n > 0 with
t, d < n:

• m(n, k, t) is the size of a largest F ⊂ 2[n] that is k-wise t-intersecting, i.e. every
member of ∩Fk has cardinality at least t;

• p(n, k, d) is the size of a largest F ⊂ 2[n] that is k-wise (n − d)-union, i.e. every
member of ∪Fk has cardinality at most d; and

• p′(n, k, d) is the size of a largest F ⊂ 2[n] such that VC-dim(4Fk) 6 d, i.e. every
member of sh(4Fk) has cardinality at most d.

We have chosen our parameter notation to emphasise our problem setting.
Note that easily p(n, k, d) = m(n, k, n−d) always holds. Due to a connection with the

Erdős–Ko–Rado Theorem, most previous work on bounding m(n, k, t) and p(n, k, d) has
taken t = n − d fixed. In contrast, we focus in this paper on d fixed. Put another way,
we consider k-wise intersecting families with predominant intersections. For an extensive
overview of previous work in the area, we recommend a recent survey by Frankl and
Tokushige [8].

We will use the notion of compression as defined in e.g. [1]. For any i ∈ [n], the
i-compression of a family A is Ci(A) = {Ci(A) | A ∈ A}, where

Ci(S) =

{
S if S ∈ A and S \ {i} ∈ A
S \ {i} otherwise

.

After the n compressions in each coordinate, we obtain a compressed family, i.e. a family
that is invariant under compressions or, equivalently, under taking subsets.

With compression we show that p′(n, k, d) = p(n, k, d). First we need the following
lemma. Note that this lemma is also a consequence of the fact that the trace TF(Y ) =
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{Y ∩ F | F ∈ F} on a subset Y of a family F cannot increase by compression. This is
proven in [5].

Lemma 4. Let A1, . . . ,Ak ⊂ 2[n] be families of sets. For any i ∈ [n],

VC-dim (Ci(A1)4· · ·4Ci(Ak)) 6 VC-dim(A14· · ·4Ak).

Proof. We prove the stronger statement that

sh (Ci(A1)4· · ·4Ci(Ak)) ⊂ sh(A14· · ·4Ak).

Note that the example A1 = {∅, [n]} shows that the reverse inclusion is not true in general.
Let Y ⊂ [n] be any subset shattered by Ci(A1)4· · ·4Ci(Ak). If i 6∈ Y, then clearly Y is
shattered by A14· · ·4Ak. So assume i ∈ Y. Let R = R′ ∪ {i} for some R′ ⊂ Y . Then
Y ∩ (Ci(S1)4· · ·4Ci(Sk)) = R for some S1 ∈ A1, . . . , Sk ∈ Ak. There is at least one
j ∈ [k] for which i ∈ Ci(Sj) = Sj and so both Sj and Sj \ {i} belong to Aj. Note that this
implies {Y ∩ (S14· · ·4Sk), Y ∩ (S14· · ·4(Sj \ {i})4· · ·4Sk)} = {R,R \ {i}}. This
proves Y ∈ sh(A14· · ·4Ak).

With this lemma we are ready to prove the equivalence.

Theorem 5. For every A ⊂ 2[n] with VC-dim(4Ak) 6 d, we have |A| 6 p(n, k, d).
Moreover, there are families A ⊂ 2[n] with VC-dim(4Ak) 6 d that meet the bound. That
is, p′(n, k, d) = p(n, k, d).

Proof. Let A ⊂ 2[n] satisfy VC-dim(4Ak) 6 d. By Lemma 4, we may assume that A is
a compressed family and so if S ∈ A then 2S ⊂ A. Note that this property also holds for
4Ak and thus VC-dim(4Ak) equals the size of a largest union of k elements in A. Then
VC-dim(4Ak) 6 d implies that A is a k-wise (n−d)-union family, and so |A| 6 p(n, k, d).

TakingA to be any maximum k-wise (n−d)-union family, we see that VC-dim(4Ak) 6
d since 4Ak ⊂

(
[n]
6d

)
. This implies the bound is sharp.

By Theorem 5, Theorem 2 follows from an exact bound on p(n, 2, d) for every n and
d due to a result of Katona [9] stating p(n, k, d) = 2r

(
n−r

6bd/2c

)
. It is interesting to note that

Katona’s result can also be shown using compression, as shown by Kleitman [10].

3 An asymptotic form of a conjecture of Erdős and Frankl

In this section, we prove the exact value of p(n, k, d) for all n large enough with respect to
d and k. This is an asymptotic form of a conjecture of Erdős and Frankl from the 1970’s,
cf. [4, 7]. We have reformulated the conjecture to suit our purposes, i.e. to address [2,
Qu. 2].

Conjecture 6 (Erdős and Frankl, cf. [4, 7]). For all integers n, k, d > 0 with n > d,

p(n, k, d) = max
06i6d/k

2d−ki
(
n− d + ki

6 i

)
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As already noted in [4], this conjecture is sharp if true. To see this consider the following
families. Let Ar,i =

(
[n−r]
6i

)
× 2[n]\[n−r], for some 0 6 i 6 bd/kc and r = d − ki. Then

|Ar,i| = 2r
(
n−r
6i

)
and the union of any k sets in Ar,i has size at most ki + r = d.

Frankl himself gave most attention to the case where n − d is some fixed t. In [4],
he confirmed Conjecture 6 when t = n − d 6 Ck2k for some positive constant C > 0,
and also showed the unique extremal examples are isomorphic to some Ar,i. In [7], he
showed the exact ranges of n, k and t = n− d for which p(n, k, d) = 2d. See [8] for further
background.

After posting an earlier version of our manuscript, we learned from Frankl that he [3]
had already shown our Theorem 10 below, with a different argument and for a slightly
different bound on n0 – we discuss this at the end of the section. We find it curious
that this result of Frankl was not mentioned before in the literature with respect to the
conjecture of Erdős and Frankl.

In addition to compression, we also need the notion of shifting as defined in e.g. [6].
For any i, j ∈ [n], i < j, the (i, j)-shift Sij(A) of a family A is Sij(A) = {Sij(S) | S ∈ A},
where

Sij(S) =

{
(S \ {j}) ∪ {i} if i 6∈ S, j ∈ S and (S \ {j}) ∪ {i} 6∈ A
S otherwise

.

After a finite number of shifts, we obtain a shifted family, i.e. a family that is invariant
under shifts. The following lemma is standard, but for completeness, we give a proof.

Lemma 7. If A ⊂ 2[n] is a compressed k-wise (n− d)-union family, then so is Sij(A).

Proof. Let A ⊂ 2[n] be a compressed k-wise (n− d)-union family. One can check that, if
T = Sij(S) for some S ∈ A, then Sij(2S) = 2T . Thus Sij(A) is compressed.

Next, assume for a contradiction that there are k sets T1, . . . , Tk in Sij(A) whose union
T has size d + 1. Here T` = Sij(S`) where S` ∈ A for ` ∈ [k]. If |T ∩ {i, j}| 6 1, then
it is clear that |S1 ∪ · · · ∪ Sk| > d + 1, a contradiction with A being k-wise (n − d)-
union. Otherwise, either there is some T` with {i, j} ⊂ T` or there are sets T`, Tq with
T` ∩ {i, j} = {i} and Tq ∩ {i, j} = {j}. In the former case, S` = T` ⊃ {i, j}. In the latter,
by definition both Tq and Tq \ {j} ∪ {i} are in A and so one of the two has union with S`

equal to Tq ∪ T` ⊃ {i, j}. In either case, we again conclude that |S1 ∪ · · · ∪ Sk| > d + 1, a
contradiction.

Lemma 8. Let B ⊂ [n] be a set with |B| > s and A ⊂ 2[n] a family with |A| > 2s
(

n
6u

)
.

There exists some A ∈ A such that |A ∪B| > s + u + 1.

Proof. Take B′ ⊂ B such that |B′| = s. Let A′ = {A \ B′ | A ∈ A}. Then |A′| >
(

n
6u

)
and so by definition there is some A ∈ A such that |A \ B′| > u, and thus |A ∪ B| >
|A ∪B′| > s + u.

We are now prepared to prove Conjecture 6 for n large enough compared with d and
k. We first prove it for d ≡ 0 (mod k), which is the base case in the general proof.
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Proposition 9. Let k, d be positive integers with d ≡ 0 (mod k). There exists n0 =
n0(d, k) such that p(n, d, k) =

(
n

6d/k

)
for every n > n0. Moreover, the only k-wise (n−d)-

union family of size
(

n
6d/k

)
equals

(
[n]

6d/k

)
.

Proof. Let t = d/k and A be a family with |A| >
(
n
6t

)
. Choose n0 such that

(
n
6t

)
−

2(k−1)t+1
(

n
6t−1

)
> 0 for every n > n0. Such a choice exists because we have a polynomial

in n whose leading coefficient is strictly positive. We prove by induction on i ∈ [k] that
there exist sets A1, . . . , Ai ∈ A such that |A1 ∪ · · · ∪ Ai| > it + 1. If i = 1, then the
statement is trivial. Assume it holds for some i ∈ [k−1]. Then by the choice of n0 we can
apply Lemma 8 to A with B = A1 ∪ · · · ∪ Ai, s = it + 1 and u = t− 1 for the inductive
step. This proves that A is not k-wise (n− d)-union.

Note that this induction argument also proves that if A satisfies |A| =
(
n
6t

)
then

A =
(
[n]
6t

)
, thus proving uniqueness of the extremal example.

Theorem 10 (Frankl [3]). Let k, d be positive integers with d ≡ r (mod k) for some
0 6 r 6 k − 1. There exists n0 = n0(d, k) such that p(n, k, d) = 2r

(
n−r

6bd/kc

)
for every

n > n0. Moreover, the only k-wise (n − d)-union family of size
(

n
6d/k

)
equals Ar,bd/kc up

to relabelling.

Proof. The proof is by induction on r, 0 6 r 6 k−1. The base case r = 0 is Proposition 9.
So assume r > 1. Fix any k > r and d ≡ r (mod k). Write t = bd/kc which equals
(d− r)/k. Since d− 1 ≡ r − 1 (mod k), by induction there exists n0(d− 1, k) such that
p(n− 1, k, d− 1) = 2r−1(n−r

6t

)
for every n > n0(d− 1, k) + 1. Choose n0 > n0(d− 1, k) + 1

large enough such that 2r
(
n−r
6t

)
−
(

2d+1
(

n
6t−1

)
+
(
n
t

))
> 0 holds for every n > n0. Such

a choice exists because we have a polynomial in n whose leading coefficient is strictly
positive, as r > 1.

For n > n0, take a maximum family A ⊂ 2[n] which is k-wise (n − d)-union. So
|A| = p(n, k, d). We may assume A is compressed and shifted by Lemma 7 since any
maximal k-wise (n− d)-union family is necessarily invariant under taking subsets.

Let A1 = {S ∈ A | 1 ∈ S} and A1 = A\A1. If |A1| 6 p(n−1, k, d−1), then the result
follows since, by induction, we have |A1| 6 p(n − 1, k, d − 1) and |A| = |A1| + |A1| 6
2 · p(n − 1, k, d − 1) = 2r

(
n−r
6t

)
. Otherwise, by definition A1 contains k sets S1, . . . , Sk

whose union has size d. First order the sets in nonincreasing size: |S1| > · · · > |Sk|. As A
is compressed and shifted, we may assume that S1, . . . , Sk are disjoint and their union is
[d+1]\{1}. Then |Sk| 6 d/k, and so |Sk| 6 t. There cannot be a set S ′k inA which contains
1 and t elements of [n]\[d+1], or else |S1∪· · ·∪Sk−1∪S ′k| > d+1, contradicting thatA is k-
wise (n−d)-union. As A is shifted, it contains at most 2d+1

(
n−(d+1)
6t−1

)
+
(
n−(d+1)

t

)
< 2r

(
n−r
6t

)
sets. This completes the inductive step.

Note that equality occurs if and only if |A1| = |A1| = p(n − 1, k, d − 1) and so
uniqueness up to relabelling of the maximal k-wise (n− d)-union families also follows by
induction.

Theorems 5 and 10 together imply Theorem 3. From our proof we deduce that n0(d, k)
in Theorems 3 and 10 can be taken to be of order d2d/k. Note that it cannot be of order
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smaller than d2k/k, by the examples stated just after Conjecture 6. We remark that
Frankl [3] originally employed a different type of induction for a more general result
proving an upper bound on n0(d, k) of order d32d/k2.

4 A counterexample to a question of Dvir and Moran

Dvir and Moran [2, Qu. 1] asked if it could be true that a set system A ⊂ 2[n] satisfies
|A| 6 nd/2+O(1) whenever VC-dim(A ∪ A) 6 d and VC-dim(A ∩ A) 6 d. We show that
this is not the case.

Proposition 11. For each d 6 n, there exists A ⊂ 2[n] satisfying VC-dim(A ∩ A) 6 d,
VC-dim(A ∪A) 6 d and |A| > (n/d)d.

Proof. LetA ⊂ 2[n] be the family of subsets of [n] that satisfies the property “monotonicity
modulo d”, i.e. let S ⊂ [n] belong to A if i − d ∈ S for any i ∈ S with i > d. We
note that every set S ∈ A can be uniquely represented by d integers i1, . . . , id with
0 6 ik 6 b(n− k)/d + 1c: write S = ∪dk=1Sk, where Sk = {k, k + d, . . . , k + (ik − 1)d}
for k ∈ [d]. We now verify that this family A satisfies the required properties. Note
that A ∪ A = A ∩ A = A, since the property “monotonicity modulo d” is preserved by
intersection or union.

• We have VC-dim(A) = d. First note that VC-dim(A) > d since 2[d] ⊂ A. Next
we show the reverse inequality. Let Y ⊂ [n] be a subset of size at least d + 1. By
the pigeonhole principle, Y contains two elements y1, y2 such that y1 ≡ y2 (mod d),
where without loss of generality we may assume y2 > y1. Due to the property
“monotonicity modulo d”, every set S ∈ A containing y2 contains y1 as well. Thus
there is no S ∈ A such that {y2} = S ∩ Y , and so Y /∈ sh(A).

• The family A has size |A| =
∏d

k=1b(n− k)/d + 2c > (n/d)d.

Obviously, since A ⊂ A∪A, we know by Theorem 1 that |A| 6
(

n
6d

)
6 (1+d)(en/d)d,

so the construction is best possible up to a factor depending on d.
When d = 1, up to relabelling Proposition 11 gives the unique extremal families:

complete chains, i.e. families of n + 1 subsets of [n], ordered by inclusion. The upper
bound n + 1 is a consequence of Theorem 1 and A ⊂ A ∩ A. One can check uniqueness
by noting that another candidate would contain two equal-sized subsets S1, S2 ⊂ [n] and
then performing a small case distinction.

On the other hand, we observe that Proposition 11 is not tight in general. For example
take n = d + 1 with d > 3, then the maximum size of a family A ⊂ 2[n] satisfying
VC-dim(A∩A) 6 d and VC-dim(A∪A) 6 d equals 2n−2 > 3·2d−1 =

∏d
k=1b(n−k)/d+2c.

Indeed, it is easy to see that for every family A ⊂ 2[n] of size 2n − 1, either A ∩ A or
A ∪ A equals 2[n]. Furthermore, the family A = 2[n] \ {[1], [n]} has size 2n − 2 and
A ∩ A = 2[n] \ {[n]} and A ∪ A = 2[n] \ {[1]}. Clearly, both A ∩ A and A ∪ A have VC
dimension d = n− 1.
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