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Abstract

We prove various formulas which express exponential generating functions count-
ing permutations by the peak number, valley number, double ascent number, and
double descent number statistics in terms of the exponential generating function
for Chebyshev polynomials, as well as cyclic analogues of these formulas for de-
rangements. We give several applications of these results, including formulas for the
(−1)-evaluation of some of these distributions. Our proofs are combinatorial and
involve the use of monomino-domino tilings, the modified Foata–Strehl action (a.k.a.
valley-hopping), and a cyclic analogue of this action due to Sun and Wang.

Mathematics Subject Classifications: 05A15, 05A05, 33C45

1 Introduction

Let π = π1π2 · · · πn be a permutation (written in one-line notation) in Sn, the set of
permutations of [n] = {1, 2, . . . , n}. We say that πi (where i ∈ [n − 1]) is a descent if
πi > πi+1, and that πi (where 2 6 i 6 n − 1) is a peak of π if πi−1 < πi > πi+1. Define
des(π) to be the number of descents of π and pk(π) to be the number of peaks of π. The
descent number des and peak number pk are classical permutation statistics whose study
dates back to MacMahon [11] and to David and Barton [7], respectively.
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The nth Eulerian polynomial1

An(t) :=
∑
π∈Sn

tdes(π)

encodes the distribution of the descent number des over Sn, and the nth peak polynomial

P pk
n (t) :=

∑
π∈Sn

tpk(π)

is the analogous polynomial for the peak number pk.
It is well-known [9, Théorème 5.6] that the (−1)-evaluation of the Eulerian distribution

is given by the formula

An(−1) =

{
(−1)(n−1)/2En, if n is odd,

0, if n is even,
(1)

where En is the nth Euler number defined by

∞∑
n=0

En
xn

n!
= sec(x) + tan(x).

(The Euler numbers En for odd n are called tangent numbers, and those for even n are
called secant numbers.) No combinatorial formula for P pk

n (−1) is known, although this
sequence does appear on the OEIS [18, A006673]. The first several terms of this sequence
are given in the following table:

n 1 2 3 4 5 6 7 8 9 10
P pk
n (−1) 1 2 2 −8 −56 −112 848 9088 25216 −310528

We note that the apparent 6-periodicity of the sequence of signs breaks at n = 42. Very
recently, Troyka [22] argued that there is no k for which the sequence of signs of the
P pk
n (−1) is k-periodic, which suggests that there is unlikely to be a nice combinatorial

interpretation for the P pk
n (−1).

The exponential generating functions for An(t) and P pk
n (t) have the following well-known

expressions:2

A(t;x) :=
∞∑
n=1

An(t)
xn

n!
=

e(1−t)x − 1

1− te(1−t)x
;

P pk(t;x) :=
∞∑
n=1

P pk
n (t)

xn

n!
=

1√
1− t coth(x

√
1− t)− 1

.

1We note that many works instead define the nth Eulerian polynomial to be
∑
π∈Sn

tdes(π)+1.
2These exponential generating functions are usually given a constant term of 1 in the literature, but it

is more convenient to define these without the constant term in this work.
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The work in this paper was originally inspired by the curious observation that A(−1;x)
and P pk(−1;x) can be expressed as the logarithmic derivative of the exponential generating
function of some non-negative integer sequence. For the Eulerian polynomials, this sequence
{fn}n>0 is simply fn := (n+ 1) mod 2, i.e., the sequence 1, 0, 1, 0, . . . , whose exponential
generating function is given by

F (x) := 1 +
x2

2!
+
x4

4!
+ · · · = cosh(x).

For the peak polynomials, this sequence is the sequence of Pell numbers, which has been
widely studied in combinatorics and number theory. The Pell numbers {gn}n>0 are defined
by the recursive formula gn := 2gn−1 + gn−2 for n > 2 with initial values g0 = 1 and g1 = 0.
The first several terms of this sequence are below:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

gn 1 0 1 2 5 12 29 70 169 408 985 2378 5741

Note that the indexing here is slightly different from the usual indexing of the Pell numbers
(see OEIS [18, A000129]). The exponential generating function of {gn}n>0 is given by

G(x) :=
∞∑
n=0

gn
xn

n!
=

1

2
ex(2 cosh(x

√
2)−

√
2 sinh(x

√
2)).

Theorem 1. The exponential generating functions for the Eulerian and peak polynomials
evaluated at t = −1 can be expressed as the logarithmic derivative of F (x) and G(x),
respectively. That is:

(a) A(−1;x) =
d
dx
F (x)

F (x)

(b) P pk(−1;x) =
d
dx
G(x)

G(x)

While Theorem 1 can be proven directly by algebraically manipulating the generating
function formulas for A(t;x), P pk(t;x), F (x), and G(x), one of our goals in this paper
is to present a combinatorially-flavored proof. In Section 2, we define several other
relevant permutation statistics and introduce a key ingredient of our proof: the modified
Foata–Strehl group action (a.k.a. valley-hopping). In Section 3, we define a two-parameter
variant of the Chebyshev polynomials of the second kind which specialize to both the
numbers fn and the Pell numbers gn. Like the ordinary Chebyshev polynomials of
the second kind, our bivariate Chebyshev polynomials have as a combinatorial model
monomino-domino tilings of a rectangle, but with slightly different weights. We present
a formula (Theorem 3) involving these Chebyshev polynomials for the joint distribution
of two statistics: the peak number, and the total number of double ascents and double
descents. We give a combinatorial proof of Theorem 3 which involves tilings and valley-
hopping, and a special case of this result implies Theorem 1 (b). We transform Theorem 3
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into similar results for other permutation statistics, which we then use to prove Theorem
1 (a) and to prove that the (−1)-evaluation of double descent distributions yields the
tangent numbers.

In Section 4, we turn our attention to counting derangements by cyclic analogues of
the permutation statistics studied in Sections 2–3. Using a variant of valley-hopping due
to Sun and Wang [21] for derangements, we prove a cyclic analogue of Theorem 3 and use
it to derive formulas relating exponential generating functions counting derangements by
cyclic statistics with the exponential generating function for our Chebyshev polynomials.
We use this to prove a result similar to Theorem 1 for the excedance and cyclic peak
distributions over derangements, and to prove that the (−1)-evaluation of cyclic double
descent distributions over derangements yields the secant numbers.

2 Permutation statistics and valley-hopping

Given a permutation π = π1π2 · · · πn in Sn, we say that πi (where i ∈ [n]) is:

• a valley if πi−1 > πi < πi+1;

• a double ascent if πi−1 < πi < πi+1;

• a double descent if πi−1 > πi > πi+1;

where we are using the convention π0 = πn+1 =∞.3 Thus, every letter of a permutation is
either a peak, valley, double ascent, or double descent. Define val(π), dasc(π), and ddes(π)
to be the number of valleys, double ascents, and double descents of π, respectively. We
also define dbl(π) := dasc(π)+ ddes(π) to be the total number of double ascents and double
descents of π.

For a list of statistics st1, st2, . . . , stm and corresponding variables t1, t2, . . . , tm, we
define the polynomials {P (st1,st2,... stm)

n (t1, t2, . . . , tm)}n>0 by

P (st1,st2,... stm)
n (t1, t2, . . . , tm) :=

∑
π∈Sn

t
st1(π)
1 t

st2(π)
2 · · · tstm(π)

m .

and we let

P (st1,st2,... stm)(t1, t2, . . . , tm;x) :=
∞∑
n=1

P (st1,st2,... stm)
n (t1, t2, . . . , tm)

xn

n!

be their exponential generating function.4 For example, we have

P (pk,dbl)
n (s, t) =

∑
π∈Sn

spk(π)tdbl(π)

3We note that many works on permutation enumeration do not use these conventions, and simply
restrict the possible positions of valleys, double ascents, and double descents to the interval from 2 to
n − 1. What we call “valleys” are sometimes called “left-right valleys” or “exterior valleys”, what we
call “double ascents” are sometimes called “right double ascents”, and what we call “double descents” are
sometimes called “left double descents”. (See, e.g., [24].)

4In the case where we have a single statistic st, we write these simply as P st
n (t) and P st(t;x).
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and

P (pk,dbl)(s, t;x) =
∞∑
n=1

P (pk,dbl)
n (s, t)

xn

n!
;

we will consider these on the way to proving Theorem 1. Our proof will make use of a
bijection based on a group action on Sn induced by involutions which toggle between
double ascents and double descents; we will spend the remainder of this section defining
this action and the associated bijection.

For π ∈ Sn, fix k ∈ [n]. We may write π = w1w2kw4w5 where w2 is the maximal
consecutive subword immediately to the left of k whose letters are all smaller than k, and
w4 is the maximal consecutive subword immediately to the right of k whose letters are all
smaller than k. For example, if π = 467125839 and k = 5, then π is the concatenation of
w1 = 467, w2 = 12, k = 5, the empty word w4, and w5 = 839.

Define ϕk : Sn → Sn by

ϕk(π) =

{
w1w4kw2w5, if k is a double ascent or double descent of π,

π, if k is a peak or valley of π.

Equivalently, ϕk(π) = w1w4kw2w5 if exactly one of w2 and w4 is nonempty, and ϕk(π) = π
otherwise. For any subset S ⊆ [n], we define ϕS : Sn → Sn by ϕS =

∏
k∈S ϕk. It is easy

to see that ϕS is an involution, and that for all S, T ⊆ [n], the involutions ϕS and ϕT
commute with each other. Hence the involutions {ϕS}S⊆[n] define a Zn2 -action on Sn which
is often called the modified Foata–Strehl action or valley-hopping. This action is based on
a classical group action of Foata and Strehl [10], was introduced by Shapiro, Woan, and
Getu [15], and was later rediscovered by Brändén [4].

Let S̃n denote the set of permutations of [n] with no double ascents and where each
double descent is assigned one of two colors: red or blue.5 Then valley-hopping induces
a map Φ from S̃n to Sn defined in the following way. Given a permutation π in S̃n, let
R(π) be the set of red double descents in π and let π̄ be the corresponding permutation of
π in Sn, that is, the permutation obtained by forgetting the colors on the double descents.
Then let Φ(π) = ϕR(π)(π̄). For example, if π = 726539841, then Φ(π) = 265379418. (See
Figure 1.)

Lemma 2. The map Φ: S̃n → Sn is a (pk, dbl)-preserving bijection.

Proof. The inverse Φ−1 of the map Φ can be described in the following way. Let Dasc(π) be
the set of double ascents of π and Ddes(π) the set of double descents of π. If S ⊆ Ddes(π)

and if π has no double ascents, then let πS be the permutation in S̃n obtained by coloring
the double descents in S blue and all other double descents red. Given a permutation π in
Sn, let Φ−1(π) = (ϕDasc(π)(π))Ddes(π). Then Φ is a bijection between S̃n and Sn. The claim
that Φ preserves the pk and dbl statistics follows from the easy fact that valley-hopping
preserves these statistics as well.

5To be more precise, Davidson College red or Mount Holyoke College blue.
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∞ 7 2 6 5 3 9 8 4 1 ∞ ∞ 2 6 5 3 7 9 4 1 8 ∞

Figure 1: Valley-hopping induces a bijection between S̃n and Sn.

3 Hopping from Chebyshev polynomials to permutation statis-
tics

The Chebyshev polynomials of the second kind {Un(t)}n>0 are defined by the recurrence
Un(t) := 2tUn−1(t)− Un−2(t) for n > 2 with initial values U0(t) = 1 and U1(t) = 2t. These
polynomials are an important sequence of orthogonal polynomials arising in many branches
of mathematics; see [1, 12,13] for several notable references.

It will be more convenient for us to use a two-parameter variant {Un(s, t)}n>0 of the
Chebyshev polynomials of the second kind. We define Un(s, t) by the recurrence

Un(s, t) = 2tUn−1(s, t)− sUn−2(s, t) (2)

for n > 2 with initial values U0(s, t) = 1 and U1(s, t) = 2t. The first several of these
bivariate Chebyshev polynomials are given in the following table.

n Un(s, t)

0 1

1 2t

2 4t2 − s
3 8t3 − 4st

n Un(s, t)

4 16t4 − 12st2 + s2

5 32t5 − 32st3 + 6s2t

6 64t6 − 80st4 + 24s2t2 − s3

7 128t7 − 192st5 + 80s2t3 − 8s3t

Note that these polynomials are related to the usual Chebyshev polynomials of the
second kind by the formulas Un(t) = Un(1, t) and Un(s, t) = Un(s−1/2t)sn/2. The numbers
fn = (n+ 1) mod 2 and the Pell numbers gn are specializations of the Un(s, t), as fn =
Un−2(−1, 0) and gn = Un−2(−1, 1) for all n > 2. From the recurrence (2), it is not hard to
see that the ordinary generating function for our Un(s, t) is given by the formula

∞∑
n=0

Un(s, t)xn =
1

1− 2tx+ sx2
,

and that Un(s, t) counts tilings of a 1 × n rectangle with two types of monominoes,
each weighted t, and one type of domino, each weighted −s. (The ordinary Chebyshev

the electronic journal of combinatorics 26(3) (2019), #P3.27 6



polynomials of the second kind count the same tilings but with dominoes weighted −1;
see [3] for an accessible reference.)

An expression for the exponential generating function of the Un(t) is known (see [12,
p. 301]) and together with the formula Un(s, t) = Un(s−1/2t)sn/2, we obtain

∞∑
n=0

Un(s, t)
xn+1

(n+ 1)!
= ext

sinh (x
√
t2 − s)√

t2 − s
. (3)

We will find it more convenient to work with the exponential generating function

V (s, t;x) :=
∞∑
n=0

Un(s, t)
xn+2

(n+ 2)!
=
x2

2!
+ 2t

x3

3!
+ (4t2 − s)x

4

4!
+ · · · .

Note that

F (x) =
∞∑
n=0

fn
xn

n!
= 1 + V (−1, 0;x) and G(x) =

∞∑
n=0

gn
xn

n!
= 1 + V (−1, 1;x).

It follows from (3) that V (s, t;x) has the closed-form expression

V (s, t;x) =
1

s

(
1− cosh(x

√
t2 − s)etx +

tetx sinh(x
√
t2 − s)√

t2 − s

)
. (4)

3.1 A Chebyshev formula for the bidistribution (pk, dbl)

We now present our main theorem from this section.

Theorem 3. P (pk,dbl)(s, t;x) =
∂
∂x
V (s, t;x)

1− sV (s, t;x)

Setting s = −1 and t = 1 in Theorem 3 yields Theorem 1 (b). Observe that the numer-
ator in Theorem 3 appears in Equation (3), and using Equation (4) for the denominator
we can obtain the expression

P (pk,dbl)(s, t;x) =
1√

t2 − s coth (x
√
t2 − s)− t

.

Proof. From the combinatorial interpretation of multiplication of exponential generating
functions (see, e.g., [20, Proposition 5.1.3]), it suffices to show that

P (pk,dbl)
n (s, t) =

b(n−1)/2c∑
k=0

sk
∑
B

U|B0|−1(s, t)U|B1|−2(s, t) · · ·U|Bk|−2(s, t) (5)

where the second sum is over all ordered set partitions B of [n] into blocks B0, B1, . . . , Bk

such that every block other than B0 has size at least 2. Thus, the right-hand side of
Equation (5) counts these set partitions together with:
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∞ 7 6 5 3 2 | 9 8 4 1

∞ 7 6 | 5 3 2 | 9 8 4 1

Figure 2: Example of the sign-reversing involution.

• a tiling of an 1× (|B0| − 1) rectangle with two types of monominoes (colored red
and blue), each weighted t, and one type of domino, each weighted −s;

• for each 1 6 i 6 k, a tiling of an 1 × (|Bi| − 2) rectangle with the same types of
shapes and weights as above;

and each block (other than B0) is given an additional weight of s. We place an ∞ in the
first block, write out each block in decreasing order, and separate adjacent blocks with a
bar, as in

∞ > π1 > π2 > · · · > π|B0| | π|B0|+1 > · · · > π|B0|+|B1| | · · · | πn−|Bk|+1 > · · · > πn.

Here, we consider the tiling on each block as being a tiling on all but the first and last
elements of the block. Now we define a sign-reversing involution on these objects in the
following way: Find the first pair of elements (πi, πi+1) where there is a domino, or where
πi and πi+1 are in separate blocks and πi > πi+1. If (πi, πi+1) is covered by a domino, then
we remove the domino and insert a new bar in between πi and πi+1, thus splitting their
block into two blocks. If πi and πi+1 are in separate blocks and πi > πi+1, then we merge
the two blocks and cover (πi, πi+1) with a domino. (See Figure 2.) This involution swaps
a domino (weighted −s) with an additional block (weighted s), and after cancellation we
are left with those objects with no dominoes and such that πi < πi+1 whenever πi and
πi+1 are in separate blocks.

If we treat any one of these remaining objects π = π1π2 · · · πn as a permutation, we
see that π has no double ascents and has each double descent colored either red or blue
(depending on the color of the corresponding monomino). Hence, π belongs to S̃n and
contributes a weight of spk(π)tdbl(π) to the right-hand side of Equation (5). The result then
follows from applying the (pk, dbl)-preserving bijection Φ.

3.2 A Chebyshev formula for the quadruple distribution (pk, val, dasc, ddes)

We shall now derive from Theorem 3 an analogous result for the joint distribution of the
four statistics pk, val, dasc, and ddes.

Theorem 4. P (pk,val,dasc,ddes)(s, t, u, v;x) =
t ∂
∂x
V (st, (u+ v)/2;x)

1− stV (st, (u+ v)/2;x)

Proof. First, observe that val(π) = pk(π) + 1 for all permutations π, and that the reversal
r(π) := πnπn−1 · · · π1 of a permutation is a (pk, val)-preserving involution on Sn that
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switches double ascents with double descents. Thus, we have

P (pk,val,dasc,ddes)
n (s, t, u, v) = tP (pk,dbl)

n

(
st,

1

2
(u+ v)

)
for all n > 1, which proves the result in light of Theorem 3.

Theorem 4 and the formula (4) for V (s, t;x) can be used together to derive the
closed-form formula

P (pk,val,dasc,ddes)(s, t, u, v;x) =
2t

α coth(1
2
αx)− u− v

where α =
√

(u+ v)2 − 4st. This is equivalent to a classical formula of Carlitz and Scoville
[5]; see also [19, Exercise 1.61a].

The following corollary states several specializations of Theorem 4.

Corollary 5.

(a) A(t;x) =
∂
∂x
V (t, (1 + t)/2;x)

1− tV (t, (1 + t)/2;x)

(b) P pk(t;x) =
∂
∂x
V (t, 1;x)

1− tV (t, 1;x)

(c) P ddes(t;x) =
∂
∂x
V (1, (1 + t)/2;x)

1− V (1, (1 + t)/2;x)

Further specializing Corollary 5 (a) at t = −1 implies Theorem 1 (a).
Next we show that the (−1)-evaluation of the double descent distribution over S2n+1

gives the tangent number E2n+1.

Theorem 6. For all n > 1, we have

P ddes
n (−1) =

{
En, if n is odd,

0, if n is even.

Thus P ddes(−1;x) = tan(x).

Proof. Comparing Theorem 3 with Corollary 5 (c), we have P ddes(−1;x) = P (pk,dbl)(1, 0;x),

which implies P ddes
n (−1) = P

(pk,dbl)
n (1, 0) for all n > 1. Observe that P

(pk,dbl)
n (1, 0) is the

number of permutations in Sn with no double ascents or double descents. It is easy to see
that there are no such permutations for even n, and the only such permutations for odd
n are alternating permutations: permutations π = π1π2 · · · πn satisfying π1 < π2 > π3 <
π4 > · · · < πn. It is well known that there are En alternating permutations in Sn, and the
proof follows.

Similar reasoning can be used to prove the formula (1) for Eulerian polynomials
evaluated at t = −1.
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4 Counting derangements by cyclic statistics

Recall that a derangement is a permutation with no fixed points, i.e., a permutation for
which πi 6= i for all i. Let Dn be the set of derangements in Sn. Our goal in this section
is to provide an analogous treatment of the material from the previous section but for
counting derangements with respect to several “cyclic statistics” that we will define shortly.

When writing permutations in cycle notation, we adopt the convention of writing each
cycle with its largest letter in the first position, and writing the cycles from left-to-right in
increasing order of their largest letters. (This convention is sometimes called canonical
cycle representation.) For example, the permutation π = 649237185 in one-line notation is
written as π = (42)(716)(8)(953) in cycle notation.

Given π = π1π2 · · · πn, we say that πi is:

• a cyclic peak if i < πi > ππi ;

• a cyclic valley if i > πi < ππi ;

• a cyclic double ascent if i < πi < ππi ;

• a cyclic double descent if i > πi > ππi .

Every letter of a derangement is either a cyclic peak, cyclic valley, cyclic double ascent,
or cyclic double descent. Define cpk(π), cval(π), cdasc(π), and cddes(π) to be the number
of cyclic peaks, cyclic valleys, cyclic double ascents, and cyclic double descents of π,
respectively.

These “cyclic statistics” were studied earlier by, e.g., Zeng [23], Shin and Zeng [17], and
Sun and Wang [21].6 These statistics are also closely related to a classical permutation
statistic, the excedance number. We say that i ∈ [n] is an excedance of π if i < πi and let
exc(π) denote the number of excedances of π. Then i is an excedance of π if and only if
i is a cyclic valley or cyclic double ascent of π, and it is well-known that the excedance
number exc and the descent number des are equidistributed over Sn.

Define the map o : Sn → Sn, where the input is a permutation in canonical cycle
representation and the output is a permutation in one-line notation, by erasing the
parentheses. Continuing the example with π = (42)(716)(8)(953), we have o(π) =
427168953. The map o is often called Foata’s transformation fondamentale and first
appeared in [8] (see also [9]). It is easy to see that the transformation fondamentale is a
bijection; we can recover the cycles of π by noting the left-to-right maxima of o(π): given
a permutation σ = σ1σ2 · · ·σn, we say that σi is a left-to-right maximum of σ if σj < σi
for all 1 6 j < i.

Our work in this section will rely on a cyclic variant of valley-hopping introduced in
[21]. Define θk : Dn → Dn by θk(π) = o−1(ϕk(o(π))), where the 0th letter of o(π) is treated
as 0 rather than ∞. Similarly, for a subset S ⊆ [n], define θS : Dn → Dn by θS =

∏
k∈S θk.

6Chow et al. [6] also derived various formulas for counting permutations by cyclic peaks and cyclic
valleys, but their definitions for these statistics differ from ours in that they do not allow the first or last
letter of a cycle to be a cyclic peak or cyclic valley.
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Then the cyclic modified Foata–Strehl action (or cyclic valley-hopping) is the Zn2 -action
defined by the involutions θS. It is easy to see that cyclic valley-hopping toggles between
cyclic double ascents and cyclic double descents, but does not change cyclic peaks or cyclic
valleys.

Let D̃n denote the set of derangements of [n] with no cyclic double ascents and where
each cyclic double descent is assigned one of two colors: red or blue. Then cyclic valley-
hopping induces a map Φ̊ from D̃n to Dn defined in the analogous way as the map Φ from
Section 2, but with R(π) being the set of red cyclic double descents. It then follows from
the same reasoning as in the proof of Lemma 2 that Φ̊ is a (cpk, cdbl)-preserving bijection,
where cdbl(π) := cdasc(π) + cddes(π) is the total number of cyclic double ascents and
cyclic double descents of π.

4.1 A cyclic analogue of Theorem 3 for derangements

For permutation statistics st1, st2, . . . , stm and variables t1, t2, . . . , tm, we define the poly-
nomials {D(st1,st2,... stm)

n (t1, t2, . . . , tm)}n>0 by

D(st1,st2,... stm)
n (t1, t2, . . . , tm) :=

∑
π∈Dn

t
st1(π)
1 t

st2(π)
2 · · · tstm(π)

m .

and we let

D(st1,st2,... stm)(t1, t2, . . . , tm;x) := 1 +
∞∑
n=1

D(st1,st2,... stm)
n (t1, t2, . . . , tm)

xn

n!

be their exponential generating function.7 These encode the distributions of permutation
statistics over derangements.

We now present a cyclic analogue of Theorem 3 for derangements.

Theorem 7. D(cpk,cdbl)(s, t;x) =
1

1− sV (s, t;x)

Proof. It suffices to show that

D(cpk,cdbl)
n (s, t) =

bn/2c∑
k=0

sk
∑
B

U|B1|−2(s, t) · · ·U|Bk|−2(s, t) (6)

where the second sum is over all ordered set partitions B of [n] into parts B1, . . . , Bk. We
interpret the right-hand side of (6) as in the proof of Theorem 3 (without the initial block
B0 with an ∞) and apply the same sign-reversing involution; the objects that remain after
cancellation are of the form

c1 > c2 > · · · > c|B0| | c|B0|+1 > c|B0|+2 > · · · > c|B0|+|B1| | · · · | cn−|Bk|+1 > · · · > cn

with no dominoes and such that ci < ci+1 whenever ci and ci+1 are in separate blocks.

7As before, if we have a single statistic st, we write these simply as Dst
n (t) and Dst(t;x).
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Now, rather than treating these remaining objects as permutations in one-line notation,
we want to treat them as permutations in cycle notation with blocks corresponding to
cycles. In doing so, we merge two adjacent blocks whenever the first element of the second
block in the pair is not larger than all elements from all preceding blocks, i.e., whenever the
element is not a left-to-right maximum of the underlying permutation written in one-line
notation; this guarantees that the resulting permutations are correctly written in canonical
cycle representation and is clearly reversible.

Moreover, these permutations are derangements because each block has size at least 2,
and they have no cyclic double ascents and have each cyclic double descent colored either
red or blue (depending on the color of the corresponding monomino). In other words,

these permutations π are precisely the elements of D̃n and each contributes a weight of
scpk(π)tcdbl(π) to the right-hand side of Equation (6). The result then follows from applying
the (cpk, cdbl)-preserving bijection Φ̊.

We extend Theorem 7 to an analogous result for the joint distribution of the statistics
cpk, cval, cdasc, and cddes over Dn.

Theorem 8. D(cpk,cval,cdasc,cddes)(s, t, u, v;x) =
1

1− stV (st, (u+ v)/2;x)

Proof. First, observe that cpk(π) = cval(π) for all derangements π. The cyclic valley-
hopping map θS, where S is the set containing all cyclic double ascents and cyclic double
descents of π, is a (cpk, cval)-preserving involution on Dn that switches cyclic double
ascents with cyclic double descents. Thus, we have

D(cpk,cval,cdasc,cddes)
n (s, t, u, v) = D(pk,dbl)

n

(
st,

1

2
(u+ v)

)
for all n > 1, which along with Theorem 7 proves the result.

We can use Theorem 8 and Equation (4) to derive the formula

D(cpk,cval,cdasc,cddes)(s, t, u, v;x) =
αe−

1
2
(u+v)x

α cosh(1
2
αx)− (u+ v) sinh(1

2
αx)

(7)

where α =
√

(u+ v)2 − 4st. Furthermore, given any permutation π, let cyc(π) denote
the number of cycles of π and let fix(π) be the number of fixed points of π. Standard
applications of the exponential formula (see [20, Section 5.1]) yield the identities

D(cpk,cval,cdasc,cddes,cyc)(s, t, u, v, w;x) = D(cpk,cval,cdasc,cddes)(s, t, u, v;x)w (8)

and

1 + P (cpk,cval,cdasc,cddes,cyc,fix)(s, t, u, v, w, y;x) = ewyxD(cpk,cval,cdasc,cddes,cyc)(s, t, u, v, w;x).
(9)
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Then, combining Equations (7), (8), and (9) yields the following exponential generat-
ing function formula for the sextuple distribution (cpk, cval, cdasc, cddes, cyc, fix) over all
permutations:

1 + P (cpk,cval,cdasc,cddes,cyc,fix)(s, t, u, v, w, y;x) =

(
αe(y−

1
2
(u+v))x

α cosh(1
2
αx)− (u+ v) sinh(1

2
αx)

)w

.

An equivalent form of this formula was proven earlier by Zeng [23, Théorème 1].

4.2 Counting derangements by excedances

In the remainder of this section, we examine specializations of Theorem 8 that give rise to
formulas for individual cyclic statistics, beginning with the excedance number.

The excedance polynomials Dn(t) := Dexc
n (t) have been well-studied; for example, it is

known that they have exponential generating function

D(t;x) := Dexc(t;x) =
(1− t)e−x

e−(1−t)x − t

[14] and are γ-positive [2, 17, 21]. From Theorem 8 we obtain the following.

Corollary 9. D(t;x) =
1

1− tV (t, (1 + t)/2;x)

It follows from Corollary 9 that the exponential generating function for the excedance
polynomials D(t;x) evaluated at t = −1 is the reciprocal of the exponential generating
function F (x) = cosh(x) for the sequence 1, 0, 1, 0, . . . .

Corollary 10. D(−1;x) = F (x)−1

This identity can be used to rederive the classical result due to Roselle [14] that

Dn(−1) =

{
(−1)n/2En, if n is even,

0, if n is odd.

We note that, from Equation (2), one can show that

Un(t, (1 + t)/2) = 1 + t+ · · ·+ tn (10)

for n > 1. Then, using Equation (10), Corollary 9 can be obtained as a specialization of a
formula of Shareshian and Wachs [16, Equation (1.4)] involving Eulerian quasisymmetric
functions.
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4.3 Counting derangements by cyclic peaks

Next, we examine the distribution of the cyclic peak number over derangements.

Corollary 11. Dcpk(t;x) =
1

1− tV (t, 1;x)

By specializing (7) appropriately, we derive the formula

Dcpk(t;x) =

√
1− te−x√

1− t cosh(x
√

1− t)− sinh(x
√

1− t)
.

The first several polynomials Dcpk
n (t) are given in the following table.

n Dcpk
n (t)

1 0

2 t

3 2t

4 4t+ 5t2

n Dcpk
n (t)

5 8t+ 36t2

6 16t+ 188t2 + 61t3

7 32t+ 864t2 + 958t3

8 64t+ 3728t2 + 9656t3 + 1385t4

Note that the coefficient of t in Dcpk
n (t) seems to be 2n−2 for all n > 2; this is easy to

explain combinatorially.

Proposition 12. For all n > 2, the number of derangements in Dn with exactly one cyclic
peak is 2n−2.

Proof. It is easy to see that every derangement π of [n] with exactly one cyclic peak has
exactly one cycle and can be written in the form

(c1c2 · · · ckck+1 · · · cn)

where c1 = n is the only cyclic peak of π, the sequence c2 · · · ck is decreasing (with ck = 1),
and the sequence ck+1 · · · cn is increasing. Thus, for every letter i between 2 and n − 1,
either i belongs to the decreasing sequence or the increasing sequence, and these n− 2
choices completely determine the derangement π.

It follows from Corollary 11 that the exponential generating function for the numbers
Dcpk
n (−1) is the reciprocal of the exponential generating function G(x) for the Pell numbers.

Corollary 13. Dcpk(−1;x) = G(x)−1

We do not have a combinatorial interpretation for the numbers Dcpk
n (−1) themselves.

The first several of these numbers appear in the following table.

n 1 2 3 4 5 6 7 8 9 10

Dcpk
n (−1) 0 −1 −2 1 28 111 −126 −4067 −26280 53663

the electronic journal of combinatorics 26(3) (2019), #P3.27 14



4.4 Counting derangements by cyclic double descents

Lastly, we study the distribution of the cyclic double descent number over derangements.

Corollary 14. Dcddes(t;x) =
1

1− V (1, (1 + t)/2;x)
.

The exponential generating function formula

Dcddes(t;x) =
βe−

1
2
(1+t)x

β cosh(1
2
βx)− (1 + t) sinh(1

2
βx)

,

where β =
√

(t+ 3)(t− 1), can be obtained by specializing (7). The first several of the
polynomials Dcddes

n (t) appear in the following table.

n Dcddes
n (t)

1 0

2 1

3 1 + t

4 6 + 2t+ t2

n Dcddes
n (t)

5 19 + 21t+ 3t2 + t3

6 109 + 98t+ 53t2 + 4t3 + t4

7 588 + 808t+ 334t2 + 118t3 + 5t4 + t5

8 4033 + 5766t+ 3827t2 + 952t3 + 248t4 + 6t5 + t6

An increasing run of a permutation π is a maximal increasing consecutive subsequence
of π (in one-line notation). For example, the increasing runs of π = 467192685 are
467, 19, 268, and 5. We call increasing runs of length 1 short runs. The sequence of
constant coefficients of Dcddes

n (t) matches the OEIS sequence [18, A097899] for the number
of permutations of [n] with no short runs; this can be verified by comparing the evaluation
Dcddes(0;x) with the exponential generating function of this OEIS entry, but we give a
bijective proof below.

For the purpose of this proof, let us temporarily modify our convention for cycle
notation so that we write each cycle with its smallest letter in the first position, and write
the cycles from left-to-right in decreasing order of their smallest letters. For example,
whereas we previously wrote π = 649237185 as π = (42)(716)(8)(953) in canonical cycle
representation, now we write π as π = (8)(395)(24)(167). Let o′ : Sn → Sn be the map
defined by taking a permutation in cycle notation under this new convention and erasing
the parentheses, yielding a permutation in one-line notation. This is a bijection; we can
recover the cycles of π by noting the left-to-right minima of o(π): given a permutation
σ = σ1σ2 · · ·σn, we say that σi is a left-to-right minimum of σ if σj > σi for all 1 6 j < i.

Proposition 15. An letter i ∈ [n] is a fixed point or cyclic double descent of π ∈ Sn if
and only if i is a short run of o′(π).

In particular, this proposition implies that the number of derangements of [n] with no
cyclic double descents is equal to the number of permutations of [n] with no short runs.
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Proof. Fix a permutation π ∈ Sn and a letter i ∈ [n]. Let us write o′(π) = σ1σ2 · · ·σn in
one-line notation, and take σj = i. By taking as convention σ0 =∞ and σn+1 = 0, it is
easy to see that σj = i is a short run of o′(π) if and only if σj−1 > σj > σj+1.

We divide into cases. First, suppose that i ∈ [n] is a fixed point of π. Then σj and σj+1

are both left-to-right minima, so σj−1 > σj > σj+1. Now suppose that i ∈ [n] is a cyclic
double descent of π. Note that the first letter of a cycle (under our current convention)
cannot be a cyclic double descent. If i is neither the first nor last letter of its cycle in π,
then σj−1 > σj > σj+1. Otherwise, if i is the last letter of its cycle in π, then σj−1 > σj
and σj+1 is a left-to-right minimum; thus σj−1 > σj > σj+1. In each case, it follows that
σj = i is a short run of o′(π). Hence, every fixed point and cyclic double descent of π is a
short run of o′(π); the reverse direction is similar.

Finally, we give a cyclic analogue of Theorem 6 for derangements.

Theorem 16. For all n > 1, we have

Dcddes
n (−1) =

{
En, if n is even,

0, if n is odd.

Thus Dcddes(−1;x) = sec(x).

In other words, the (−1)-evaluation of the cyclic double descent distribution over D2n

gives the secant number E2n.

Proof. By comparing Theorem 7 with Corollary 14, we have Dcddes
n (−1) = D

(cpk,cdbl)
n (1, 0)

for all n > 1. Observe that D
(cpk,cdbl)
n (1, 0) is the number of derangements of [n] with no

cyclic double ascents or cyclic double descents. Because the number of cyclic peaks of
any permutation is equal to its number of cyclic valleys, it is evident that there are no
such permutations for odd n, and it is easy to see that the map o defined earlier is a
bijection between such permutations for an even n and reverse-alternating permutations
of [n]: permutations π = π1π2 · · · πn satisfying π1 > π2 < π3 > π4 < · · · > πn. Since there
are En reverse-alternating permutations in Sn, the proof follows.
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probabilités, Publ. Inst. Statist. Univ. Paris 14 (1965), 81–241.

[9] Dominique Foata and Marcel-P. Schützenberger, Théorie géométrique des polynômes eulériens,
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[23] Jiang Zeng, Énumérations de permutations et J-fractions continues, European J. Combin. 14 (1993),
no. 4, 373–382.

[24] Yan Zhuang, Counting permutations by runs, J. Comb. Theory Ser. A 142 (2016), 147–176.

the electronic journal of combinatorics 26(3) (2019), #P3.27 17

http://oeis.org
http://oeis.org
http://arxiv.org/abs/1907.06681

	Introduction
	Permutation statistics and valley-hopping
	Hopping from Chebyshev polynomials to permutation statistics
	A Chebyshev formula for the bidistribution (pk, dbl)
	A Chebyshev formula for the quadruple distribution (pk,val,dasc,ddes)

	Counting derangements by cyclic statistics
	A cyclic analogue of Theorem 3 for derangements
	Counting derangements by excedances
	Counting derangements by cyclic peaks
	Counting derangements by cyclic double descents


