
Permutation graphs and the Abelian sandpile model,

tiered trees and non-ambiguous binary trees

Mark Dukes∗

School of Mathematics and Statistics
University College Dublin, Ireland

mark.dukes@ccc.oxon.org

Thomas Selig∗

Mathematics Division
University of Iceland, Iceland

selig@hi.is

Jason P. Smith†

Department of Mathematics
University of Aberdeen, UK

jason.smith@abdn.ac.uk

Einar Steingŕımsson∗†
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Abstract

A permutation graph is a graph whose edges are given by inversions of a permu-
tation. We study the Abelian sandpile model (ASM) on such graphs. We exhibit a
bijection between recurrent configurations of the ASM on permutation graphs and
the tiered trees introduced by Dugan et al. [10]. This bijection allows certain pa-
rameters of the recurrent configurations to be read on the corresponding tree. In
particular, we show that the level of a recurrent configuration can be interpreted as
the external activity of the corresponding tree, so that the bijection exhibited pro-
vides a new proof of a famous result linking the level polynomial of the ASM to the
ubiquitous Tutte polynomial. We show that the set of minimal recurrent configura-
tions is in bijection with the set of complete non-ambiguous binary trees introduced
by Aval et al. [2], and introduce a multi-rooted generalization of these that we show
to correspond to all recurrent configurations. In the case of permutations with a
single descent, we recover some results from the case of Ferrers graphs presented in
[11], while we also recover results of Perkinson et al. [16] in the case of threshold
graphs.
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1 Introduction

In the Abelian sandpile model (ASM) on a graph, each vertex has a number of “grains”.
If a vertex has at least as many grains as its degree is then it can be toppled, donating one
grain to each of its neighbors. If a (nonempty) sequence of topplings from a configuration
c of grains leads to c again, then c is said to be recurrent.

In this paper we study the ASM on permutation graphs. For a permutation π =
π1π2 . . . πn this is the graph whose vertices are the integers 1, 2, . . . , n with an edge between
i and j if and only if i < j and πi > πj, that is, if πi and πj form an inversion in π.

This paper generalizes the results in [11], where the recurrent configurations on Ferrers
graphs were classified in terms of decorated EW-tableaux, since Ferrers graphs are isomor-
phic to permutation graphs of permutations with a single descent We extend the bijection
in [11] between recurrent configurations on Ferrers graphs and the intransitive trees of
Postnikov [17], to bijectively connect recurrent configurations of permutation graphs and
the tiered trees introduced by Dugan et al. [10], of which the intransitive trees are a special
case.

In [2], Aval et al. introduced the so-called complete non-ambiguous binary trees
(CNABs), which arise from certain 0/1 fillings of square Ferrers diagrams. We show that
the set of minimal recurrent configurations on permutation graphs is in bijection with
CNABs. We then generalize the CNABs, which have a canonical root vertex, to a multi-
rooted version, which we show to be in bijection with all recurrent configurations on the
corresponding permutation graphs.

We also show that our results extend those of Perkinson et al. [16], connecting parking
functions and labeled spanning trees of threshold graphs, which are a subset of permutation
graphs.

The paper is organized as follows. In Section 2 we recall necessary definitions and
provide a link between tiered trees and spanning trees of permutation graphs. In Section 3
we exhibit a bijection between tiered trees and recurrent configurations of the ASM on
permutation graphs. We show how the level statistic and canonical toppling of a recurrent
configuration can be read from the corresponding tree, and interpret the level statistic as
the external activity of the tree. This provides a new proof, in the case of permutation
graphs, of the famous result linking the level polynomial of the ASM to the ubiquitous
Tutte polynomial (see Proposition 12). In Section 4 we recall the definition of complete
non-ambiguous binary trees introduced by Aval et al. [2], show that these are in bijection
with the set of minimal recurrent configurations of the ASM and introduce a generaliza-
tion that we show to correspond to all recurrent configurations. Finally, in Section 5 we
study two special cases of permutation graphs, namely Ferrers graphs (corresponding to
permutations with a single descent) and threshold graphs, and recover results from [11]
and [16] respectively.
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2 Definitions and Preliminaries

For any positive integer n, we let [n] := {1, . . . , n} and Sn be the set of permutations of [n].

2.1 Permutation graphs

To a permutation π = π1 · · · πn ∈ Sn, we associate a graph Gπ as follows. The vertex set
of π is [n] and the edges are the pairs (πi, πj) such that i < j and πi > πj, that is, (i, j) is
an inversion of π. Such a graph is called a permutation graph.

A permutation π ∈ Sn is said to be indecomposable if there exists no positive integer
k < n such that {π1, . . . , πk} = [k]. The following is well known, see for example [14,
Lemma 3.2].

Fact 1. A permutation graph Gπ is connected if and only if π is indecomposable.

Figure 1 shows the graphs associated with the permutations π = 23541 and π′ = 23154.
Note that π′ can be decomposed as 231–54, while π is indecomposable. Thus the graph
Gπ is connected, while Gπ′ is not.
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G23154

Figure 1: The graphs associated with the permutations π = 23541 (left) and π′ = 23154
(right).

Since we will be analyzing the ASM on permutation graphs, and the ASM is only
defined on connected graphs, we will from now on only deal with permutation graphs of
indecomposable permutations unless otherwise specified.

2.2 Tiered trees

Tiered trees were introduced in [10] as a generalization of the intransitive trees introduced
by Postnikov [17], the latter of which have exactly two tiers.

Definition 2. A tiered tree of size n is a pair (T, t) where:

• T is a labeled tree on [n].

• t is a surjective mapping from [n]→ [k] for some k such that for any edge (i, j) of T
with i > j we have t(i) < t(j).
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The function t is called the tiering function of the tiered tree (T, t), and the integer k is
its number of tiers.

A tiered tree is said to be fully tiered if its number of tiers equals its number of vertices,
that is, k = n, or equivalently, if its tiering function is a bijection.

Remark 3. The condition t(i) < t(j) is reversed in [10]. This corresponds to replacing the
function t with k+ 1− t. The reason we reverse this condition is to make the link between
tiered trees and permutation graphs simpler.

2.3 Fully tiered trees and permutation graphs

Lemma 4. Let T = (T, t) be a tiered tree. Then there exists a fully tiered tree T ′ = (T, t′).

Proof. Let T = (T, t) be a tiered tree. For ` ∈ [k], we let P` := t−1(`) be the set of vertices
at tier ` in T . By definition, the P` form a partition of [n]. We define t′ : [n]→ [n] by

t′(i) :=

(
`−1∑
m=1

|Pm|

)
+ |{j ∈ P` : j < i}|+ 1, (1)

where ` is such that i ∈ P`. In words, the function t′ keeps the relative ordering of tiers,
and orders vertices inside each tier in increasing order, as illustrated in Figure 2 below.
We claim that t′ is a tiering function for the tree T , and that (T, t′) is fully tiered.

5

4 1

2

3t(·) = 1

t(·) = 2

t(·) = 3

T

3

5

1

4

2

t(·) = 1

t(·) = 2

t(·) = 3

t(·) = 4

t(·) = 5

T ′

Figure 2: A tiered tree T (left) and a fully tiered tree T ′ (right) with the same underlying
tree. The tiers are represented as levels.

Let (i, j) be an edge of T with i < j, and let `,m be such that i ∈ P` and j ∈ Pm.
Since t is a tiering function, this implies that t(i) = ` > m = t(j). Now by construction,
Equation (1) implies that t′(i) > t′(j), as desired.

It is clear from Equation (1) that t′ assigns a unique positive number no greater than
n to each i, which implies that t′ is a bijection, so (T, t′) is fully tiered.

Lemma 4 states that any tiered tree can be viewed as a fully tiered tree in a sense. As
such, from now on, we only consider fully tiered trees, and call these simply tiered trees.
The following proposition establishes a link between tiered trees and permutation graphs.
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Proposition 5. Let T be a labeled tree on [n] and π ∈ Sn. Then T is a spanning tree
of Gπ if and only if (T, π−1) is a tiered tree.

Proof. Suppose that T is a spanning tree of Gπ. This means that if (i, j) is an edge of T
with i > j, then i appears before j in π, which implies π−1(i) < π−1(j). This is exactly
the condition that (T, π−1) is a tiered tree. The converse follows in the same way.

2.4 The Abelian sandpile model

The ASM is a dynamic process on a graph which has attracted considerable attention
through the years, and remains a constant source of new and interesting research topics.

Let G = (V,E) be a finite, connected, loop-free, undirected graph with vertex set
V = [n] for some n. Let di = di(G) be the degree of the vertex i in G. We will consider
the sandpile model on the graph G with a distinguished vertex s ∈ [n], called the sink. We
indicate that by writing this as the pair (G, s).

A configuration on (G, s) is a vector c = (c1, . . . , cn) ∈ Zn+ that assigns the number ci
to vertex i. We think of ci as the number of ‘grains of sand’ at the vertex i. Configs (G) is
the set of all configurations on (G, s). Let αi ∈ Zn be the vector with 1 in the i-th position
and 0 elsewhere.

We say that a vertex i is stable in a configuration c = (c1, . . . , cn) ∈ Configs (G) if
ci < di. Otherwise it is unstable. A configuration is stable if all its non-sink vertices are
stable.

Unstable vertices may topple. We define the toppling operator Ti corresponding to the
toppling of an unstable vertex i ∈ [n] in a configuration c ∈ Configs (G) by

Ti(c) := c− diαi +
∑

j:{i,j}∈E

αj,

where the sum is over all vertices adjacent to i. In words, when a vertex i topples, it sends

one grain of sand along each incident edge to its neighbors. We write c
i−→ c′ to indicate

that the vertex i is unstable in c and that Ti(c) = c′.
It is possible to show (see for instance [9, Section 5.2]) that starting from any config-

uration c and toppling unstable vertices, one eventually reaches a stable configuration c′.
Moreover, c′ does not depend on the order in which unstable vertices are toppled in this
sequence.

Definition 6. A configuration c ∈ Configs (G) is recurrent on (G, s) if it satisfies the
following three conditions:

1. We have cs = ds.

2. The configuration c is stable, that is, ci < di for i 6= s.

3. There exists a sequence v1, . . . , vn with v1 = s and {v1, . . . , vn} = [n] such that

c0 = c
v1−→ c1 v2−→ · · · vn−→ cn = c.
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In words, the third condition states that there is an ordering of the vertices such that
starting from c, every vertex can be toppled (exactly) once in this order. The fact that after
making these topplings one returns to the configuration c is guaranteed by the following
argument: On every edge (i, j) of G, toppling i sends one grain from i to j while toppling j
sends one grain from j to i. Thus, toppling every vertex exactly once leaves the initial
configuration unchanged.

Let Recs (G) be the set of recurrent configuration on a graph G with sink s. Given
c ∈ Recs (G), define the level of c to be

level (c) :=
∑
i∈[n]

ci − |E|,

where |E| denotes the number of edges ofG. From [15, Thm. 3.5] we have that ifG = (V,E)
is a graph and c ∈ Recs (G), then 0 6 level (c) 6 |E| − |V | + 1. The level of a recurrent
configuration is thus always a non-negative integer. The level polynomial of a graph (G, s)
is the generating function of the level statistic over the set of recurrent configurations on
that graph:

LevelG,s (x) :=
∑

c∈Recs(G)

xlevel(c).

Finally, we define the notion of canonical toppling. Given a recurrent configuration
c ∈ Recs (G), the canonical toppling of c is the ordered set partition P = P0, . . . , Pk of [n]
where P0 = {s} and for i > 1, Pi is the set of (non-sink) unstable vertices resulting from
the toppling of all vertices in P0, . . . , Pi−1. The fact that this gives a partition of [n] is
guaranteed by Condition (3) of Definition 6. For c ∈ Recs (G), we denote by CanonTop(c)
the canonical toppling of c.

Example 7. Let π = 3421 and G3421 be the corresponding permutation graph, as illus-
trated in Figure 3. Fix s = 3 to be the sink vertex (represented as a square), and consider
the configuration c = (1, 2, 2, 1) (grains are represented as red dots next to their vertex).
We have c3 = 2 = d3 and ci < di for i 6= 3 so the first two conditions of Definition 6 are
satisfied. We show that the third condition is also satisfied, and simultaneously determine
the canonical toppling.

We initially topple vertex 3 in c0 = c. This yields the configuration c1 = (2, 3, 1, 0).
In c1, only vertex 2 is unstable, so we topple this, reaching c2 = (3, 0, 1, 2). Now both 1 and
4 are unstable. In this case, we may topple for instance 1 then 4, and this will yield the
initial configuration c. Thus, c is recurrent and CanonTop(c) = {3}, {2}, {1, 4}. Finally,
we can compute the level of c: level (c) = 1 + 2 + 2 + 1− 5 = 1.

3 A bijection from trees to recurrent configurations of the ASM

3.1 The bijection

Let π ∈ Sn and T be a spanning tree of G = Gπ, that is, such that (T, π−1) is a tiered tree
by Proposition 5. Let s ∈ [n] be a distinguished vertex of G. We view the tree T as being
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Figure 3: The permutation graph G3421 with sink s = 3 and the configuration c =
(1, 2, 2, 1), which is shown to be recurrent by the toppling sequence 3,2,1,4.

rooted at s. Given i ∈ [n], we define the height of i in T to be its distance to the root s,
and denote it h(i). If i 6= s, the parent of i is the next vertex encountered on the unique
path from i to s, and we denote this p(i). For k > 1, we define T (k) := {i ∈ n : h(i) = k}
to be the set of vertices at height k in T , with analogous definitions for T (>k), T (>k), etc.
Finally, we let NG(i) be the set of neighbors of i in the graph G.

For i ∈ [n], we let:

λi = λi(T ) :=
∣∣NG(i) ∩ T (>h(i))

∣∣ , (2)

µi = µi(T ) :=
∣∣NG(i) ∩ T (h(i))

∣∣ , (3)

νi = νi(T ) :=
∣∣NG(i) ∩ T (h(i)−1) ∩ [0, p(i)− 1]

∣∣ . (4)

In words, λi is the set of neighbors of i in G at height strictly greater than i in T , µi is
the set of neighbors of i in G at the same height as i in T , and νi is the set of neighbors
of i in G at height one less than i, and whose labels are strictly smaller than the parent
of i. Although it would be natural to combine λi and µi into one number, this definition
facilitates our proof of the following theorem. Note that these definitions all depend on
the choice of a distinguished vertex s, though for lightness of notation we do not make this
explicit.

Theorem 8. Let π ∈ Sn be a permutation and s ∈ [n] a distinguished vertex of G = Gπ.
Given a spanning tree T of G we define a configuration c(T ) = (c1(T ), . . . , cn(T )) ∈
Configs (G) by

ci(T ) := λi(T ) + µi(T ) + νi(T ).

Then the map φTC : T 7→ c(T ) is a bijection from the set of spanning trees of G to Recs (G).

Moreover, for any spanning tree T , we have level (c(T )) =
n∑
i=1

(
1
2
µi(T ) + νi(T )

)
, and

CanonTop (c(T )) = T (0), T (1), . . . .

That is, the canonical toppling of c(T ) is given by the breadth-first search of T .

Before we prove this result, let us examine one example in depth.

Example 9. Let π = 514362. The associated permutation graph G = Gπ is represented
on the left of Figure 4. We take s = 3 to be the sink. Let T be the spanning tree of G on

the electronic journal of combinatorics 26(3) (2019), #P3.29 7



the right of Figure 4. We represent T as a tree rooted at the distinguished vertex 3, and
compute the corresponding configuration c(T ):

For i = 1, there are no vertices at height greater than h(1) = 2 in T , and none of the
other two vertices at height 2 are neighbors of 1 in G, so that λ1 = µ1 = 0. In fact, the
parent of 1 in T is its only neighbor in G, so that we also have ν1 = 0, and thus c1 = 0. Now
consider the vertex i = 2. In T there are three vertices at height greater than h(2) = 1,
which are 1, 4, 6. Of these, 4 and 6 are neighbors of 2 in G, so that λ2 = 2. Similarly, 5 is
the other vertex at height 1 in T , and is a neighbor of 2 in G, so that µ2 = 1. Finally, the
parent of 2 in T is the only vertex at height 1− 1 = 0, so ν2 = 0. Thus, c2 = 2 + 1 + 0 = 3.

Similarly, c3 = 3 + 0 + 0 = 3. Now for i = 4, we have λ4 = 0 (there are no vertices at a
greater height in T ), µ4 = 0 (neither 1 nor 6 are neighbors of 4 in G). But both 2 and 5
are neighbors of 4 in G with height equal to h(4) − 1 in T , and the parent of 4 in T is 5,
so that ν4 = 1, and thus c4 = 0 + 0 + 1 = 1. Finally, we can see that c5 = 2 + 1 + 0 = 3,
and c6 = 0 + 0 + 0 = 0. Thus, we have c(T ) = (0, 3, 3, 1, 3, 0).

We check that c(T ) is recurrent using Definition 6, and also establish that the canonical
toppling of c(T ) is given by the breadth-first search (BFS) of T . The vertex degree sequence
of G is given by (1, 4, 3, 3, 4, 1), and the BFS of T is 3−25−146 with dashes separating the
sets of vertices at different heights. Start from the configuration c = c(T ) = (0, 3, 3, 1, 3, 0).
We have c3 = d3 and cj < dj for j 6= 3, as desired. Therefore we initially topple vertex
3. This leads to the configuration (0, 4, 0, 2, 4, 0). In this configuration, vertices 2 and
5 are unstable. We topple these, which leads to the configuration (1, 1, 2, 4, 1, 1). In
this configuration, vertices 1,4 and 6 are unstable. We topple these, which leads back
to the initial configuration (0, 3, 3, 1, 3, 0). Thus, by Definition 6 the configuration c(T )
is recurrent, and we have moreover shown that CanonTop

(
cT
)

= 3 − 25 − 146, which is
exactly the BFS of T .

Finally, the graph G has 8 edges, so that on the one hand

level (c(T )) = (0 + 3 + 3 + 1 + 3 + 0)− 8 = 10− 8 = 2.

On the other hand, we have

6∑
i=1

(
1

2
µi + νi

)
=

1

2
(0 + 1 + 0 + 0 + 1 + 0) + (0 + 0 + 0 + 1 + 0 + 0) = 1 + 1 = 2,

which gives the desired result.

Proof of Theorem 8. Let T be a spanning tree of T , and c := c(T ) the corresponding
configuration. We first show that c is recurrent, and that CanonTop(c) = T (0), T (1), . . .,
using Definition 6.

1. The sink s is the unique vertex at height 0 in T , so that λs = |NG(s)| = ds, and
µs = νs = 0. Thus cs = λs + µs + νs = ds as desired.

2. For i 6= s, we see that λi, µi and νi all count distinct subsets of NG(i). Moreover,
p(i) is a neighbor of i in G which is counted in none of these three subsets. Thus,
ci < |NG(i)| = di, and so the configuration c is stable.
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Figure 4: The graph G associated with the permutation π = 514362 (left) and a spanning
tree T of G represented as rooted at the distinguished vertex 3 (right). Configuration on
G corresponding to T shown with red dots.

3. We now show that, starting from the configuration c, for any k > 1, if we topple the
vertices of T (0), . . . , T (k−1), then the set of non-sink unstable vertices is exactly T (k).
Combined with the above, this shows that c is recurrent, and that CanonTop(c) =
T (0), T (1), . . .. Let k > 1 and let c′ be the configuration reached from the initial
configuration c after toppling the vertices of T (0), . . . , T (k−1). We need to show that
c′i > di if i ∈ T (k), and that c′i < di if i /∈ T (k) ∪ {s}.

• Let i ∈ T (k). We have c′i = ci +
∣∣NG(i) ∩ T (<k)

∣∣, since the second term of the

sum is the number of grains vertex i receives through toppling T (0), . . . , T (k−1).
Thus

c′i = λi + µi + νi +
∣∣NG(i) ∩ T (<k)

∣∣
=
∣∣NG(i) ∩ T (>k)

∣∣+
∣∣NG(i) ∩ T (k)

∣∣+ νi +
∣∣NG(i) ∩ T (<k)

∣∣
= di + νi > di,

as desired.

• Let i ∈ T (>k). Write ` = h(i) > k. As above, we have

c′i = ci +
∣∣NG(i) ∩ T (<k)

∣∣
=
∣∣NG(i) ∩ T (>`)

∣∣+
∣∣NG(i) ∩ T (`)

∣∣+
∣∣NG(i) ∩ T (<k)

∣∣+ νi.

Now νi counts a subset of neighbors of i in G which are at height `−1 in T , and
since p(i) is not counted in νi, this is a strict subset. Thus c′i <

∣∣NG(i) ∩ T (>`)
∣∣+∣∣NG(i) ∩ T (`)

∣∣+∣∣NG(i) ∩ T (<k)
∣∣+∣∣NG(i) ∩ T (`−1)

∣∣, and since `−1 > k, it follows
that c′ < di as desired.

• Let i ∈ T (<k), with i 6= s. The vertex i has been toppled in T (0), . . . , T (k−1), so
that c′i = ci +

∣∣NG(i) ∩ T (<k)
∣∣− di. But we have already shown that c is stable,

so ci < di, and thus c′i <
∣∣NG(i) ∩ T (<k)

∣∣ 6 |NG(i)| = di, as desired.

This completes the first part of the proof, namely that c is recurrent, and that

CanonTop(c) = T (0), T (1), . . . .
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We now show that level (c) =
n∑
i=1

(
1
2
µi + νi

)
. We have

level (c) =
n∑
i=1

(λi + µi + νi)− |E|

=
n∑
i=1

(
λi +

1

2
µi

)
− |E|+

n∑
i=1

(
1

2
µi + νi

)
.

Now, the sum
∑n

i=1 λi counts all pairs of vertices (i, j) such that j ∈ NG(i) and h(i) < h(j).
Thus every edge (i, j) of G with h(i) 6= h(j) is counted exactly once in that sum. Moreover,
the sum

∑n
i=1 µi counts all pairs of vertices (i, j) such that j ∈ NG(i) and h(i) = h(j). Thus,

in the sum
∑n

i=1 µi, every edge (i, j) of G with h(i) = h(j) is counted twice. Therefore we
have

∑n
i=1

(
λi + 1

2
µi
)

= |E|, and thus level (c) =
∑n

i=1

(
1
2
µi + νi

)
, as desired.

It remains to show that φTC is a bijection. To do this, we exhibit its inverse. Let
c ∈ Recs (G), and write CanonTop(c) = P0, P1, . . . for the canonical toppling of c, with
P0 = {s}. We construct a spanning tree T = T (P ) of G from this as follows. The levels
of T are such that for all j > 0 we have T (j) = Pj. To define T it is then sufficient to
define a parent map p : [n] \ {s} → [n] such that for any j > 1 and i ∈ Pj, we have
p(i) ∈ NG(i) ∩ Pj−1. That this intersection is nonempty follows from the definition of the
canonical toppling, since for i to topple in Pj it must have received some grains through
the toppling of Pj−1.

Fix some j > 1 and i ∈ Pj. The definition of the canonical toppling implies the
following property: Starting from c, the vertex i is stable after toppling the vertices from
P0, . . . , Pj−2, and becomes unstable after toppling those of Pj−1. For k > 0, let N

(<k)
G (i)

be the set of neighbors of i in G which are in P0 ∪ · · · ∪ Pk−1. The previous property can
then be summarized in the following two inequalities:

ci +
∣∣∣N (<j−1)

G (i)
∣∣∣ < di,

ci +
∣∣∣N (<j)

G (i)
∣∣∣ > di.

Letting ri := ci +
∣∣∣N (<j)

G (i)
∣∣∣− di, this is equivalent to

0 6 ri < |NG(i) ∩ Pj−1| .

We then define p(i) to be the (ri+1)-th largest element of NG(i)∩Pj−1, and let T = φCT (c)
be the spanning tree of G resulting from this construction. We now show that φCT is the
inverse of φTC .

First, let T be a spanning tree of G and set T ′ := φCT (φTC(T )). By construction,
we have T (k) = T ′(k) for all k > 0, so we only need to show that for any i ∈ [n] \ {s},
we have pT (i) = pT

′
(i). Set c := φTC(T ) and let i ∈ T (j)

(
= T ′(j)

)
for some j > 1. By

definition, pT
′
(i) is the (ri + 1)-th largest element of NG(i) ∩ T (j−1), where ri := ci +
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∣∣∣N (<j)
G (i)

∣∣∣ − di = ci −
∣∣NG(i) ∩ T (>j)

∣∣. But by definition of φTC , this means that ri =

νi(T ) =
∣∣NG(i) ∩ T (j−1) ∩ [0, p(i)− 1]

∣∣, and thus pT (i) is also the (ri+1)-th largest element

of NG(i) ∩ T (j−1), so that pT (i) = pT
′
(i) as desired. This shows that φCT (φTC(T )) = T for

any spanning tree T . Since it is well known that the number of recurrent configurations for
the ASM on a graph G is equal to a number of spanning trees of G (see for instance [18,
Section 3.2]), this is sufficient to conclude that φTC is a bijection, with φCT its inverse.

Remark 10. Theorem 8, combined with Proposition 5, provides a bijection between the set
of (fully) tiered trees on [n] and the (disjoint) union of the sets of recurrent configurations
for the ASM over all (connected) permutation graphs on n vertices. In particular, we have
that the number of (fully) tiered trees on [n] is given by the sum

∑
π |Recs (Gπ) |, where

the sum is over all indecomposable permutations of length n, and s is some fixed (but
arbitrary) sink in [n].

3.2 A Tutte-descriptive activity

Let π ∈ Sn be a permutation, G = Gπ its permutation graph, and s ∈ [n] a distinguished
vertex of G. Given a spanning tree T , we interpret the level statistic of the corresponding
recurrent configuration c(T ) ∈ Recs (G) as the external activity of the spanning tree T .

Definition 11. Let G = (V,E) be a graph, T a spanning tree of G, and ≺ a total order
on the edges E of G. An edge e /∈ T is said to be externally active if it is the maximal
edge for ≺ in the unique cycle contained in T ∪{e}. An edge e ∈ T is said to be internally
active if it is the maximal edge for ≺ in the unique cocycle contained in T \ {e}, that is,
in the set of edges connecting the two connected components of T \ {e}. The external,
resp. internal, activity of T is its number of externally, resp. internally, active edges, and
is denoted by ext(T ), resp. int(T ).

In light of this, Theorem 8 can be interpreted as a bijection between recurrent configu-
rations and spanning trees of a graph, mapping the level of a configuration to the external
activity of the corresponding tree. This bijection is different from those already existing
in the literature, such as [5, 7].

Recall that the Tutte polynomial of a (connected) graph G = (V,E) is defined by

TG(x, y) :=
∑
S⊆E

(x− 1)cc(S)−1(y − 1)cc(S)+|S|−|V |,

where for S ⊆ E, cc(S) denotes the number of connected components of the subgraph
(V, S). The level and Tutte polynomial of a graph are related by the following well-known
result.

Proposition 12. Let (G, s) be a graph. Then we have LevelG,s (x) = TG(1, x). In partic-
ular, the level polynomial is independent of the choice of sink.
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This result was initially proved by López [15], following a conjecture by Biggs. Sub-
sequent combinatorial (bijective) proofs have been given, for instance, by Cori and Le
Borgne [7], and Bernardi [5]. The aim of the remainder of this section is to show that
Theorem 8 gives a new bijective proof in the case of permutation graphs.

Let G = Gπ be a permutation graph with sink s. We first show that for a spanning tree
T of G, we can construct an order ≺T on the edges of G such that level (φTC(T )) = ext(T ).
We then show that the order map T 7→≺T is Tutte-descriptive in the sense introduced by
Courtiel in [8]. Let T be a spanning tree of G. As usual, we root T at s. The following
algorithm defines an order ≺T of E.

Algorithm 13. 1. Initially, set k = 0 and all vertices as unvisited.

2. Let v be the largest unvisited vertex at height k in T . If no such vertex exists,
increase k by 1 and repeat this step.

3. Let S be the set of edges (v, w) of G such that w is unvisited. Order elements of S
by (v, w) ≺T (v, w′) if w > w′, and such that all edges in S are greater (in ≺T ) than
all previously ordered edges.

4. Mark v as visited. If all edges of G have been ordered then terminate, otherwise
return to Step (2).

This order ≺T is similar to that introduced by Gessel and Sagan in [13], though where
theirs is based on a depth-first search of T ours is based on a breadth-first search, since
vertices are visited in that order.

Example 14. Let π = 514362 so that Gπ is the graph on the left in Figure 4, and consider
the spanning tree T on the right in that figure. We initially set k = 0 and v = 3 which is
the only vertex at height 0 in T . Proceeding to Step (3), we have S = {(3, 2), (3, 4), (3, 5)}.
We order these (3, 5) ≺ (3, 4) ≺ (3, 2). We then mark 3 as visited, and return to Step (2).
Since there are no unvisited vertices left at height 0, we move to height 1.

We set v = 5, which is the largest vertex at height 1 (neither vertex has been visited
yet). Now S = {(5, 1), (5, 2), (5, 4)} since 3 has already been visited, and we order these
(5, 4) ≺ (5, 2) ≺ (5, 1), with (3, 2) ≺ (5, 4). We then mark 5 as visited, return to Step (2),
and set v = 2. We have S = {(2, 4), (2, 6)}, which we order (2, 6) ≺ (2, 4), with (5, 1) ≺
(2, 6). We then mark 2 as visited, and we now see that all edges have been ordered, so
the algorithm terminates, and yields the order (3, 5) ≺ (3, 4) ≺ (3, 2) ≺ (5, 4) ≺ (5, 2) ≺
(5, 1) ≺ (2, 6) ≺ (2, 4).

Theorem 15. Let G = Gπ be a permutation graph with sink s. Then for any spanning
tree T of G, we have

ext(T ) = level (φTC(T )) ,

where ext(T ) is the number of externally active edges for the order ≺T defined by Algo-
rithm 13.

To prove this result, we need two lemmas.
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Lemma 16. Let G = Gπ be a permutation graph with sink s, and T a spanning tree of G.
Then

level (φTC(T )) = |{(i, j) ∈ E(G) : h(i) = h(j)}|
+ |{(i, j) ∈ E(G) : h(i) = h(j)− 1 and i < p(j)}| .

Proof. From Theorem 8, we have that level (φTC(T )) =
n∑
i=1

(
1
2
µi + νi

)
. Moreover, we saw

in the proof of that result that
n∑
i=1

1
2
µi counts edges (i, j) of G such that h(i) = h(j), that

is the first term of the right-hand side of Lemma 16, while it is clear that
n∑
i=1

νi counts the

second term, so the result immediately follows.

Lemma 17. Let G = Gπ be a permutation graph with sink s, T a spanning tree of G,
and ≺T the order on the edges of G given by Algorithm 13. Suppose that an edge e = (i, j)
is externally active for ≺T . Then we have |h(i)− h(j)| 6 1.

Proof. Suppose that e = (i, j) with h(i) > h(j)+2. In particular, we have h(i) > h(p(i)) >
h(j). By the construction in Algorithm 13, we therefore have (i, j) ≺T (i, p(i)), and since
the unique cycle of T ∪ {e} contains the edge (i, p(i)) this implies that e is not externally
active, which completes the proof.

We now prove Theorem 15.

Proof of Theorem 15. Let e = (i, j) be an edge of G \ T , with h(i) 6 h(j). By Lemma 16,
it is sufficient to show that e is externally active if and only if h(i) = h(j) or h(i) = h(j)−1
and i < p(j).

First suppose that e is externally active. Lemma 17 implies that we have h(i) = h(j) or
h(i) = h(j)− 1. If h(i) = h(j) there is nothing to do. If h(i) = h(j)− 1, we need to show
that i < p(j). But if i > p(j) (we cannot have i = p(j) since (i, j) is not an edge of T )
the construction in Algorithm 13 implies that (i, j) ≺T (p(j), j). Since the edge (p(j), j)
is contained in the unique cycle of T ∪ {(i, j)}, this means that e is not externally active,
which is a contradiction. Hence we must have i < p(j), as desired.

Conversely, suppose that h(i) = h(j) or h(i) = h(j) − 1 and i < p(j). Note that the
unique cycle of T ∪ {(i, j)} is formed of the union of the paths i ↔ i ∧ j and j ↔ i ∧ j
and of the edge e, where i ∧ j is the greatest common ancestor of i and j in the tree T .
If h(i) = h(j) or h(i) = h(j) − 1, then all vertices of those paths other than i and j are
visited before i and j in the construction of Algorithm 13, which implies that all edges of
the paths i ↔ i ∧ j and j ↔ i ∧ j are ordered in ≺T before (i, j), and thus that edge is
externally active by definition. This completes the proof.

Theorem 15 states that the level of the configuration corresponding to a spanning tree
T via Theorem 8 can be interpreted as the external activity of T for a specific order ≺T of
the edges of G. We now show that this order is Tutte-descriptive in the sense introduced
by Courtiel [8].
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Definition 18. Let G = (V,E) be a graph, and suppose we have a mapping Ψ : T 7→≺T
from the set of spanning trees of G to the set of total orders on E. We say that the
mapping Ψ is Tutte-descriptive if

TG(x, y) =
∑
T

xint(T )yext(T ),

where the sum is over all spanning trees of G, and int(T ), resp. ext(T ), is the number of
internally, resp. externally, active edges for the order ≺T .

Remark 19. In fact, Courtiel in [8] introduces a more general notion of Tutte-descriptive
activity. Our notion above corresponds to what he calls tree-compatible order maps.

Theorem 20. Let G = Gπ be a permutation graph, with sink s. Then the mapping T 7→≺T ,
where ≺T is the order defined by Algorithm 13, is Tutte-descriptive.

Proof. This follows from [8, Theorem 5.3] in analogous fashion to the proof of [8, Propo-
sition 7.9], with the slight adjustments necessary to take into account that Algorithm 13
provides an order map based on a breadth-first, rather than depth-first, search.

Combining Theorems 15 and 20 gives a new combinatorial proof of the link between the
level polynomial and the Tutte polynomial in Proposition 12 in the case of permutation
graphs.

4 Minimal recurrent configurations and complete non-ambiguous
binary trees

4.1 Minimal recurrent configurations

Given a graph G and a distinguished vertex s of G, a configuration c ∈ Configs (G) is
minimal recurrent if it is recurrent and level (c) = 0. We denote by Recmin

s (G) the set of
minimal recurrent configurations for the ASM on G. We show that on permutation graphs,
minimal recurrent configurations are uniquely determined by their canonical toppling.

Definition 21. Given a permutation π ∈ Sn and a distinguished vertex s ∈ [n], we say
that an ordered set partition P = P0, . . . , Pk of [n] is (π, s)-compatible if it satisfies the
following three conditions:

1. P0 = {s}.

2. For any j > 0, the elements of Pj appear in increasing order in π (that is, there is no
inversion in π between two elements of Pj).

3. For any j > 1 and i ∈ Pj, there exists i′ ∈ Pj−1 such that (i, i′) or (i′, i) is an inversion
of π.
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Example 22. Let π = 25341 and s = 3. We wish to compute the set of (π, s)-compatible
ordered partitions of [5]. We always have P0 = {3}. From Condition (3), P1 must be
formed of elements i such that (i, 3) or (3, i) is an inversion of π. There are two such
elements: 5 and 1. However, (5, 1) is an inversion of π, so P1 cannot contain both these
elements by Condition (2). Thus we must have P1 = {1} or P1 = {5}. We now remark
that the only element which forms an inversion with 2 is 1, so that, by Condition (3), 2
must be in the part immediately after that containing 1. Moreover, the part containing 2
must either contain another element, or be the final part of P .

Suppose that P1 = {1}. By the preceding argument, P2 must contain 2 and at least one
other element which forms an inversion with 1. There are two remaining elements which
do this: 4 and 5. Since (5, 4) is an inversion, P2 cannot contain both of these, so we must
have P2 = {2, 4} and P3 = {5}, or P2 = {2, 5} and P3 = {4}. Suppose now that P1 = {5}.
By similar arguments, we must have P2 = {1} or P2 = {4}. Using the argument from the
previous paragraph, if P2 = {1}, then we must have P3 = {2, 4}, and if P2 = {4}, then we
must have P3 = {1} and P4 = {2}. Finally, we see that there are four (π, s)-compatible
ordered partitions, which we write as blocks separated by dashes, for clarity:

3 1 24 5, 3 1 25 4, 3 5 1 24, 3 5 4 1 2.

Proposition 23. Let π ∈ Sn and s ∈ [n]. The map φCP : c 7→ CanonTop(c) is a bijection
from the set Recmin

s (Gπ) of minimal recurrent configurations on the permutation graph Gπ

to the set of (π, s)-compatible ordered partitions of [n].

Proof. Let c ∈ Recmin
s (Gπ), and define P := CanonTop(c) = P0, . . . , Pk. By definition, P is

an ordered partition of [n] and P0 = {s}. Let T := φ−1
TC(c) be the spanning tree of G = Gπ

corresponding to c via the inverse of the bijection in Theorem 8, and for any i ∈ [n], let
λi(T ), µi(T ), νi(T ) be defined as in Equations (2), (3), (4) in Section 3.1. By Theorem 8,
we have CanonTop(c) = T (1), . . . , T (k), that is, Pj = T (j) for all j ∈ [k]. Moreover, since
c is minimal, we have level (c) = 0, which in particular implies µi(T ) = 0 for all i ∈ [n].
Thus for any j ∈ [k] there are no edges in G between any two vertices of Pj. This implies
that the elements of Pj appear in increasing order in π, so Condition (2) of Definition 21
is satisfied.

Now let j > 2 and i ∈ T (j) = Pj. Let i′ = p(i) be the parent of i in T , so that
i′ ∈ T (j−1) = Pj−1. Since (i′, i) is an edge of T it is also an edge of G, which means that
(i′, i) or (i, i′) is an inversion of π, as desired. We have thus shown that if c ∈ Recmin

s (Gπ),
then CanonTop(c) is a (π, s)-compatible ordered partition of [n]. This shows that the map
of Proposition 23 is well defined.

To show that it is a bijection, we define its inverse. Suppose that P = P0, . . . , Pk is a
(π, s)-compatible ordered partition of [n]. We first construct a spanning tree T = T (P ) of
G. The tree T will be rooted at s so that for all j ∈ [k] we have T (j) = Pj. To define T it
is thus sufficient to define the parent map p. For j > 1, and i ∈ Pj, we define

p(i) := min
(
NG(i) ∩ Pj−1

)
. (5)

By Condition (3) of Definition 21, p(i) is well defined, that is, NG(i) ∩ Pj−1 6= ∅.

the electronic journal of combinatorics 26(3) (2019), #P3.29 15



We now define c = φPC(P ) := φTC(T (P )), where φTC is the bijection of Theorem 8, and
T (P ) is the tree defined above. We show that c is minimal. Let i ∈ [n]. By Condition (2)
of Definition 21, we have µi(T ) = 0 since there are no edges in G between any two vertices
of T (h(i)) = Ph(i). Moreover, Equation (5) implies that νi(T ) = 0. Since these are true for
any i ∈ [n] it follows from Theorem 8 that level (c) = 0, as desired.

Finally, it is straightforward to show that the maps φPC and φCP are inverses of each
other, which completes the proof.

4.2 Complete non-ambiguous binary trees

Non-ambiguous binary trees were introduced and studied in [2] as a special case of the
tree-like tableaux from [3].

Definition 24. A non-ambiguous binary tree (NAB) is a filling of a rectangular Ferrers
diagram F where every cell is either empty or dotted such that:

1. Every row and every column has a dotted cell.

2. Except for the top left cell, every dotted cell has either a dotted cell above it in its
column or to its left in its row, but not both.

The dot in the top left cell (implied by (1) and (2)) is called the root dot, or simply the
root.

Through the remainder of this section, when we talk about a dot to the left/right of
another dot we mean in the same row, and similarly in the same column for above/below.

The name non-ambiguous binary tree comes from the fact that by drawing an edge
between a dotted cell and the dotted cell immediately above it or to its left, for all dotted
cells, one creates a binary tree, embedded in the grid Z2. Regarding the dot in the top left
cell as a root of the tree, Condition 2 of Definition 24 ensures that every other dot has a
unique parent.

A NAB is complete if the associated binary tree is complete, that is, every dotted cell
has either a dotted cell below it and to its right, or neither of these, and we refer to such
complete NABs as CNABs. Figure 5 shows two examples of NABs, with the edges of the
associated binary tree drawn in. The left-hand one is complete, while the right-hand one
is not.

Lemma 25. A NAB on a Ferrers diagram F has exactly n dots, where n is one less than
the semi-perimeter of F . If a NAB is complete then F has the same number of rows as
columns.

Proof. Each non-root dot has a dot above it or to its left, but not both. If such a dot has no
dot above it, move it to the top row. Otherwise it has no dot to its left, in which case move
it to the leftmost column. This moves every dot either to the top row or leftmost column.
(We regard dots in the top row and leftmost column as being moved, although they stay
put.) Every column has a dot that will be moved up, namely the column’s topmost dot,
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Figure 5: Two examples of NABs. The left-hand one is complete, and thus a CNAB, while
the right-hand one is not, since the red vertex in column 1, row 3, has only one child.

and every row’s leftmost dot moves to the leftmost column. This process will therefore
leave dots in the entire top row and leftmost column, but nowhere else, which proves the
first part.

Given a complete NAB, we trace the above process of moving dots to the top row or
leftmost column. For each non-root dot that gets moved to the top row the dot to its left
(its parent) has a dot below it, which therefore gets moved into the leftmost column, and
conversely. Thus, there must be as many rows as columns.

4.3 Complete non-ambiguous binary multitrees

Given a permutation π = π1π2 . . . πn let Tπ be the n×n grid with dots in cells (πi, i), where
cell (i, j) is the cell in row i and column j, the northwest corner cell being (1, 1).

Definition 26. A complete multirooted non-ambiguous binary tree (CMNAB) is obtained
from Tπ, for a permutation π, by adding a further n−1 dots with the following conditions:

1. Every added dot has a dotted cell below it in its column and to its right in its row.

2. The graph obtained as in the case of a CNAB is a tree.

The added dots are called internal dots. The set of CMNABs arising from Tπ is de-
noted Mπ, and the tree obtained from M ∈Mπ is denoted T (M).

A CMNAB gives a multirooted tree where the roots are the dots with no dots to the
left or above; see Figure 6. We will show that CNABs are precisely the CMNABs with a
single root.

Lemma 27. A cell (i, j) in Tπ has a dot to the right and below if and only if there is an
edge between i and πj in Gπ.

Proof. If a cell (i, j) has dots both to the right and below then there is a leaf dot below it
in row r > i, so πj = r, and to its right in column c > j, so πc = i < r. Since j < c and
πj > πc = i, πj and i form an inversion in π, so (πj, i) is an edge in Gπ.

Conversely, an edge in Gπ corresponds to an inversion in π, which in turn corresponds
to a pair of leaf dots in π, the leftmost of which is lower than the other, and thus there is
a cell above the leftmost one and to the left of the other.
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By Lemma 27 every cell in Tπ with an internal dot corresponds to an edge in Gπ. So
we can map the elements of Mπ to subgraphs of Gπ, by the map ζ which maps M ∈Mπ

to the subgraph ζ(M) of Gπ with edge set

E(ζ(M)) = {(i, πj) : (i, j) contains an internal dot in M}.

Note that the non-internal dots in M are the leaves of T (M) and they correspond precisely
to the pairs (i, j) where πj = i.

The following lemma is straightforward to prove.

Lemma 28. Let S = ζ(M) for a CMNAB M ∈ Mπ, so S is a subgraph of Gπ. The
sequence

v1, e1, v2, e2, . . . , ek−1, vk,

alternating between vertices and edges in S, is a path in S if and only if

`1, i1, `2, i2, . . . , `k−1, ik

is an alternating sequence of leaf and internal dots in M , with every pair of consecutive
dots in the same row or column, where `t and it are the dots corresponding to the vertex
vt and edge et, respectively. In particular, T (M) being connected is equivalent to S being
connected. Moreover, adding an edge to S corresponds to closing such a sequence through
M to a cycle.

1 2 3 4 5 6

1

2

3

4

5

6

6 1

5 2

3 4

Figure 6: An element M ∈ M465213, and the graph G465213, with the spanning tree cor-
responding to M marked with thick red lines. Moving the dot at (2, 2) to (1, 1), thus
creating a CNAB, would correspond to replacing the edge (2, 6) by (1, 4) in the spanning
tree, whereas moving the dot at (2, 1) to (3, 1) corresponds to replacing the edge (2, 4) with
(3, 4).

Proposition 29. The map ζ is a bijection from Mπ to the spanning trees of Gπ.
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Proof. Let π be an n-permutation. By Lemma 27 and the fact that every element of Mπ

has n−1 internal dots, ζ is a map fromMπ to the set of subgraphs of Gπ with n−1 edges.
To show that those edges form a spanning tree it therefore suffices to show that they form
a connected graph, which follows from Lemma 28.

Conversely, if S is a spanning tree of Gπ, place a dot in cell (i, j) of Tπ for each edge
(i, πj) of S, where i < πj. By Lemma 27, this places n− 1 internal dots in Tπ and each of
those dots contributes two edges to the graph in Tπ, connecting to a dot below and to the
right, a total of 2n− 2 edges, in a graph with 2n− 1 vertices. To show that this graph is a
tree it again suffices to show that it is connected, which again follows from Lemma 28.

If a CMNAB has a unique root then the definition is equivalent to that of a CNAB, as
we will now show.

Lemma 30. A CMNAB M has a dot with a dot to the left and above if and only if it has
more than one root.

Proof. Suppose M has a dot d with a dot a above and a dot ` to the left. Tracing a zig-zag
path from d through a to the topmost dot in their column, then to the leftmost dot in that
row, and so on, we must end up at a dot with no dot above or to the left, which is a root
dot d1. Tracing analogously through ` we will end up at a root dot d2. These two root
dots must be distinct, for otherwise we would have traced out a cycle in the tree T (M).

Suppose then that M has (at least) two distinct root dots ` and h, which then must
be in different rows, say h in a higher row. The unique path from ` to h in the tree T (M)
must contain an up-step, but start with a right or a down step. Consider the maximal
sequence of right and down steps in the beginning of that path. If the last step in that
sequence was a right step the next step must be up, if it was a down step the next step
must be left. In either case we have found a dot with a dot to the left and above.

Proposition 31. The CMNABs with a single root are precisely the CNABs.

Proof. Every row in a CNAB has a unique leaf dot, which is also the unique leaf dot in its
column, and this accounts for n dots. The remaining n − 1 dots are internal and satisfy
Condition (1) in Definition 26, and CNABs satisfy Condition (2) in Definition 26, so every
CNAB is a CMNAB. Conversely, if a CMNAB M has a single root, then by Lemma 30 no
dot has a dot to the left and above, and so M satisfies Condition (2) in Definition 24 (and
Condition (1) by definition) and thus is a CNAB.

We can use the map ζ to map the CNABs on Tπ to the minimal recurrent configurations
on Gπ. For the following lemma we order the edges of Gπ reverse lexicographically by
coordinates of the corresponding cells in Tπ (see Definition 11 of external activity).

Proposition 32. Let M be a CMNAB. There is a unique root in M if and only if ζ(M)
has no external activity.
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Proof. If M has more than one root, then Lemma 30 implies there exists a dot d in M
with a dot a above and dot ` to the left. Let c be the cell that completes the rectangle of
a, ` and d. Then c corresponds to an edge external to the spanning tree S and adding it to
S creates a cycle with edges corresponding to a, `, c and d, by Lemma 28. Since the edge
corresponding to c is ordered last of these edges it is externally active.

If e is an externally active edge then adding it creates a cycle in the spanning tree S,
which corresponds to a cycle of internal dots in M . Such a cycle must contain a dot with
a dot to the left and a dot above. However, as e is externally active it must be ordered
last in its cycle in S so the corresponding dot in M is weakly northwest of all other dots
in the cycle. Thus the addition of the dot corresponding to e cannot cause one of the
pre-existing dots to have a dot to the left and above. Therefore, such a dot must already
exist in the cycle, so M has a cell with a dot to the left and a dot above, which implies M
is multirooted, by Lemma 30.

Note that in this case, unlike in Section 3.2, the order of the edges of G = Gπ is fixed a
priori (it does not depend on the tree T ). It is known (see [19]) that in this case we have

TG(x, y) =
∑
T

xint(T )yext(T ),

where the sum is over all spanning trees of G, and thus by Proposition 12 the spanning
trees with no external activity are in bijection with the minimal recurrent configurations.
Therefore, Proposition 31 and Proposition 32 imply the following.

Corollary 33. The elements of Mπ with a single root are in bijection with the minimal
recurrent configurations of Gπ.

Problem 34. Find a nice bijective proof of Corollary 33.

Remark 35. In [10], the authors provided a new interpretation of the sequence A002190 =
1, 1, 4, 33, 456, 9460, . . . in [1] counting complete non-ambiguous binary trees, in terms of
fully tiered trees with weight 0. Section 4.1 and Corollary 33 provide another two combi-
natorial interpretations to this sequence:

• as the sum
∑
π∈S̄n
|Recmin

s (Gπ) |, where S̄n is the set of indecomposable permutations of

length n.

• as the number of pairs (π, P ) where π ∈ S̄n and P is a (π, s)-compatible ordered
partition of n.

5 Specialisations

5.1 The Ferrers case

In this section, we are interested in the case where the permutation π has a single descent,
in which case the permutation graph Gπ is a Ferrers graph. In this case the spanning trees
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of the permutation graph are the intransitive trees introduced by Postnikov [17]. As such,
we recover results from [11, Section 5.3].

A Ferrers graph (see [12]) is a bipartite graph whose vertices of each part are labeled
t1, t2, . . . , tk and b1, b2, . . . , bm, respectively, satisfying the following conditions:

1. If (ti, bj) is an edge with r 6 i and s 6 j, then (tr, bs) is also an edge.

2. Both (t1, bm) and (tk, b1) are edges.

As illustrated in the example in Figure 7, we think of the vertices ti as “top” vertices, and
the bi as “bottom” vertices. Note that when read from left to right the labels on the top
vertices are increasing but decreasing for the bottom vertices. Thus, condition (1) above
says that a top vertex must have edges to all vertices that any vertex to its right does, and
likewise for bottom vertices.

1
23

4
567

8
9

t1

t2

t3

t4

b1 b2 b3 b4 b5

1 3 4 8

9 7 6 5 2

Figure 7: Example of a Ferrers diagram, the labeling of its South-East border, and the
corresponding labeled Ferrers graph, which is exactly the permutation graph G256791348.

Given a Ferrers diagram with rows labeled from top to bottom with t1, t2, . . . , tk and
columns labeled with b1, b2, . . . , bm from left to right, there is a unique Ferrers graph whose
vertices are labeled with the ti and bj and where (ti, bj) is an edge if and only if the diagram
has a cell in row ti and column bj. This correspondence is clearly one-to-one.

Given a permutation π ∈ Sn, we say that the pair πi, πi+1 is a descent of π if πi > πi+1.

Proposition 36. Let G be a graph on n vertices. Then G is a Ferrers graph if and only if
there exists an indecomposable permutation π with exactly one descent such that G ' Gπ.

Proof. Suppose that π is indecomposable and has a single descent. Then we can decom-
pose π in a unique way as π = π1π2, where π1 and π2 are increasing subsequences of [n] and
the last letter of π1 is strictly greater than the first letter of π2. Since π is indecomposable,
this implies that the the last letter of π1 is n, and the first letter of π2 is 1. Now we let
F = F (π) be the Ferrers diagram defined as follows. Label the edges on the South-East
border of F from North-East to South-West in the order 1, 2, . . . , n, and let the step labeled
k be a South step if k ∈ π2 and a West step if k ∈ π1. This defines a Ferrers diagram since
1 ∈ π2. Then the edges of the corresponding Ferrers graph G(F ) are the pairs (i, j) where
i is a column label (a West step), j a row label (a South step), and i > j, that is, exactly
the inversions of π. Thus Gπ ' G(F ).
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For the converse, suppose G = G(F ) is the Ferrers graph corresponding to the Ferrers
diagram F , whose South-East border is labeled as before. Let π1 and π2 be the words
formed of West steps and East steps, respectively, of that border, each in increasing order.
Then π = π1π2 is a permutation of length n with exactly one descent, and as above, we
have G ' Gπ, as desired (that π is indecomposable follows from the fact that a Ferrers
graph is connected).

Figure 7 illustrates the construction in the proof of Proposition 36. Thus, Ferrers graphs
can be viewed as permutation graphs where the permutation has a single descent.

Remark 37. It is possible for a permutation with more than one descent to yield a Ferrers
graph. For instance, the graph corresponding to the permutation 3142 is isomorphic to
P4, the path graph on 4 vertices, which is a Ferrers graph. Indeed, P4 is the Ferrers graph
corresponding to the diagram whose row lengths are (2, 1), or equivalently, it is isomorphic
to the permutation graph G2413.

We revisit Theorem 8 in the context of Ferrers graphs. Let π ∈ Sn be an indecomposable
permutation with a single descent, and G = Gπ the corresponding Ferrers graph. We
decompose π into π1π2 as before, where π1 and π2 are two increasing sequences such that
the last letter of π1 is n and the first letter of π2 is 1. We write A1 and A2 for the unordered
set of labels appearing in π1 and π2, respectively. For j ∈ {1, 2}, we set j̄ := 3− j, so that
if j = 1, j̄ = 2 and vice versa.

Lemma 38. Let s ∈ [n] be a distinguished vertex of G = Gπ where π has a single descent,
and let j ∈ {1, 2} be such that s ∈ Aj. Let T be a spanning tree of G, rooted at s. Then
for any k > 0, we have:

• T (2k) ⊆ Aj.

• T (2k+1) ⊆ Aj̄.

Proof. Any edge e of G is a pair e = (x, y) ∈ A1×A2. Thus if e = (x, y) ∈ T (k)× T (k+1) is
an edge of T , we have that if x ∈ Aj then y ∈ Aj̄ and vice versa. Since T (0) = {s} ⊆ Aj,
the claim follows immediately by induction.

An immediate consequence of Lemma 38 is the following.

Proposition 39. Let s ∈ [n] be a distinguished vertex of G = Gπ where π has a single
descent, and T be a spanning tree of G, rooted at s. Then, for all i ∈ [n], we have µi(T ) = 0,
where the µi(T ) are defined as in Equation (3) in Section 3.1.

Proof. Given k > 0, Lemma 38 implies that G has no edges between two elements of
T (k).

We now show that in this case, there is a one-to-one correspondence between spanning
trees of permutation graphs Gπ where π has a single descent, and the intransitive trees first
introduced by Postnikov [17]. Let T be a labeled tree on the vertex set [n]. We say that T
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is intransitive if all its vertices are either local minima or local maxima. Given a tree T ,
we denote by LocMin(T ) and LocMax(T ) its set of local minima and maxima, respectively.
Thus T is an intransitive tree if and only if LocMin(T ), LocMax(T ) forms a partition of [n].

The following Proposition is essentially a re-writing of Proposition 5 in the case of
permutations with a single descent, but we give a proof in the current context.

Proposition 40. Let π be an indecomposable permutation with a single descent. Write
π = π1π2 with π1 and π2 being, respectively, the increasing ordering of a set A1 containing
n and of a set A2 containing 1. Let T be a labeled tree on the vertex set [n]. Then T is
a spanning tree of Gπ if and only if T is an intransitive tree with LocMax(T ) = A1 and
LocMin(T ) = A2.

Proof. Suppose that T is a spanning tree of G = Gπ, and let i ∈ A1. By construction, if
(i, j) is an edge of G, then j ∈ A2 and i > j. In particular, all neighbors of i in T have
labels strictly less than i, so that A1 ⊆ LocMax(T ). Similarly, we have A2 ⊆ LocMax(T ),
and since A1, A2 forms a partition of [n] this implies that T is an intransitive tree with
LocMax(T ) = A1 and LocMin(T ) = A2. The converse follows from the fact that if T is
an intransitive tree, all its edges connect a local maximum i to a local minimum j with
i > j.

We now restate Theorem 8 in this specialized context. Let π be an indecomposable
permutation with a single descent. Write π = π1π2 with π1 and π2 being, respectively, the
increasing ordering of a set A1 containing n and of a set A2 containing 1. Let G = Gπ be
the corresponding permutation graph (which is a Ferrers graph by Proposition 36). Let
s ∈ [n] be a distinguished vertex of G, and T a labeled tree on [n], rooted at s. For i ∈ [n],
we define:

λ̃i(T ) :=

{∣∣{j ∈ T (>h(i)) ∩ A2 : j < i}
∣∣ , if i ∈ A1,∣∣{j ∈ T (>h(i)) ∩ A1 : j > i}
∣∣ , if i ∈ A2.

(6)

ν̃i(T ) :=
∣∣T (h(i)−1) ∩ (p(i), i)

∣∣ , (7)

where p(i) is the parent of i in the rooted tree T , and (p(i), i) is the interval [p(i) + 1, i− 1]
if p(i) < i, and (p(i), i) = [i+ 1, p(i)− 1] if i < p(i).

Theorem 41. The map T 7→ c(T ), with c(T ) ∈ Configs (G) defined by ci(T ) := λ̃i(T ) +
ν̃i(T ), is a bijection from the set of intransitive trees T such that LocMax(T ) = A1 and
LocMin(T ) = A2, to the set Recs (G) of recurrent configurations on G. Moreover, we have

level (c(T )) =
n∑
i=1

(
1

2
µ̃i(T ) + ν̃i(T )

)
,

and
CanonTop (c(T )) = T (0), T (1), . . . .

That is, the canonical toppling of c(T ) is given by the breadth-first search of T .
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In particular, we recover the bijection between the set of intransitive trees on n vertices
and the set of recurrent configurations on Ferrers graphs on n vertices from [11].

Note that the definition of ν̃ in Equation (7) differs slightly from that of ν in Equa-
tion (4) in Section 3.1 (the definition of λ̃ is the same as that of λ, though written slightly
differently). This is due to the extra structure of intransitive trees, namely that every
vertex is either a local minimum or a local maximum, which allows this simpler formula to
be given. There is no additional difficulty in the proof, it merely requires a slight tweaking
of the inverse map introduced in the proof of Theorem 8.

5.2 Threshold graphs

Threshold graphs were introduced by Chvátal and Hammer [6] and are defined as those
graphs that can be constructed from a graph with one vertex by repeatedly adding an
isolated vertex or a vertex that is connected to every already existing vertex. It is easy to
see that a threshold graph is the permutation graph of a permutation obtained from the
permutation 1 by repeatedly appending or prepending a new largest letter. One example
of such a permutation is 86521347; these are exactly the permutations that first decrease
and then increase. Note, however that a threshold graph may be disconnected and thus
correspond to a decomposable permutation (which will have its largest letter last).

In [16] the authors present a general bijection between the parking functions of a graph
and labeled spanning trees. In the case where G is a threshold graph, this bijection maps
the degree of the parking function to the number of inversions of the spanning tree (an
inversion of a tree T with vertex set [n] is a pair (i, j) such that i > j and j is an ancestor
of i in T , relative to a designated root). Parking functions of a graph are essentially the
same as recurrent configurations for the ASM, via a simple linear translation, with the
degree of a parking function corresponding to the level of a recurrent configuration. Thus,
the bijection in [16] can be viewed as a bijection between recurrent configurations on a
threshold graph G and spanning trees of G, mapping the level statistic of the configuration
to the number of inversions of the trees.

In Section 3.2, we showed that our bijection in Theorem 8 can be seen as a bijection
between recurrent configurations on a permutation graph G and spanning trees of G,
mapping the level of the configuration to the external activity of the tree. It is known that
the inversion and external activity statistics are equidistributed over labeled trees on n
vertices, and [4] provides a bijective proof of this fact. Since threshold graphs are a special
case of permutation graphs, it follows that Theorem 8 can be viewed as an extension of
the work in [16].
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on Ferrers graphs - a classification of recurrent configurations. European J. Combin.,
81:221-241, 2019. doi:10.1016/j.ejc.2019.05.008.

[12] R. Ehrenborg and S. van Willigenburg. Enumerative properties of Ferrers graphs.
Discrete Comput. Geom., 32(4):481–492, 2004.

[13] I. M. Gessel and B. E. Sagan. The Tutte polynomial of a graph, depth-first search,
and simplicial complex partitions. Electron. J. Combin., 3(2):#R9, 1996. The Foata
Festschrift.

[14] Y. Koh and S. Ree. Connected permutation graphs. Discrete Math., 307(21):2628–
2635, 2007.
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