Improved bounds for the extremal number of subdivisions

Oliver Janzer

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge
United Kingdom
oj224@cam.ac.uk

Submitted: Oct 24, 2018; Accepted: June 10, 2019; Published: Jul 5, 2019

© The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let H_t be the subdivision of K_t. Very recently, Conlon and Lee have proved that for any integer $t \geq 3$, there exists a constant C such that $\text{ex}(n, H_t) \leq C n^{3/2 - 1/6t}$. In this paper, we prove that there exists a constant C' such that $\text{ex}(n, H_t) \leq C' n^{3/2 - 1/4t - 6}$.

Mathematics Subject Classifications: 05C35

1 Introduction

For a graph H, the extremal function $\text{ex}(n, H)$ is defined to be the maximal number of edges in an H-free graph on n vertices. This function is well understood for graphs H with chromatic number at least three by the Erdős-Stone-Simonovits theorem [5, 3]. However, for bipartite graphs H, much less is known. For a survey on the subject, see [7]. One of the few general results, proved by Füredi [6], and reproved by Alon, Krivelevich and Sudakov [1] is the following.

Theorem 1 (Füredi, Alon–Krivelevich–Sudakov). Let H be a bipartite graph such that in one of the parts all the degrees are at most r. Then there exists a constant C such that $\text{ex}(n, H) \leq C n^{2-1/r}$.

Conlon and Lee [2] have conjectured that the only case when this is tight up to the implied constant is when H contains a $K_{r,r}$ (it is conjectured [8] that $\text{ex}(n, K_{r,r}) = \Omega(n^{2-1/r})$), and that for other graphs H there exists some $\delta > 0$ such that $\text{ex}(n, H) = O(n^{2-1/r-\delta})$.

The subdivision of a graph L is the bipartite graph with parts $V(L)$ and $E(L)$ (the vertex set and the edge set of the graph L, respectively) where $v \in V(L)$ is joined to
For any integer \(t \geq 3 \), there exists a constant \(C_t \) such that
\[
\text{ex}(n, H_t) \leq C_t n^{3/2 - 1/6^t}.
\]

They have observed the lower bound \(\text{ex}(n, H_t) \geq c_t n^{3/2 - 1/2^{t-1}} \) coming from the probabilistic deletion method, and have asked for an upper bound of the form
\[
\text{ex}(n, H_t) \leq C_t n^{3/2 - \delta_t},
\]
where \(1/\delta_t \) is bounded by a polynomial in \(t \). We can prove such a bound even for a linear \(\delta_t \).

Theorem 3. For any integer \(t \geq 3 \), there exists a constant \(C_t \) such that
\[
\text{ex}(n, H_t) \leq C_t n^{3/2 - \frac{1}{t+1}} = C_t n^{3/2 - \frac{1}{4^t}}.
\]

It would be very interesting to know whether or not this bound is tight up to the implied constant. It certainly is tight for \(t = 3 \) as \(\text{ex}(n, C_b) = \Theta(n^{3/3}) \).

We can in fact prove a slightly stronger result. For integers \(s \geq 1 \) and \(t \geq 3 \), let \(L_{s,t} \) be the graph which is a \(K_{s+t-1} \) with the edges of a \(K_s \) removed. That is, the vertex set of \(L_{s,t} \) is \(S \cup T \) where \(S \cap T = \emptyset, |S| = s \) and \(|T| = t-1 \), and \(xy \) is an edge if and only if \(x \in T \) or \(y \in T \). Let \(L_{s,t}' \) be the subdivision of \(L_{s,t} \).

Theorem 4. For any two integers \(s \geq 1 \) and \(t \geq 3 \), there exists a constant \(C_{s,t} \) such that
\[
\text{ex}(n, L_{s,t}') \leq C_{s,t} n^{3/2 - \frac{1}{4^s}}.
\]

This result certainly implies Theorem 3 as \(L_{1,t} = K_t \). Moreover, we can apply Theorem 4 to obtain good bounds on the extremal number of the subdivision of the complete bipartite graph \(K_{a,b} \) as well. Let us write \(H_{a,b} \) for the subdivision of \(K_{a,b} \). Conlon and Lee [2, Theorem 4.2] have proved that for any \(2 \leq a \leq b \) there exists a constant \(C \) such that
\[
\text{ex}(n, H_{a,b}) \leq C n^{3/2 - \frac{1}{a}}.
\]

They have also observed the lower bound
\[
\text{ex}(n, H_{a,b}) = \Omega_a(n^{3/2 - \frac{a-b+3}{2b+1}}) \quad \text{(which follows from the probabilistic deletion method)}.
\]

Hence their upper bound is reasonably close to best possible when \(a = b \), but is weak when \(b \) is much larger then \(a \).

Since \(K_{a,b} \) is a subgraph of \(L_{b,a+1} \), Theorem 4 implies the following result, by taking \(s = b \) and \(t = a+1 \).

Corollary 5. For any two integers \(2 \leq a \leq b \), there exists a constant \(C_{a,b} \) such that
\[
\text{ex}(n, H_{a,b}) \leq C_{a,b} n^{3/2 - \frac{1}{4^a}}.
\]
2 Proof of Theorem 4

We shall use the following lemma of Conlon and Lee [2, Lemma 2.3], which is a slight modification of a result of Erdős and Simonovits [4]. Let us say that a graph G is K-almost-regular if $\max_{v \in V(G)} \deg(v) \leq K \min_{v \in V(G)} \deg(v)$. Moreover, following Conlon and Lee, we say that a bipartite graph G with a bipartition $A \cup B$ is balanced if $\frac{1}{2} |B| \leq |A| \leq 2 |B|$.

Lemma 6. For any positive constant $\alpha < 1$, there exists n_0 such that if $n \geq n_0$, $C \geq 1$ and G is an n-vertex graph with at least $C n^{1+\alpha}$ edges, then G has a K-almost-regular balanced bipartite subgraph G' with m vertices such that $m \geq n^{\frac{\alpha(1-\alpha)}{2(1+\alpha)}}$, $|E(G')| \geq \frac{C}{m^2} m^{1+\alpha}$ and $K = 60 \cdot 2^{1+1/\alpha^2}$.

This reduces Theorem 4 to the following.

Theorem 7. For every $K \geq 1$, and positive integers $s \geq 1, t \geq 3$, there exists a constant $c = c(s, t, K)$ with the following property. Let n be sufficiently large and let G be a balanced bipartite graph with bipartition $A \cup B$, $|B| = n$ such that the degree of every vertex of G is between δ and $K \delta$, for some $\delta \geq cn^{\frac{1-2}{2+2}}$. Then G contains a copy of $L'_{s, t}$.

Given a bipartite graph G with bipartition $A \cup B$, the neighbourhood graph is the weighted graph W_G on vertex set A where the weight of the pair uv is $d_G(u, v) = |N_G(u) \cap N_G(v)|$. Here and below $N_G(v)$ denotes the neighbourhood of the vertex v in the graph G. For a subset $U \subset A$, we write $W(U)$ for the total weight in U, i.e. $W(U) = \sum_{u \in U} d_G(u, v)$.

We shall use the following simple lemma of Conlon and Lee [2, Lemma 2.4].

Lemma 8. Let G be a bipartite graph with bipartition $A \cup B$, $|B| = n$, and minimum degree at least δ on the vertices in A. Then for any subset $U \subset A$ with $\delta |U| \geq 2n$,

$$\sum_{uv \in \binom{U}{2}} d_G(u, v) \geq \frac{\delta^2}{2n} \binom{|U|}{2}$$

In other words, the conclusion of Lemma 8 is that $W(U) \geq \frac{\delta^2}{2n} \binom{|U|}{2}$.

In the next definition, and in the rest of this paper, for a weighted graph W on vertex set A, if $u, v \in A$, then $W(u, v)$ stands for the weight of uv. Moreover, we shall tacitly assume throughout the paper that $s \geq 1$ and $t \geq 3$ are fixed integers.

Definition 9. Let W be a weighted graph on vertex set A and let $u, v \in A$ be distinct. We say that uv is a light edge if $1 \leq W(u, v) < \binom{s+t-1}{2}$ and that it is a heavy edge if $W(u, v) \geq \binom{s+t-1}{2}$.

Note that if there is a K_{s+t-1} in W_G formed by heavy edges, then clearly there is an $L_{s,t}$ in W_G formed by heavy edges, therefore there is an $L'_{s,t}$ in G.

The next lemma is one of our key observations.
Lemma 10. Let G be an $L'_{s,t}$-free bipartite graph with bipartition $A \cup B$, $|B| = n$ and suppose that $W(A) \geq 8(s+t)^2 n$. Then the number of light edges in W_G is at least $\frac{W(A)}{4(s+t)^2}$.

Proof. Let $B = \{b_1, \ldots, b_n\}$. Let $k_i = |N_G(b_i)|$ and suppose that $k_i \geq 2(s + t - 2)$ for some i. As G is $L'_{s,t}$-free, there is no K_{s+t-1} in $W[N_G(b_i)]$ formed by heavy edges. Thus, by Turán’s theorem, the number of light edges in $N_G(b_i)$ is at least

$$(s + t - 2) \left(\frac{k_i}{s+t-2} - 1\right) \geq \frac{k_i^2}{4(s+t-2)}.$$

But

$$\sum_{i: k_i < 2(s+t-2)} \left(\frac{k_i}{2}\right) < 4(s+t)^2 n \leq \frac{W(A)}{2},$$

so

$$\sum_{i: k_i \geq 2(s+t-2)} \left(\frac{k_i}{2}\right) \geq \frac{W(A)}{2}.$$

Since every light edge is present in at most $\binom{s+t-1}{2}$ of the sets $N_G(b_i)$, it follows that the total number of light edges is at least

$$\frac{1}{\binom{s+t-1}{2}} \sum_{i: k_i \geq 2(s+t-2)} \frac{k_i^2}{4(s+t-2)} \geq \frac{W(A)}{4(s+t)^3}. \quad \square$$

Corollary 11. Let G be an $L'_{s,t}$-free bipartite graph with bipartition $A \cup B$, $|B| = n$, and minimum degree at least δ on the vertices in A. Then for any subset $U \subset A$ with $|U| \geq \frac{8(s+t)n}{\delta}$ and $|U| \geq 2$, the number of light edges in $W_G[U]$ is at least $\frac{\delta^2}{8(s+t)^3n} \binom{|U|}{2}$.

Proof. By Lemma 8, we have $W(U) \geq \frac{\delta^2}{2n} \binom{|U|}{2} \geq \frac{\delta^2}{8n} |U|^2 \geq 8(s+t)^2 n$. Now the result follows by applying Lemma 10 to the graph $G[U \cup B]$. \quad \square

We are now in a position to complete the proof of Theorem 7.

Proof of Theorem 7. Let c be specified later and suppose that n is sufficiently large. Assume, for contradiction, that G is $L'_{s,t}$-free. We shall find distinct $u_1, \ldots, u_{t-1} \in A$ with the following properties.

(i) Each u_iu_j is a light edge in W_G.

(ii) If i, j, k are distinct, then $N_G(u_i) \cap N_G(u_j) \cap N_G(u_k) = \emptyset$.

(iii) For each $1 \leq i \leq t-1$, the number of $v \in A$ with the property that for every $j \leq i$, u_jv is a light edge is at least $\frac{\delta^2}{32(s+t)^2n} i^4 \cdot |A|$.

\[\text{THE ELECTRONIC JOURNAL OF COMBINATORICS 20(3) (2019), #P3.3}\]
As \(n \) is sufficiently large, we have \(|A| \geq n/2 \geq \frac{8(s+t)n}{\delta} \), therefore by Corollary 11 there are at least \(\frac{\delta^2}{8(s+t)n} (|A|) \) light edges in \(A \), so we may choose \(u_1 \in A \) such that the number of light edges \(u_1v \) is at least \(\frac{\delta^2}{32(s+t)n} |A| \).

Now suppose that \(2 \leq i \leq t-1 \), and that \(u_1, \ldots, u_{i-1} \) have been constructed satisfying (i),(ii) and (iii). Let \(U_0 \) be the set of vertices \(v \in A \) with the property that \(u_jv \) is a light edge for every \(j \leq i-1 \). By (iii), we have \(|U_0| \geq \frac{\delta^2}{32(s+t)n} |A| \). Now let \(U_0 \) consist of those \(v \in U_0 \) for which \(N_G(u_j) \cap N_G(u_{i-1}) \cap N_G(v) = \emptyset \) holds for all \(1 \leq j < k \leq i-1 \). Since \(u_ju_k \) is a light edge for any \(1 \leq j < k \leq i-1 \), we have that \(d_G(u_j, u_k) < (s+t-1) \).

But the degree of every \(b \in B \) is at most \(K\delta \), therefore the number of \(v \in A \) for which \(N_G(u_j) \cap N_G(u_k) \cap N_G(v) \neq \emptyset \) is at most \((s+t-1)K\delta\), so \(|U_0 \setminus U| \leq (t-1)(s+t-1)K\delta \). But note that for sufficiently large \(n \), we have \((32(s+t)n)^{i-1} |A| \geq 2(1-\delta)^2(s+t-1)K\delta \) because \(\delta = o((\delta^2/n)^{i-2}) \) and \(\delta = o((\delta^2/n)^{i-2}) \). Thus, \(|U| \geq \frac{1}{2} |U_0| \geq \frac{1}{2} \left(\frac{\delta^2}{32(s+t)n} \right)^{i-1} |A| \).

But for sufficiently large \(c = c(s,t,K) \), we have \(\frac{1}{2} \left(\frac{\delta^2}{32(s+t)n} \right)^{i-1} |A| \geq \frac{8(s+t)n}{\delta} \). Indeed, this is obviously when \(\delta^2 \geq 32(s+t)^3n \), and otherwise, using \(\delta \geq cn^{\frac{t-3}{t-2}} \), we have

\[
\frac{1}{2} \left(\frac{\delta^2}{32(s+t)^3n} \right)^{i-1} |A| \geq \frac{1}{2} \left(\frac{\delta^2}{32(s+t)^3n} \right)^{t-2} |A| \geq \frac{1}{4(32(s+t)^3)^{t-2}} \cdot \frac{\delta^{2t-4}}{n^{t-3}} \geq \frac{8(s+t)n}{\delta}.
\]

Thus, by Corollary 11, there exists some \(u_t \in U \) with at least \(\frac{\delta^2}{8(s+t)n} (|U| - 1) \geq \left(\frac{\delta^2}{32(s+t)n} \right)^{t-1} |A| \) light edges adjacent to it in \(U \). This completes the recursive construction of the vertices \(\{u_j\}_{1 \leq j \leq t-1} \).

By (iii) for \(i = t-1 \), there is a set \(V \subset A \) consisting of at least \(\left(\frac{\delta^2}{32(s+t)n} \right)^{t-1} |A| \) vertices \(v \) such that for every \(j \leq t-1 \), \(u_jv \) is a light edge. We shall now prove that there exist distinct \(v_1, \ldots, v_s \in V \) such that \(N_G(u_i) \cap N_G(u_j) \cap N_G(v) = \emptyset \) for all \(i \neq j \), and \(N_G(u_i) \cap N_G(u_j) \cap N_G(v) = \emptyset \) for all \(i \neq j \). It is easy to see that this suffices since then there is a copy of \(L_{s,t} \) in \(G \), which is a subdivision of the copy of \(L_{s,t} \) in \(W_G \) whose vertices are \(v_1, \ldots, v_s, u_1, \ldots, u_{t-1} \).

We shall now choose \(v_1, \ldots, v_s \) one by one. Since every \(u_iu_j \) is a light edge, the number of those \(v \in A \) with \(N_G(u_i) \cap N_G(u_j) \cap N_G(v) = \emptyset \) for some \(i \neq j \) is at most \((t-1)(s+t-1)K\delta \). Moreover, given any choices for \(v_1, \ldots, v_{k-1} \in V \), as each \(u_iv_j \) is a light edge, the number of those \(v \in A \) with \(N_G(u_i) \cap N_G(v_j) \cap N_G(v) = \emptyset \) for some \(i, j \) is at most \((t-1)(k-1)(s+t-1)K\delta \). Therefore as long as \(|V| > (t-1)(s+t-1)K\delta + (t-1)(s-1)(s+t-1)K\delta \), suitable choices for \(v_1, \ldots, v_s \) can be made. Since \(|V| \geq \left(\frac{\delta^2}{32(s+t)n} \right)^{t-1} |A| \), this last inequality holds for large enough \(c = c(s,t,K) \).

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(3) (2019), #P3.3
References

