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Abstract

Let H; be the subdivision of K;. Very recently, Conlon and Lee have proved that
for any integer ¢ > 3, there exists a constant C' such that ex(n, H;) < Cn3/2-1/6",
In this paper, we prove that there exists a constant C’ such that ex(n, H;) <

1
C’n3/2_m,

Mathematics Subject Classifications: 05C35

1 Introduction

For a graph H, the extremal function ex(n, H) is defined to be the maximal number of
edges in an H-free graph on n vertices. This function is well understood for graphs H with
chromatic number at least three by the Erdés-Stone-Simonovits theorem [5, 3]. However,
for bipartite graphs H, much less is known. For a survey on the subject, see [7]. One
of the few general results, proved by Fiiredi [6], and reproved by Alon, Krivelevich and
Sudakov [1] is the following.

Theorem 1 (Fiiredi, Alon—Krivelevich-Sudakov). Let H be a bipartite graph such that
in one of the parts all the degrees are at most r. Then there exists a constant C such that
ex(n, H) < Cn?>7/7,

Conlon and Lee [2] have conjectured that the only case when this is tight up to
the implied constant is when H contains a K, , (it is conjectured [8] that ex(n, K,,) =
Q(n?71/m)), and that for other graphs H there exists some § > 0 such that ex(n, H) =
O(nQ—l/r—(;)'

The subdivision of a graph L is the bipartite graph with parts V(L) and E(L) (the
vertex set and the edge set of the graph L, respectively) where v € V(L) is joined to
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e € E(L) if v is an endpoint of e. In other words, it is the graph obtained by replacing
every edge of L by a path of length 2.

It is easy to see that any Cy-free bipartite graph in which every vertex in one part
has degree at most two is a subgraph of H; for some positive integer ¢, where H; is the
subdivision of K;. Conlon and Lee have verified their conjecture in the r = 2 case by
proving the following result.

Theorem 2 (Conlon and Lee [2, Theorem 5.1)). For any integer t > 3, there exists a
constant Cy such that ex(n, H;) < C’tn3/2_1/6t.

_ t—3/2
They have observed the lower bound ex(n, H;) > ctn3/ S coming from the prob-

abilistic deletion method, and have asked for an upper bound of the form ex(n, H;) <
Cyn®?7% where 1/4, is bounded by a polynomial in . We can prove such a bound even
for a linear 9.

Theorem 3. For any integer t > 3, there exists a constant Cy such that ex(n, Hy) <
Cin'tams = O/ m-s

It would be very interesting to know whether or not this bound is tight up to the
implied constant. It certainly is tight for t = 3 as ex(n, Cs) = O(n/?).

We can in fact prove a slightly stronger result. For integers s > 1 and ¢t > 3, let L,
be the graph which is a K, | with the edges of a K, removed. That is, the vertex set
of Ly is SUT where SNT =0, |S| = s and |T| =t — 1, and zy is an edge if and only if
v €T oryeT. Let L, be the subdivision of L.

Theorem 4. For any two integers s > 1 and t > 3, there exists a constant C, such that

Z1
ex(n, L, ;) < C, 75,

This result certainly implies Theorem 3 as L;; = K;. Moreover, we can apply The-
orem 4 to obtain good bounds on the extremal number of the subdivision of the com-
plete bipartite graph K,; as well. Let us write H,; for the subdivision of K,;. Con-
lon and Lee [2, Theorem 4.2] have proveld that for any 2 < a < b there exists a con-

stant C' such that ex(n, H,;) < Cn®?~15. They have also observed the lower bound
a+b—3/2

ex(n, Hyp) = me(ng/ >~"2a-1 ) (which follows from the probabilistic deletion method).
Hence their upper bound is reasonably close to best possible when a = b, but is weak
when b is much larger then a.

Since K, is a subgraph of Lj .11, Theorem 4 implies the following result, by taking
s=bandt=a+1.

Corollary 5. For any two integers 2 < a < b, there exists a constant C,; such that
ex(n, Hyp) < C’a,bn?’/?_ﬁ.
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2 Proof of Theorem 4

We shall use the following lemma of Conlon and Lee [2, Lemma 2.3], which is a slight
modification of a result of Erdés and Simonovits [4]. Let us say that a graph G is
K-almost-regular if max,cy () deg(v) < K min,ey () deg(v). Moreover, following Conlon
and Lee, we say that a bipartite graph G with a bipartition AU B is balanced if %|B| <
A] < 2/B|.

Lemma 6. For any positive constant o < 1, there exists ng such that if n > ng, C' > 1
and G is an n-vertex graph with at least Cn'™® edges, then G has a K-almost-reqular

balanced bipartite subgraph G’ with m vertices such that m > n2<1+a> |E(G) 1+a

and K = 60 - 21+1/*

|/10m

This reduces Theorem 4 to the following.

Theorem 7. For every K > 1, and positive integers s > 1,t > 3, there exists a constant
c = c(s,t, K) with the following property. Letn be suﬁiczently large and let G be a balanced
bipartite graph with bipartition AU B, |B| = n such that the degree of every vertex of G

is between § and K6, for some § > cn#3. Then G contains a copy of L,

Given a bipartite graph G with bipartition A U B, the neighbourhood graph is the
weighted graph Wg on vertex set A where the weight of the pair uv is dg(u,v) =
|Ne(u) N Ng(v)|. Here and below Ng(v) denotes the neighbourhood of the vertex v
in the graph G. For a subset U C A, we write W(U) for the total weight in U, ie.
W(U) = 5o doo.v).

We shall use the following simple lemma of Conlon and Lee [2, Lemma 2.4].

Lemma 8. Let G be a bipartite graph with bipartition AU B, |B| = n, and minimum
degree at least 6 on the vertices in A. Then for any subset U C A with §|U| > 2n,

Z dea(u,v) (|g|>
qu

In other words, the conclusion of Lemma 8 is that W (U) > % ('g').
In the next definition, and in the rest of this paper, for a weighted graph W on vertex
set A, if u,v € A, then W (u,v) stands for the weight of uv. Moreover, we shall tacitly

assume throughout the paper that s > 1 and t > 3 are fixed integers.

Definition 9. Let W be a weighted graph on vertex set A and let u,v € A be distinct.
We say that wv is a light edge if 1 < W(u,v) < (s—i—;—l) and that it is a heavy edge if
W(’LL,U) 2 (ertfl)'

2

Note that if there is a Ksi; 1 in W formed by heavy edges, then clearly there is an
Ls; in Wg formed by heavy edges, therefore there is an L, in G.
The next lemma is one of our key observations.
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Lemma 10. Let G be an L. -free bipartite graph with bipartition AU B, |B| = n and
suppose that W(A) = 8(s+t)?n. Then the number of light edges in Wg is at least pem L ))
Proof. Let B = {by,...,b,}. Let k; = |Ng(b;)| and suppose that k; > 2(s +t — 2) for
some 4. As G is L ;-free, there is no K,y 1 in W[Ng(b;)] formed by heavy edges. Thus,
by Turdn’s theorem, the number of light edges in Ng(b;) is at least

(s+t—2) i 1k;( b 1) > i
s — = —Kil—————-1) 2 ————.
2 2 Vst —2 A(s+t—2)

But

> (’;) <4(s+1t)*n < W;A),

i:k; <2(s+t—2)

> (5)=

1:k; >2(s+t—2)

SO

Since every light edge is present in at most (5+;_1) of the sets Ng(b;), it follows that the
total number of light edges is at least

1 > B W) .

sHi—1 — > .
( 2 ) ik >2(s+t—2) 4(5 +1 2) 4(8 + t)

Corollary 11. Let G be an L ,-free bipartite graph with bipartition AU B, |B| = n,
and minimum degree at least & on the vertices in A. Then for any subset U C A with

|U| > w and |U| = 2, the number of light edges in Wg|U] is at least m('g').

Proof. By Lemma 8, we have W(U) > %(‘gl) > 8n|U|2 8(s + t)?n. Now the result

follows by applying Lemma 10 to the graph G[U U B]. O

We are now in a position to complete the proof of Theorem 7.

Proof of Theorem 7. Let ¢ be specified later and suppose that n is sufficiently large. As-
sume, for contradiction, that G'is L ,-free. We shall find distinct uy,...,u;y € A with
the following properties.

(i) Each u;u; is a light edge in W.
(ii) If 4, 7, k are distinct, then Ng(u;) N Ne(uj) N Ne(uy) = 0.

(iii) For each 1 < i <t — 1, the number of v € A with the property that for every j < i,

u;v is a light edge is at least (m) |Al.
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As n is sufficiently large, we have |A| > n/2 > s+t , therefore by Corollary 11 there
are at least W(W) light edges in A, so we may choose uy € A such that the number

of light edges uqv is at least ( (Al —1) > +t 3n|A|

Now suppose that 2 < i < t— 1 and that ul, ..., u;_1 have been constructed satisfying
(1),(ii) and (iii). Let Uy be the set of vertices v € A with the property that ;v is a light
edge for every j < ¢ — 1. By (iii), we have |Uy| > (32(5‘5%)’ YA|. Now let U consist of
those v € Uy for which Ng(u;) N Ne(ug) N Ng(v) = 0 holds for all 1 < j < k <i— 1.
Since w;uy, is a light edge for any 1 < j < k < — 1, we have that dG(u],uk) < (s+;_1).
But the degree of every b € B is at most K4, therefore the number of v € A for which
Ng(uj) N Neg(ug) N Ne(v) # 0 is at most (T2 K6, so [Up \ U| < (51 (**1") K6. But
note that for sufficiently large n, we have (32(85ﬁ)z Al = 2(%,Y) (** 1) K6 because

§ = 0((6%/n)*"%n) and § = o((6%/n)n). Thus,

52

1 1 1—1
= = 2 Ao .
U] 2|U0| 2(32(s—|—t)3n) 4]

But for sufficiently large ¢ = ¢(s,t, K), we have l(gz(L)’ 1|A| S(SH)" Indeed, this

s+t)3n
. . . 2
is obvious when 6% > 32(s + t)?>n, and otherwise, using J > cns 3, we have

52 52

1 i 1 1 2t—4
2'32(s+1)3n 2'32(s+1)3n

4(32(s + t)3)t2 g3 7 5

)t72|A| 2

Thus, by Corollary 11, there exists some u; € U with at least
(52
(32(s+t)3n
of the vertices {u;}1<j<i—1.

(Ul - 1) >
)| A| light edges adjacent to it in U. This completes the recursive construction

By (iii) for ¢ = t — 1, there is a set V' C A consisting of at least (ﬁ)t HA|
vertices v such that for every j <t —1, u;v is a light edge. We shall now prove that there
exist distinct vy,...,vs € V such that Ng(u;) N Ng(uj) N Ne(vg) = 0 for all i« # j, and
Ng(u;) N Ng(vj) N Ng(vg) = 0 for all j # k. It is easy to see that this suffices since then
there is a copy of L ; in G, which is a subdivision of the copy of L, in W whose vertices

are vi,...,Us, Uy, ..., Ut_1.

We shall now choose vy, ..., v one by one. Since every w;u; is a light edge, the number
of those v € A with Ne(u;) NN (u;)NNg(v) # 0 for some i # j is at most (") (**5 1) K.
Moreover, given any choices for vq,...,v,_1 € V, as each u;v; is a light edge, the number
of those v € A with Ng(u;) N Ng(vj) N Ng(v) # () for some i,j is at most (¢t — 1)(k —
1)(**."1) K6. Therefore as long as [V| > (")) (**L ) K6+ (t—1)(s—1)(**) ") K6, suitable
choices for vy, ..., vs can be made. Since |V| > (m)t_lvﬂ, this last inequality holds
for large enough ¢ = ¢(s,t, K). ]
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