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Abstract

A hypergraph is properly 2-colorable if each vertex can be colored by one of two
colors and no edge is completely colored by a single color. We present a complete
algebraic characterization of the 2-colorability of r-uniform hypergraphs. This gen-
eralizes a well known algebraic characterization of k-colorability of graphs due to
Alon, Tarsi, Lovász, de Loera, and Hillar. We also introduce a method for distin-
guishing proper 2-colorings called coloring schemes, and provide a decomposition of
all proper 2-colorings into these schemes.

As an application, we present a new example of a 4-uniform non-2-colorable
hypergraph on 11 vertices and 24 edges which is not isomorphic to a well-known
construction by Seymour (1974) of a minimal non-2-colorable 4-uniform hypergraph.
Additionally, we provide a heuristically constructed hypergraph which admits only
specific coloring schemes. Further, we give an algebraic characterization of the
coloring scheme known as a conflict-free coloring.

Mathematics Subject Classifications: 05C15

1 Introduction

Colorability of graphs has a rich and extensive history and includes many different tech-
niques. Studying colorability through algebraic methods has been addressed by many,
including Bayer, Alon, Tarsi, Lovász, de Loera, and Hillar (cf. [3] [1] [2] [14] [7] [8] [11]
[12]).

In 1982 Bayer introduced a method of determining the 3-colorability of a graph by
examining systems of polynomial equations using the division algorithm [3]. Alon and
Tarsi used polynomials to prove several conjectures about the chromatic number of a graph
[2]. In addition, they provided equivalent conditions for a graph to be not k-colorable
using polynomial ideals.
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Later, de Loera et al. and Hillar proved results concerning the algebraic characteriza-
tion of a graph colorability [7], [12]. The main tools de Loera et al. use in their algebraic
characterizations for the colorability of a graph are polynomial ideals and Gröbner bases.
Gröbner bases were introduced by Buchberger in 1965 and have since become widely used
in the study of polynomial ideals [4].

There are two goals for this paper: first, to extend the results mentioned above for
graphs to the 2-colorability of uniform hypergraphs by generalizing the results of Hillar
[12] to uniform hypergraphs; second, to introduce coloring schemes: a new classification
of proper hypergraph colorings distinguishing different proper vertex colorings.

To illustrate we present two heuristically constructed 4-uniform hypergraphs and ana-
lyze their 2-colorability. The first is 2-colorable, however this hypergraph will only permit
certain coloring schemes to be properly 2-colored. The second example is non-2-colorable
having 24 edges and non-isomorphic to a well-known construction of Seymour [15].

The paper is structured in the following way. The rest of the introduction contains a
description of results in the graph case and an informal description of coloring schemes
which are properly defined later in Section 2. Sections 2 and 3 contain all relevant def-
initions and the statements of our main results. Section 5 is a brief overview of the
algebraic tools required for the proofs of the main results. In Section 6 we provide proofs
for the theorems stated in Sections 2 and 3, along with additional definitions, theorems,
and technical lemmas required for the proofs. As an application of our results, Section 4
contains a new example of a minimal non-2-colorable 4-uniform hypergraph and Section
7 presents results on algebraic characterization of conflict-free colorings. Lastly we attach
computational examples illustrating our theorems in the appendices.

1.1 2-Colorability

We generalize some of the results mentioned above to the 2-colorability of uniform hy-
pergraphs and translate the notion of hypergraph vertex colorings to polynomial ideals.
Let us introduce the known results for colorability of graphs which we wish to generalize.
Let G = (V,E) be a graph. We define its graph polynomial PG in variables x1, . . . , xn,
n = |V (G)|, as

PG = PG(x1, . . . , xn) =
∏

{i,j}∈E(G)

(xi − xj) .

To give an algebraic formulation of colorability of a graph on n vertices we will work in
the polynomial ring R = C[x1, . . . , xn]. Let H denote the set of graphs with vertices
{1, . . . , n} consisting of a clique of size k + 1 and isolated other vertices. Let the ideals
Tn,k, Rn,k, and RG,k of the ring R be defined as in [12]:

Tn,k = ⟨PG : G ∈ H ⟩,
Rn,k = ⟨xk

i − 1 : i ∈ [n]⟩,
RG,k = Rn,k +

〈
xk−1
i + xk−2

i xj + · · · + xix
k−2
j + xk−1

j : {i, j} ∈ E(G)
〉
.

The main result of this paper, Theorem 2, extends the following result by Hillar and
Windfeldt [12] to uniform hypergraphs.
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Theorem 1 (Theorem 1.1, [12]). Let k < n be positive integers and G be a graph on n
vertices. The following statements are equivalent:

(1) The graph G is not k-colorable.

(2) dimC R/RG,k = 0 as a vector space.

(3) The constant polynomial 1 belongs to the ideal RG,k.

(4) The graph polynomial PG belongs to the ideal Rn,k.

(5) The graph polynomial PG belongs to the ideal Tn,k.

The algebraic techniques developed by de Loera and Hillar extended here give not only
theoretical results, but also have algorithmic implications. Our proofs can be extended to
determine the existence of 2-colorings of hypergraphs satisfying specified color patterns
introduced in the next subsection.

1.2 Coloring Schemes

A vertex coloring of a hypergraph is exactly the same as that of a graph; vertices are
assigned or labeled with a color. Such a coloring is considered proper if no edge in the
graph is comprised completely of monochromatically colored vertices. For a graph, proper
colorings may be more conveniently described by stating that adjacent vertices must be
assigned different colors. However, in a hypergraph, (possibly) more than two vertices
determine an edge, therefore a proper coloring may assign the same color to adjacent
vertices. The generalization of a proper vertex coloring from graphs to hypergraphs leads
to some interesting consequences concerning the types of proper coloring. We informally
describe the idea of coloring schemes in this subsection with a formal definition in Section
3.

In a graph, adjacent vertices x and y may only be colored in one way: c(x) ̸= c(y),
where c(i) denotes the color assigned to vertex i; thus, all vertices in the edge must be
assigned distinct colors. When we consider a properly vertex colored hypergraph however,
vertices in the same edge need not be assigned distinct colors. For example, suppose
e = (x, y, u, v) is an edge in a 4-uniform hypergraph, then each pair of vertices from the
set {x, y, u, v} are considered adjacent. Note that:

c(x) = c(y) = c(u) ̸= c(v), and c(x) = c(y) ̸= c(u) = c(v)

are two proper colorings of the vertices in the edge e. We refer to these different proper
colorings as color patterns. Note, isomorphic 2-colorings do not effect the color patterns
applied to an edge. For example, using colors A and B, the assignments:

A = c(x) = c(y) = c(u) ̸= c(v) = B and B = c(x) = c(y) = c(u) ̸= c(v) = A,

constitute two different isomorphic colorings of the vertices in the edge with the same color
pattern. We will consider these two colorings contributions to the same color pattern.
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Note further that in a proper vertex coloring of a hypergraph, the vertices of each edge
may (or may not) be colored with a different color pattern, which gives rise to the idea
of a coloring scheme. A coloring scheme may consist of a single color pattern applied to
each edge, in which case we consider the coloring scheme to be homogeneous, or, several
color patterns may be used to create a heterogeneous coloring scheme. Each individual
proper coloring of a hypergraph corresponds to a single coloring scheme, however, that
coloring is not unique to its coloring scheme since isomorphic colorings will not alter
the color patterns nor the coloring scheme as stated above. A properly vertex colorable
hypergraph may also admit multiple coloring schemes, and each scheme may be satisfied
by several distinct (non-isomorphic OR isomorphic) colorings.

A properly vertex colored graph admits only one color pattern for the vertices of each
edge, and thus has only one coloring scheme: the coloring scheme with that single color
pattern. Likewise, a proper vertex 2-coloring of a 3-uniform hypergraph also has only one
color pattern (two vertices of color A, and one of color B) and thus one coloring scheme.
However, once the uniformity of the hypergraph grows larger than 3 (or more than 2
colors are used), the coloring schemes are no longer unique.

Consider a 4-uniform hypergraph and the two coloring patterns above: pattern 1 colors
three vertices with color A, and one with color B; pattern 2 colors two vertices with each
color. If the hypergraph may be properly colored where some edges are assigned pattern 1,
and some are assigned pattern 2, then we say the hypergraph admits the (heterogeneous)
coloring scheme consisting of pattern 1 and pattern 2. If a coloring properly colors the
hypergraph and all edges are assigned a single pattern, then the hypergraph admits the
(homogeneous) coloring scheme consisting of the single pattern.

One particular coloring scheme known as a conflict-free coloring has been studied
recently. Conflict-free colorings of uniform hypergraphs were introduced in connection
with applications to cellular networks [10] and later studied by Kostochka et al. [13]. We
will examine conflict-free colorings in Section 7.

2 2-Colorability of Uniform Hypergraphs

Let r ⩾ 2 be a positive integer. An r-uniform hypergraph, H = (V (H), E(H)), consists of
a set of vertices, V (H), together with a collection of subsets of vertices each of cardinality
r, called edges, E(H).

Let H be an r-uniform hypergraph on n = |V (H)| vertices with m = |E(H)| edges.
For a positive integer k, a k-coloring of H is defined to be a map c : V (H) → C, |C| = k.
A proper k-coloring is a k-coloring of H where no edge e ∈ E(H) is monochromatic, i.e.
no edge e ∈ E(H) is contained in c−1(ι) for some ι ∈ C. The smallest number of colors
required in a proper coloring is called the chromatic number of H, χ(H).

It is convenient for our purposes to restrict the colors to specific values and label
vertices of a hypergraph by the first n positive integers, that is V (H) = [n]. We define a
2-coloring as a map

c : V (H) → {−1, 1} .
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Note that this formulation is equivalent to the definition above. Further, we associate the
vertices of hypergraphs with variables in a polynomial ring. For each vertex i ∈ V (H) =
[n] we assign a variable in the polynomial ring R = C[x1, . . . , xn] via the map

i → xi .

If c is a 2-coloring of H, we naturally extend c to assign the values 1 and −1 to the
variables xi, and write c(xi) = c(i), i ∈ [n], for the values assigned to the variables. With
this convention, a 2-coloring of H corresponds to an assignment of ±1 to the variables
x1, . . . , xn.

Though we are concerned with vertex colorings, we utilize edges to distinguish between
proper and improper vertex colorings. We will use the following notation to keep track of
vertices in a particular edge. For an edge e ∈ E(H) let

e = {e1, e2, . . . , er},

where ej represents a vertex in V (H) = [n] .
Now let us introduce all necessary definitions to formulate our results. We call a

partition of r a proper 2-integer partition if it consists of exactly two parts, {r1, r2}:

0 < r2 ⩽ r1 < r, r1 + r2 = r.

Let par(r, 2) be the set of all proper 2-integer partitions of r and note |par(r, 2)| = ⌊ r
2
⌋.

Let d(r, 2) be the set of all differences of proper 2-integer partitions of r (which by
design will be non-negative), that is

if {r1, r2} ∈ par(r, 2), r1 ⩾ r2, then, r1 − r2 ∈ d(r, 2).

For an edge e = {e1, . . . , er} ∈ E(H) we define the coloring polynomial for edge e, fe, by:

fe =(ω1xe1 + xe2 + · · · + xer)(xe1 + ω1xe2 + · · · + xer) · · · (xe1 + xe2 + · · · + ω1xer)·
(ω2xe1 + xe2 + · · · + xer)(xe1 + ω2xe2 + · · · + xer) · · · (xe1 + xe2 + · · · + ω2xer)·

...

(ωp(r,2)xe1 + xe2 + · · · + xer)(xe1 + ωp(r,2)xe2 + · · · + xer)·
· · · (xe1 + xe2 + · · · + ωp(r,2)xer)

where ωj − 1 ∈ d(r, 2), 1 ⩽ j ⩽ ⌊ r
2
⌋, i.e. d(r, 2) = {ω1 − 1, . . . , ω⌊ r

2
⌋ − 1}. The coloring

polynomials are crucial in the definition of the 2-colorability ideal I2(H) of H

I2(H) = ⟨x2
i − 1 : i ∈ V (H)⟩ + ⟨fe : e ∈ E(H)⟩.

These definitions are illustrated for the Fano plane in Example 1, Appendix A.
As an analogue to the commonly used graph polynomial, we define the hypergraph

polynomial for 2-colorability, P2(H), by

P2(H) =
∏

e∈E(H)

∑
ej∈e

xej − r

 ·

∑
ej∈e

xej + r

 .
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Here, H is again an r-uniform hypergraph. A similar generalization of the graph polyno-
mial was introduced by Vishwanathan [16].

We are now ready to state our first main result. The following theorem characterizes
the 2-colorability of uniform hypergraphs and provides a generalization of Theorem 1.

Theorem 2. Let H be a uniform hypergraph on n vertices. Let R = C[x1, . . . , xn]. Let
I2(H) be the 2-colorability ideal of H and let P2(H) be the hypergraph polynomial for H.
Then the following are equivalent:

(1) The hypergraph H is not 2-colorable.

(2) The constant 1 is an element of the ideal I2(H).

(3) dimC R/I2(H) = 0 as a vector space.

(4) The hypergraph polynomial P2(H) belongs to the ideal〈
x2
i − 1 : i ∈ V (H)

〉
.

3 2-Coloring Schemes

The algebraic encoding of vertex colorings into polynomial ideals allows us to decompose
proper 2-colorings of H into one or more coloring schemes. Furthermore, we are able to
characterize whether a hypergraph admits a proper vertex coloring restricted to specific
coloring schemes.

First we define a useful tool for distinguishing proper 2-colorings of a hypergraph. Let
e = {e1, . . . , er} ∈ E(H) be an edge. We set

α(e) =
r∑

j=1

xej

to be the sum of the variables assigned to the vertices in e. The edge sum of an edge e in
a hypergraph H colored by a 2-coloring c, αc(e), is defined to be the sum of the values c
assigns to the vertices in e

αc(e) =
r∑

j=1

c(xej) =
r∑

j=1

c(ej) .

A proper edge sum is an edge sum of a properly 2-colored edge.
Since we are currently concerned with 2-colorings only, and thus restrict our colors

to ±1, the set of all proper edge sums is determined completely by the color patterns
associated with the uniformity of the hypergraph. Note, that there are 2 · ⌊ r

2
⌋ proper edge

sums that can appear in proper 2-colorings of r-uniform hypergraphs. These correspond
to the ⌊ r

2
⌋ proper 2-integer partitions of r, taken twice for whether the larger part is
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assigned 1, or −1 in a coloring. In the case that r is even, the proper edge sum of 0 is
counted twice.

Proper edge sums are the primary component in our second algebraic characterization
of 2-colorings of H. While similar in utility to the fe polynomials used in the 2-colorability
ideal, I2(H), proper edge sums allow us to distinguish between different coloring schemes.

For an r-uniform hypergraph, H, let A = {a1, a2, . . . , a2⌊ r
2
⌋} be the possible proper

edge sums for H. As stated previously, A is generated by the possible color patterns for
H, with each color pattern contributing two proper edge sums (potentially repeating the
sum 0 twice). Let U ⊆ A be non-empty; we will refer to U as a 2-coloring scheme. Note
that we require the following condition on U : if a ∈ U , a ̸= 0, then −a ∈ U as well. This
condition induces a correspondence between the pair {a,−a} and the proper 2-integer
partition of r where they originated.

We define the 2-coloring scheme ideal of H, S2,U(H), as

S2,U(H) = ⟨x2
i − 1 : i ∈ V (H)⟩ +

〈∏
a∈U

(
r∑

j=1

xej − a

)
: e ∈ E(H)

〉
.

The 2-coloring scheme ideals distinguish different proper 2-colorings of H and allow the
2-colorability ideal I2(H) to be decomposed algebraically.

Theorem 3. Let H be an r-uniform hypergraph. Let A = {a1, a2, . . . a2⌊ r
2
⌋} consist of all

possible proper edge sums in r-uniform hypergraphs as above. Then,

I2(H) =
⋂
U⊆A
U ̸=∅

S2,U(H) .

In addition to the decomposition of I2(H), the 2-coloring scheme ideals allow us to
determine when H admits the coloring scheme U .

Corollary 4. H can be properly 2-colored by the coloring scheme U if and only if the
ideal S2,U(H) does not contain the constant 1.

We prove Theorems 2 and 3, and Corollary 4 in Section 6 along with all necessary
supporting results. We illustrate our results on the following example of a 4-uniform
hypergraph with 10 edges on 7 vertices in Appendix A:

{{1 2 3 4}, {1 5 6 7},
{2 5 6 7}, {3 5 6 7},
{3 4 5 6}, {3 4 6 7},
{3 4 5 7}, {1 2 3 5},
{1 2 3 6}, {1 2 3 7}}

For comparison, we also analyze the well-known Fano Plane and a 2-colorable sub-
hypergraph which admits a single coloring scheme only.
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4 A new minimum non-2-colorable 4-uniform hypergraph

In 1974, Seymour [15] proved that the minimum number of edges of a non-2-colorable
4-uniform hypergraph is 24. We present a new example of a non-2-colorable 4-uniform
hypergraph on 11 vertices, {1, . . . , 11}, and 24 edges which is not isomorphic to the well-
known example constructed by Seymour.

Let n = 11 be the number of vertices. Let us start with Seymour’s construction. Let
S be a 4-uniform hypergraph on 11 vertices containing the following edges

E(S) = { {1, 2, 9, 10}, {1, 2, 10, 11}, {1, 2, 9, 11}, {3, 4, 9, 10}, {3, 4, 10, 11}, {3, 4, 9, 11},

{5, 6, 9, 10}, {5, 6, 10, 11}, {5, 6, 9, 11}, {7, 8, 9, 10}, {7, 8, 10, 11}, {7, 8, 9, 11}, {2, 3, 5, 7},
{1, 4, 5, 7}, {1, 3, 6, 7}, {2, 3, 6, 7}, {1, 4, 6, 7}, {2, 4, 6, 7}, {2, 4, 6, 8}, {1, 3, 6, 8}, {2, 4, 5, 8},

{1, 4, 5, 8}, {2, 3, 5, 8}, {1, 3, 5, 8} }.
Seymour proved that S is a non-2-colorable hypergraph. Note that S has 24 edges and
its degree sequence is

{9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8} .

Next, let us introduce our example: a 4-uniform hypergraph H on 11 vertices with the
edge set

E(H) = { {5, 6, 10, 11}, {1, 4, 5, 7}, {2, 3, 6, 7}, {3, 4, 10, 11}, {2, 4, 5, 8}, {1, 2, 9, 10},

{1, 2, 10, 11}, {1, 3, 6, 8}, {5, 6, 9, 10}, {1, 4, 6, 7}, {7, 8, 9, 10}, {7, 8, 9, 11}, {2, 3, 5, 7},
{3, 4, 9, 10}, {2, 4, 6, 8}, {7, 8, 10, 11}, {1, 2, 9, 11}, {5, 6, 9, 11}, {2, 4, 5, 6}, {1, 4, 5, 8},

{3, 4, 9, 11}, {1, 3, 6, 7}, {1, 3, 5, 8}, {2, 3, 5, 8} }.
We claim this is a non-2-colorable hypergraph. The proof relies on Theorem 2 and Gröbner
bases. We describe the 2-colorability ideal for H in Appendix B. Note that H has 24 edges
and its degree sequence is

{9, 9, 9, 9, 10, 9, 8, 9, 8, 8, 8}.
Thus, we can conclude that the two hypergraphs S and H are non-isomorphic.

5 Algebraic Background

We recall some algebraic tools that will be required for the proofs in Section 6. We use
standard algebraic notation, for reference see for example [5], and [9].

We will consider the polynomial ring R = C[x1, . . . , xn]. For an ideal I in R, the
radical of I, denoted

√
I is the set
√
I = {f ∈ R : fm ∈ I, for some m ∈ Z+} .

An ideal I is called radical if I =
√
I. The subset of Cn consisting of the solutions

common to all polynomials in I is the variety of I, denoted V(I). Conversely, given a
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subset V ⊆ Cn, the vanishing ideal is the set of all polynomials in R = C[x1, . . . , xn] that
vanish at every point in V , and is denoted by I(V ). The symbols V and I represent
set maps which allow transition between ideals of the ring R and subsets of Cn, and are
related in the following way:

V(I(V )) = V, and I(V(I)) =
√
I.

Moreover, the maps are inclusion-reversing, a fact which we will utilize in the following
way: if J ⊆ I are ideals, then V(J) ⊇ V(I) (see Chapter 4, Section 2, Theorem 7 of
[5]). Finally, we say that an ideal I in the ring R is zero-dimensional (as an ideal), if its
corresponding variety, V(I), contains only a finite number of points.

A monomial ordering on the monomials of R is a multiplicative well-ordering, <, on
the set of monomials with the constant 1 being the least element. With a monomial
ordering established we can define the leading term of any polynomial f ∈ R; the leading
term of f , LT (f), is the monomial in f that is largest with respect to <. Any monomial
which is not a leading term of a polynomial in an ideal I is called a standard monomial
and the set of all such monomials is denoted B<(I).

In [12], Hillar and Windfeldt collect several results from commutative algebra and
algebraic geometry that are useful in determining when an ideal is zero-dimensional and
radical. We reproduce the lemma here for completeness.

Lemma 5 (Lemma 2.1, [12]). Let I be a zero-dimensional ideal in the polynomial ring R
and let < be a fixed monomial ordering. Then,

dimC R/I = |B<(I)| ⩾ |V(I)| (as a vector space).

Moreover, the following are equivalent:

(1) I is a radical ideal.

(2) I contains a univariate square-free polynomial in each indeterminate.

(3) |B<(I)| = |V(I)|.

Proof. See [12], Lemma 2.1; [5] p. 229, Proposition 4; and [6] pp. 39-41, Proposition 2.7
and Theorem 2.10.

Given an ideal I in R, the ideal of leading terms is defined as LT (I) = ⟨LT (f) : f ∈ I⟩.
A Gröbner basis for an ideal I is a finite set of generators {g1, . . . , gm} for I whose leading
terms generate the ideal of all leading terms in I, i.e.

I = ⟨g1, . . . , gm⟩ and LT (I) = ⟨LT (g1), . . . , LT (gm)⟩ .

A reduced Gröbner basis G, is a Gröbner basis whose elements are all monic, and are
such that no leading term in G divides any other term in any polynomial in G. Gröbner
bases are a very useful tool for determining properties of polynomial ideals, including
ideal membership, intersections, and equality between ideals.
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A final tool that we will utilize in a similar fashion as in [12] is the ideal quotient (or
colon ideal). Given ideals I and J of R, the ideal quotient is the ideal

I : J = {f ∈ R : fg ∈ I, ∀ g ∈ J}.

Moreover, given two varieties V and W ,

I(V ) : I(W ) = I(V \W ).

See [5], pp. 191-193.
In addition we recall two results from polynomial algebra which allow us to apply our

results to some basic examples. Both results can be found in any modern abstract algebra
text, for example [9].

Theorem 6 (Weak Nullstellensatz). The polynomials contained in the ideal I, specifically
the generators of I, have a common solution, i.e. V(I) ̸= ∅, if and only if 1 ̸∈ I.

A well known statement from the theory of Gröbner bases is the main tool in an
algorithm for determining if a given hypergraph admits a 2-coloring with proper edge
sums restricted to a given set.

Theorem 7. The polynomials in an ideal I = ⟨f1, . . . , fm⟩ have a common solution if
and only if any Gröbner basis for I is non-trivial.

Using Theorem 7 in conjunction with Theorems 9 or 14 (Section 6), we can determine
if a given hypergraph is 2-colorable or 2-colorable with the corresponding proper edge
sums restricted to a certain set. Each of these tasks is completed by first determining the
appropriate collection of proper edge sums, generating their associated 2-coloring scheme
ideal, and finally computing a Gröbner basis for the ideal. If the associated ideal has a
non-trivial Gröbner basis, then the hypergraph admits the coloring pattern in question.
We give an example of this technique in Example 2 in Appendix A.

6 Colorability Proofs

Let r ⩾ 2 and n be positive integers. In this section, we let H to be an r-uniform
hypergraph on n vertices and R = C[x1, . . . , xn]. Also let A be the set of all possible
proper edge sums in an r-uniform hypergraph.

6.1 2-Colorability Proofs

We first establish the ideal characterization of a proper 2-coloring of H by proving that
the fe polynomials encode proper vertex colorings.

Lemma 8. Let e be an edge of a 2-colored r-uniform hypergraph. The polynomial fe
vanishes if and only if the edge e is properly 2-colored.
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Proof. Let e ∈ E(H). Let c be a 2-coloring of H.
(⇐) Assume c is a proper 2-coloring of H. Then e has a proper edge sum equal to a

where

a = αc(e) =
r∑

j=1

c(xej) and − (r − 2) ⩽ a ⩽ r − 2 .

Hence, |a| ∈ d(r, 2) and we have that for some j, 1 ⩽ j ⩽ p(r, 2),

ωj − 1 = |a| .

Thus at least one of the factors

(ωjxe1 + xe2 + · · · + xer)(xe1 + ωjxe2 + · · · + xer) · · · (xe1 + xe2 + · · · + ωjxer)

of fe will be zero when evaluated at (c(x1), . . . , c(xn)).
Hence, fe vanishes at (c(x1), . . . , c(xn)), i.e. fe(c(x1), . . . , c(xn)) = 0.

(⇒) Assume fe(c) = 0. For a contradiction, assume e is not properly colored by c.
So all the vertices of e are assigned color 1 or all the vertices of e are assigned color −1.
Then each factor in

(ωjxe1 + xe2 + · · · + xer)(xe1 + ωjxe2 + · · · + xer) · · · (xe1 + xe2 + · · · + ωjxer)

when evaluated at (1, . . . , 1) or (−1, . . . ,−1) takes value either

ωj + r − 1 or − (ωj + r − 1).

Since ωj −1 ̸= −r for all ωj −1 ∈ d(r, 2), no factor in fe can be zero, thus fe(1, . . . , 1) ̸= 0
as well as fe(−1, . . . ,−1) ̸= 0, a contradiction. So e is properly 2-colored by c.

With this lemma we can characterize the 2-colorability of H using the ideal I2(H).

Theorem 9. Let H be an r-uniform hypergraph. The polynomials in the ideal I2(H) have
a common solution if and only if H is properly 2-colorable.

Proof. (⇒) Let c ∈ V (I2(H)), c = (c1, . . . , cn). Clearly the first n generators in I2(H)
imply that ci = ±1 for all i ∈ [n]. Hence, c is a 2-coloring of H. Also, since fe(c) = 0
for every e ∈ E(H), every edges is properly colored by Lemma 8. Thus c is a proper
2-coloring of H.

(⇐) Let c = (c1, . . . , cn) be a proper 2-coloring of H. Then each of the first n generators
of I2(H), i.e x2

i − 1, vanish at c. Further, by Lemma 8, each fe, e ∈ H, vanishes at c.
Hence c ∈ V (I2(H)).

Remark 10. A note regarding Theorem 9 and the definition of the 2-colorability ideal
I2(H) in the case r is even. Note that 0 ∈ d(r, 2) in this case. Let j be such that
ωj = r1− r2 + 1 = 1. We can modify the definition of the fe polynomials in this case such
that we need not cycle this particular ωj coefficient through all r corresponding factors of
fe. Thus, in the case of r even, fe can contain one factor of the form (xe1 +xe2 + · · ·+xer)
and the remaining (r− 1) factors where ωj = 1 can be omitted. This does not change the
variety V(I2(H)), however it does simplify some computations within I2(H).
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The next theorem gives a characterization of 2-colorability using the hypergraph poly-
nomial for 2-colorability P2(H).

Theorem 11. Let H be an r-uniform hypergraph and c be a 2-coloring of H. Then c is
not a proper 2-coloring if and only if P2(H) vanishes on c.

Proof. (⇒) Let c be an improper coloring of H. Then for some ẽ ∈ E(H), c colors ẽ
either

{1, 1, . . . , 1} or {−1,−1, . . . ,−1}.

Thus the edge sum αc(ẽ) equals either r or −r. Hence the factor∑
ej∈ẽ

xej − r

∑
ej∈ẽ

xej + r

 ,

vanishes on c. Thus, P2(H) vanishes on c. Thus P2(H) = 0.
(⇐) Let c be a 2-coloring of H and assume that P2(H) vanishes on c. Then for some

e ∈ E(H), the factor ∑
ej∈e

xej − r

∑
ej∈e

xej + r


must vanish. Thus the edge sum αc(e) equals either r or −r. Since c is a 2-coloring, c
colors e by either

{1, 1, . . . , 1} or {−1,−1, . . . ,−1} .

Hence c is not a proper coloring.

The following lemmas and their proofs are analogues of Lemmas 3.1 and 3.4 in [12].

Lemma 12. For an r-uniform hypergraph H, the varieties V(⟨x2
i − 1 : i ∈ V (H)⟩),

V(I2(H)), and V(⟨x2
i − 1 : i ∈ V (H)⟩ + ⟨P2(H)⟩) correspond to the sets of all 2 colorings

of H, the proper 2-colorings of H, and the improper 2-colorings of H, respectively.

Proof. Let n = |V (H)|. Clearly, the set V(⟨x2
i − 1 : i ∈ V (H)⟩) is the set of all possible

n-tuples of ±1 which represent all possible 2-colorings of a hypergraph on n vertices. By
the construction of the fe polynomials and the ideal I2(H) in Theorem 9, V(I2(H)) is the
set of all proper 2-colorings of H.

Similarly, Theorem 11 implies that each solution of the hypergraph polynomial P2(H)
in {1, 1}n corresponds to an improper 2-coloring of H. Thus V(⟨x2

i − 1 : i ∈ V (H)⟩ +
⟨P2(H)⟩) is the set of all improper 2-colorings of H.

Lemma 12 and the fact that I2(H) is radical imply the following statement concerning
the hypergraph chromatic polynomial, χH(k), which is the univariate polynomial that
counts the number of proper k-colorings for H.
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Lemma 13.
χH(2) = |V(I2(H))| = dimC R/I2(H),

and
2n − χH(2) = dimC R/

(
⟨x2

i − 1 : i ∈ V (H)⟩ + ⟨P2(H)⟩
)
.

Proof. These statements follow from the fact that the ideals I2(H), and ⟨x2
i − 1 : i ∈

V (H)⟩ + ⟨P2(H)⟩ are radical and from Lemma 12.

We now give a proof of Theorem 2.

Proof. (Theorem 2)
The equivalence of (1), (2), and (3) follow from Theorem 9 and the Weak Nullstellensatz,
Theorem 6.

To finish the proof, we first show that (1) imples (4). Assume H is not 2-colorable.
Then for every coloring of H,

c ∈ V
(〈
x2
i − 1 : i ∈ V (H)

〉)
,

c is not a proper coloring, so by Lemma 12,

c ∈ V
(〈
x2
i − 1 : i ∈ V (H)

〉
+ ⟨P2(H)⟩

)
.

Thus,
V
(〈
x2
i − 1 : i ∈ V (H)

〉
+ ⟨P2(H)⟩

)
⊇ V

(〈
x2
i − 1 : i ∈ V (H)

〉)
,

and so, 〈
x2
i − 1 : i ∈ V (H)

〉
+ ⟨P2(H)⟩ ⊆

〈
x2
i − 1 : i ∈ V (H)

〉
.

This implies
P2(H) ∈

〈
x2
i − 1 : i ∈ V (H)

〉
.

Next, we show that (4) implies (1). Assume

P2(H) ∈
〈
x2
i − 1 : i ∈ V (H)

〉
.

Then 〈
x2
i − 1 : i ∈ V (H)

〉
+ ⟨P2(H)⟩ ⊆

〈
x2
i − 1 : i ∈ V (H)

〉
,

and
V
(〈
x2
i − 1 : i ∈ V (H)

〉
+ ⟨P2(H)⟩

)
⊇ V

(〈
x2
i − 1 : i ∈ V (H)

〉)
,

which, by Lemma 12, implies that every 2-coloring

c ∈ V
(〈
x2
i − 1 : i ∈ V (H)

〉)
,

is also such that
c ∈ V

(〈
x2
i − 1 : i ∈ V (H)

〉
+ ⟨P2(H)⟩

)
,

and hence is not proper. So H is not 2-colorable.

the electronic journal of combinatorics 26(3) (2019), #P3.30 13



6.2 Coloring Scheme Proofs

Moving now to our second main result, we establish the importance of the 2-coloring
scheme ideals S2,U(H).

Theorem 14. Let A be the set of all possible proper edge sums in r-uniform hypergraphs
and U be a nonempty subset of A. Let H be an r-uniform hypergraph on n = |V (H)|
vertices. Then the polynomials in the ideal S2,U(H) have a common solution if and only
if the hypergraph H can be properly 2-colored with the edge sums in U .

Proof. Let U ⊆ A, U non-empty. Consider the ideal

S2,U(H) =
〈
x2
i − 1 : i ∈ V (H)

〉
+

〈∏
a∈U

(
r∑

j=1

xej − a

)
: e ∈ E(H)

〉
.

From the first set of generators we see that any common solution will be an n-tuple of 1’s
and -1’s. Also, it is clear that for every edge, e ∈ E(H)

∏
a∈U

(
r∑

j=1

xej − a

)
= 0 ,

if and only if one of the factors,
r∑

j=1

xej = a ,

for some a ∈ U . Since each of these factors is the sum of the variables representing the
vertices in the edge e, this can happen if and only if the edge is properly 2-colored with
the edges sum in U .

Theorem 14 also gives us the following corollaries.

Corollary 15. Let A be the set of all possible proper edge sums in r-uniform hypergraphs
and H be an r-uniform hypergraph. Then

V(I2(H)) =
⋃
U⊆A
U ̸=∅

V(S2,U(H)) .

Proof. This follows from Lemma 12 and Theorem 14.

We now prove Corollary 4 which determines if H admits a coloring scheme U .

Proof. (Corollary 4.) Let U ⊆ A, U nonempty. By Theorem 14, H can be properly 2-
colored with the edge sums in U if and only if V(S2,U(H)) ̸= ∅. Since S2,U(H) ⊆ R,
V(S2,U(H)) ̸= ∅ is equivalent to S2,U(H) ̸= R which is equivalent to 1 ̸∈ S2,U(H) by The
Weak Nullsetellensatz.

We can now prove our main decomposition theorem, Theorem 3.
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Proof. (Theorem 3.)
Since the ideals I2(H) and S2,U(H) contain square-free univariate polynomials in each

indeterminate, they are radical.
Also, since

V(I2(H)) =
⋃
U⊆A
U ̸=∅

V(S2,U(H)) ,

we have that

I2(H) = I(V(I2(H)))

= I

⋃
U⊆A
U ̸=∅

V(S2,U(H))


=
⋂
U⊆A
U ̸=∅

I(V(S2,U(H)))

=
⋂
U⊆A
U ̸=∅

S2,U(H) .

We illustrate Theorem 3 and Corollary 4 in Appendix A. Further, we use the scheme
ideals and their properties to characterize conflict-free colorings in the next section.

7 Conflict-free coloring

A proper coloring of a uniform hypergraph H is called a conflict-free coloring if each edge
e ∈ E(H) contains a vertex whose color does not get repeated in e. The smallest number
of colors required in a conflict-free coloring is called the conflict-free chromatic number of
H, χCF(H). The conflict-free chromatic number was introduced by Even et al. in 2003
[10].

Our goal in this section is to show that we can recognize 2-colorable hypergraphs with
χCF(H) = 2 or χCF(H) ̸= 2. First we note that clearly, χ(H) ⩽ χCF(H), and we establish
an equivalent condition for conflict-free colorings.

For an r-uniform 2-colorable hypergraph H the only edge sums allowed in a conflict-
free coloring are

a1 = (r − 2) and a2 = −(r − 2) ,

which are given by the colorings of edges

{1, 1, . . . , 1,−1} and {−1,−1, . . . ,−1, 1} .

Thus, if χCF(H) = 2, then V(S2,{a1,a2}(H)) ̸= ∅. Conversely, if V(S2,{a1,a2}(H)) ̸= ∅, then
H is properly 2-colored with the edge sums a1 and a2, and since this is a conflict-free
coloring we have that χCF(H) = 2. Hence,

χCF(H) = 2 if and only if V(S2,{a1,a2}(H)) ̸= ∅ .
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Next we express this condition in terms of the ideal S2,{a1,a2}(H), cf. Corollary 4.

Theorem 16. Let H be an r-uniform hypergraph and a1 = r − 2, a2 = −(r − 2) be
the edge sums characterizing conflict-free colorings of H. Assume that χ(H) = 2. Then
χCF(H) = 2 if and only if S2,{a1,a2}(H) does not contain the constant 1. Here, S2,{a1,a2}(H)
is the 2-coloring scheme ideal corresponding to the set {a1, a2}.

Proof. Since a conflict-free coloring is a proper 2-coloring with edge sums in {a1, a2}, the
theorem follows directly from Corollary 4.

See Example 2 in Appendix A for an illustration of Theorem 16 for a 4-uniform
hypergraph on 7 vertices.
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8 Appendix A

In this appendix we present computation illustrating Theorems 2, 3, 14, 16, and Corol-
lary 4 for some small hypergraphs. Example 1 utilizes the Fano Plane and illustrates how
edge sums are used to create coloring schemes. Example 2 provides a hypergraph which
is 2-colorable only with certain coloring schemes, one homogeneous, one heterogeneous.

Example 1.

The Fano Plane, FP , is a 3-uniform hypergraph on 7 vertices with 7 edges:

{{1, 2, 5}, {1, 3, 7}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}, {2, 4, 7}, {5, 6, 7}}.

Since r = 3, we have par(r, 2) = {{1, 2}}, p(r, 2) = |par(r, 2)| = 1, and d(r, 2) = {1}, the
corresponding 2-colorability ideal I2(FP ) is given by

I2(FP ) =⟨x2
i − 1 : i ∈ [7]⟩+

⟨(2x1 + x2 + x5)(x1 + 2x2 + x5)(x1 + x2 + 2x5),

(2x1 + x3 + x7)(x1 + 2x3 + x7)(x1 + x3 + 2x7),

(2x1 + x4 + x6)(x1 + 2x4 + x6)(x1 + x4 + 2x6),

(2x2 + x3 + x6)(x2 + 2x3 + x6)(x2 + x3 + 2x6),

(2x3 + x4 + x5)(x3 + 2x4 + x5)(x3 + x4 + 2x5),

(2x2 + x4 + x7)(x2 + 2x4 + x7)(x2 + x4 + 2x7),

(2x5 + x6 + x7)(x5 + 2x6 + x7)(x5 + x6 + 2x7)⟩ .

Using a Gröbner basis package in a computer algebra system, like Mathematica or
Singular, we can show that the ideal I2(H) has Gröbner basis {1} and thus is non-2-
colorable.

Let the Modified Fano Plane be the Fano Plane with an edge removed, FP ′, with
edges:

{{1, 3, 7}, {1, 4, 6}, {2, 3, 6}, {3, 4, 5}, {2, 4, 7}, {5, 6, 7}}.
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The corresponding 2-colorability ideal is given by

I2(FP ′) =⟨x2
i − 1 : i ∈ [7]⟩+

⟨(2x1 + x3 + x7)(x1 + 2x3 + x7)(x1 + x3 + 2x7),

(2x1 + x4 + x6)(x1 + 2x4 + x6)(x1 + x4 + 2x6),

(2x2 + x3 + x6)(x2 + 2x3 + x6)(x2 + x3 + 2x6),

(2x3 + x4 + x5)(x3 + 2x4 + x5)(x3 + x4 + 2x5),

(2x2 + x4 + x7)(x2 + 2x4 + x7)(x2 + x4 + 2x7),

(2x5 + x6 + x7)(x5 + 2x6 + x7)(x5 + x6 + 2x7)⟩.

The reduced Gröbner basis for I2(FP ′) with respect to the monomial ordering

x1 > x2 > · · · > x7

is: {
x2
7 − 1, x2

6 − 1, x2
5 − 1, x2

4 − 1, x2
3 − 1,

x5x6 + x5x7 + x6x7 + 1,

x4x6 − x4x7 − 2x5x7 − x6x7 − 1,

x4x5 + x4x7 + x5x7 + 1,

x3x6 − x3x7 − 2x5x7 − x6x7 − 1,

x3x5 + x3x7 + x5x7 + 1,

x3x4 − x3x7 − x4x7 − 2x5x7 − 1,

x2 − x5, x1 − x5

}
.

Thus we see that FP ′ is 2-colorable.
Since FP ′ is 3-uniform, there are only 2 possible proper edge sums for a 2-coloring:

the edge colored with two 1′s and one − 1 ⇒ a1 =
3∑

i=1

c(xei) = 1,

and

the edge colored with one 1 and two − 1′s ⇒ a2 =
3∑

i=1

c(xei) = −1 .

Hence, A = {1,−1} and the possible non-empty subsets U of A are

{1}, {−1} and {1,−1}.

Note that there is only one possible coloring scheme corresponding to the single proper
2-integer partition of 3, making the coloring scheme homogeneous. Hence the only 2-
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coloring scheme ideal for FP ′ is:

S2,{−1,1}(FP ′) =⟨x2
i − 1 : i ∈ [7]⟩+

⟨(x1 + x3 + x7 − 1)(x1 + x3 + x7 + 1),

(x1 + x4 + x6 − 1)(x1 + x4 + x6 + 1),

(x2 + x3 + x6 − 1)(x2 + x3 + x6 + 1),

(x3 + x4 + x5 − 1)(x3 + x4 + x5 + 1),

(x2 + x4 + x7 − 1)(x2 + x4 + x7 + 1),

(x5 + x6 + x7 − 1)(x5 + x6 + x7 + 1)⟩ .

The reduced Gröbner bases for S2,{−1,1}(FP ′) with respect to the monomial ordering
x1 > x2 > · · · > x7, is:

{
x2
7 − 1, x2

6 − 1, x2
5 − 1, x2

4 − 1, x2
3 − 1,

x5x6 + x5x7 + x6x7 + 1,

x4x6 − x4x7 − 2x5x7 − x6x7 − 1,

x4x5 + x4x7 + x5x7 + 1,

x3x6 − x3x7 − 2x5x7 − x6x7 − 1,

x3x5 + x3x7 + x5x7 + 1,

x3x4 − x3x7 − x4x7 − 2x5x7 − 1,

x2 − x5, x1 − x5

}
.

We see that the Gröbner bases for I2(FP ′) and S2,{1,−1}(FP ′) with respect to the
monomial ordering x1 > x2 > · · · > x7, are identical.

Example 2.

Let H stand for a 4-uniform hypergraph on 7 vertices, {1, . . . , 7}, and the following
edge set

{{1 2 3 4}, {1 5 6 7},
{2 5 6 7}, {3 5 6 7},
{3 4 5 6}, {3 4 6 7},
{3 4 5 7}, {1 2 3 5},
{1 2 3 6}, {1 2 3 7}} .

The 2-colorability ideal of H equals the following.

I2(H) = ⟨x2
i − 1 : i ∈ [7]⟩+
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⟨(x1 + x2 + x3 + x4)(3x1 + x2 + x3 + x4)(x1 + 3x2 + x3 + x4)(x1 + x2 + 3x3 + x4)(x1 + x2 + x3 + 3x4),

(x1 + x5 + x6 + x7)(3x1 + x5 + x6 + x7)(x1 + 3x5 + x6 + x7)(x1 + x5 + 3x6 + x7)(x1 + x5 + x6 + 3x7),

(x2 + x5 + x6 + x7)(3x2 + x5 + x6 + x7)(x2 + 3x5 + x6 + x7)(x2 + x5 + 3x6 + x7)(x2 + x5 + x6 + 3x7),

(x3 + x5 + x6 + x7)(3x3 + x5 + x6 + x7)(x3 + 3x5 + x6 + x7)(x3 + x5 + 3x6 + x7)(x3 + x5 + x6 + 3x7),

(x3 + x4 + x5 + x6)(3x3 + x4 + x5 + x6)(x3 + 3x4 + x5 + x6)(x3 + x4 + 3x5 + x6)(x3 + x4 + x5 + 3x6),

(x3 + x4 + x6 + x7)(3x3 + x4 + x6 + x7)(x3 + 3x4 + x6 + x7)(x3 + x4 + 3x6 + x7)(x3 + x4 + x6 + 3x7),

(x3 + x4 + x5 + x7)(3x3 + x4 + x5 + x7)(x3 + 3x4 + x5 + x7)(x3 + x4 + 3x5 + x7)(x3 + x4 + x5 + 3x7),

(x1 + x2 + x3 + x5)(3x1 + x2 + x3 + x5)(x1 + 3x2 + x3 + x5)(x1 + x2 + 3x3 + x5)(x1 + x2 + x3 + 3x5),

(x1 + x2 + x3 + x6)(3x1 + x2 + x3 + x6)(x1 + 3x2 + x3 + x6)(x1 + x2 + 3x3 + x6)(x1 + x2 + x3 + 3x6),

(x1 + x2 + x3 + x7)(3x1 + x2 + x3 + x7)(x1 + 3x2 + x3 + x7)(x1 + x2 + 3x3 + x7)(x1 + x2 + x3 + 3x7)⟩

Using a computer algebra system, we find that the reduced Gröbner basis for I2(H)
with respect to the monomial ordering x1 > x2 > · · · > x7 is

{x2
7 − 1, x2

6 − 1, x2
5 − 1, x2

4 − 1, x2
3 − 1, x2

2 − 1, x2
1 − 1,

x5x6x4 + x5x7x4 + x6x7x4 + x4 − x5 − x6 − x5x6x7 − x7,

x5x6x3 + x5x7x3 + x6x7x3 + x3 + x5 + x6 + x5x6x7 + x7,

x3x4 + x5x4 + x6x4 + x7x4 + x3x5 + x3x6 + x3x7 + 1,

x5x6x2 + x5x7x2 + x6x7x2 + x2 + x5 + x6 + x5x6x7 + x7,

x5x6x1 + x5x7x1 + x6x7x1 + x1 + x5 + x6 + x5x6x7 + x7,

x1x2 + x3x2 + x1x3 − x5x6 − x5x7 − x6x7},

and conclude that H is 2-colorable.
Here r = 4, so the possible 2-integer partitions which yield coloring schemes are {1, 3},

and {2, 2} which produce the proper edge sums ±2 and 0 respectively. The associated
homogeneous 2-coloring scheme ideals are:

S2,{−2,2}(H) =⟨x2
i − 1 : i ∈ [7]⟩+

⟨(x1 + x2 + x3 + x4 − 2)(x1 + x2 + x3 + x4 + 2),

(x1 + x5 + x6 + x7 − 2)(x1 + x5 + x6 + x7 + 2),

(x2 + x5 + x6 + x7 − 2)(x2 + x5 + x6 + x7 + 2),

(x3 + x5 + x6 + x7 − 2)(x3 + x5 + x6 + x7 + 2),

(x3 + x4 + x5 + x6 − 2)(x3 + x4 + x5 + x6 + 2),

(x3 + x4 + x6 + x7 − 2)(x3 + x4 + x6 + x7 + 2),

(x3 + x4 + x5 + x7 − 2)(x3 + x4 + x5 + x7 + 2),

(x1 + x2 + x3 + x5 − 2)(x1 + x2 + x3 + x5 + 2),

(x1 + x2 + x3 + x6 − 2)(x1 + x2 + x3 + x6 + 2),

(x1 + x2 + x3 + x7 − 2)(x1 + x2 + x3 + x7 + 2)⟩;
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and,

S2,{0}(H) =⟨x2
i − 1 : i ∈ [7]⟩ + ⟨x1 + x2 + x3 + x4,

x1 + x5 + x6 + x7, x2 + x5 + x6 + x7, x3 + x5 + x6 + x7,

x3 + x4 + x5 + x6, x3 + x4 + x6 + x7, x3 + x4 + x5 + x7,

x1 + x2 + x3 + x5, x1 + x2 + x3 + x6, x1 + x2 + x3 + x7⟩.

The only heterogeneous coloring scheme for this uniformity is:

S2,{−2,0,2}(H) =⟨x2
i − 1 : i ∈ [7]⟩+

⟨(x1 + x2 + x3 + x4 − 2)(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4 + 2),

(x1 + x5 + x6 + x7 − 2)(x1 + x5 + x6 + x7)(x1 + x5 + x6 + x7 + 2),

(x2 + x5 + x6 + x7 − 2)(x2 + x5 + x6 + x7)(x2 + x5 + x6 + x7 + 2),

(x3 + x5 + x6 + x7 − 2)(x3 + x5 + x6 + x7)(x3 + x5 + x6 + x7 + 2),

(x3 + x4 + x5 + x6 − 2)(x3 + x4 + x5 + x6)(x3 + x4 + x5 + x6 + 2),

(x3 + x4 + x6 + x7 − 2)(x3 + x4 + x6 + x7)(x3 + x4 + x6 + x7 + 2),

(x3 + x4 + x5 + x7 − 2)(x3 + x4 + x5 + x7)(x3 + x4 + x5 + x7 + 2),

(x1 + x2 + x3 + x5 − 2)(x1 + x2 + x3 + x5)(x1 + x2 + x3 + x5 + 2),

(x1 + x2 + x3 + x6 − 2)(x1 + x2 + x3 + x6)(x1 + x2 + x3 + x6 + 2),

(x1 + x2 + x3 + x7 − 2)(x1 + x2 + x3 + x7)(x1 + x2 + x3 + x7 + 2)⟩;

which coincides with the 2-colorability ideal.
Using a computer algebra system we find that the coloring scheme ideals have the

following Gröbner bases with respect to the monomial ordering x1 > x2 > · · · > x7.

S2,{−2,2}(H) :{x2
7 − 1, x6 − x7, x5 − x7, x4 − x7, x3 + x7, x2 + x7, x1 + x7}

S2,{0}(H) :{1}
S2,{−2,0,2}(H) :{x2

7 − 1, x2
6 − 1, x2

5 − 1, x2
4 − 1, x2

3 − 1, x2
2 − 1, x2

1 − 1,

x5x6x4 + x5x7x4 + x6x7x4 + x4 − x5 − x6 − x5x6x7 − x7,

x5x6x3 + x5x7x3 + x6x7x3 + x3 + x5 + x6 + x5x6x7 + x7,

x3x4 + x5x4 + x6x4 + x7x4 + x3x5 + x3x6 + x3x7 + 1,

x5x6x2 + x5x7x2 + x6x7x2 + x2 + x5 + x6 + x5x6x7 + x7,

x5x6x1 + x5x7x1 + x6x7x1 + x1 + x5 + x6 + x5x6x7 + x7,

x1x2 + x3x2 + x1x3 − x5x6 − x5x7 − x6x7}

Thus, we conclude that H is 2-colorable with the homogeneous coloring scheme as-
sociated with the 2-integer partition of 4: {1, 3} and the heterogeneous coloring scheme
associated with both proper 2-integer partitions of 4 (which corresponds to the general
2-colorability); however, the 2-integer partition of 4: {2, 2} produces a homogeneous col-
oring scheme which will not properly 2-color H.
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9 Appendix B

The 2-colorability ideal for a non-2-colorable 4-uniform hypergraph H on 11 vertices and
24 edges introduced in Section 4

Using a computer algebra system, we find that the reduced Gröbner basis for this ideal
is trivial for any monomial ordering. Hence, hypergraph H is not 2-colorable as claimed
in Section 4.
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Corrigendum – submitted June 3, 2024

After the initial publishing of this article, an error was brought to our attention regarding
the minimality of the number of hyperedges in a non-2-colorable 4-uniform hypergraph.
In [2], Seymour established that the minimum number of hyperedges in a non-2-colorable
4-uniform hypergraph is 23.

We note that the example provided in this paper is indeed not isomorphic to the
construction of Abbott and Hanson, [1].

Moreover, the technique used to establish non-2-colorability in this article is unaffected
by the error.
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