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Abstract

Two-dimensional (random) walks in cones are very natural both in combinatorics
and probability theory: they are interesting in their own right and also in relation
to other discrete structures. While walks restricted to the first quadrant have been
well studied, the case of planar, non-convex cones – equivalent to the three-quarter
plane after a linear transform – has been approached only recently. In this article
we develop an analytic approach for the enumeration of walks in three quadrants.
The advantage of this method is the uniform treatment of models corresponding to
different step sets. After splitting the three quadrants into two symmetric convex
cones, the method is composed of three main steps: write a system of functional
equations satisfied by the counting generating function, which may be simplified
into one single equation under symmetry conditions; transform the functional equa-
tion into a boundary value problem; and finally solve this problem, using a new
concept of anti-Tutte’s invariant. The result is a contour-integral expression for the
generating function. Such systems of functional equations also appear in queueing
theory, namely, in the Join-the-Shortest-Queue model, which is still open in the
non-symmetric case.
Mathematics Subject Classifications: 05A15, 60K25, 60C05

1 Introduction

Context. Two-dimensional (random) walks in cones are very natural both in combina-
torics and probability theory: they are interesting in their own right and also in relation

∗This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under the Grant Agreement No 759702.
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Figure 1: Walks in the quarter plane and in three-quarter plane

to other discrete structures, see [12] and references therein. Most of the attention has
been devoted to the case of convex cones (equivalent to the quarter plane, after a lin-
ear transform), see Figure 1, left. Thanks to an appealing variation of techniques, which
complement and enrich each other (from combinatorics [34, 12], complex analysis [23, 37],
probability theory [16], computer algebra [7, 6], Galois difference equations [17]), one now
has a very good understanding of these quadrant models, most of the time via their gener-
ating function, which counts the number of walks of length n, starting from a fixed point,
ending at an arbitrary point (i, j) and remaining in the cone (see (9) below). Throughout
the present work, all walk models will be assumed to have small steps, i.e., jumps in
{−1, 0, 1}2, see Figure 2 for a few examples. Let us recall a few remarkable results:

• Exact expressions exist for the generating function (to illustrate the variety of tech-
niques, remark that the generating functions are infinite series in [34], positive part
extractions of diagonals in [12], contour integrals on quartics in [23, 37], integrals
of hypergeometric functions in [6], etc.);

• The algebraic nature of the trivariate generating function is known: it is D-finite
(that is, satisfies a linear differential equation with polynomial coefficients) if and
only if a certain group of birational transformations is finite [12, 7, 30]. More
recently, the differential algebraicity (existence of non-linear differential equations)
of the generating function has also been studied [4, 17];

• The asymptotics of the number of excursions (an excursion is a path joining two
given points and remaining in the cone) [12, 23, 16, 8] is known. Although the
full picture is still incomplete, the asymptotics of the total number of walks is also
obtained in several cases [12, 23, 16, 18, 6].

Almost systematically, the starting point to solve the above questions is a functional
equation that is satisfied by the generating function—it corresponds to the intuitive step-
by-step construction of a walk, and will be stated later on, see (8) and (10).

Given the vivid interest in combinatorics of walks confined to a quadrant, it is very
natural to consider next the non-equivalent case of non-convex cones, as in particular the
union of three quadrants

C = {(i, j) ∈ Z2 : i > 0 or j > 0},
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Simple walk Diagonal walk Gouyou-Beauchamps Kreweras Gessel

Figure 2: Some famous models of planar walks. The first two ones are solved in the three-
quadrant in [11]

see Figure 1. Following Bousquet-Mélou [11], we will also speak about walks avoiding a
quadrant. Although walks avoiding a quarter plane have many common features with
walks in a quarter plane, the former cited model is definitely much more complicated. To
illustrate this fact, let us recall [11] that the simple walk (usually the simplest model, see
Figure 2) in three quadrants has the same level of complexity as the notoriously difficult
Gessel’s model [7, 10] in the quadrant!

Three-quadrant walks have been approached only recently. In [11], Bousquet-Mélou
solves the simple walk and the diagonal walk (see Figure 2 for a representation of these
step sets) starting at various points. She obtains an exact expression of the generat-
ing function and derives several interesting combinatorial identities, among which a new
proof of Gessel’s conjecture via the reflection principle. Mustapha [36] computes the
asymptotics of the number of excursions for all small step models, following [16, 8] (inter-
estingly and in contrast with combinatorics, the probabilistic results [16, 36] on random
walks in cones do not really depend on convexity). Using an original connection with
planar maps, Budd [14] obtains various enumerating formulas for planar walks, keeping
track of the winding angle. These formulas can be used to enumerate simple walks in the
three-quarter plane [14, 35]. As recalled in [11], the problem of diagonal walks on the
square lattice was also raised in 2001 by David W. Wilson in entry A060898 of the OEIS
[28].

In this article we develop the analytic approach of [21, 22, 37] to walks in three
quadrants, thereby answering to a question of Bousquet-Mélou in [11, Sec. 7.2].

Strategy. Once a step set S is fixed, our starting point is a functional equation satisfied
by the generating function

C(x, y) =
∑
n>0

∑
(i,j)∈C

ci,j(n)xiyjtn, (1)

where ci,j(n) counts n-step S-walks going from (0, 0) to (i, j) and remaining in C. Stated
in (8), this functional equation translates the step-by-step construction of three-quadrant
walks and takes into account the forbidden moves which would lead the walk into the
forbidden negative quadrant. At first sight, this equation is very similar to its one-
quadrant analogue (we will compare the equations (8) to (10) in Section 2.1), the only
difference is that negative powers of x and y arise: this can be seen in the definition of
the generating function (1) and on the functional equation (8) as well, since the right-
hand side of the latter involves some generating functions in the variables 1

x
and 1

y
. This

difference is fundamental and the methodology of [12, 37] (namely, performing algebraic
substitutions or evaluating the functional equation at well-chosen complex points) breaks
down, as the series are no longer convergent.
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Figure 3: Splitting of the three-quadrant cone in two wedges of opening angle 3π
4

The idea in [11] is to see C as the union of three quarter planes, and to state for
each quadrant a new equation, which is more complicated but (by construction) may
be evaluated. Our strategy follows the same line: we split the three-quadrant in two
convex cones (of opening angle 3π

4
, see Figure 3) and write a system of two functional

equations, one for each domain. The drawbacks of this decomposition is that it increases
the complexity:

• There are two functional equations instead of one;

• The functional equations involve more unknowns (corresponding to the diagonal
and close-to-diagonal terms) in their right-hand sides, see Appendix C.

On the other hand:

• The fundamental advantage is that the new equations may be evaluated—and ul-
timately will be solved;

• Unexpectedly, this splitting of the cone allows us to relate the combinatorial model
of walks avoiding a quadrant to an interesting class of space inhomogeneous walks,
among which a well-known problem in queueing theory: the Join-the-Shortest-
Queue (JSQ) model, see Figure 7.

Three-quadrant walks and space inhomogeneous walks. Doing two simple chan-
ges of variables (one for each wedge, see in particular (14)), the decomposition of the
three-quarter plane shown on Figure 3 is equivalent to splitting a half-plane into the union
of two quadrants and a half-line, see Figure 4. We end up with a space inhomogeneous
model in the half-plane. On the y-axis, the step set is composed of mixed steps from the
step sets of the left and right quadrants. In particular, starting with a symmetric step
set in the three-quarter plane, say the simple walk, one obtains (with the terminology
of Figure 2) Gouyou-Beauchamps’ model in the left quadrant and Gessel’s model in the
right one, see Figure 5 on the left. This model is equivalent to study Gessel’s step set in
the quadrant, killed on the x-axis and reflected on the y-axis, see Figure 5 in the middle.
A related model is studied in [3, 39]: in these articles, the authors work on walks in the
quadrant with different weights on the boundary, see Figure 5 on the right, and give some
results on the nature of the generating function of such walks.

A related, simpler model (that we don’t solve in the present paper) would be to split
the full plane into two half-planes and a boundary axis, to consider in each of the three
regions a (different) step set, and to solve the associated walk model, see Figure 6, right.
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Figure 4: Solving a walk model in the three-quadrant cone is equivalent to solving a space inho-
mogeneous model in a half-plane

Figure 5: Solving a symmetric walk model in the three-quadrant cone is equivalent to solving a
walks partly killed and reflected in the quarter plane (pictures on the left and in the middle).
Walks in the quarter plane with weights on the boundary (right)

Some other space inhomogeneous walk models have been investigated in [9, 36, 13],
but this notion of inhomogeneity does not match with ours. Indeed, a simple but typical
example in [9, 36, 13] consists in dividing Z2 into the odd and even lattices, and to assign
to each point of the even (resp. odd) lattice a certain step set S fixed a priori (resp.
another step set S ′), see Figure 6, left.

Let us now present the JSQ model. This is a model with (say) two queues, in which
(as its name suggests) the arriving customers choose the shortest queue; if the two queues
happen to have the same length, then a queue is chosen according to an a priori fixed
probability law. From a random walk viewpoint, this means splitting the quarter plane
in two octants (cones of opening angle π

4
) as on Figure 7. In general, the service times

depend on the servers, and thus the transition probabilities are different in the upper
and lower octants (one speaks about spatially inhomogeneous random walks, and of the
general asymmetric JSQ). On the other hand, when the probability laws are symmetric in
the diagonal, the model is said symmetric. Classical references are [20, 27, 1, 25, 31] and
[22, Chap. 10]. Surprisingly, the non-symmetric JSQ is still an open problem: a typical
interesting problem in queueing theory would be to compute a closed-form expression for
the stationary distribution.

Let us briefly notice that quadrant walks could also be treated with a JSQ approach,
by decomposing the quarter plane into two octants as on Figure 7, see e.g. [31] for
asymptotic results.
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Figure 6: Left: an example of spatially inhomogeneous model studied in [9, 36, 13]. Right: block
inhomogeneous model in the plane

Arrivals Departures
p′′i,j

p′i,j

pi,j

Figure 7: Left: the JSQ model can be represented as a system of two queues, in which the
customers choose the shortest one (the green one, on the picture). Right: representation of the
JSQ model as an inhomogeneous random walk in the quadrant

Main results: a contour-integral expression for the generating function.
Throughout this paper we will do the following assumption:

(H) The step set S is symmetric (i.e., if (i, j) ∈ S then (j, i) ∈ S) and does not contain
the jumps (−1, 1) and (1,−1).

An exhaustive list of which step sets obey (H) is given on Figures 8a and 8b. We are
not able to deal with asymmetric walks (as we are unable to solve the asymmetric JSQ
model, see above), because of the complexity of the functional equations. The jumps
(−1, 1) and (1,−1) are discarded for similar reasons: they would lead to additional terms
in the functional equation (see Figure 10).

Our main result is a contour-integral expression for the diagonal section

D(x) =
∑

n>0,i>0

ci,i(n)xitn.

We shall see later that knowing D(x) actually suffices to give a complete solution to the
problem (i.e., to find an expression for C(x, y) in (1)). Let us postpone to Theorem 6 the
very precise statement, and instead let us give now the main idea and the shape of the
solution. We will show that

D(x) = w′(x)f(w(x))

∫
g(u,w(z))

w′(z)

w(x)− w(z)
dz, (2)
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Simple walk Kreweras Reverse Kreweras Union Kreweras

(a) Symmetric models with a finite group. The notion of group associated to a model is recalled
in Section 2

(b) Symmetric models with infinite group

Figure 8: Symmetric models with no jumps (−1, 1) and (1,−1)

where f and g are algebraic functions. The integral in (2) is taken over a quartic curve,
constructed from the step set of the model. The function w is interpreted as a conformal
mapping for the domain bounded by the quartic, and its algebraic nature heavily depends
on the model under consideration: it can be algebraic (finite group case) or non-D-finite
(otherwise).

Five consequences of our main results. Our first contribution is about methodol-
ogy: we show that under the symmetry condition (H), three-quadrant walk models are
exactly solvable, in the sense that their generating function admits an explicit (contour-
integral) expression (2).

The second point is that our techniques allow to compare walks in a quadrant and
walks in three quadrants. More precisely, it is proved in [37] that the generating function
counting quadrant walks ending on the horizontal axis can typically be expressed as

f̃(x)

∫
g̃(z)

w′(z)

w(x)− w(z)
dz, (3)

with the same function w as in (2) but different functions f̃ (rational) and g̃ (algebraic).
Though simpler, Equation (3) is quite similar to (2). This similarity opens the way to
prove combinatorial formulas relating the two models.

Our third corollary is a partial answer to two questions raised by Bousquet-Mélou in
[11], that we briefly recall: first, could it be that for any step set associated with a finite
group, the generating function C(x, y) is D-finite? Second, could it be that for the four
step sets [Kreweras, reverse Kreweras, union Kreweras (see Figure 8a) and Gessel (Figure
2)], for which [the quadrant generating function] is known to be algebraic, C(x, y) is also
algebraic?

The expression (2) rather easily entails that if w is algebraic (which will correspond to
the finite group case, see Section 2), the generating function D(x) is D-finite, being the
Cauchy integral of an algebraic function. On the other hand, when the group is infinite
the function w is non-D-finite by [37, Thm. 2], and the expression (2) uses non-D-finite
functions (note, this does not a priori imply that D(x) itself is non-D-finite, but does
provide some evidence).
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Next, although we do not solve them, the expression (2) provides a way to attack the
following questions:

• Starting from the integral (3), various asymptotic questions concerning quadrant
models are solved in [23] (asymptotics of the excursions, of the number of walks
returning to one axis, etc.). Similar arguments should lead to the asymptotics
of walks in three quadrants. Remember, however, that the asymptotics of the
excursion sequence is already found in [36].

• A further natural question (still unsolved in the quadrant case) is to find, in the
finite group case, a concrete differential equation (or minimal polynomial in case
of algebraicity) for the generating function, starting from the contour integrals (2)
or (3). It seems that the technique of creative telescoping could be applied to the
contour integral expressions.

• Several interesting (and sometimes surprising) combinatorial identities relating qua-
drant walks to three-quadrant walks are proved in [11] (in particular, a proof of
the former Gessel’s conjecture by means of simple walks in C and the reflection
principle). Moreover, Bousquet-Mélou asks in [11] whether C(x, y) could differ
from (a simple D-finite series related to) the quadrant generating function by an
algebraic series? Taking advantage of the similarity between (2) and (3) provides a
starting point to answer this question.

Finally, along the way of proving our results, we develop a noteworthy concept of
anti-Tutte’s invariant, namely a function g such that (y denoting the complex conjugate
number of y ∈ C)

g(y) =
1

g(y)
(4)

when y lies on the contour of (2). The terminology comes from [4], where a function g
satisfying to g(y) = g(y) is interpreted as a Tutte invariant and is strongly used in solving
the models. Originally, Tutte introduced the notion of invariant to solve a functional
equation counting colored planar triangulations, see [38]. Tutte’s equation is rather close
to functional equations arising in two-dimensional counting problems. Interestingly, a
function g as in (4) appears in the book [15], which proposes an analytic approach to
quadrant walk problems (the latter is more general than [22] in the sense that it works for
arbitrarily large positive jumps, i.e., not only small steps). In [15] it is further assumed
that g(y) = g(y), so that with (4) one has |g(y)| = 1, and g may be interpreted as a
conformal mapping from the domain bounded by contour of (2) onto the unit disc.

Equations with (too) many unknowns. What about non-symmetric models? From
a functional equation viewpoint, the latter are close to random walks with big jumps [24, 5]
or random walks with catastrophes [2], in the sense that the functional equation has more
than two unknowns in its right-hand side. One idea to get rid of these extra terms is
to transform the initial functional equation, as in [11], where Bousquet-Mélou solves the
simple and diagonal models, starting from non-symmetric points ((−1, 0), for instance).
Another idea, present in [5], is to extend the kernel method by computing weighted sums
of several functional equations, each of them being an algebraic substitution of the initial
equation. However, finding such combinations is very difficult in general.
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From the complex analysis counterpart [22, 37, 24], equations with many unknowns
become systems of boundary value problems, which seem not to have a solution in the
literature. It is also shown in [22, Chap. 10] that the asymmetric JSQ is equivalent to
solving an integral Fredholm equation for the generating function, but again, no closed-
form expression seems to exist.

A conjecture. Although it is not directly inspired by our work, let us state the follow-
ing. Consider an arbitrary finite group step set S (not necessarily satisfying to (H) but
with small steps). We conjecture that the generating function for walks in three quad-
rants C(x, y) is algebraic as soon as the starting point (i0, j0) ∈ C is such that i0 = −1
or j0 = −1.

This conjecture is motivated by an analogy with the quarter plane, in which the
following result holds: a finite group model (having group G) with starting point at (i, j)
is algebraic if and only if the orbit-sum∑

g∈G

(−1)gg(xi+1yj+1)

is identically zero, see [12, 7, 30]. Taking i = −1 in the sum above (which obviously is not
possible in the quadrant case!) yields a zero orbit-sum—more generally, the orbit-sum of
any function depending on only one of the two variables x, y is zero.

Structure of the paper.
• Section 2: statement of various functional equations satisfied by the generating

functions (in particular Lemma 1), definition of the group of the model, study of the
zero-set of the kernel.
• Section 3: statement of a boundary value problem (BVP) satisfied by the diagonal

generating function (Lemma 5), resolution of the BVP (Theorems 6 and 7).
• Appendix A: list and properties of conformal mappings used in Theorems 6 and 7.
• Appendix B: important statements from the theory of BVP.
• Appendix C: proof of the main functional equation stated in Lemma 1.

2 Preliminaries

2.1 Kernel functional equations

The starting point is to write a functional equation satisfied by the generating function
(1), which, as explained in the introduction, translates the step-by-step construction of a
walk. Before dealing with this functional equation, let us define some important objects.

First of all, a step set S ⊂ {−1, 0, 1}2 is characterized by its inventory (or jump
polynomial)

∑
(i,j)∈S x

iyj as well as by the associated kernel

K(x, y) = xy

(
t
∑

(i,j)∈S

xiyj − 1

)
. (5)

The kernel is a polynomial of degree two in x and y, which we can write as

K(x, y) = ã(y)x2 + b̃(y)x+ c̃(y) = a(x)y2 + b(x)y + c(x), (6)

the electronic journal of combinatorics 26(3) (2019), #P3.31 9



where {
a(x) = tx

∑
(i,1)∈S x

i, b(x) = tx
∑

(i,0)∈S x
i − x, c(x) = tx

∑
(i,−1)∈S x

i,

ã(y) = ty
∑

(1,j)∈S y
j, b̃(y) = ty

∑
(0,j)∈S y

j − y, c̃(y) = ty
∑

(−1,j)∈S y
j.

(7)

Define further δ−1,−1 = 1 if (−1,−1) ∈ S and δ−1,−1 = 0 otherwise. In the three-quarter
plane, we can generalize Equation (12) in [11, Sec. 2.1] and deduce the following equation
satisfied by C(x, y) defined in (1):

K(x, y)C(x, y) = c(x)C−0(x−1) + c̃(y)C0−(y−1)− tδ−1,−1C0,0 − xy, (8)

where

C−0(x−1) =
∑

n>0,i60

ci,0(n)xitn, C0−(y−1) =
∑

n>0,j60

c0,j(n)yjtn andC0,0 =
∑
n>0

c0,0(n)tn.

In comparison, let us recall the standard functional equation in the case of the quarter
plane

Q = {(i, j) ∈ Z2 : i > 0 and j > 0}.

By [12, Lem. 4] and using similar notation as above, the generating function

Q(x, y) =
∑
n>0

∑
(i,j)∈Q

qi,j(n)xiyjtn (9)

satisfies the equation

K(x, y)Q(x, y) = c(x)Q−0(x) + c̃(y)Q0−(y)− tδ−1,−1Q0,0 − xy, (10)

where

Q−0(x) =
∑

n>0,i>0

qi,0(n)xitn, Q0−(y) =
∑

n>0,j>0

q0,j(n)yjtn andQ0,0 =
∑
n>0

q0,0(n)tn. (11)

At first sight, the two functional equations (8) and (10) are very similar. However, due to
the presence of infinitely many terms with positive and negative valuations in x or y, the
first one is much more complicated, and almost all the methodology of [12, 37] (namely,
performing algebraic substitutions or evaluating the functional equation at well-chosen
complex points) breaks down, as the series are no longer convergent.

The idea in [11] is to see C as the union of three quarter planes, and to state for
each quadrant a new equation, which is more complicated but (by construction) may be
evaluated. Our strategy follows the same line: we split the three-quadrant cone in two
domains (two cones of opening angle 3π

4
, see Figure 3) and write two functional equations,

one for each domain.

2.2 Functional equations for the 3π
4
-cone walks

In this section and in the remainder of our paper, we shall use two different step sets, Ŝ
and S. The first one, Ŝ, will refer to the main step set, corresponding to the walks in the
three-quarter plane we are counting. Accordingly, we will rename all quantities associated
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L̂(x, y)

Û(x, y)

D̂(x, y)D̂u(x, y)

D̂`(x, y)

Figure 9: Decomposition of the three-quarter plane and associated generating functions

to the main step set with a hat, for instance the kernel will be denoted by K̂(x, y). The
second step set, S, is associated to Ŝ after the change of variable (14). Quantities with
no hat will be associated to the step set S, for instance the kernel K(x, y). In order not
to make the notation to heavy and because in this case there is no possible ambiguity,
the only exception to this rule will be the coefficients ci,j(n) (with no hat), which will
always correspond to Ŝ.

Having said that, we start by splitting the domain of possible ends of the walks
into three parts: the diagonal, the lower part {i > 0, j 6 i − 1} and the upper part
{j > 0, i 6 j − 1}, see Figure 3. We may write

C(x, y) = L̂(x, y) + D̂(x, y) + Û(x, y), (12)

where

L̂(x, y) =
∑
i>0
j6i−1
n>0

ci,j(n)xiyjtn, D̂(x, y) =
∑
i>0
n>0

ci,i(n)xiyitn and Û(x, y) =
∑
j>0
i6j−1
n>0

ci,j(n)xiyjtn.

Let δi,j = 1 if (i, j) ∈ S and 0 otherwise.

Lemma 1. For any step set which satisfies (H) and starts at (0, 0), one has

K̂(x, y)L̂(x, y) = −1

2
xy + txy

(
δ−1,−1x

−1y−1 + δ−1,0x
−1
)
L̂0−(y−1) +

1

2
tδ−1,−1D̂(0, 0)

− xy
(
−1

2
+ t

(
1

2
(δ1,1xy + δ−1,−1x

−1y−1) + δ0,−1y
−1 + δ1,0x

))
D̂(x, y), (13)

with L̂−0(y−1) =
∑

n>0,j<0 c0,j(n)yjtn.

The proof of Lemma 1 is postponed to Appendix C, as it is elementary but a bit
technical. The functional equation for non-symmetric models (as well as for symmetric
models with non-diagonal starting points) is commented in Appendix C. Here we will
only consider symmetric models starting at (0, 0), but notice that our study can be easily
generalized to arbitrary diagonal starting points.
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In order to simplify the functional equation (13), we perform the change of variable

ϕ(x, y) = (xy, x−1). (14)

Then (13) becomes

K(x, y)L(x, y) = c(x)L−0(x)− x

(
xã(y) +

b̃(y)

2

)
D(y) +

1

2
txD(0)− 1

2
xy, (15)

where K(x, y) = xy(t
∑

(i,j)∈S x
i−jyi−1) = xK̂(ϕ(x, y)), L−0(x) =

∑
n>0,j>1 c0,−jx

jtn and
similarly

L(x, y) = L̂(ϕ(x, y)) =
∑
i>1
j>0
n>0

cj,j−i(n)xiyjtn and D(y) = D̂(ϕ(x, y)) =
∑
i>0
n>0

ci,i(n)yitn.

(16)
The change of coordinates ϕ simplifies the resolution of the problem, as the functional

equation (15) is closer to a (solvable) quadrant equation; compare with (10). Throughout
the manuscript, functions with (resp. without) a hat will be associated to the step set S
(resp. to the step set after change of variable ϕ). We have

S = ϕ(Ŝ) = {(i− j, i) : (i, j) ∈ Ŝ}.

For the reader’s convenience, we have represented on Table 1 the effect of ϕ on the
symmetric models of Figures 8a and 8b. We also remark on Figure 10 that the presence
of anti-diagonal jumps (−1, 1) or (1,−1) would lead to the bigger steps (−2,−1) or (2, 1):
this is the reason why they are discarded.

2.3 Group of the model

In this part and in Section 2.4 as well, we remove the hat from our notation: indeed, the
statements are valid for all step sets (with or without hat).

With our notation (7), the group of the walk is the dihedral group of bi-rational
transformations 〈Φ,Ψ〉 generated by the involutions

Φ(x, y) =

(
c̃(y)

ã(y)

1

x
, y

)
and Ψ(x, y) =

(
x,
c(x)

a(x)

1

y

)
.

It was introduced in [33] in a probabilistic context and further used in [22, 12]. The group
〈Φ,Ψ〉 may be finite (of even order, larger than or equal to > 4) or infinite. The order
of the group for the 79 non-equivalent quadrant models is computed in [12]: there are 23
models with a finite group (16 of order 4, 5 of order 6 and 2 of order 8) and 56 models
with infinite order.

For instance, the simple walk has a group of order 4, while the three right models on
Figure 8a have a group of order 6. Indeed, taking Kreweras model as an example, we
have Φ(x, y) = ( 1

xy
, y) and Ψ(x, y) = (x, 1

xy
), and the orbit of (x, y) under the action of Φ

and Ψ is

(x, y)
Φ→ ( 1

xy
, y)

Ψ→ ( 1
xy
, x)

Φ→ (y, x)
Ψ→ (y, 1

xy
)

Φ→ (x, 1
xy

)
Ψ→ (x, y).
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Model Image under ϕ Model Image under ϕ

Table 1: Transformation ϕ on the eight symmetric models (with finite group on the left and
infinite group on the right) without the steps (−1, 1) and (1,−1). In particular, the simple walk
is related by ϕ to Gessel’s model. After [11], this is another illustration that counting simple
walks in three-quarter plane is related to counting Gessel walks in a quadrant

ϕ−→

Figure 10: The diagonal model is transformed by ϕ into a model with bigger steps

2.4 Roots and curves defined by the kernel

We define the discriminants in x and y of the kernel (6):

d̃(y) = b̃(y)2 − 4ã(y)c̃(y) and d(x) = b(x)2 − 4a(x)c(x). (17)

The discriminant d(x) (resp. d̃(y)) in (17) is a polynomial of degree three or four. Hence
it admits four roots (also called branch points) x1, x2, x3, x4 (resp. y1, y2, y3, y4), with
x4 =∞ (resp. y4 =∞) when d(x) (resp. d̃(y)) is of degree 3.

Lemma 2 (Sec. 3.2 in [37]). Let t ∈ (0, 1/|S|). The branch points xi are real and distinct.
Two of them (say x1 and x2) are in the open unit disc, with x1 < x2 and x2 > 0. The
other two (say x3 and x4) are outside the closed unit disc, with x3 > 0 and x3 < x4 if
x4 > 0. The discriminant d(x) is negative on (x1, x2) and (x3, x4), where if x4 < 0, the
set (x3, x4) stands for the union of intervals (x3,∞) ∪ (−∞, x4). Symmetric results hold
for the branch points yi.

Let Y (x) (resp.X(y)) be the algebraic function defined by the relationK(x, Y (x)) = 0
(resp. K(X(y), y) = 0). Obviously with (6) and (17) we have

Y (x) =
−b(x)±

√
d(x)

2a(x)
and X(y) =

−b̃(y)±
√
d̃(y)

2ã(y)
. (18)

The function Y has two branches Y0 and Y1, which are meromorphic on the cut plane
C \ ([x1, x2] ∪ [x3, x4]). On the cuts [x1, x2] and [x3, x4], the two branches still exist and
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y1 y2 y3
y1 y2 y3 y4

Figure 11: The curve L for Gessel’s model (on the left) and for the model with jumps
{E,N, SW, S} (on the right), for t = 1/8

are complex conjugate (but possibly infinite at x1 = 0, as discussed in Lemma 3). At
the branch points xi, we have Y0(xi) = Y1(xi) (when finite), and we denote this common
value by Y (xi).

Fix the notation of the branches by choosing Y0 = Y− and Y1 = Y+ in (18). We further
fix the determination of the logarithm so as to have

√
d(x) > 0 on (x2, x3). Then clearly

with (18) we have
|Y0| 6 |Y1| (19)

on (x2, x3), and as proved in [22, Thm. 5.3.3], the inequality (19) holds true on the whole
complex plane and is strict, except on the cuts, where Y0 and Y1 are complex conjugate.

A key object is the curve L defined by

L = Y0([x1, x2]) ∪ Y1([x1, x2]) = {y ∈ C : K(x, y) = 0 and x ∈ [x1, x2]}. (20)

By construction, it is symmetric with respect to the real axis. We denote by GL the open
domain delimited by L and avoiding the real point at +∞. See Figures 11 and 12 for a
few examples. Furthermore, let L0 (resp. L1) be the upper (resp. lower) half of L, i.e., the
part of L with non-negative (resp. non-positive) imaginary part, see Figure 14. Likewise,
we defineM = X0([y1, y2]) ∪X1([y1, y2]).

Lemma 3 (Lem. 18 in [4]). The curve L in (20) is symmetric in the real axis. It intersects
this axis at Y (x2) > 0.

If L is unbounded, Y (x2) is the only intersection point. This occurs if and only if
neither (−1, 1) nor (−1, 0) belong to S. In this case, x1 = 0 and the only point of [x1, x2]
where at least one branch Yi(x) is infinite is x1 (and then both branches are infinite there).
Otherwise, the curve L goes through a second real point, namely Y (x1) 6 0.

Consequently, the point 0 is either in the domain GL or on the curve L. The domain
GL also contains the (real) branch points y1 and y2, of modulus less than 1. The other
two branch points, y3 and y4, are in the complement of GL ∪ L.

The step sets with jumps {E,N, SW}, {E,NE,N, S} and {E,N, SW, S} have an un-
bounded contour, whereas the other models in Table 1 have a bounded contour.

We close this section by introducing a particular conformal mapping for GL, which
will happen to be very useful for our study.

Definition 4 (Conformal gluing function). A function w is said to be a conformal gluing
function for the set GL if:
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• w is meromorphic in GL and admits finite limits on L;

• w is one-to-one on GL;

• for all y on L, w(y) = w(y).

For example, w(y) = 1
2
(y + 1

y
) is a conformal gluing function for the unit disc. See

Appendix A for a list of conformal gluing functions associated to the domains we are
considering.

3 Expression for the generating functions

3.1 Main results and discussion

The first and crucial point is to prove that the diagonal D(y) in (16) satisfies a boundary
value problem (BVP), in the sense of the lemma below, the proof of which is postponed
to Section 3.3. Let D denote the open unit disc and let d̃ be the discriminant (17).

Lemma 5. The function D(y) can be analytically continued from the unit disc to the
domain D ∪ GL and admits finite limits on L. Moreover, D(y) satisfies the following
boundary condition, for y ∈ L:√

d̃(y)D(y)−
√
d̃(y)D(y) = y − y. (21)

In the remainder of the paper, we solve Lemma 5 in two different ways, leading to
the contour-integral expressions of D(y) given in Theorem 6 and Theorem 7 below. Let

us first remark that contrary to the usual quadrant case [37], the prefactor
√
d̃(y) in

front of the unknown D(y) is not meromorphic in GL, simply because it is the square
root of a polynomial, two roots of which being located in GL (see Section 2.4). This
innocent-looking difference has strong consequences on the resolution:

• Due to the presence of a non-meromorphic prefactor in (21), solving the BVP of
Lemma 5 requires the computation of an index (in the sense of Section 3.4 and
Appendix B). This index is an integer and will be non-zero in our case, which will
increase the complexity of the solutions. In Theorem 6 we solve the BVP, by taking
into account this non-zero index.

• A second, alternative idea is to reduce to the case of a meromorphic boundary
condition, and thereby to an index equal to 0. To do so, we will find an analytic
function f with the property that√

d̃(y)√
d̃(y)

=
f(y)

f(y)
(22)

for y ∈ L, see Section 3.5 for more details. Such a function f allows us to rewrite
(21) as

f(y)D(y)− f(y)D(y) =
f(y)√
d̃(y)

(y − y), (23)
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which by construction admits a meromorphic prefactor f(y). In Theorem 7 we solve
this zero-index BVP by this technique.

Although they represent the same function D(y) (and so should be equal!), it will be
apparent that the expressions obtained in Theorems 6 and 7 are quite different, and that
the second one is simpler. However, we decided to present the two resolutions, as we think
that they offer different insights on this boundary value method, and also because it is
not obvious at all to be able to solve an equation of the form (22) and thereby to reduce
to the zero-index case. Recall (Section 2.4) that L0 is the upper half of the curve L.

Theorem 6. Let w be a conformal gluing function with a pole at y2. For any step set Ŝ
satisfying to (H), the diagonal section (16) can be written, for y ∈ GL,

D(y) =
Ψ(w(y))

2iπ

∫
L0

z − z√
d̃(z)

w′(z)

Ψ+(w(z))(w(z)− w(y))
dz,

with 

Ψ(y) = (y − Y (x1)) exp Γ(y),

Ψ+(y) = (y − Y (x1)) exp Γ+(y),

Γ(w(y)) =
1

2iπ

∫
L0

log


√
d̃(z)√
d̃(z)

 w′(z)

w(z)− w(y)
dz.

All quantities are computed relative to the step set S = ϕ(Ŝ) after the change of coordi-
nates (14).

The left limit Γ+ (and thereby Ψ+) appearing in Theorem 6 can be computed with the
help of Sokhotski-Plemelj formulas, that we have recalled in Proposition 14 of Appendix
B. We now turn to our second main result.

Theorem 7. Let w be a conformal gluing function with a pole at y2, with residue r. For
any step set Ŝ satisfying to (H), the diagonal section (16) can be written, for y ∈ GL,

D(y) =
−w′(y)

√
r√

d̃′(y2)(w(y)− w(Y (x1)))(w(y)− w(Y (x2)))
×

1

2iπ

∫
L

zw′(z)√
w(z)− w(y1)(w(z)− w(y))

dz.

All quantities are computed according to the step set S = ϕ(Ŝ).

Here are some remarks about these results.
• First, it is important to notice that having an expression for D(y) is sufficient for

characterizing the complete generating function C(x, y). Indeed, looking at Figure 9 one
is easily convinced that

C(x, y) = L(ϕ−1(x, y)) +D(ϕ−1(x, y)) + L(ϕ−1(y, x)),
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with 
L(x, y) =

1

K(x, y)

(
c(x)L−0(x)− x

(
xã(y) +

1

2
b̃(y)

)
D(y)− 1

2
xy

)
,

L−0(x) =
x

c(x)

(
1

2
Y0(x) +

(
xã(Y0(x)) +

1

2
b̃(Y0(x))

)
D(Y0(x))

)
,

ϕ−1(x, y) = (y−1, xy).

• Regarding the question of determining the algebraic nature of the diagonal series
D(y), the second expression is much simpler. Indeed, the integrand as well as the prefactor
of the integral of Theorem 7 are algebraic functions of y, z, t and w (and its derivative)
evaluated at various points. In addition, let us recall from [37, Thm. 2] that w is algebraic
if and only if the group is finite, and non-D-finite in the infinite group case. See Table 2
for some implications. On the contrary, based on the exponential of a D-finite function,
the integrand in Theorem 6 is a priori non-algebraic.

Model Nature of w Nature of Q(x, y) Nature of C(x, y)

rational [37] D-finite [12] D-finite by [11]
and Thm. 7

algebraic [37] algebraic [12] D-finite by Thm. 7;
algebraic?

non-D-finite [37] non-D-finite non-D-finite in t [36];
[30, 8, 17] non-D-finite in x, y?

Table 2: Algebraic nature of the conformal mapping w, the quadrant generating function Q(x, y)
and the three-quarter plane counting function C(x, y)

• Lemma 5 entails that the function D(y) can be analytically continued to the domain
D ∪ GL. This is apparent on the first statement (using properties of contour integrals).
This is a little bit less explicit on Theorem 7, because of the prefactor.
• Theorem 6 (resp. Theorem 7) will be proved in Section 3.4 (resp. Sections 3.5 and

3.6).

3.2 Simplification and series expansion in the reverse Kreweras case

In this part we apply Theorem 7 to reverse Kreweras walks in the three-quarter plane:
we first make explicit all quantities appearing in the statement of Theorem 7, then we
explain how to deduce the series expansion

D(0) = 1+4 t3+46 t6+706 t9+12472 t12+239632 t15+4869440 t18+102995616 t21+O
(
t24
)
,

(24)
obtained here by direct enumeration. Let us recall that the coefficients in front of tn are
the c0,0(n), which count the numbers of reverse Kreweras walks of length n, starting and
ending at (0, 0) and confined to the three-quarter plane.

This symmetric model has the step set Ŝ = {(1, 0), (0, 1), (−1,−1)}, see Figure 8a.
The change of variable ϕ defined in (14) transforms it into Kreweras step set, see Figure
8a and Table 1, with S = {(1, 1), (−1, 0), (0,−1)}.
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Computation of various quantities. The kernel (5) is K(x, y) = xy(t(xy + x−1 +
y−1)− 1), and with the notations (7) and (17), we have

a(x) = tx2, b(x) = t− x, c(x) = tx, d(x) = (t− x)2 − 4t2x3,

and by symmetry ã = a, b̃ = b, c̃ = c and d̃ = d. The branch points x1 and x2 are the
roots of d in the open unit disc, such that x1 < x2. We easily obtain

x1 = y1 = t− 2 t5/2 + 6 t4 − 21 t11/2 + 80 t7 − 1287

4
t17/2 +O(t10),

x2 = y2 = t+ 2 t5/2 + 6 t4 + 21 t11/2 + 80 t7 +
1287

4
t17/2 +O(t10).

We further have

d̃′(y2) = 2 t5/4 − 3

2
t17/4 − 8 t23/4 − 603

16
t29/4 − 174 t35/4 +O

(
t41/4

)
.

We finally need to compute Y (x1) and Y (x2). By (18) these quantities may be simplified
as

Y (x1) = −

√
c(x1)

a(x1)
= −

√
1

x1

and Y (x2) =

√
c(x2)

a(x2)
=

√
1

x2

.

Expression of the conformal gluing function. As we shall prove in Lemma 11, the
following is a suitable conformal mapping:

w(y) =

(
1

y
− 1

W

)√
1− yW 2,

where W is the unique power series solution to W = t(2 +W 3). As Theorem 7 is stated
for a conformal gluing function with a pole at y2 and not at 0, we should consider instead
wy2 = 1

w−w(y2)
. We will need the following expansions:

W = 2 t+ 8 t4 + 96 t7 + 1536 t10 +O
(
t11
)
,

wy2(y1) =
1

4
t−1/2 − 3

8
t5/2 − 97

32
t11/2 − 2611

64
t17/2 +O

(
t23/2

)
,

w(y2) =
1

2
t−1 − 2 t1/2 − t2 − 3 t7/2 − 7 t5 − 115

4
t13/2 − 90 t8 +O

(
t9
)
,

wy2(Y (x1)) = −t− 2 t4 − 18 t7 +O
(
t10
)
,

wy2(Y (x2)) = −t− 4 t5/2 − 18 t4 − 86 t11/2 − 418 t7 − 4131

2
t17/2 +O

(
t10
)
,

w′(y2) = t−1 − 2 t1/2 − 5/2 t2 − 6 t7/2 − 169

8
t5 − 75 t13/2 − 4957

16
t8 +O

(
t9
)
.

Explicit expression of D(y). We apply now Theorem 7 and obtain

D(y) =
−w′y2

(y)√
(wy2(y)− wy2(−1/

√
x1))(wy2(y)− wy2(1/

√
x2))d̃′(y2)w′(y2)

×

1

2iπ

∫
L

zw′y2
(z)√

wy2(z)− wy2(y1)(wy2(z)− wy2(y))
dz,
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1y1y2Y (x1) Y (x2)

C(0, 1)

L

Figure 12: The curve L for Kreweras model, for t = 1/6

where L is the contour defined in (20), represented on Figure 12. Since wy2(0) = 0 and
w′y2

(0) = −1 (remember that w has a pole at y = 0), evaluating at y = 0 the expression
above yields

D(0) =
1√

wy2(−1/
√
x1)wy2(1/

√
x2)d̃′(y2)w′(y2)

1

2iπ

∫
L

zw′y2
(z)√

wy2(z)− wy2(y1)wy2(z)
dz.

(25)
The integrand in the right-hand side of the above equation is analytic on GL \ [y1, y2].
Hence by Cauchy’s integral theorem, the contour L may be replaced by the unit circle
C(0, 1).

Expression of D(0) as a function of W . We could directly make a series expansion
of D(0) in t. However, for greater efficiency of the series expansion computation, we will
first express D(0) in terms of W , expand this integral in a series of W and finally get
back to a series in t. The generating function of excursions D(0) can be written as

D(0) = −
√
w(y1)− w(y2)√

wy2(−1/
√
x1)wy2(1/

√
x2)d̃′(y2)w′(y2)

1

2iπ

∫
L

zw′(z)√
P − Sw(z) + w(z)2

dz,

(26)
with 

S = w(y1) + w(y2) =

√
2P − 1

4W 2
(W 6 − 20W 3 − 8),

P = w(y1)w(y2) =
(1−W 3)3/2

W 2
.

(27)

In order to derive (26), we start by writing the integrand of (25) in terms of w:∫
L

zw′y2
(z)√

wy2(z)− wy2(y1)wy2(z)
dz =

−
√
w(y1)− w(y2)

∫
L

zw′(z)√
(w(z)− w(y1))(w(z)− w(y2))

dz.
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Then, note that d̃(y) = −4t2(y − y1)(y − y2)(y − y3) = −4t2(y − y1)(y − y2)
(
y − 1

W 2

)
.

By identification we have y1 + y2 = 1
4t2
− 1

W 2 and y1y2 = W 2

4
. On the one hand, we can

deduce that

P =

(
1

y1

− 1

W

)(
1

y2

− 1

W

)√
(1− y1W 2)(1− y2W 2)

=
−(W − 2t)(W − 3t)

W 5t2

√
W 6t2 −W 2 + 8t2.

On the other hand,

S2 =
(
1− y1W

2
)( 1

y2
1

− 2

y1W
+

1

W 2

)
+
(
1− y2W

2
)( 1

y2
2

− 2

y2W
+

1

W 2

)
+ 2P.

Both equations can be simplified into (27), using several times the minimal polynomial
of W .

Series expansion. Let us first expand in t the factor in front of the integral in (26);
we get

−
√
w(y1)− w(y2)√

wy2(−1/
√
x1)wy2(1/

√
x2)d̃′(y2)w′(y2)

= −1

t
+O

(
t10
)
.

(One could even prove that the left-hand side of the above equation is identically equal
to −1

t
.) Then the factor in the integral in (26) may be written as

zw′(z)√
P − Sw(z) + w(z)2

=− 1

2z
W +

(
− 1

4z2
+
z

4

)
W 2 − 1

8z3
W 3 +

(
− 1

16z4
+

3z2

16

)
W 4

+

(
− z

32
− 1

16z2
− 1

32z5

)
W 5 +

(
− 3

32 z3
− 1

64 z6
+

5 z3

32

)
W 6

+

(
− z

2

32
+

1

64 z
− 3

32 z4
− 1

128 z7

)
W 7

+

(
1

64 z2
− 1

256 z8
− 5

64 z5
− z

128
+

35 z4

256

)
W 8

+

(
− 1

512 z9
− 15

256 z6
− 15 z3

512

)
W 9 +O

(
W 10

)
and when we integrate the latter on the unit circle. Coming back to a series in t we
obtain

1

2iπ

∫
C(0,1)

zw′(z)√
P − Sw(z) + w(z)2

dz =

− t− 4 t4 − 46 t7 − 706 t10 − 12472 t13 − 239632 t16 − 4869440 t19 +O
(
t21
)
.

Finally, putting every ingredients in order, we deduce (24).
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3.3 Proof of Lemma 5

Assuming that D(y) may be continued as in the statement of Lemma 5, it is easy to
prove the boundary condition (21). We evaluate the functional equation (15) at Y0(x) for
x close to [x1, x2]:

− 1

2
xY0(x) + c(x)L−0(x)− x(xã(Y0(x)) +

1

2
b̃(Y0(x)))D(Y0(x)) +

1

2
txD(0) = 0. (28)

We obtain two new equations by letting x go to any point of [x1, x2] with a positive (resp.
negative) imaginary part. We do the subtraction of the two equations and obtain (21).

We now prove the analytic continuation. Note that similar results are obtained in [22,
Thm. 3.2.3], [37, Thm. 5] and [4, Prop. 19]. We follow the same idea as in [37, Thm. 5].
Starting from (15) we can prove that

2c(X0(y))L−0(X0(y)) +X0(y)

√
d̃(y)D(y)−X0(y)y = 0

for y ∈ {y ∈ C : |X0(y)| < 1} ∩ D, and then

2c(X0(y))
∑

n>0,j>0

c0,−j−1(n)X0(y)jtn +

√
d̃(y)D(y)− y = 0

for y ∈ {y ∈ C : |X0(y)| < 1 and X0(y) 6= 0} ∩ D which can be continued in GL ∪ D.
Being a power series, D(y) is analytic on D and on (GL∪D)\D, D(y) may have the same

singularities as X0 and
√
d̃(y), namely the branch cuts [y1, y2] and [y3, y4]. But none of

these segments belong to (GL ∪ D) \ D, see Lemma 3. Then D(y) can be analytically
continued to the domain GL ∪D. Using the same idea, we can prove that D(y) has finite
limits on L. From (28), it is enough to study the zeros of xã(Y0(x)) + 1

2
b̃(Y0(x)) for x in

[x1, x2]. Using the relation X0(Y0(x)) = x valid in GM (see [22, Cor. 5.3.5]) shows that it
recurs to study the zeros of d̃(y) for y ∈ (GL ∪D) \ D. None of these roots (y1, y2, y3, y4)
belong to the last set, then D has finite limits on L.

3.4 Proof of Theorem 6

The function
√
d̃(y)D(y) satisfies a BVP of Riemann-Carleman type on L, see Lemma 5.

Following the literature [22, 37], we use a conformal mapping to transform the latter into
a more classical Riemann-Hilbert BVP. Throughout this section, we shall use notation
and results of Appendix B.

More precisely, let w be a conformal gluing function for the set GL in the sense of
Definition 4, and let U denote the real segment

U = w(L).

(With this notation, w is a conformal mapping from GL onto the cut plane C \ U .) The
segment U is oriented such that the positive direction is from w(Y (x2)) to w(Y (x1)), see
Figure 14.

Define v as the inverse function of w. The latter is meromorphic on C \ U . Following
the notation of Appendix B and [22], we denote by v+ and v− the left and right limits of
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v on U . The quantities v+ and v− are complex conjugate on U , and more precisely, since
w preserves angles, we have for u ∈ U and y ∈ L0{

v+(u) = v+(w(y)) = y,
v−(u) = v−(w(y)) = y,

see Figure 14 for an illustration of the above properties.
Then (21) may be rephrased as the following new boundary condition on U :

D(v+(u)) =

√
d̃(v−(u))√
d̃(v+(u))

D(v−(u)) +
v+(u)− v−(u)√

d̃(v+(u))
. (29)

As explained in Appendix B (see in particular Definition 15), the first step in the way
of solving the Riemann-Hilbert problem with boundary condition (29) is to compute the
index of the BVP.

Proposition 8. The index of
√
d̃(v−(u))√
d̃(v+(u))

along the curve U is −1.

Proof. First of all, let us recall that when L is a closed curve of interior GL and G is a
non-constant, meromorphic function without zeros or poles on L, then

indLG =
1

2iπ

∫
L

G′(z)

G(z)
dz = Z − P,

where Z and P are respectively the numbers of zeros and poles of G in GL, counted with
multiplicity.

Applying this result to the function d(y), which in GL has no pole and exactly two
zeros (at y1 and y2—remember that y3 and y4 are also roots of d(y) but are not in GL),
we have indL d̃(y) = 2, see Figure 13 for an illustration.

We get then

indU

√
d̃(v−(u))√
d̃(v+(u))

= indU

√
d̃(v−(u))− indU

√
d̃(v+(u)) = − indL1

√
d̃(y)− indL0

√
d̃(y)

= − indL

√
d̃(y) = −1

2
indL d̃(y) = −1.

With Theorem 16, we deduce a contour-integral expression for the function D(v(u)),
namely

D(v(u)) =
Ψ(u)

2iπ

∫
U

v+(s)− v−(s)√
d̃ (v+(s))

1

Ψ+(s)(s− u)
ds.

With the changes of variable u = w(y) and s = w(z), we easily get the result of Theorem 6.
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Figure 13: Plot of d̃(y) when y lies on L, in the case of Gessel’s step set

3.5 Anti-Tutte’s invariant

Our aim here is to find a function f satisfying to the decoupling condition (22), namely√
d̃(y)√
d̃(y)

=
f(y)

f(y)
, ∀y ∈ L.

Indeed, such a function is used in a crucial way in Theorem 7.
Before giving a systematic construction of a function f as above, we start by an

example. For Gessel’s model, we easily prove that the function

g(y) =
y

t(y + 1)2

satisfies g(Y0)g(Y1) = 1, and so for x ∈ [x1, x2] the condition (4) announced in the
introduction. By the same reasoning as in the proof of Theorem 9 below, we deduce that

f(y) =
g(y)

g′(y)
=
y(y + 1)

y − 1

satisfies the decoupling condition (22).
However, a simple rational expression of f as above does not exist in general. Instead,

our general construction consists in writing f in terms of a conformal mapping. Our main
result is the following.

Theorem 9. Let g be any conformal mapping from GL onto the unit disc D, with the
property that g(y) = g(y). Then the function f defined by

f =
g

g′

satisfies the decoupling condition (22). Moreover, f is analytic in GL and has finite limits
on L.

Finally, defining h(z) = −z +
√
z2 − 1 and letting w be a conformal gluing function

as in Definition 4, one can choose

g(y) = h

(
2

w(Y (x2))− w(Y (x1))

(
w(y)− w(Y (x1)) + w(Y (x2))

2

))
, (30)

see Figure 14.
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Figure 14: Conformal gluing functions from GL to C \ U and conformal mappings from GL to
the unit disc D

To obtain the expression of g in (30) for a given model, we refer to the list of conformal
mappings w provided in Appendix A.

Proof. We first prove that if g is a conformal mapping from GL onto the unit disc D with
the property that g(y) = g(y), then f = g

g′
satisfies the decoupling condition (22). First,

for x ∈ [x1, x2] one has

g(Y0(x))g(Y1(x)) = g(Y0(x))g(Y0(x)) = g(Y0(x))g(Y0(x)) = |g(Y0(x))|2 = 1.

Differentiating the identity g(Y0(x))g(Y1(x)) = 1, one finds on [x1, x2]

f(Y0(x))

f(Y1(x))
= −Y

′
0(x)

Y ′1(x)
.

To conclude the proof, we show that on [x1, x2]√
d̃(Y0(x))√
d̃(Y1(x))

= −Y
′

0(x)

Y ′1(x)
. (31)

To that purpose, let us first consider x ∈ GM \ [x1, x2]. Differentiating the identity
K(x, Y0(x)) = 0 in (6) yields

Y ′0(x)(2a(x)Y0(x) + b(x)) = −(a′(x)Y0(x)2 + b′(x)Y0(x) + c′(x)). (32)

First, it follows from Section 2.4 that 2a(x)Y0(x) + b(x) = −
√
d(x). Moreover, differen-

tiating (6) in x and using the relation X0(Y0(x)) = x valid in GM (see [22, Cor. 5.3.5])
shows that the right-hand side of (32) satisfies

a′(x)Y0(x)2 + b′(x)Y0(x) + c′(x) = −
√
d̃(Y0(x)).

Then for x ∈ GM \ [x1, x2], Equation (32) becomes

−
√
d(x)Y ′0(x) =

√
d̃(Y0(x)).

To complete the proof of (31), we let x converge to a point x ∈ [x1, x2] from above and
then from below, and we compute the ratio of the two identities so-obtained. The minus
sign in (31) comes from that

lim
x↓[x1,x2]

√
d(x) = − lim

x↑[x1,x2]

√
d(x),
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see Section 2.4.

Our second point is to show that the function g in (30) is a conformal mapping from
GL onto the unit disc D, which in addition is such that g(y) = g(y). This is obvious from
our construction (30), since as illustrated on Figure 14, g = h◦ŵ is the composition of the
conformal mapping h from the cut plane C \ [−1, 1] onto the unit disc, by the conformal
mapping

ŵ =
2

w(Y (x1))− w(Y (x2))

(
w − w(Y (x1)) + w(Y (x2))

2

)
(33)

from GL onto the same cut plane.

The third item is to prove that f has finite limits on L, for any initial choice of
conformal mapping g. We may propose two different proofs of this fact. First, we could
prove that the function f constructed from the particular function g in (30) has the
desired properties (this follows from a direct study). Then as any two suitable conformal
mappings g1 and g2 are necessarily related by a linear fractional transformation

g1 =
αg2 + β

γg2 + δ
,

it is easily seen that all functions have indeed the good properties.
The second idea is to use a very general statement on conformal mapping. Namely,

any conformal mapping which maps the unit disc onto a Jordan domain (the domain
GL) with analytic boundary (our curve L) can be extended to a univalent function in a
larger disc, see [19, Sec. 1.6]. As the extension is univalent, it becomes obvious that the
derivative g′ in the denominator of f cannot vanish.

3.6 Proof of Theorem 7

Our main idea here is to reformulate the initial boundary condition (21) as (23), with the
help of a function f which is analytic in GL, admits finite limits on L and satisfies on L
the decoupling condition (22). Using Lemma 5 and Theorem 9, we deduce that f(y)D(y)
is analytic in GL and has finite limits on L. As a consequence, f(y)D(y) satisfies a
Riemann-Carleman BVP with index zero (in the sense of Definition 15). Similarly to
Section 3.4 and using again a conformal gluing function, we transform the latter BVP
into a Riemann-Hilbert BVP on an open contour, whose solution is

D(y)f(y) =
1

2iπ

∫
L

zf(z)√
d̃(z)

w′(z)

w(z)− w(y)
dz + c, (34)

where c is constant in y, but may depend on t (as recalled in Theorem 16 from Appendix
B, the solutions to a BVP of index zero are determined up to one constant). Notice that
f cancels at y2 (the unique pole of w) and the integral in the right-hand side of (34) as
well, it follows that c = 0.

We now simplify the integrand in (34). First, noting that h satisfies the simple
differential equation h′ = −h√

z2−1
, we obtain with our notation (33)

f =
g

g′
=

h(ŵ)

ŵ′h′(ŵ)
= −
√
ŵ2 − 1

ŵ′
= −

√
(w − w(Y (x1)))(w − w(Y (x2)))

w′
.
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Furthermore, the conformal gluing function w satisfies the following differential equation

d̃(z)w′(z)2 = (w(z)− w(Y (x1)))(w(z)− w(Y (x2)))(w(z)− w(y1)), (35)

see [22, Sec. 5.5.2.2]. Taking the square root of (35) in the neighborhood of [y2, y3] ∩ GL
gives

−
√
d̃(z)w′(z) =

√
(w(z)− w(Y (x1)))(w(z)− w(Y (x2)))(w(z)− w(y1)),

as w is decreasing on [y2, y3] ∩ GL. It follows that

f(z)√
d̃(z)

=
1√

w(z)− w (y1)
.

The proof of Theorem 7 is complete.

Remark 10. The differential equation (35) is only true for the conformal gluing function
w whose expression is given in (37), with a pole at y2. If instead we have at hand a
function w with a pole at y0 6= y2 (for example y0 = 0, as in Lemma 11), we can consider
wy2 = 1

w−w(y2)
, which instead of (35) satisfies the differential equation

d̃(z)w′y2
(z)2 = d̃′(y2)w′(y2)(wy2(z)−wy2(Y0(x1)))(wy2(z)−wy2(Y0(x2)))(wy2(z)−wy2(y1)).
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A Expression and properties of conformal gluing functions

A crucial ingredient in our main results (Theorems 6 and 7) is the function w(y), which
we interpret as a conformal mapping from the domain GL onto a complex plane cut along
an interval, see Section 2.4. In this appendix, we recall from [37, 4] an explicit expression
as well as some analytic properties of this function, first in the finite group case, then for
infinite group models.
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Let us recall that if w is a suitable mapping, then any αw+β
γw+δ

is also a suitable mapping,
as soon as αδ − βγ 6= 0. Therefore, all expressions hereafter are given up to such a
fractional linear transform.

A.1 Finite group models

We start by giving an expression of the conformal mapping w(y) for the Kreweras trilogy
of Figure 8a. Let W = W (t) (resp. Z = Z(t)) be the unique power series (resp. the
unique power series with no constant term) satisfying

W = t(2 +W 3) and Z = t
1− 2Z + 6Z2 − 2Z3 + Z4

(1− Z)2
. (36)

Lemma 11. Let W and Z as in (36). The function

w(y) =

(
1

y
− 1

W

)√
1− yW 2

is a conformal mapping for Kreweras model. Likewise, a conformal mapping for reverse
Kreweras model is given by

w(y) =
−ty3 + y2 + t

2yt
− 2y2 − yW 2 −W

2yW

√
1− yW (W 3 + 4)/4 + y2W 2/4.

Finally, a conformal mapping for double Kreweras model is

w(y) =
√

1− 2yZ(1 + Z2)/(1− Z)2 + Z2y2
(Z(1− Z) + 2yZ − (1− Z)y2)

2yZ(1− Z)(1 + y)

+
Z(1− Z)2 − Z2(−1 + 2Z + Z2)y + (1− 2Z + 7Z2 − 4Z3)y2 − Z(1− Z)2y3

2y(1 + y)Z(1− Z)2
.

Notice that the functions w given in Lemma 11 all have a pole at y = 0.

Proof. Expressions for w are given in [37, Thm. 3 (iii)], but some quantities in the latter
statement (namely α, β, δ and γ, all depending on t) are not totally explicit. So to derive
the above expressions of w, we will rather use a combination of the works [12] and [4].
Indeed, algebraic expressions of Q(0, y) in terms of y and t are obtained in [12] for the
three Kreweras models (see Prop. 13, Prop. 14 and Prop. 15 there). On the other hand,
an alternative formulation of Q(0, y) as a rational function of w(y), y and t is derived in
[4] (see Thm. 23 and Table 8 there). The formulas of Lemma 11 are obtained by equating
the two expressions.

An expression for w(y) for Gessel’s model is obtained in [29, Thm. 7].

A.2 Infinite group models

In the infinite group case, the function w is not algebraic anymore (it is even non-D-finite,
see [37, Thm. 2]). As L is a quartic curve [22, Thm. 5.3.3 (i)], w can be expressed in
terms of Weierstrass’ elliptic functions (see [22, Sec. 5.5.2.1] or [37, Thm. 6]):
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Lemma 12 ([22, 37, 4]). The function w defined by

w(y) = ℘1,3

(
− ω1 + ω2

2
+ ℘−1

1,2(f(y))
)

(37)

is a conformal mapping for the domain GL, and has in this domain a unique (and simple)
pole, located at y2. The function w admits a meromorphic continuation on C \ [y3, y4]. It
is D-algebraic in y and in t.

The differential algebraicity is shown in [4, Thm. 33]. The remaining properties stated
in Lemma 12 come from [22, 37], see e.g. [37, Thm. 6 and Rem. 7].

Let us now comment on the expression (37), following the discussion in [4, Sec. 5.2].
First, f(y) is a rational function of y whose coefficients are algebraic functions of t:

f(y) =


d̃′′(y4)

6
+
d̃′(y4)

y − y4

if y4 6=∞,

d̃′′(0)

6
+
d̃′′′(0)y

6
if y4 =∞,

where d̃(y) is the discriminant (17) and y4 is one of its roots.
The next ingredient in (37) is Weierstrass’ elliptic function ℘, with periods ω1 and ω2:

℘(z) = ℘(z, ω1, ω2) =
1

z2
+

∑
(i,j)∈Z2\{(0,0)}

(
1

(z − iω1 − jω2)2
− 1

(iω1 + jω2)2

)
.

Then ℘1,2(z) (resp. ℘1,3(z)) is the Weierstrass function with periods ω1 and ω2 (resp. ω1

and ω3) defined by:

ω1 = i

∫ y2

y1

dy√
−d̃(y)

, ω2 =

∫ y3

y2

dy√
d̃(y)

, ω3 =

∫ y1

Y (x1)

dy√
d̃(y)

.

These definitions make sense thanks to the properties of the yi’s and Y (xi)’s (see [4,
Sec. 5.1]). If Y (x1) is infinite (which happens if and only if neither (−1, 0) nor (−1, 1)
are in S), the integral defining ω3 starts at −∞. Note that ω1 ∈ iR+ and ω2, ω3 ∈ R+.

Finally, as the Weierstrass function is not injective on C, we need to clarify our
definition of ℘−1

1,2 in (37). The function ℘1,2 is two-to-one on the fundamental paral-
lelogram [0, ω1) + [0, ω2) (because ℘(z) = ℘(−z + ω1 + ω2)), but is one-to-one when
restricted to a half-parallelogram—more precisely, when restricted to the open rectan-
gle (0, ω1) + (0, ω2/2) together with the three boundary segments [0, ω1/2], [0, ω2/2] and
ω2/2 + [0, ω1/2]. We choose the determination of ℘−1

1,2 in this set.

B Riemann-Hilbert BVP

In the way of proving our main results (Theorems 6 and 7), a crucial ingredient is the
BVP with shift of Lemma 5. It is solved by reduction to a more classical Riemann BVP
(Sections 3.4 and 3.6). In this appendix we present the main formulas used to solve the
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Figure 15: Left and right limits on the open contour U

latter, so as to render our paper self-contained. Our main references are the books of
Gakhov [26, Chap. 2] and Lu [32, Chap. 4].

Suppose that U is an open, smooth, non-intersecting, oriented curve from a to b, see
Figure 15 for an example. Throughout, for z ∈ U , we will denote by Φ+(z) (resp. Φ−(z))
the limit of a function Φ as y → z from the left (resp. right) of U , see again Figure 15.

Definition 13 (Riemann BVP). Let U be as above. A function Φ satisfies a BVP on U
if:

• Φ is sectionally analytic, i.e., analytic in C \ U ;

• Φ has finite degree at ∞ (the only singularity at ∞ is a pole of finite order), and Φ
is bounded in the vicinity of the extremities a and b;

• Φ has left limits Φ+ and right limits Φ− on U ;

• Φ satisfies the following boundary condition

Φ+(z) = G(z)Φ−(z) + g(z), z ∈ U , (38)

where G and g are Hölder functions on U , and G does not vanish on U .

Let us recall the so-called Sokhotski-Plemelj formulas, which represent a crucial tool
to solve the BVP of Definition 13.

Proposition 14 (Sokhotski-Plemelj formulas). Let U be as above, and let f be a Hölder
function on U . The contour integral

F (z) =
1

2iπ

∫
U

f(u)

u− z
du

is sectionally analytic on C \ U . Its left and right limit values F+ and F− are Hölder
functions on U and satisfy, for z ∈ U ,

F±(z) = ±1

2
f(z) +

1

2iπ

∫
U

f(u)

u− z
du,

where the very last integral is understood in the sense of Cauchy-principal value, see [26,
Chap. 1, Sec. 12]. This is equivalent to the following equations on U :

F+(z)− F−(z) = f(z),

F−(z) + F−(z) =
1

iπ

∫
L

f(u)

u− z
du.

(39)
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We also define the following important quantity:

Definition 15 (Index). Let U be as above and let G be the function (continuous on U)
as in (38). The index χ of the BVP of Definition 13 is

χ = indU G =
1

2π
[argG]U =

1

2iπ
[logG]U =

1

2iπ

∫
U

G′(u)

G(u)
du.

Plainly, χ represents the variation of argument of G(u), when u moves along the
contour U in the positive direction.

The main result is the following, see [32, Chap. 4, Thm. 2.1.2]:

Theorem 16 (Solution of Riemann-Hilbert BVP). Let U be as above. The solution of
the BVP of Definition 13 is given by, for z /∈ U ,

Φ(z) =


X(z)ψ(z) +X(z)Pχ(z) if χ > 0,
X(z)ψ(z) if χ = −1,
X(z)ψ(z) if χ < −1 and the solvability conditions below hold:

(40)
1

2iπ

∫
U

g(u)uk−1

X+(u)
du = 0, k = 1, . . . ,−χ− 1,

where Pχ is an arbitrary polynomial of degree χ, and

X(z) = (z − b)−χ exp Γ(z),

X+(z) = (z − b)−χ exp Γ+(z),

Γ(z) =
1

2iπ

∫
U

logG(u)

u− z
du,

ψ(z) =
1

2iπ

∫
U

g(u)

X+(u)(u− z)
du.

C Proof of Lemma 1

The decomposition in (12) expresses C(x, y) as a sum of three generating functions.
Thanks to the symmetry of the step set and the fact that the starting point lies on the
diagonal, Û(x, y) = L̂(y, x) and C(x, y) is written as the sum L̂(x, y) + D̂(x, y) of two
unknowns. We further introduce the generating functions

D̂`(x, y) =
∑

n>0,i>0

ci,i−1(n)xiyi−1tn and D̂u(x, y) =
∑

n>0,i>0

ci−1,i(n)xi−1yitn,

which respectively count walks ending on the lower (resp. upper) diagonal, see Figure 9.
In this section, we consider walks starting on the diagonal and ending anywhere in the
three-quadrant C.

Thereafter, ci,j(n) is counting walks from (i0, i0) to (i, j) in n steps. Classically [12],
we construct a walk by adding a new step at the end of the walk at each stage. We first
derive a functional equation for L̂(x, y) by taking into account all possibilities of ending
in the lower part:
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Figure 16: Different ways to end in the lower part (example of the simple walk)

• we may add a step from Ŝ (recall that Ŝ is the step set before the change of variable
ϕ) to walks ending in the lower part, yielding in (41) the term t(

∑
(i,j)∈Ŝ x

iyj)L̂(x, y),
see the second picture on Figure 16 in the particular case of the simple walk;

• walks coming from the diagonal also need to be counted up, giving rise in (41) to
the term t(δ1,0x+ δ0,−1y

−1)D̂(x, y) (third picture on Figure 16);

• on the other hand, walks going out of the three-quarter plane need to be removed,
yielding the terms t(δ−1,0x

−1 + δ0,1y)D̂`(x, y) (the lower diagonal) and t(δ−1,0x
−1 +

δ−1,−1x
−1y−1)L̂0−(y−1) (negative y-axis), see the fourth and fifth pictures on Figure

16;

• we finally add the term tδ−1,0x
−1
∑

n>0 c0,−1(n)y−1tn which was subtracted twice,
corresponding to the rightmost picture on Figure 16.

We end up with a first functional equation:

L̂(x, y) = t
∑

(i,j)∈Ŝ

xiyjL̂(x, y) + t(δ1,0x+ δ0,−1y
−1)D̂(x, y)− t(δ−1,0x

−1 + δ0,1y)D̂`(x, y)

− t(δ−1,0x
−1 + δ−1,−1x

−1y−1)L̂0−(y−1) + t(δ−1,0x
−1)
∑
n>0

c0,−1(n)y−1tn. (41)

We now prove the second equation

D̂(x, y) = xi0yi0 + t(δ1,1xy + δ−1,−1x
−1y−1)D̂(x, y)− tδ−1,−1x

−1y−1D̂(0, 0)

+ 2t(δ−1,0x
−1 + δ0,1y)D̂`(x, y)− 2tδ−1,0x

−1
∑
n>0

c0,−1(n)y−1tn, (42)

and remark that by plugging in (42) into (41) we get (13), thereby completing the proof
of Lemma 1.

This second equation (42) is obtained by writing all possibilities of ending on the
diagonal, as illustrated on Figure 17 for simple walks:

• we first count the empty walk, giving the term xi0yi0 ;

• we add the walks remaining on the diagonal t(δ1,1xy + δ−1,−1x
−1y−1)D̂(x, y), the

walks ending on the diagonal coming from the upper part t(δ0,−1y
−1 +δ1,0x)D̂u(x, y)

and those coming from the lower part t(δ−1,0x
−1 + δ0,1y)D̂`(x, y);
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Figure 17: Different ways to end on the diagonal (example of the simple walk)

• finally, walks going out of the domain need to be removed, giving the terms

tδ−1,−1x
−1y−1D̂(0, 0), tδ0,−1y

−1
∑
n>0

c−1,0(n)x−1tn

and tδ−1,0x
−1
∑
n>0

c0,−1(n)y−1tn.

Thanks to the symmetry of the step set, the number of walks coming from the upper
part is the same as the number of walks coming from the lower part.

Remark 17. A step set containing the jumps (−1, 1) and (1,−1) would lead to two
additional terms in the functional equations, namely

δ−1,1x
−1y

∑
n,i>0

ci,i−2(n)xiyi−2tn and δ1,−1xy
−1
∑
n,j>0

cj−2,j(n)xj−2yjtn,

making the resolution much more complicated (not to say impossible, by our techniques!).
Likewise, considering an asymmetric step set and/or a starting point out of the diagonal
would lead to other terms in the functional equation.
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