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Abstract

We define a family of combinatorial objects, which we call Baxter posets. We
prove that Baxter posets are counted by the Baxter numbers by showing that they
are the adjacency posets of diagonal rectangulations. Given a diagonal rectangula-
tion, we describe the cover relations in the associated Baxter poset. Given a Baxter
poset, we describe a method for obtaining the associated Baxter permutation and
the associated twisted Baxter permutation.

Mathematics Subject Classifications: 06A07, 05B45, 05A05

1 Introduction

The Baxter numbers
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count Baxter permutations [4], twisted Baxter permutations [11], certain triples of non-
intersecting lattice paths [6], noncrossing arc diagrams consisting of only left and right
arcs [14], certain Young tableaux [7], twin binary trees [7], diagonal rectangulations [1, 8,
11], and other families of combinatorial objects.

In this paper, we define Baxter posets and prove that they are also counted by the
Baxter numbers. Baxter posets are closely related to Catalan combinatorics. Specifically,
Baxter posets (and the closely related diagonal rectangulations) can be realized by way
of “twin” Catalan objects. Additionally, the relationship between Baxter posets and
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Figure 1: The Catalan objects obtained by applying the described bijections to the 2-31
avoiding permutation 52143768.

diagonal rectangulations is analogous to the relationship between two Catalan objects,
specifically sub-binary trees and triangulations of convex polygons. As a prelude to our
discussion of Baxter posets, we describe a few Catalan objects and bijections between
them.

Let Sn denote the set of permutations of [n] = {1, . . . , n}. We say that σ = σ1 · · ·σn ∈
Sn avoids the pattern 2-31 if there does not exist i < j such that σj+1 < σi < σj. The
Catalan number C(n) = 1

n+1

(
2n
n

)
counts the elements of Sn that avoid the pattern 2-31.

The map τb, described below and illustrated in Figure 1, assigns a triangulation of a convex
(n+ 2)-gon to each element of Sn, and restricts to a bijection between permutations that
avoid 2-31 and triangulations of polygons. Let σ = σ1 · · ·σn ∈ Sn and let P be a convex
(n + 2)-gon. For convenience, deform P so that P is inscribed in the upper half of a
circle, and label each vertex of P , in numerical order from left to right, with an element
of the sequence 0, 1, . . . , n + 1. For each i ∈ {0, . . . , n}, construct a path Pi from the
vertex labeled 0 to the vertex labeled n+ 1 that visits the vertices labeled by elements of
{σ1, . . . , σi} in numerical order. The union of these paths defines τb(σ), a triangulation
of P .

Given a triangulation ∆ of a convex (n + 2)-gon P , deform P (and ∆) as above.
Construct a graph with an edge crossing each edge of ∆ except the horizontal diameter,
as shown in red in the left diagram of Figure 1. (This is closely related to the dual graph
of ∆.) In what follows, we will call this the dual graph construction. Terminology for
the resulting family of trees is mixed in the literature, with adjectives such as complete,
planar, rooted, and binary appearing inconsistently. We will call the resulting tree a
binary tree and provide a careful definition. For us, a binary tree is a rooted tree such
that every non-leaf has exactly two children, with one child identified as the left child
and the other as the right child. The dual graph construction gives a bijection between
triangulations of a convex (n + 2)-gon and binary trees with 2n + 1 vertices. The root
of the binary tree corresponds to the bottom triangle of ∆ and children are identified as
left or right according to the embedding of ∆ in the plane. For a reason that will become
apparent later, we deform each binary tree resulting from this bijection as shown in the
right diagram of Figure 1, so that the root is the lowermost vertex. Removing the leaves
of a binary tree and retaining the left-right labeling of each child, we obtain a sub-binary
tree, a rooted tree in which every vertex has 0, 1, or 2 children, and each child is labeled
left or right, with at most one child of each vertex receiving each label. The leaf-removal
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Figure 2: The Catalan objects obtained by applying the described bijections to the 31-2
avoiding permutation 21547863.

map is a bijection between binary trees with 2n+ 1 vertices and sub-binary trees with n
vertices. In the example shown in Figure 1, the edges removed by this map are shown as
dashed segments.

We will make use of a second similar map from permutations to triangulations. We
say that a permutation avoids the pattern 31-2 if there does not exist i < i+ 1 < j such
that σi+1 < σj < σi. The map τt described below restricts to a bijection between elements
of Sn that avoid 31-2 and triangulations of a convex (n + 2)-gon. Let σ ∈ Sn and P a
convex (n+ 2)-gon. Deform P and label its vertices as shown in the example in Figure 2.
For each i ∈ {0, 1, . . . , n}, construct the path Pi that begins at the vertex labeled 0, visits
in numerical order each vertex labeled by an element of [n] − {σ1, . . . , σi}, and ends at
the vertex labeled n + 1. The union of these paths is τt(σ). Performing the dual graph
construction and then the leaf-removal map, we obtain corresponding binary and sub-
binary trees. This time, we choose to deform the binary and sub-binary trees so that the
root is the uppermost vertex, as illustrated in the right diagram of Figure 2.

Although a sub-binary tree is an unlabeled graph, for each sub-binary tree with n
vertices, there exists a unique labeling of its vertices by the elements of [n] such that
every parent vertex has a label numerically larger than the labels of its left descendants
and numerically smaller than its right descendants. An example of a sub-binary tree with
such a labeling is show in Figure 3. Let T be a labeled sub-binary tree embedded in the
plane as shown in Figure 3 and ∆T the associated triangulation. View T as the Hasse
diagram of a poset. Each vertex of T is an element of the poset and x <T y if and only
if there exists a path from x to y traveling in an upward direction along edges of T . We
say that a total order L of the elements of T is a linear extension of T if x <T y implies
that x <L y. The linear extensions of T , viewed as permutations in one-line notation, are
exactly the permutations that map to ∆T under τb. To see why, label each triangle of ∆T

according to the label of its middle (from left to right) vertex, as illustrated in Figure 3.
The linear extensions of T are exactly the permutations that map to ∆T because x <T y
if and only if the triangle labeled y is “above” the triangle labeled x. Similarly, given
a sub-binary tree T ′, embedded in the plane as illustrated in Figure 2, and associated
triangulation ∆T ′ , we obtain a labeling of T ′ such that the linear extensions of T ′ are
exactly the permutations that map to ∆T ′ under τt.

We now relate the Catalan objects described above to Baxter objects. Specifically, we
will see that diagonal rectangulations are made by gluing together binary trees, and we
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Figure 3: The labeling of a sub-binary tree obtained from the labeling of the triangles in
the corresponding triangulation.

will construct Baxter posets so that they play the same role for diagonal rectangulations
that sub-binary trees play for triangulations.

A permutation σ = σ1 · · ·σn ∈ Sn avoids the patterns 2-41-3 and 3-41-2 if there does
not exist i < j < j + 1 < k such that σj+1 < σi < σk < σj or σj+1 < σk < σi < σj. If σ
avoids the patterns 2-41-3 and 3-41-2, then we say that σ is a twisted Baxter permutation.
The twisted Baxter permutations in Sn are counted by B(n).

Twisted Baxter permutations are related to certain decompositions of a square into
rectangles. Given σ ∈ Sn, glue the binary trees corresponding to τb(σ) and τt(σ), called
twin binary trees, along their leaves to obtain a decomposition of a square into n rectan-
gles, and then rotate the resulting figure π/4 radians clockwise. The result of applying
this binary tree gluing map to the permutation 52147862 is shown in the left diagram of
Figure 4. The binary trees which are glued together in this example are shown in Figures 1
and 2. We call each decomposition resulting from this binary tree gluing map a diagonal
rectangulation (defined precisely in Section 2) because the top-left to bottom-right diag-
onal of the square contains an interior point of each rectangle of the decomposition. The
map restricts to a bijection between twisted Baxter permutations and diagonal rectangu-
lations.

Given a diagonal rectangulation, label the rectangles of the decomposition according
to the order in which they appear along the diagonal, labeling the upper-leftmost rectangle
with 1 and the lower-rightmost rectangle with n. We refer to the rectangle with label i as
“rectangle i.” Construct a poset P on [n] by declaring x <P y if the interior of the bottom
or left side of rectangle y intersects the interior of the top or right side of rectangle x,
and then taking the reflexive and transitive closure of these relations. Remark 6.7 in [11]
explains that, before taking the reflexive and transitive closure, these relations are acyclic.
Thus P is a partial order on [n]. This poset, which we call the adjacency poset of the
diagonal rectangulation, is defined in [8, 11]. (A more general set of posets, corresponding
to elements of the Baxter monoid, are defined in [9].) Each adjacency poset captures the
“right of” and “above” relations of the diagonal rectangulation just as each sub-binary
tree captures the “above” relations of the corresponding triangulation. Additionally, given
an adjacency poset P and the corresponding diagonal rectangulation D, the set of linear
extensions of P is the set of permutations that map to D under the binary tree gluing
map [11, Remark 6.7]. We note that two permutations σ and ψ map to the same diagonal
rectangulation if and only if τb(σ) = τb(ψ) and τt(σ) = τt(ψ). Thus, the set of linear
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Figure 4: The rectangulation and adjacency poset obtained from the twisted Baxter
permutation 52147863.

extensions of the adjacency poset of a diagonal rectangulation is the intersection of the
sets of linear extensions of the labeled sub-binary trees obtained from τb and τt.

As a diagonal rectangulation can be constructed from twin binary trees, the adjacency
poset of a diagonal rectangulation can be constructed using the corresponding labeled sub-
binary trees. Let D be a diagonal rectangulation, P the associated adjacency poset, and Tb
and Tt respectively denote the corresponding labeled sub-binary trees obtained from τb
and τt. The relations of P can be obtained by setting x < y if x <τb y or x <τt y and
then taking the transitive closure. Although it is simple to use the relations of Tb and Tt
to list the relations of P , it is not so straightforward to obtain a description of the Hasse
diagram of P or to characterize the set of adjacency posets of diagonal rectangulations.
In any poset P , we say that x covers y, denoted xlP y, if x <P y and there exists no z
such that x <P z <P y. In Theorem 11, the first main result of this paper, we show that x
covers y in the adjacency poset P if and only if, in the associated diagonal rectangulation,
rectangles x and y form one of the configurations shown in Figure 7. This theorem allows
us to obtain a Hasse diagram for the adjacency poset from a diagonal rectangulation just
as we easily obtain a sub-binary tree from a triangulation.

Our second main result is a characterization of adjacency posets of diagonal rectan-
gulations in terms of their embeddings in the plane. A poset P corresponds to a directed
graph whose vertices are the elements of P , with a directed edge from vertex x to ver-
tex y if and only if x lP y. Since each poset P corresponds to a unique directed graph,
for simplicity we use P to denote both the poset and the corresponding directed graph.
We use both poset and graph terminology to discuss P .

A planar embedding of a graph is an embedding of the graph in R2 in which no two
edges intersect. A planar embedding of a graph splits the plane into regions, called faces.
We call the unbounded face of the embedding the exterior face and the bounded faces
interior faces. Given a vertex v of a directed graph, the outdegree of v is the number of
edges adjacent to v which are directed away from v. Similarly, the indegree of v is the
number of edges adjacent to v which are directed toward v.

A poset P is bounded if it has an element, called the maximum, that is greater than
all other elements and an element, called the minimum, that is less than all other ele-
ments. We say that a planarly embedded digraph is a bounded plane poset if the digraph
corresponds to a bounded poset and the minimum and maximum elements of the poset
are on the boundary of the exterior face of the embedding. Given a bounded plane poset,
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at any vertex v the ingoing (and thus the outgoing) edges appear consecutively around v,
and the boundary of each interior face consists of two directed paths [5, Lemmas 2.1, 2.2].
Given an interior face f , let min(f) denote the vertex of f where these directed paths
start and max(f) the vertex of f where these paths end. The face f has a well-defined
left side and right side, consistent with considering min(f) to be “down” and max(f) to
be “up.” The left lateral path of f is the path that leaves min(f) along the left (using a
clockwise ordering of the edges) edge and travels the boundary of f to arrive at max(f).
The vertices contained in the interior of the left lateral path are called the left lateral
vertices of f . We similarly define the right lateral path of f and the right lateral vertices
of f .

Given a poset P on [n], a 2-14-3 chain is a chain b <P a lP d <P c of P such that
a < b < c < d in numerical order. We similarly define a 3-14-2 chain, a 2-41-3 chain, and
a 3-41-2 chain.

Definition 1. A bounded plane poset P on [n] is a Baxter plane poset if and only if it
satisfies the following conditions:

1. Each vertex has indegree and outdegree at most two.

2. P contains no 2-14-3, no 3-14-2, no 2-41-3, and no 3-41-2 chains.

3. For each interior face f of P , the labels {x, y} of min(f) and max(f) satisfy
|x− y| = 1, and the left (respectively right) lateral vertices of f have labels smaller
(respectively greater) than x and y.

Condition 1 of Definition 1 implies that every open interval (x, y) of a Baxter plane
poset consists of at most two connected components. The pairs {x, y} from Condition 3 are
exactly the pairs such that the interval (x, y) of P consists of two connected components.

Definition 2. A Baxter poset is a poset that has an embedding as a Baxter plane poset.

We can now state our main result.

Theorem 3. A poset P is a Baxter poset if and only if it is the adjacency poset of a
diagonal rectangulation.

Any adjacency poset admits a planar embedding. To construct the embedding, view
the diagonal rectangulation D as a graph, with a planar embedding, whose vertices are
the vertices of the rectangles of D and whose edges are segments of D. Taking a subgraph
of the dual graph of D (retaining the vertices contained in rectangles of D and edges
corresponding to the rectangle adjacencies shown in Figure 7), and then adding directions
to the subgraph edges, we obtain an embedding of the adjacency poset P . Since D is a
planar graph, using this construction, we can obtain a planar embedding of P . We call
this the dual graph construction of an adjacency poset.

Notice that Condition 3 of Definition 1 determines the clockwise ordering of incident
edges at each vertex of a Baxter poset. Thus each Baxter poset corresponds to a unique
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(up to continuous deformation) Baxter plane poset. This unique Baxter plane poset is
the most natural embedding of the Baxter poset because it is the embedding that results
from the dual graph construction of an adjacency poset. See Figure 4 for an example of
the dual graph construction of an adjacency poset.

Posets are often represented using Hasse diagrams. Given a poset P , an embedding
of the corresponding directed graph G in R2 is a Hasse diagram for P if and only if each
edge of the embedding is a line segment and the orientation on each edge of G is upward
in the plane.

Remark 4. Given a diagonal rectangulationD, use the dual graph construction of the adja-
cency poset to obtain a planar embedding of the adjacency poset P of D. This embedding
of P can be continuously deformed (maintaining the faces of the planar embedding) to ob-
tain a planar embedding of the Hasse diagram of P . Thus, when convenient, we may pass
back and forth between the topological embedding of P obtained from the dual graph
construction and the corresponding Hasse diagram for P . Similarly, any Baxter plane
poset can be continuously deformed to obtain a topologically equivalent Hasse diagram
embedding. In the figures of this paper, rather than drawing an arrow on each poset edge
to indicate its orientation, we choose to draw Hasse diagrams. The existence of the topo-
logically equivalent Hasse diagrams comes from a more general result: Given any directed
graph H, if edges can be added to H to obtain a planar directed acyclic graph H ′ with a
unique source s, a unique sink t, and an edge e from s to t, then any planar embedding
of H ′ such that e is on the boundary of the exterior face can be continuously deformed to
obtain an upward planar diagram (with the same faces) of H ′. (This result is stated in
[10, Theorem 3.1], but is a result of an algorithm from [5]). In Figure 4, a Hasse diagram
for an adjacency poset is obtained by simply rotating the subgraph resulting from the
dual graph construction.

Remark 5. One might hope for an unlabeled version of the Baxter plane poset from which
the labeled poset can be obtained, just as sub-binary trees have a canonical labeling.
However, without “decorating” the poset with additional combinatorial information, this
is not possible. This is quickly apparent since, when n = 4, of the 22 Baxter posets, 20
of these are chains. Decorating each Baxter plane poset to indicate the numerical order
of min(f) and max(f) for each face f is insufficient. Additionally, decorating every edge
to indicate the numerical order of the elements of the cover relation does not allow us to
determine a unique Baxter poset.

The original Baxter object, Baxter permutations, have a pattern avoidance definition
similar to the definition of the twisted Baxter permutations. A Baxter permutation σ =
σ1 · · ·σn is a permutation that avoids the patterns 2-41-3 and 3-14-2, i.e., there does
not exist i < j < j + 1 < k such that σj+1 < σi < σk < σj or σj < σk < σi <
σj+1. Given a diagonal rectangulation D, the set of permutations that map to D under
the binary tree gluing map contains a unique twisted Baxter permutation and a unique
Baxter permutation (see Theorem 7). Other authors (see [11, Proof of Lemma 8.4], [8,
Proof of Lemma 6.6]) have described algorithms for obtaining these permutations from a
diagonal rectangulation. Our final results describe how to obtain these pattern avoiding
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Figure 5: A diagonal rectangulation, the rectangulation’s Baxter plane poset with an ar-
row assigned to each interior face, and the Baxter permutation obtained using Theorem 6.

permutations directly from a Baxter plane poset. Here, we describe a method of obtaining
the Baxter permutation.

Let P be a Baxter plane poset. Assign an arrow to each interior face f of P as follows:
If max(f) > min(f) (in numerical order), then that face is assigned an arrow pointing
from the left lateral vertices to the right lateral vertices, which we call a right-pointing
arrow. Otherwise, the face is assigned a left-pointing arrow. An example is shown in
Figure 5. If a face f contains a right-pointing arrow and σ is a linear extension of P in
which all labels of the left lateral vertices of f precede all labels of right lateral vertices
of f , then we say that σ respects the arrow of f . Similarly, we say that σ respects the
arrow of a face f containing a left-pointing arrow if all labels of right lateral vertices of f
precede all labels of left lateral vertices of f . If σ respects the arrows of every interior
face of P , then we say that σ respects the arrows of P . The existence of a linear extension
of P that respects the arrows of P should not be immediately obvious to the reader.

Theorem 6. Given a Baxter plane poset P , the unique Baxter permutation that is a
linear extension of P is the unique linear extension that respects the arrows of P .

By adding a single relation for each interior face of the Baxter plane poset P , we
obtain an alternate description of the map from a Baxter poset to its Baxter permutation.
Specifically, for each face f with min(f) = x and max(f) = x+1, we declare that the final
vertex in the interior of the left lateral path of f is less than the first vertex in the interior
of the right lateral path. Similarly, for each face f with max(f) = x and min(f) = x+ 1,
we declare that the final vertex in the interior of the right lateral path of f is less than
the first vertex in the interior of the left lateral path. By Theorem 6, the resulting partial
order is a total order on [n] and this total order is a Baxter permutation.

In Section 2, we describe the map ρ from permutations to diagonal rectangulations that
coincides with the binary tree gluing map already described and provide some background
related to diagonal rectangulations. We prove Theorem 11 (the characterization of the
cover relations of the adjacency poset) in Section 3. Our main result, Theorem 3, is
proved in Section 4. Finally, in Section 5, we describe how to obtain a twisted Baxter
permutation from a Baxter plane poset and then prove Theorem 6.
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Figure 6: The map ρ is applied to the permutation 23154.

2 Diagonal Rectangulations

A rectangulation of size n is an equivalence class of decompositions of a square S into n
rectangles. Two decompositions R1 and R2 are members of the same equivalence class if
and only if there exists a homeomorphism of the square, fixing its vertices, that takes R1

to R2. We say that a rectangulation is a diagonal rectangulation if, for some representative
of the equivalence class, the top-left to bottom-right diagonal of S contains an interior
point of each rectangle of the decomposition. In our discussion of diagonal rectangulations,
we often blur the distinction between an equivalence class and a representative of the
equivalence class. We most often refer to a diagonal rectangulation using the distinguished
representative with edges intersecting the diagonal in equally spaced points.

We now define a map ρ from Sn to the set of diagonal rectangulations of size n.
Figure 6 shows the construction of ρ(23154). The map ρ agrees with the map (described
in Section 1) in which a diagonal rectangulation is constructed from a permutation by
gluing together twin binary trees and then rotating the result. Our description of ρ
matches the description in [11, Section 6] and is essentially equivalent to maps described
in [1, Section 3], [2, Section 4], and [8, Section 5].

Let σ = σ1 · · ·σn ∈ Sn and S a square in R2 with bottom-left vertex at (0, 0) and
top-right vertex at (n, n). Place n+ 1 points at (i, n− i) for i ∈ {0, . . . , n}. Label each of
the n spaces between these points in order with an element of [n], starting with 1 in the
upper-leftmost space and finishing with n in the lower-rightmost space. We construct ρ(σ)
by considering the entries of σ sequentially from left to right. Let Ti−1 denote the union
of the left and lower boundaries of S and the rectangles of ρ(σ) constructed using the first
i− 1 entries of σ. In step i of the construction, we form a new rectangle that contains the
diagonal label σi. We refer to this rectangle as rectangle σi. We construct rectangle σi as
follows. If the point u = (σi−1, n−(σi−1)) is contained in Ti−1, then place the upper-left
corner of rectangle σi so that it coincides with the uppermost point on the segment of Ti−1
containing u. Otherwise, the upper-left corner of rectangle σi is the first point of Ti−1
hit by the left-pointing horizontal ray with base point at u. If the point l = (σi, n − σi)
is contained in Ti−1, then place the lower-right corner of rectangle σi so that it coincides
with the rightmost point on the segment of Ti−1 containing l. Otherwise, the lower-right
corner of rectangle σi is the first point of Ti−1 hit by the downward pointing vertical ray
with base point at l. In the arguments that follow, we will use the observation that, by
construction, the left side and bottom of rectangle σi are contained in Ti−1 for all i ∈ [n].
We will also use the observation that, since the interior of each rectangle of a diagonal
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rectangulation D intersects the upper-left to bottom-right diagonal of S, no set of four
rectangles of D share a vertex.

Theorem 7 ([11, Theorem 6.1, Corollary 8.7]). The map ρ restricts to a bijection between
twisted Baxter permutations and diagonal rectangulations. The map ρ also restricts to a
bijection between Baxter permutations and diagonal rectangulations.

Given a rectangulation R, a line segment that is not contained in the boundary of S
and is a maximal (with respect to inclusion) union of edges of rectangles is called a wall
of R.

Recall that a permutation σ is a twisted Baxter permutation if and only if it avoids
the patterns 2-41-3 and 3-41-2. This pattern avoidance is equivalent to the requirement
that if σi > σi+1 then either all values numerically between σi+1 and σi are left of σi in σ,
or all of these values are right of σi+1 in σ.

We say that two permutations σ and ψ are related by a (3-14-2 ↔ 3-41-2) move
if σ contains a subsequence σi1σi2σi3σi4 that is an occurrence of one of these patterns and
switching the positions of the adjacent entries σi2 and σi3 in σ results in the permutation ψ.
We say that σ and ψ are related by a (2-14-3↔ 2-41-3) move if σ and ψ satisfy the same
conditions with these patterns.

Proposition 8 ([11, Proposition 6.3]). Two permutations σ and ψ satisfy ρ(σ) = ρ(ψ)
if and only if they are related by a sequence of (3-14-2 ↔ 3-41-2) moves and (2-14-3 ↔
2-41-3) moves.

Given ψ ∈ Sn, define inv(ψ) = {(ψi, ψj) | i < j and ψi > ψj}. If σ, ψ ∈ Sn then we say
that σ 6 ψ in the right weak order if and only if inv(σ) ⊆ inv(ψ). This definition implies
that σlψ in the right weak order if and only if ψ can be obtained from σ by transposing
adjacent entries σi and σi+1 of σ which satisfy σi < σi+1 in numerical order.

Proposition 9 ([11, Proposition 4.5]). Let D be a diagonal rectangulation and σ ∈ Sn
such that ρ(σ) = D. Then σ is a twisted Baxter permutation if and only if σ is the
minimal element of the right weak order such that ρ(σ) = D.

3 The adjacency poset of a diagonal rectangulation

In Section 1, we provided a definition of the adjacency poset of a diagonal rectangula-
tion D. At times, we will make use of an equivalent definition.

Given a diagonal rectangulation D of size n in R2 with bottom-left corner at (0, 0)
and top-right corner at (n, n), define the partial order Q on [n] as follows: if there exist
a point p in the interior of rectangle x and a point q in the interior of rectangle y such
that q − p has positive coordinates declare x 6Q y, and then take the transitive closure
of these relations.

Proposition 10. Given a diagonal rectangulation D of size n, the adjacency poset P is
the poset Q defined above.
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Figure 7: Configurations in a diagonal rectangulation that correspond to cover relations
in the adjacency poset.

Proof. If xlP y then, by the definition of the adjacency poset, the interior of the bottom
(or left side) of rectangle y intersects the interior of the top (or right side) of rectangle x.
Thus there exist points p ∈ int(rectangle x) and q ∈ int(rectangle y) such that q − p has
positive coordinates. Therefore, by the definition of Q, we have that x 6Q y.

If xlQy, then there exist points p ∈ int(rectangle x) and q ∈ int(rectangle y) such that
q − p has positive coordinates. Consider the line segment joining p to q. If this segment
passes through the vertex of some rectangle, since D contains only finitely many vertices,
we may perturb p or q, obtaining points p′ and q′, so that p′ and q′ are respectively in the
interiors of rectangles x and y, the segment joining p′ and q′ contains no vertices of D, and
q′ − p′ has positive coordinates. Thus, we may assume that the segment joining p and q
contains no vertices of D. The segment passes through the interiors of some sequence of
rectangles x = z0, z1, . . . , zm−1, y = zm. For all i ∈ [m], the segment exits rectangle zi−1
and enters rectangle zi at a point in the interior of a side of both rectangles so zi <P zi+1.
Therefore x <P y.

We note that the transitive closure in the definition of Q is required (since we have
chosen to refer to each diagonal rectangulation using the representative with edges in-
tersecting the diagonal in equally spaced points). Consider the rectangulation ρ(312465)
shown in Figure 10. Since the interior of the right side of rectangle 2 intersects the interior
of the left side of rectangle 4, we have that 2 <P 4. Similarly, 4 <P 6, so by transitivity
2 <P 6. However, there do not exist p ∈ int(rectangle 2) and q ∈ int(rectangle 6) such
that q − p has positive coordinates.

We give a description of the adjacency poset of a diagonal rectangulation by describing
its cover relations.

Theorem 11. Let D be a diagonal rectangulation and P the corresponding adjacency
poset. Then xlP y if and only if rectangles x and y form one of the configurations shown
in Figure 7.

Proof. Let D be a diagonal rectangulation and P the adjacency poset of D. Assume that
in D, rectangles x and y form one of the configurations shown in Figure 7. In each config-
uration, by definition, x <P y. Assume that rectangles x and y form configuration (i) and
there exists some z ∈ [n] such that x <P z <P y. Since z <P y and P is acyclic, y ≮P z.
Thus rectangle z contains no interior points in the lined region of Figure 8. Similarly,
since z ≮P x, rectangle z contains no interior points in the dotted region of Figure 8.
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Figure 9: Relative locations of rectangles x and y used in the second half of the proof of
Theorem 11.

Therefore, any rectangle z such that x <P z <P y is completely contained in an unshaded
region of Figure 8. However, by the definition of P , no label of a rectangle contained in
the lower-right unshaded region of Figure 8 is covered by y. Similarly, in P no label of a
rectangle contained in the upper-left unshaded region of Figure 8 covers x. Additionally,
no label of a rectangle contained in the lower-right unshaded region is covered by the label
of a rectangle contained in the upper-left unshaded region. Thus there exists no z such
that x <P z <P y. Hence x lP y. For the remaining configurations of Figure 7, similar
considerations demonstrate that xlP y.

To prove the other direction of the theorem, assume that x lP y. Since the set of
linear extensions of P is the fiber ρ−1(D) and x lP y, there exists a linear extension
σ = σ1 · · ·σn of P such that x = σi and y = σi+1. Let Tj−1 denote the union of the left
and bottom boundaries of the square S and the partial diagonal rectangulation formed
in the construction of ρ(σ) after considering the first j − 1 entries of σ. The bottom and
left edges of rectangle σj are contained in Tj−1 for all j ∈ [n]. Using the definition of
the adjacency poset from Section 1, since x lP y, we have that rectangles x and y are
adjacent with rectangle x left of or below rectangle y. Thus, combining these requirements,
rectangles x and y form one of the configurations shown in Figure 9.

To complete the proof of the theorem, we observe that configurations (a) and (c)
of Figure 9 cannot occur in any diagonal rectangulation. In a diagonal rectangulation,
the upper-left to bottom-right diagonal of S passes through every rectangle, but this is
impossible in a rectangulation containing either of these configurations. Thus, if xlP y,
then rectangles x and y form one of the configurations shown in Figure 7.
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Figure 10: The adjacency posets for the diagonal rectangulations ρ(312546) and
ρ(312465).

Figure 10 shows two diagonal rectangulations and their adjacency posets. The posets
are constructed using the correspondence between cover relations of P and the rectangle
configurations shown in Figure 7.

4 Characterization of Adjacency Posets

To prove Theorem 3, we require the following definitions and results. For convenience, in
these definitions and part of the proof of Theorem 3 we chose to refer to Hasse diagrams,
but both could be rephrased in terms of directed graphs. Given a planar Hasse diagram
of a lattice P , for each x ∈ P , define S(x) to be the union of the paths of P containing x
and the interior faces whose boundary is contained in this union of paths. In Figure 11,
the gray region is S(x). We say that x is left of y in the embedding if y is not contained
in S(x) and a left-pointing horizontal ray with vertex at y passes through S(x). We
similarly define right of and note that since P is a lattice, x is left of y if and only if y is
right of x. Furthermore, if x and y are incomparable in P , then either x is left of y or x
is right of y.

The following proposition is [3, p 32, Exercise 7(a)]. Since every Baxter poset is finite,
bounded, and has a planar embedding, this proposition implies that every Baxter poset
is a lattice.

Proposition 12. A finite planar poset P is a lattice if and only if P is bounded.

We now have the necessary tools to prove our main result.

(Proof of Theorem 3). Let D be a diagonal rectangulation of size n and P the associated
adjacency poset with a planar embedding obtained from the dual graph construction. We
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Figure 11: The shaded region shows S(x). Since y is not contained in S(x) and the
left-pointing horizontal ray with base point at y intersects S(x), we say that x is left of y.

first demonstrate that this embedding satisfies the conditions of Definition 1. We note
that P is bounded by first observing that the rectangle x of D whose lower-left corner
coincides with the lower-left corner of the square S contains interior points below and left
of interior points of all other rectangles of D. Thus for every y ∈ [n]− {x}, we have that
x <P y. Similarly, the label of the rectangle of D whose upper-right corner coincides with
the upper-right corner of S is greater, in P , than every other element of P . The dual
graph construction places the vertices corresponding to these rectangles on the exterior
face of P . Thus P is a bounded plane poset.

Observe that any rectangle x of D is the left rectangle of at most one of the configu-
rations shown in Figure 7 and the bottom rectangle of at most one of the configurations
shown in Figure 7. Thus, x has outdegree at most two. Similarly, x has indegree at most
two.

To show that P meets Condition 2 of Definition 1, for a contradiction assume that P
contains a 2-14-3, a 3-14-2, a 2-41-3 or a 3-41-2 chain. This implies that some linear
extension σ of P contains this pattern with the “4” and “1” adjacent. By Proposition 8,
transposing the “4” and “1” in this linear extension results in a permutation σ′ such that
ρ(σ) = ρ(σ′). Since the fiber ρ−1(D) is the set of linear extensions of P , the permutation σ′

is also a linear extension of P . However, this contradicts the assumption that the “4” and
the “1” are related in P .

Since the labeling of the rectangles of D comes from the map ρ from permutations to
diagonal rectangulations, to demonstrate that P meets Condition 3 of Definition 1, we
rely on observations about this map. Consider an interior face of P . Let min(f) = x
and max(f) = y. Since P has no transitive edges, f has at least one left lateral vertex
and and least one right lateral vertex. Let xl denote the left lateral vertex satisfying
xlP xl and xr the right lateral vertex satisfying xlP xr. By Theorem 11, since no four
rectangles of a diagonal rectangulation share a vertex, rectangles x, xl, and xr form one
of the configurations shown in Figure 12. In Diagram (i), the left side of rectangle xl is
missing to indicate that the lower-left vertex of rectangle xl coincides with or is left of the
upper-left vertex of rectangle x. The bottom of rectangle xr is missing in Diagram (ii) to
similarly indicate that the lower-left vertex of rectangle xr coincides with or is below the
lower-right vertex of rectangle x.
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Figure 12: Given that x lP xl and x lP xr with xl 6= xr, in diagonal rectangulation D
rectangles x, xl and xr form one of the three configurations shown.

First assume that rectangles x, xl, and xr are in the configuration shown in Diagram (i)
of Figure 12 and let W be the vertical wall on the right side of rectangle x. The lower-right
vertex of rectangle x and the lower-left vertex of rectangle xr coincide, so rectangle x is
the lowermost rectangle on the left side of W . By the definition of ρ, rectangle x + 1
is the uppermost rectangle adjacent to the right side of W and the lower-left corner of
rectangle x + 1 is below the upper-right corner of rectangle x. Since the interiors of the
right edge of rectangle xl and the left edge of rectangle x + 1 intersect, we have that
xl <P x + 1. Since the upper-right corner of rectangle x + 1 is strictly right of W and
above rectangle xr, we have that xr <P x + 1. We wish to show that x + 1 = y, i.e.,
any other z satisfying xl <P z and xr <P z must also satisfy x + 1 6P z. To obtain a
contradiction, assume that x + 1 �P z for some upper bound z. We use an argument
similar to the argument used in the proof of Theorem 11. Since x <P z, we have that
z �P x. Thus rectangle z contains no interior points that are both left of the vertical
line containing W and below the horizontal line containing the top of rectangle x. Since
x+ 1 �P z, rectangle z contains no interior points that are both right of the vertical line
containing W and above the horizontal line containing the bottom of rectangle x + 1.
Thus z is contained in either the region left of the vertical line containing W and above
the horizontal line containing the top of rectangle x or the region right of the vertical line
containing W and below the horizontal line containing the bottom of rectangle x+1. Note
that these regions are disjoint, that rectangle xl is contained in the first region, and that
rectangle xr is contained in the second region. In P , the label of a rectangle contained in
the first region cannot cover the label of a rectangle contained in the second region and
vice versa. Thus xl ≮P z or xr ≮P z, a contradiction. Therefore y = x+ 1.

When rectangles x, xl and xr form the configuration shown in Diagram (ii) of Fig-
ure 12, by considering the horizontal wall W above rectangle x and the rightmost rect-
angle above W , rectangle x− 1, we similarly show that y = x− 1. In the case illustrated
in Diagram (iii) of Figure 12, we first observe that since D is a diagonal rectangulation,
the wall above or on the right side of rectangle x extends beyond the upper-right corner
of rectangle x. In either case, using the previous arguments, we show that y = x + 1 or
y = x− 1. Thus, in any case, {x, y} satisfies |x− y| = 1.

In every diagram of Figure 12, since each rectangle xi such that xl 6P xi <P y is
contained in the region above the horizontal line containing the top of rectangle x and
left of the vertical line containing the left side of rectangle y, rectangle xi intersects the
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diagonal of S in that region. This implies that xi < x in numerical order. Additionally,
for each xj such that xr 6P xj <P y, since rectangle xj intersects the diagonal of D in
the region right of the vertical line containing the right side of rectangle x and below the
horizontal line containing the bottom of rectangle y, we have that x < xj in numerical
order. Thus the labels of the left lateral vertices of f are numerically smaller than x and y
while the labels of the right lateral vertices of f are numerically larger than x and y.

We have shown that P satisfies each of the conditions in Definition 1, so P is a Baxter
plane poset and therefore a Baxter poset.

Now let P be a Baxter plane poset embedded as a Hasse diagram. To demonstrate
that P is an adjacency poset, we first show that the set of linear extensions of P is a
union of fibers of ρ. Let σ = σ1 · · · σn be a linear extension of P and suppose ψ =
σ1 · · ·σj−1σj+1σjσj+2 · · · σn such that ρ(σ) = ρ(ψ). We will show that ψ is also a linear
extension of P . Since ρ(σ) = ρ(ψ) and σ l ψ or ψ l σ in the right weak order, by
Proposition 8, the permutations σ and ψ are related by a single (2-41-3 ↔ 2-14-3) or
(3-41-2 ↔ 3-14-2) move. Let aσjσj+1b be an occurrence of one of these four patterns
in σ such that swapping σj and σj+1 is a move. Since σ is a linear extension of P , the
permutation ψ is also a linear extension of P if and only if σj and σj+1 are incomparable
in P . To proceed via contradiction, assume that σj and σj+1 are comparable in P .
Because σj precedes σj+1 in σ and σ is a linear extension of P , we have that σj+1 ≮P σj.
Thus σj <P σj+1. This implies that σj lP σj+1 since any σk such that σj <P σk <P σj+1

would be between σj and σj+1 in every linear extension of P (and in particular in σ).
By Condition 2 of Definition 1, at least one of {a, b} is incomparable with at least one of
{σj, σj+1}. We assume that a is incomparable with σj or σj+1 and note that if b is instead
incomparable with σj or σj+1, then the argument is analogous. Since a precedes σj in σ,
our assumption implies that either a <P σj+1 and a and σj are incomparable, or a is
incomparable with both σj and σj+1. In either case, a and σj are incomparable.

By Proposition 12, P is a lattice so we may consider S(a) and S(σj). First assume
that a is left of σj and consider the maximal chain C1 of P from a to the minimal element
of P that follows the right boundary of S(a). Let C2 denote the maximal chain of P
from σj to the minimal element of P that follows the left boundary of S(σj). Note
that C1 and C2 intersect at a ∧ σj and let C ′1 and C ′2 denote the chains from a and σj
to a ∧ σj obtained by truncating C1 and C2 respectively. Figure 13 shows an example of
the chains C ′1 and C ′2. Each edge of C ′1 and C ′2 is the edge of a face of P that lies right
of C ′1 and left of C ′2. Starting at a, traveling down C ′1 to a∧σj, label the sequence of faces
right of and adjacent to C ′1 with f1, . . . , fl. Starting at a ∧ σj, and traveling up C ′2 to σj,
continue by labeling the sequence of faces left of and adjacent to C ′2 with fl, fl+1, . . . , fm.
In Figure 13, l = 4 and m = 6. For each i ∈ [m− 1], by Condition 1 of Definition 1, the
face fi shares an edge with the face fi+1. (Otherwise C1 is not the right boundary of S(a)
or C2 is not the left boundary of S(σj).) For i ∈ [m], min(fi) is a vertex of C ′1 ∪ C ′2.
(If the edge of some face is contained in C ′1 ∪ C ′2 and that face’s minimal element is not
on C ′1 ∪ C ′2, then again either C1 is not the right boundary of S(a) or C2 is not the left
boundary of S(σj).) For each i ∈ [l− 1], min(fi) is a left lateral vertex of face fi+1. Thus,
by Condition 3 of Definition 1, we have that a < min(f1) < · · · < min(fl) = a ∧ σj in
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Figure 13: An illustration for the proof of Theorem 3.

numerical order. For each i ∈ {l+ 1, . . . ,m}, min(fi) is a right lateral vertex of face fi−1.
Thus a ∧ σj = min(fl) < min(fl+1) < · · · < min(fm) < σj in numerical order. Combining
these strings of inequalities, we conclude that a < σj in numerical order.

In a similar way, construct a sequence of faces f ′1, . . . , f
′
p using the section of the right

boundary of S(a) from a to a ∨ σj+1 and the section of the left boundary of S(σj+1)
from σj+1 to a ∨ σj+1. If a <P σj+1, then a ∨ σj+1 = σj+1. Whether a <P σj+1 or a
and σj+1 are incomparable in P , using the sequence of maximal elements of these faces
together with Condition 3 of Definition 1, we obtain a chain of inequalities and conclude
that a < σj+1 in numerical order. However, combining the conclusions that a < σj and
a < σj+1 contradicts to the assumption that aσjσj+1b is an occurrence of a 2-41-3, a
2-14-3, a 3-41-2, or a 3-14-2 pattern.

If σj is left of a in P , then to construct sequence of faces f1, . . . , fm, let C1 be the
right boundary of S(σj) and C2 be the left boundary of S(a). To construct the sequence
of faces f ′1, . . . , f

′
p, use the right boundary of S(σj+1) and the left boundary of S(a).

Using these sequences and the corresponding chains of inequalities, we conclude that in
numerical order σj < a and σj+1 < a. This conclusion again contradicts the assumption
that aσjσj+1b is an occurrence of a 2-41-3, a 2-14-3, a 3-41-2, or a 3-14-2 pattern. In
both cases, we see that σj and σj+1 are incomparable in P . Therefore the set of linear
extensions of P is a union of fibers of ρ.

Any two linear extensions of a poset are related by a sequence of adjacent transposi-
tions. Consider two linear extensions σ and ψ of P that differ by an adjacent transposi-
tion. To complete the proof that P is an adjacency poset, we will show that ρ(σ) = ρ(ψ).
Specifically, we demonstrate that σ and ψ are related by a (2-41-3↔ 2-14-3) or (3-41-2↔
3-14-2) move. Suppose that σ = σ1 · · ·σjσj+1 · · ·σn and ψ = σ1 · · · σj−1σj+1σjσj+2 · · ·σn.
Since σj precedes σj+1 in σ but σj+1 precedes σj in ψ, we have that σj and σj+1 are
incomparable in P . This implies that σj ∧ σj+1 /∈ {σj, σj+1} and σj ∨ σj+1 /∈ {σj, σj+1}.
Without loss of generality, up to swapping σ and ψ, we can assume that σj is left of σj+1

in P . Consider sequences of faces f1, . . . , fm, and f ′1, . . . , f
′
p, defined as in the previous

paragraph, replacing a with σj. Using these sequences of adjacent faces and the resulting
inequalities, we obtain σj < σj ∧ σj+1 < σj+1 and σj < σj ∨ σj+1 < σj+1 in numerical
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order. By definition, σj ∧ σj+1 <P σj and σj ∧ σj+1 <P σj+1, so σj ∧ σj+1 precedes σj
and σj+1 in σ and ψ. Similarly, σj and σj+1 precede σj ∨ σj+1 in σ and ψ. Thus the
sequence (σj ∧ σj+1)σjσj+1(σj ∨ σj+1) is a 2-41-3, a 2-14-3, a 3-41-2, or a 3-14-2 pattern
in σ.

5 Twisted Baxter and Baxter Permutations from Baxter Posets

Let P be a poset. We say that a subset I of the elements of P is an order ideal of P if
and only if for every a ∈ I, if b <P a, then b ∈ I. We say that an ordering a1 · · · ai of a
subset of the elements of P is a partial linear extension of P if {a1, . . . , aj} is an order
ideal of P for all j ∈ [i]. Given a poset P on [n], the permutation σ is a linear extension
of P if and only if σ satisfies the definition of a partial linear extension. Given a partial
linear extension σ1 · · ·σi−1 of P , we define Ai ⊆ [n] by u ∈ Ai if and only if σ1 · · ·σi−1u is
a partial linear extension of P . We label this set Ai because it forms an antichain (a set
of pairwise incomparable elements) of P .

Theorem 13. Given a Baxter poset P , the unique twisted Baxter permutation σ =
σ1 · · ·σn that is a linear extension of P is constructed by choosing σi = min(Ai) for
each i ∈ [n].

Note that min(Ai) denotes the smallest, in numerical order, element of Ai. In a Hasse
diagram embedding of a Baxter plane poset, this selection is equivalent to choosing the
leftmost (using the definition of left of from Section 4) element of Ai for each i ∈ [n].

Proof. Let P be a Baxter poset and D the associated diagonal rectangulation. By The-
orem 3, the total order σ is a linear extension of P if and only if ρ(σ) = D. Since ρ
restricts to a bijection between diagonal rectangulations and twisted Baxter permuta-
tions (Theorem 7), there is a unique linear extension σ = σ1 · · ·σn of P that is a twisted
Baxter permutation. To construct σ one entry at a time, we must describe a method for
choosing σi from Ai. By Proposition 9, the permutation σ is the minimal element of the
right weak order such that ρ(σ) = D. That is, σ is the linear extension of P that contains
the fewest inversions. Therefore, σi = min(Ai) for all i ∈ [n].

The following results will be used in the proof of Theorem 6. The next lemma is
equivalent to Corollary 4.2 in [11] which states that σ is a Baxter permutation if and only
if σ−1 is a Baxter permutation.

Lemma 14. The permutation σ is a Baxter permutation if and only if σ contains no
subsequence σiσjσkσl such that |σl − σi| = 1 and the subsequence is an occurrence of the
pattern 2-4-1-3 or the pattern 3-1-4-2.

By Theorem 7, given a Baxter poset P , there exists a unique linear extension of P
that is a Baxter permutation.

Lemma 15. Let P be a Baxter plane poset and σ be the unique Baxter permutation that
is a linear extension of P . Then σ respects the arrows of P .
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Proof. Let σ denote a linear extension that does not respect the arrow of some face f of P .
By Condition 3 of Definition 1, we have that min(f) and max(f) differ in value by one.
Since σ does not respect the arrow of f , there exists a subsequence min(f)σiσj max(f)
of σ such that σi and σj are contained in the boundary of f , one a left lateral vertex of f ,
the other a right lateral vertex of f and this subsequence is an occurrence of a 2-4-1-3 or
a 3-1-4-2 pattern. Thus, by Lemma 14, σ is not a Baxter permutation.

We make several useful observations about the map ρ. Given a diagonal rectangula-
tion D, if W is a horizontal wall of D and rectangle a is the leftmost rectangle below and
adjacent to W , then rectangle a− 1 is the rightmost rectangle above and adjacent to W
and a precedes a − 1 in every permutation σ such that ρ(σ) = D. Each rectangle below
and adjacent to W has a label larger than a and each rectangle above and adjacent to W
has a label smaller than a − 1. Similarly, if W is a vertical wall of D and rectangle a is
the lowermost rectangle left of and adjacent to W , then rectangle a+ 1 is the uppermost
rectangle right of and adjacent to W and a precedes a + 1 in every permutation σ such
that ρ(σ) = D. Additionally, every rectangle left of and adjacent to W has label smaller
than a and every rectangle right of and adjacent to W has label larger than a+ 1.

The lemma below follows from the definition of a Baxter permutation, the above
observations, and Lemma 14.

Lemma 16. Let D be a diagonal rectangulation and σ = σ1 · · ·σn ∈ Sn such that
ρ(σ) = D. If σ is a Baxter permutation, then σ satisfies the following properties:

• If rectangles σi and σj are adjacent to a horizontal wall W with rectangle σi below W
and rectangle σj above W , then σi precedes σj in σ and

• If rectangles σi and σj are adjacent to a vertical wall W with rectangle σi left of W
and rectangle σj right of W , then σi precedes σj in σ.

To complete the proof of Theorem 6, we refer to a second family of rectangulations,
called generic rectangulations. We need generic rectangulations exclusively to prove
Lemma 19, a lemma about diagonal rectangulations, so we only provide the required
background related to generic rectangulations from [13]. We say that a rectangulation R
is a generic rectangulation if and only if there exists no set of four rectangles of R that
share a vertex. The set of diagonal rectangulations with n rectangles is a subset of the
set of generic rectangulations with n rectangles. The right diagram of Figure 14 (ignoring
the labels) shows a generic rectangulation that is not a diagonal rectangulation.

As with diagonal rectangulations, there is a map γ that takes a permutation on [n] to
a generic rectangulation of size n (see [13, Section 3]) and restricts to a bijection between
a subset of Sn and generic rectangulations containing n rectangles. The map γ labels
each rectangle of the constructed generic rectangulation with an element of [n]. Given
a generic rectangulation R, this labeling of rectangles is unique, i.e., if σ, ψ ∈ Sn such
that γ(σ) = γ(ψ), then the labeling of the rectangles obtained from γ(σ) agrees with the
labeling of the rectangles obtained from γ(ψ). Thus we can refer to the rectangle of R
with label i as rectangle i.
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Figure 14: The diagonal rectangulation ρ(52147863) and the generic rectangulation
γ(52147863).

Given a generic rectangulation R and an interior wall W of R, the wall shuffle of W ,
denoted σW , records the order in which the rectangles adjacent to W appear along W .
Specifically, to find the wall shuffle of W , temporarily label each vertex contained in W
as follows. If the vertex is the upper-left vertex of some rectangle x, then label the vertex
with x. Otherwise, the vertex is the lower-right vertex of some rectangle y, and we label it
with y. When W is horizontal, the left-to-right ordering of the vertices along W provides
an ordering of these vertex labels, and this ordering is σW . When W is vertical, the
bottom-to-top order of these labels along W is σW .

The map γ constructs a generic rectangulation R from a permutation in two steps.
Given σ ∈ Sn, we first construct ρ(σ). For each wall of ρ(σ), the vertices are labeled
as described above. Next, the vertices and the attached edges are reordered along each
wall so that the wall shuffle of each wall is a subsequence of σ. In the left diagram of
Figure 14, for each rectangle of ρ(52147863), the upper-left vertex is labeled in red and
the lower-right vertex is labeled in blue. The vertices and attached edges along two of the
vertical walls are reordered to obtain γ(52147863), which is shown in the right diagram.
For us, the key point is that, to specify a generic rectangulation, it suffices to identify
the associated diagonal rectangulation and an order of the vertices along each wall (i.e.,
a wall shuffle for each wall).

We say that a permutation σ = σ1 · · ·σn avoids the pattern 2-4-51-3 and the pattern
4-2-51-3 if there does not exist i < j < k < k+ 1 < l such that σk+1 < σi < σl < σj < σk
or σk+1 < σj < σl < σi < σk. Similary, we say that σ avoids the pattern 3-51-2-4
and the pattern 3-51-4-2 if there does not exist i < j < j + 1 < k < l such that
σj+1 < σk < σi < σl < σj or σj+1 < σl < σi < σk < σj.

Theorem 17 ([13, Theorem 4.1]). The map γ restricts to a bijection between permuta-
tions of [n] that avoid the patterns {2-4-51-3, 4-2-51-3, 3-51-2-4, 3-51-4-2} and generic
rectangulations containing n rectangles.

We say that two permutations σ and ψ are related by a (2-4-15-3 ↔ 2-4-51-3) move
if one of these permutations contains a subsequence σi1σi2σi3σi4σi5 that is an occurrence
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of the pattern 2-4-51-3 and switching the positions of the adjacent entries σi3 and σi4 in
that permutation results in the other permutation. We say that σ and ψ are related by
a (4-2-15-3↔ 4-2-51-3) move, a (3-15-2-4↔ 3-51-2-4) move, or a (3-15-4-2↔ 3-51-4-2)
move if σ and ψ satisfy the analogous conditions with these patterns.

Proposition 18 ([13, Proposition 4.3]). Two permutations σ and ψ satisfy γ(σ) = γ(ψ)
if and only if they are related by a sequence of (2-4-15-3↔ 2-4-51-3) moves, (4-2-15-3↔
4-2-51-3) moves, (3-15-2-4↔ 3-51-2-4) moves, and (3-15-4-2↔ 3-51-4-2) moves.

Given a Baxter permutation σ, the conditions given in Lemma 16 specify the wall
shuffles of the associated generic rectangulation γ(σ). As a result, we can make use of
generic rectangulations to prove the following lemma.

Lemma 19. Let D be a diagonal rectangulation. Then there is a unique permutation σ
such that ρ(σ) = D and such that σ satisfies the properties given in Lemma 16. This
permutation σ is the Baxter permutation associated with D.

Proof. Let D be a diagonal rectangulation and σ the unique Baxter permutation such that
ρ(σ) = D. The permutation σ satisfies the properties given in Lemma 16. Assume that
there exists a second permutation ψ such that ρ(ψ) = D and ψ satisfies the properties
given in Lemma 16. Since ρ(σ) = ρ(ψ) and the wall shuffles of γ(σ) agree with the wall
shuffles of γ(ψ), we have that γ(σ) = γ(ψ). Thus, by Proposition 18, the permutations σ
and ψ are related by a sequence of adjacent transpositions in which each transposition is a
(2-4-15-3↔ 2-4-51-3) move, a (4-2-15-3↔ 4-2-51-3) move, a (3-15-2-4 ↔ 3-51-2-4) move,
or a (3-15-4-2↔3-51-4-2) move. This implies that some subsequence of σ is an occurrence
of one of these eight patterns. First, assume that σiσjσkσk+1σl is an occurrence of the
pattern 2-4-15-3 in σ. This means that σk < σi < σl < σj < σk+1 in numerical order.
However, this implies that the subsequence σjσkσk+1σl is an occurrence of the pattern
3-14-2 in σ, contradicting our assumption that σ is a Baxter permutation. If σ contains
an occurrence of one of the other seven patterns, then we similarly show that σ is not a
Baxter permutation. We conclude that the unique permutation mapping to D under ρ
and satisfying the properties of Lemma 16 is the Baxter permutation σ.

Lemma 20. Let D be a diagonal rectangulation with Baxter plane poset P . If a linear
extension σ of P respects the arrows of P then σ satisfies the properties of Lemma 16.

Proof. To show that σ satisfies the properties of Lemma 16, we will show that σ satisfies
these properties for each possible configuration of rectangles adjacent to the wall.

First assume that on at least one side of the wallW there is only one adjacent rectangle.
Let W be a horizontal wall with a single rectangle, rectangle r1, below W and a sequence
of rectangles r2, . . . , rl above W . For all i ∈ {1, . . . , l− 1}, an interior point of rectangle i
is strictly below and left of an interior point of rectangle i + 1. Thus, by the definition
of the adjacency poset and Theorem 3, we have that r1 <P r2 <P · · · <P rl. If W is
horizontal with a single rectangle, rectangle rl, above W and a sequence of rectangles
r1, . . . , rl−1 below W , then we reach the same conclusion. In either case, in P , the labels
of the rectangles adjacent to W form a chain and, in this chain, all labels of rectangles
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Figure 15: Illustrations for the proof of Lemma 20.

below W precede all labels of rectangles above W . When W is a vertical wall with a
single rectangle either left or right of W , the argument is the same. In these cases, we
conclude that the labels of rectangles adjacent to W form a chain in P and the labels of
rectangles left of W precede the labels of rectangles right of W in this chain. Thus every
linear extension of P satisfies the properties of Lemma 16 for walls that are adjacent to
exactly one rectangle on at least one side.

Now assume that on both sides of the wall W there are at least two adjacent rectangles.
We will prove the claim that if W is a horizontal wall, then the labels of rectangles adjacent
to W form a subset of the labels contained in the boundary of some face of P . Let W
be horizontal and, as illustrated in the left diagram of Figure 15, label from left to right
the rectangles adjacent to and below W with the sequence b1, . . . , bi. Label the rectangles
adjacent to and above W , again from left to right, a1, . . . , aj. Since D is diagonal and
rectangles b1 and a1 are the leftmost rectangles adjacent to W , these rectangles form
the configuration shown in Diagram (i) of Figure 7. Thus, by Theorem 11, we have that
b1lP a1. If a1 <P b2, then there exists a sequence of xks such that a1lP x1lP · · ·lP xllb2.
Since b1 lP a1, and b2 <P aj, for each k ∈ [l] we have that b1 <P xk <P aj. Thus each
rectangle xk is contained either in the region above W and left of the line containing
the left side of rectangle aj or below W and right of the line containing the right side
of rectangle b1. But in P , no rectangle in the first of these regions covers a rectangle in
the second of these regions. We see by this contradiction that a1 ≮P b2. Since b1 <P b2
and a1 ≮P b2, there exists some c such that b1 lP c and c 6= a1. By Theorem 11,
rectangle c is adjacent to the right side of rectangle b1. Let f denote the face of P with
min(f) = b1, and a1 and c respectively left and right lateral vertices of f . Since rectangles
b1, a1, and c form a configuration shown in Diagram (ii) or (iii) of Figure 12, we have
that max(f) = aj (as shown in the proof of Theorem 3). Observe that for each k ∈ [i],
the lower-left vertex of rectangle bk is strictly below and left of the upper-right vertex of
rectangle bi so bk 6P bi <P aj. Similarly, for each l ∈ [j], we have that al 6P aj.

For a contradiction, assume that there exists a label of a rectangle adjacent to W
that is not a lateral vertex of f . We consider the case in which some al is not a lateral
vertex of f , as illustrated in the right diagram of Figure 15. Since al < b1 in numerical
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order, al is contained in the connected component of the interval (b1, aj) that contains
the left lateral vertices of f . Since al is not a left lateral vertex of f , the element al
is a left lateral vertex of some other face f ′. Let d denote a right lateral vertex of f ′.
The planarity of the embedding of P implies that d satisfies b1 <P d. Thus d ≮P b1,
implying that no interior points of rectangle d are strictly left of and below the upper-
right corner of rectangle b1. Additionally, al ≮P d so no interior points of rectangle d
are strictly right of and above the lower-left corner of rectangle al. Since d and al are
respectively right and left lateral vertices of f ′, we have that al < d in numerical order.
This implies that rectangle d is contained in the section of the diagonal rectangulation D
below the horizontal line containing W and right of the vertical line containing the right
side of rectangle b1. Thus b1 < d in numerical order. However, we observe that b1 is
contained in the right boundary of S(d). Using the right boundary of S(d) from d to b1
and an argument similar to the argument in the second half of the proof of Theorem 3,
we construct a chain of inequalities of minimal face elements to demonstrate that d < b1
in numerical order, a contradiction. We conclude that each al for l ∈ [j] is a left lateral
vertex of f . A similar argument demonstrates that each bk for k ∈ [i] is a right lateral
vertex of f . Thus, the claim holds.

Since W is horizontal, b1 − 1 = aj, implying f contains a left-pointing arrow. By
assumption, σ respects the arrow of f so each bk occurs before every al in σ, i.e., for every
horizontal wall, σ satisfies the first condition of Lemma 16.

A virtually identical argument demonstrates that if W is vertical, and on both sides
of W there are at least two adjacent rectangles, then σ satisfies the second condition of
the lemma.

Proof of Theorem 6. Let P be a Baxter poset, X be the set of linear extensions of P that
respect the arrows of P and let σ be the Baxter permutation that is a linear extension
of P . By Lemma 15, the Baxter permutation σ is in X. By Lemma 20, each element
of X satisfies the properties given in Lemma 16. However, by Lemma 19, only one linear
extension of P satisfies these properties so X = {σ}.
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