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Abstract

Strong placement games (SP-games) are a class of combinatorial games whose
structure allows one to describe the game via simplicial complexes. A natural
question is whether well-known parameters of combinatorial games, such as “game
value”, appear as invariants of the simplicial complexes. This paper is the first step
in that direction. We show that every simplicial complex encodes a certain type of
SP-game (called an “invariant SP-game”) whose ruleset is independent of the board
it is played on. We also show that in the class of SP-games isomorphic simplicial
complexes correspond to isomorphic game trees, and hence equal game values. We
also study a subclass of SP-games corresponding to flag complexes, showing that
there is always a game whose corresponding complex is a flag complex no matter
which board it is played on.

Mathematics Subject Classifications: 91A46, 05E45, 13F55

1 Introduction

The purpose of this paper is to unravel some of the algebraic structure underlying com-
binatorial games. We show that each simplicial complex is the legal complex of some
invariant strong placement game (iSP-game) and board. One implication is that in most
situations when studying strong placement games (SP-games) it is enough to consider
those with invariance. These results will for example make it easier to study whether
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each game value under normal play can be achieved by an SP-game, which would affect
the study of combinatorial games in general.

In [12] we initiated the idea of using simplicial complexes to algebraically describe
SP-games, a class of combinatorial games. To each SP-game we can assign two simplicial
complexes, one representing all legal positions, the so called legal complex, and one
representing the minimal illegal positions, the illegal complex. One of the main ques-
tions is what complexes appear as game complexes. In Proposition 18 we show that every
simplicial complex is both a legal and an illegal complex of some SP-game and board.
The rulesets of these games can be quite complex though and depend highly on the board
on which the game is being played. Thus we introduce invariance for SP-games, which,
in a sense, forces rulesets to be uniform. Invariance is a concept that was introduced for
subtraction games (see for example [9], [19], [20]), where it is defined slightly differently
due to the different class of games, but has the same intent, namely that the ruleset does
not depend on the board. Similar to the previous question, we are interested in which
simplicial complexes come from invariant SP-games. Theorem 28 shows that every sim-
plicial complex without an isolated vertex is the illegal complex of some iSP-game, and
also that every simplicial complex is the legal complex of an iSP-game. The constructions
given in all cases prove the stronger result that such SP-games exist given any bipartition
of the vertices of the simplicial complex (see Theorems 29 and 33) into Left and Right
positions. This construction then allows us to show that for every SP-game there exists
an iSP-game such that their game trees are isomorphic. This in turn implies that their
game values are the same under both normal and misère winning conditions. Thus it is
enough to only consider iSP-games in most situations.

Finally, we restrict to independence games, those games for which the ruleset played
on any board gives an illegal complex which is a graph. This class includes many games
actually played, such as Snort, Col, and Domineering, but not NoGo. We show that
any SP-game whose illegal complex is a graph is literally equal to an invariant indepen-
dence game.

In the next two subsections, we give the background in combinatorial game theory
and algebra needed for the paper. Please see any of [1, 3, 22] for further information
in combinatorial game theory and [6, 14] for the algebra involved. We then show that
each simplicial complex is a game complex, and finally in Section 2 we consider invariant
SP-games, and independence games in Section 3.

1.1 Combinatorial Game Theory

A combinatorial game is a 2-player game with perfect information and no chance, where
the two players are Left and Right (denoted by L and R respectively) and they do not
move simultaneously. For the purposes of this paper, the winning condition is irrelevant
as long as it does not contradict the other conditions for the games.

We denote a combinatorial game by its name in Small Caps.
In this paper, a board will be a finite graph. The pieces, which can be thought of as

tokens or as subgraphs of the board, will be placed on a non-empty collection of vertices
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— exactly how is given by the ruleset. For a game G consisting of a ruleset R played on
a board B we will use the notation G = (R,B). A position is a configuration of pieces
on the board. A position that can be reached through a sequence of legal moves is called
a legal position, otherwise we call it an illegal position. A basic position is a board
with only one piece placed.

Given a game G, the game tree of G is a directed graph, which is a tree, with the

edges labelled L or R. The vertices of the tree correspond to positions and X
L→ Y if

there is a legal move for Left from position X to Y . Similarly edges labelled with an R
represent moves by Right. The games we consider all have finite game trees. Two games
whose game trees have isomorphic structure are called literally equal. Note that two
games that are literally equal will be equal under any winning condition.

Brown et al. [5] introduced a subclass of combinatorial games, which they called place-
ment games. Their conditions are slightly weaker than what is required for this work, and
we thus call our games “strong placement games”.

Definition 1. A strong placement game (SP-game) is a combinatorial game which
satisfies the following:

(i) The board is empty at the beginning of the game.

(ii) Players place pieces on empty spaces of the board according to the rules.

(iii) Pieces are not moved or removed once placed.

(iv) The rules are such that if it is possible to reach a position through a sequence of
legal moves, then any sequence of moves leading to this position consists of legal
moves.

Note that condition (iv) in the above definition is necessary for each position to be
independent of the order of moves, which results in commutativity when representing
positions by monomials (see Section 1.3) and for the hypergraphs representing the game
being simplicial complexes.

This condition also implies that any position, whether legal or illegal, in an SP-game
can be decomposed into basic positions.

The rulesets in Theorem 2 together with a board are examples of SP-games and
will be used throughout the document. The first two have been introduced early in the
development of game theory (see [3]), but, surprisingly, not much is known about them.

Example 2. In Snort, players place a piece on a single vertex which is not adjacent to
a vertex containing a piece from their opponent.

In Col, players place a piece on a single vertex which is not adjacent to a vertex
containing one of their own pieces.

In NoGo (see [8]), players place a piece on a single unoccupied vertex. At every point
in the game, for each maximal group of connected vertices of the board that contain pieces
placed by the same player, at least one of these needs to be adjacent to an empty vertex.
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In Domineering (see [2] and [18]), which is played on grids, both players place
dominoes. Left may only place vertically, and Right only horizontally. The vertices of the
board are the squares of the grid, and each piece occupies two vertices.

Other examples of SP-games are Node-Kayles and Arc-Kayles (see for example
[4], [13], [21]).

Many combinatorial games, especially SP-games, have a natural tendency to break
up into smaller, independent components as play progresses. For example, after several
moves the empty spaces could be split into many disconnected components and a player,
on their move, then has to choose a component to move in. From this, we define a sum on
games as follows: The disjunctive sum G1 + G2 of two games G1 and G2 is the game
in which at each step the current player can decide to move in either game, but not both.

Depending on a fixed winning condition, combinatorial games can be divided into
equivalence classes. The equivalence class a game belongs to is called its game value.
Game values form a partially ordered semi-group under disjunctive sum. When a game
consists of the disjunctive sum of two sub-games on different boards, then to find the game
value it is sufficient to calculate the game values of the summands and taking advantage
of the additive structure. This is a very useful concept in combinatorial game theory. For
more details see [22].

1.2 Combinatorial Commutative Algebra

Simplicial complexes are one of the main constructs we use to study SP-games. We begin
by introducing the required concepts.

Definition 3. An (abstract) simplicial complex ∆ on a finite vertex set V is a set of
subsets, called faces, of V with the conditions that if A ∈ ∆ and B ⊆ A, then B ∈ ∆.
The facets of a simplicial complex ∆ are the maximal faces of ∆ with respect to inclusion.
A non-face of a simplicial complex ∆ is a subset of its vertices that is not a face.

Note that a simplicial complex with a fixed vertex set is uniquely determined by its
facets. Thus a simplicial complex ∆ with facets F1, . . . , Fk is denoted by ∆ = 〈F1, . . . , Fk〉.
The vertex set of ∆ is also denoted as V (∆).

A simplicial complex of the form ∆ = 〈{i1, i2, . . . , ir}〉, where V (∆) = {i1, i2, . . . , ir},
is called a simplex.

Definition 4. Given a face F of a simplicial complex ∆, its dimension dim(F ) is |F |−1.
The dimension of the simplicial complex ∆ is the maximum dimension of any of its faces.
A simplicial complex ∆ is called pure if all its facets are of the same dimension. The
k-skeleton ∆[k] of a simplicial complex ∆ is the simplicial complex whose facets are the
k-dimensional faces of ∆.

The other structures used to study SP-games are square-free monomial ideals, which
we introduce now.
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Definition 5. Let k be a field and S the polynomial ring k[x1, . . . , xn]. A product
xa1

1 . . . xann ∈ S, where the ai are non-negative integers, is called a monomial. Such a
monomial is called square-free if each ai is either 0 or 1.

Definition 6. Let k be a field and S the polynomial ring k[x1, . . . , xn]. A monomial
ideal of S is an ideal generated by monomials in S. A monomial ideal is called a square-
free monomial ideal if it is generated by square-free monomials.

Let k be a field and S = k[x1, . . . , xn] a polynomial ring. There is a one-to-one
correspondence between subsets {i1, . . . , ir} of [n] and square-free monomials xi1 · · ·xir of
S. Using this observation we can associate to a square-free monomial ideal two unique
simplicial complexes: the facet complex and the Stanley-Reisner complex.

Definition 7. The facet complex of a square-free monomial ideal I of S, denoted by
F(I), is the simplicial complex whose facets correspond to the square-free monomials
in the minimal generating set of I. The Stanley-Reisner complex of a square-free
monomial ideal I of S, denoted by N (I), is the simplicial complex whose faces correspond
to the square-free monomials not in I. In other words,

F(I) = 〈{i1, . . . , ir} | xi1 · · · xir minimal generator of I〉 and

N (∆) = 〈{i1, . . . , ir} | xi1 · · ·xir 6∈ I〉.

This correspondence works in the opposite direction as well.

Definition 8. The facet ideal of a simplicial complex ∆, denoted by F(∆), is the ideal
of S generated by the monomials corresponding to the facets of ∆. The Stanley-Reisner
ideal of a simplicial complex ∆, denoted by N (∆), is the ideal of S generated by the
monomials corresponding to the minimal non-faces of ∆. In other words,

F(∆) = (xi1 · · ·xir | {i1, . . . , ir} facet of ∆) and

N (∆) = (xi1 · · ·xir | {i1, . . . , ir} 6∈ ∆) .

Note that although it is common that for a given simplicial complex ∆ the vertex
set simply consists of the 0-dimensional faces of ∆, this is not always the case. Due to
the difference in underlying rings, successively applying the Stanley-Reisner and facet
operators would result in a different simplicial complex.

1.3 Game Complexes and Ideals

We now introduce the construction of simplicial complexes and square-free monomial
ideals which are related to SP-games. Unless otherwise specified, let the underlying ring
be S = k[x1, . . . , xm, y1, . . . , yn], where k is a field, m the number of basic positions with
a Left piece, and n the number of basic positions with a Right piece.

A square-free monomial z of S represents a position P in the game if it is the product
over those xi and yj such that Left has played in the basic position i and Right has played
in the basic position j in order to reach P . By condition (iv) in Theorem 1, the order of
moves to reach P does not matter, thus we have commutativity.
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Example 9. Consider the game O12, in which Left claims a single vertex, and Right
two adjacent vertices, played on P4. We number the vertices consecutively from one end
as 1, 2, 3, 4. The Left basic position i is the position in which Left has played on vertex
i, and the Right basic position j is the position in which Right has played on vertices
j and j + 1. Since Left has 4 basic positions, and Right has 3, the underlying ring is
S = k[x1, x2, x3, x4, y1, y2, y3]. The position

L R R

1 2 3 4

is represented by the monomial x1y3.

A legal position is called a maximal legal position if placing any further piece is
illegal, i.e. it is not properly contained in any other legal position.

If we sort the monomials representing illegal positions by divisibility, the positions cor-
responding to the minimal elements are called minimal illegal positions. Equivalently,
an illegal position is a minimal illegal position if any proper subset of the pieces placed
forms a legal position.

Definition 10. [12] If (R,B) is an SP-game, then

• The legal ideal, LR,B, is the ideal of S generated by the monomials representing
maximal legal positions.

• The illegal ideal, ILLR,B, is the ideal generated by the monomials representing
minimal illegal positions.

• The legal complex, ∆R,B, is the facet complex of the legal ideal.

• The illegal complex, ΓR,B, is the facet complex of the illegal ideal.

Some of the results we discuss in this paper hold for both the legal and illegal com-
plex of some game and board. For brevity, we will use the term game complex when
discussing a simplicial complex which is either a legal or illegal complex.

Note that condition (iv) in Theorem 1 implies that the order of moves does not matter,
which gives us commutativity when representing positions by monomials. Thus the legal
and illegal ideal are indeed commutative ideals. The condition also implies that given any
legal position, any subset of the pieces played gives a legal position as well, and thus the
hypergraphs representing the game are indeed simplicial complexes.

The next example demonstrates these concepts. This also illustrates again that the
vertices of the complexes are the basic positions, not the vertices of the board.

Example 11. Consider O12 played on P3. Similar to Theorem 9 the underlying ring is
S = k[x1, x2, x3, y1, y2].
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x2

x3

x1

y1

y2

Figure 1: The legal complex ∆O12,P3

The maximal legal positions are represented by the monomials x1x2x3, x1y2, and x3y1.
Thus we have the legal ideal

LO12,P3 = (x1x2x3, x1y2, x3y1).

The legal complex is given in Fig. 1.
The minimal illegal positions are represented by the monomials x1y1, x2y1, x2y2, x3y2,

and y1y2. Thus we have the illegal ideal

ILLO12,P3 = (x1y1, x2y1, x2y2, x3y2, y1y2).

The illegal complex is given in Fig. 2.

x1

y1

x2

y2

x3

Figure 2: The illegal complex ΓO12,P3

This example also illustrates the following result. See [12] for more details.

Remark 12. Note that the faces of the legal complex ∆R,B represent the legal positions of
(R,B), while the facets of ΓR,B represent the minimal illegal positions. In short we have

(1) LR,B = F(∆R,B),

(2) ILLR,B = F(ΓR,B) = N (∆R,B),

or equivalently

(1) ∆R,B = F(LR,B) = N (ILLR,B),
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(2) ΓR,B = F(ILLR,B).

This will be used throughout this paper.

This relationship in particular also gives that ΓR,B = F(N (∆R,B)), allowing us to
move from the legal complex to the illegal and vice versa using the facet and Stanley-
Reisner correspondences. Note though that this relationship only holds if we let the vertex
set of the game complexes be all basic positions rather than just the 0-dimensional faces.

Example 13. Consider the SP-ruleset R in which both players claim a single vertex, but
Right may not place on vertex of degree 1, while Left has no restrictions for placement.
The legal complex for playing on B = P3 is then 〈x1x2x3, x1y2x3〉 with the underlying
ring being S = k[x1, x2, x3, y1, y2, y3]. The illegal complex is Γ = 〈y1, y3, x2y2〉.

If we would let the underlying ring for Γ be S ′ = k[x2, y1, y2, y3], then N (F(Γ)) =
〈x2, y2〉. This is the legal complex of R played on a single vertex, which is a very different
game from R played on B as Left no longer has the two guaranteed moves at the ends.

Essentially, for the legal complex removing elements from the vertex set which are
not 0-dimensional faces corresponds to removing illegal basic positions, or equivalently
isolated vertices in the illegal complex, and does not change the game in any significant
way. As seen in the example above, the same is not true though for the vertex set of
the illegal complex: removing elements from the vertex set of the illegal complex which
do not appear in any facets would imply removing a basic position which is always legal,
thus changing the game significantly. For generality, we will keep letting the vertex set
be the set of basic positions.

It is important to note that the legal and illegal complexes and corresponding ide-
als have an extra layer of structure. The monomials have elements {x1, x2, . . . , xm} and
{y1, y2, . . . , yn} and the complexes have their elements partitioned into those correspond-
ing to the Left and Right basic positions. Thus, when showing a simplicial complex is
equal to a game complex, we must also specify the partition.

In general, we call a simplicial complex whose vertex set is bipartitioned into sets L
and R an (L,R)-labelled simplicial complex.

We occasionally also talk about isomorphic boards, with which we mean the boards
are isomorphic as graphs and contain the same pieces. For SP-games we formally define
a board isomorphism as follows.

Definition 14. Let B1 and B2 be two boards, potentially not empty. A map φ : B1 → B2

is a board isomorphism if

1. φ is a graph isomorphism, that is a bijection of the vertex sets of B1 and B2 such
that {v1, v2} is an edge of B1 if and only if {φ(v1), φ(v2)} is an edge of B2;

2. The vertex v of B1 contains a Left piece if and only if the vertex φ(v) of B2 contains
a Left piece; and

3. The vertex w of B1 contains a Right piece if and only if the vertex φ(w) of B2

contains a Right piece.
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The following proposition shows that two games with isomorphic legal complexes have
isomorphic game trees, and as a consequence the same game value under most winning
conditions (such as normal play and misère, see [22]). Thus using simplicial complexes
helps us to identify when two games are literally equal.

Proposition 15 (Isomorphic Game Trees of SP-Games). If two SP-games (R1, B1)
and (R2, B2) have isomorphic legal complexes, then their game trees are isomorphic, i.e.
they are literally equal.

Proof. We prove that isomorphic legal complexes imply isomorphic game trees by induc-
tion on the size of the faces (i.e. the number of pieces in a position). The empty face (i.e.
empty board) corresponds to the root of the game tree, thus is trivially the same for both
games.

Now assume that the game trees are isomorphic up to positions with k pieces played.
Consider a position P1 in the game G1 played on B1 with k pieces played. Let F1 be

the face of ∆G1,B1 (of dimension k − 1) corresponding to P1. Since ∆G1,B1 and ∆G2,B2

are isomorphic, there exists a face F2 ∈ ∆G2,B2 (of dimension k − 1) isomorphic to F1,
corresponding to a position P2 of G2, which also has k pieces placed.

Now let P ′1 be any option of P1 and F ′1 be the corresponding face in ∆G1,B1 . Then
there exists a vertex v such that F ′1 = F1 ∪ {v}. Let F ′2 be the face of ∆G2,B2 isomorphic
to F ′1. Then there exists a vertex w (corresponding to v) such that F ′2 = F2 ∪ {w}. Thus
the position P ′2 corresponding to F ′2 is an option of P2.

Further, since the legal complexes have the same bipartition, we have that the following
are equivalent:

1. The position P ′1 is a Left- (Right-)option of P1.

2. The vertex v belongs to L (R).

3. The vertex w belongs to L (R).

4. The position P ′2 is a Left- (Right-)option of P2.

Thus for any option of P1 there exists an option of P2 and vice-versa, which shows
that the game trees of G1, B1 and G2, B2 are isomorphic up to positions of k + 1, and by
induction they are entirely isomorphic.

Note though that the converse of Theorem 15 is not true, as the following example
demonstrates. We are grateful to Alex Fink for providing this example.

Example 16 (Alex Fink). Consider a ruleset R in which all pieces occupy a single vertex,
have to be adjacent to all previously placed ones, at most two pieces may be placed, and
only Left may play. Then ∆R,B

∼= B for all boards B. In particular, consider B1 being
a disjoint union of two 3-cycles, and B2 being a 6-cycle with labels for basic positions as
below.
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B1 B2

a b d e

a

f
c f

e

d

c

b

The game trees for (R,B1) and (R,B2) (shown below on the top and bottom respec-
tively) are isomorphic even though the legal complexes are not.

a b c d e f

efdfefdedfdebcacbcabacab

a b c d e f

faefefdedecdcdbcbcabafab

This also gives an indication that the legal complex of an SP-game is a better repre-
sentative for the SP-game than the tree as it conveys more structure.

On the other hand, if the illegal complexes are isomorphic, it is not always true that
the game trees are isomorphic. For example, consider the ruleset R in which neither player
can place on a vertex of degree 1. We then have

ΓR,P2 = 〈x1, x2, y1, y2〉 ∼= ΓR,P3 = 〈x1, x3, y1, y3〉.

The legal complexes ∆R,P2 = ∅ and ∆R,P3 = 〈x2, y2〉 are not isomorphic. And since there
are no legal moves in (R,P2), but there are in (R,P3), their game trees are not isomorphic
either. Another occurrence of this is if there are moves that are always playable in one
game, but these moves do not occur at all in the second game.

Finally, we are able to characterize what the legal complex of the disjunctive sum of
two games looks like. Given two simplicial complexes ∆ and ∆′ their join ∆ ∗∆′ is the
simplicial complex whose facets are all the unions of a facet of ∆ with a facet of ∆′.

Proposition 17. Let (R,B) and (R′, B′) be two SP-games with legal complexes ∆R,B and
∆R′,B′. Then

∆(R,B)+(R′,B′) = ∆R,B ∗∆R′,B′

is the legal complex of the disjunctive sum (R,B) + (R′, B′).

Proof. A maximal legal position in the game (R,B)+(R′, B′) is one where both the pieces
placed in (R,B) and the ones placed in (R′, B′) form maximal legal positions. Thus a
facet in the legal complex of (R,B) + (R′, B′) is a union of a facet of ∆R,B and a facet of
∆R′,B′ .
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A natural and important question is whether any given simplicial complex ∆ is the
legal or illegal complex of some game. We will answer this question positively in both
cases. This will allow us to view properties of games as properties of simplicial complexes
and vice-versa. We are able to show this for any bipartition of the vertices into Left L
and Right R, where L or R could even be the empty set.

Proposition 18 (Games from Simplicial Complexes). Given an (L,R)-labelled sim-
plicial complex ∆, there exist two SP-games (R1, B) and (R2, B) such that

(a) ∆ = ∆R1,B and

(b) ∆ = ΓR2,B

and the sets of Left (respectively Right) positions is L (respectively R).

Proof. Let m = |L| and n = |R|. Let B be the board consisting of m disjoint 3-cycles
and n disjoint 4-cycles. In the games (R1, B) and (R2, B), Left will be playing 3-cycles,
while Right will be playing 4-cycles.

In ∆, label the vertices belonging to L as 1, . . . ,m, and the vertices in R as m +
1, . . . , n + m. Similarly, label the 3-cycles of B as 1, . . . ,m, and the 4-cycles as m +
1, . . . , n+m.

(a) In R1, playing on a set of cycles of B is legal if and only if the corresponding set
of vertices in ∆ forms a face.

(b) In R2, playing on a set of cycles of B is legal if and only if the corresponding set
of vertices in ∆ does not contain a facet.

It is now easy to see that ∆ = ∆R1,B and ∆ = ΓR2,B.

As seen above, it is rather simple to construct games on fixed boards from simplicial
complexes by restricting the legal moves to certain parts of the board. We now move on
to look at games where such restrictions can be relaxed. We call these invariant games.

2 Invariant Games

As we have shown in the previous section, every (L,R)-labelled simplicial complex is
the legal or illegal complex of some SP-game and board. The rules created as part of
this construction, however, depend heavily on the board. We now define the concept of
invariance for SP-games, which in a sense forces the ruleset to be “uniform” across the
board.

Definition 19. The ruleset of an SP-game is invariant if the following conditions hold:

• Every basic position is legal.

• The ruleset does not depend on the board, i.e. if B1 and B2 are isomorphic boards,
then a move in B1 is legal if and only if its isomorphic image in B2 is legal.
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Note that in particular the second condition has to hold for any board isomorphism
between B1 and B2. If the ruleset of an SP-game is invariant, we also say that the game
is an invariant strong placement game (iSP-game).

Col and Snort are examples of rulesets that are invariant, while NoGo is not.
That NoGo is not invariant is not immediately obvious. Indeed on most boards both
conditions hold, but whenever the board has an isolated vertex, playing on it is illegal
(thus the basic position corresponding to that vertex is illegal).

An example of an SP-game which fails the second condition is the following.

Example 20. Consider playing on the boards B1 and B2, both 4-cycles with labels as
below, a game in which a Left piece on vertex 1 cannot be adjacent to another piece.

B1 B2

1

2 3

4

1 2

34

Now B1 and B2 are isomorphic graphs and, since neither contains pieces, also isomor-
phic boards. The position in which there is a Left piece in the top left corner and a Right
piece in the top right corner is legal on B1 but not on B2. Thus this game is not invariant.

Similar to the question of the previous section, we are interested in which simplicial
complexes appear as the legal or illegal complex of an iSP-game.

We will show below that the illegal complex of an iSP-game cannot contain an isolated
vertex.

Proposition 21. Let Γ be a simplicial complex. If Γ is the illegal complex of some iSP-
game then Γ has no facets that are one-element sets.

Proof. Assume that Γ has a facet that is a one-element set, i.e. an isolated vertex, and
label this vertex a. If Γ is the illegal complex of some SP-game (R,B), then since {a} is
a facet of Γ, there exists a basic position (corresponding to the vertex a) which is illegal.
Thus G does not satisfy the first condition of invariance.

Other than the isolated vertex situation, there is no obstruction for a simplicial com-
plex Γ being an illegal complex. We set out to prove this by constructing a Γ-board and
a Γ-ruleset.

Construction 22 (Γ-board). Given an (L,R)-labelled simplicial complex Γ with no
isolated vertices we can construct a graph BΓ (called the Γ-board) as follows:

If Γ is empty, then let BΓ be empty.
If Γ is non-empty, then let H = Γ[1], i.e. the underlying graph of Γ. Let n be the

number of vertices in the graph H and (re)label the vertices of H as 1, . . . , n. Begin
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constructing the board BΓ by using n cycles of sizes n4 + 4 and n4 + 5 and label these
1, . . . , n so that cycle i will have size n4 + 4 if the vertex i in H belongs to L, and size
n4 + 5 if the vertex i belongs to R. For each cycle, designate n − 1 consecutive vertices
for joining, called connection vertices (see Fig. 3).

n4 − n+ 5 or n4 − n+ 6
outer vertices

inner cycles (n3 vertices)

n− 1 connection vertices

i i, n

i, i− 1

i, 1

i, i− 2 i, i + 1

i, i + 2

Figure 3: Cycle i in the Board BΓ

Call the remaining vertices outer vertices. To each connection vertex, join a cycle
of length n3 (called inner cycles). In cycle i label the connection vertices as i, j where
j = 1, . . . , n and j 6= i.

Label the edges in H as 1, . . . , k. If the endpoints of the edge l are the vertices i and
j, then add a path of 2 + l vertices to BΓ, whose end vertices are i, j and j, i (see Fig. 4).
The l vertices between i, j and j, i are called centre vertices.

As an example for this construction, consider the following:

Example 23. Let Γ be a path of three vertices so that H = Γ. Let the two end vertices
belong to L, and the centre vertex to R. Since Γ consists of three vertices, i.e. n = 3, the
cycle i (where i ∈ L) is of length 34 + 4 = 85 with two cycles of length 33 = 27 joined
to two adjacent vertices, and the cycle j (where j ∈ R) is of length 86 with two cycles of
length 27 joined to two adjacent vertices.

Label the edge between vertex 1 (an end vertex) and vertex 2 (the centre vertex) as
1, and the edge between vertex 2 and vertex 3 (the other end vertex) as 2.
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i

j

centre vertices

⇒

H BΓ

i, j

j, ii j

Figure 4: Effect of an Edge in H on the Board BΓ

The board BΓ is given in Fig. 5. Dashed, blue cycles consist of 85 vertices, and dotted,
red cycles of 86 vertices, with the two labelled vertices adjacent in both cases. The smaller
solid cycles consist of 27 vertices.

H

B

1 2

3

1, 2

1, 3

2, 1

2, 3

3, 2

3, 1

1 2 3

Figure 5: Constructing BP3
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For the next construction, we will have to specify what is meant by distance between
pieces.

Definition 24. Let two pieces P1 and P2 be placed on a board B and let V1 and V2 be
the set of vertices on which P1, respectively P2, was placed. We then define the distance
d(P1, P2) between P1 and P2 by

d(P1, P2) = min{d(v1, v2) : v1 ∈ V1, v2 ∈ V2},

where d(v1, v2) is the graph theoretic distance between v1 and v2, i.e. the minimum number
of edges of a path in B with endpoints v1 and v2.

Construction 25 (Γ-ruleset). Given an (L,R)-labelled simplicial complex Γ with no
isolated vertices we construct a ruleset RΓ for an SP-game (called the Γ-ruleset).

If Γ is empty, then let RΓ be the ruleset in which Left and Right place pieces on a
single vertex with no restrictions.

If Γ is non-empty, then construct RΓ as follows:

• Let n be the number of vertices of Γ. Label the edges (the 1-dimensional faces) of
Γ as {1, . . . , k}.

• Left plays cycles of length n4 +4 with cycles of length n3 joined to n−1 consecutive
vertices,

• Right plays cycles of length n4+5 with cycles of length n3 joined to n−1 consecutive
vertices (i.e. the pieces are as the structure given in Fig. 3), and

• Let F be a facet of Γ of dimension f − 1, whose 1-dimensional faces are labelled
k1, . . . , kl, where l =

(
f
2

)
. We call the set {k1 + 1, . . . , kl + 1} the id-set of F . Then

no sets of f pieces are allowed such that the set of distances between any two pieces
is exactly the id-set of F .

Example 26. Let Γ be a path of three vertices so that n = 3. Left’s pieces are cycles of
length 34 + 4 = 85 with two cycles of length 33 = 27 joined to two adjacent vertices, and
Rights pieces are cycles of length 86 with two cycles of length 27 joined to two adjacent
vertices.

Since the facets of Γ are the two edges (thus of size 2), the edge in one facet are labelled
as 1, and in the other as 2. Thus the id-sets are {2} and {3}, implying that in RΓ no two
pieces are allowed to have distance 2 or distance 3.

Example 27. Consider Γ = 〈abc, ad〉. Label the edge between a and b as 1, between b
and c as 2, between c and a as 3, and between a and d as 4.

For the facet abc we have the id-set {1 + 1, 2 + 1, 3 + 1} = {2, 3, 4}. Thus in the
Γ-ruleset RΓ we cannot have three pieces where the distances between pairs are {2, 3, 4},
while two with any one of these distance are allowed.

For the facet ad we have the id-set {4 + 1} = {5}. Thus in RΓ we cannot have any
two pieces with distance 5.
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Lemma 28. Given an (L,R)-labelled simplicial complex Γ with no isolated vertices, the
Γ-ruleset RΓ is invariant.

Proof. If Γ is empty, then RΓ played on any board has no illegal positions, thus is trivially
invariant.

If Γ is non-empty, then since Γ has no isolated vertices, all facets have at least one
edge and therefore all id-sets are non-empty. In particular, this means that every illegal
position of RΓ played on any board has at least two pieces, so there are no illegal basic
positions.

Now suppose that we are playing RΓ on isomorphic boards B1 and B2. Making a move
to a position P is legal on B1 if and only if there is no id-set which is contained in the set
of distances between pieces of P , which holds if and only if P is legal on B2.

Thus RΓ is invariant.

The following statement will prove that every simplicial complex without isolated
vertices can appear as the illegal complex of (many!) iSP-games.

Theorem 29 (Invariant Game from Illegal Complex). Given an (L,R)-labelled
simplicial complex Γ with no isolated vertices, fix labellings of the vertices and of the
edges. Then Γ is the illegal complex of the Γ-ruleset RΓ played on the Γ-board BΓ, i.e.
ΓRΓ,BΓ

= Γ.

Proof. Let G = (R,B) where B = BΓ and R = RΓ are the Γ-board and Γ-ruleset
respectively, with the same labelling of the edges of Γ if Γ is nonempty.

If Γ is empty, then G has no illegal positions, thus ΓR,B is also empty.
To show that indeed ΓR,B = Γ for Γ nonempty, we will begin by showing that their

vertex sets have the same size.
Let H = Γ[1]. Clearly Left can place one of her pieces on the cycle labelled i in B

if the vertex i of H belongs to L. Similarly Right can place on cycles labelled j where
j ∈ R. Thus each vertex in H corresponds to a position in the game G played on B.

We now need to show that there are no other ways for Left or Right to place pieces
than what was previously mentioned, i.e. that the positions of G correspond exactly to
the vertices of H.

Let n be the number of vertices of H and k be the number of edges. The cycles in B
which only use connection and centre vertices have size at most n(n− 1) + k(k+1)

2
(there

are n(n− 1) connection vertices and 1 + . . .+ k centre vertices). Since there are at most(
n
2

)
edges in H, we have

n(n+ 1) +
k(k + 1)

2
6 n(n+ 1) +

n(n+1)
2

(
n(n+1)

2
+ 1

)
2

=
1

8
n4 +

1

4
n3 +

11

8
n2 +

5

4
n

which is less than n4 + 4 for all whole numbers.
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Thus such cycles are shorter than n4 + 4, and Left and Right will not be able to play
on those.

Furthermore, any cycle of length n4 + 4 or n4 + 5 in B needs to include the outer
vertices of some cycle i (since as above cycles using only connection and centre vertices
are shorter, and the inner cycles are shorter). To then construct a cycle of that length
without using all connection vertices of cycle i, the cycle would have to include at least
one centre vertex. Since centre vertices do not have cycles of length n3 added, this implies
that neither Left or Right could play there.

Thus Left and Right are only able to play on the labelled cycles.
Further, since the pieces consist of cycles with a differing number of vertices, either

player will only be able to play on the cycles of B that are designated to them. Thus there
are n positions, in each of which only one player can play, all corresponding to vertices of
Γ. The vertices of ΓR,B are thus a subset of the vertices of Γ and ΓR,B has less vertices
than Γ if and only if there exists at least one position in which it is never illegal to play,
which we will show cannot happen as part of the rest of the proof.

It remains to show that the facets of ΓR,B and Γ correspond.
Consider a facet consisting of the vertices i1, . . . , ik in Γ, thus any two vertices have

an edge between them in H, and let these edges be j1, . . . , jl. Then the positions ia and
ib, a, b ∈ {1, . . . , k}, in B have distance jc + 1, where jc is the edge between ia and ib in
H, (since we joined a path of length jc + 2 to their connection vertices). Thus it is illegal
to play in all k positions (and this is a minimal illegal position), and thus there is a facet
consisting of the vertices i1, . . . , ik in ΓR,B.

Now let the vertices i1, . . . , ik form a facet in ΓR,B. Assume that i1, . . . , ik do not form
a facet in Γ. If some subset S of these vertices forms a facet, then by construction of G
it would be illegal to play pieces on all of the cycles in B corresponding to vertices in S.
Thus i1, . . . , ik is not a minimal illegal position, a contradiction to those vertices forming
a facet in ΓR,B. If on the other hand i1, . . . , ik is strictly contained in some facet F of Γ,
then by construction of G it is legal to play on cycles i1, . . . , ik in B. Thus i1, . . . , ik is not
an illegal position, a contradiction to those vertices forming a facet in ΓR,B. Therefore
i1, . . . , ik is a facet of Γ.

Finally, since H has no isolated vertices (by Γ not having such), the vertex set of ΓR,B

is a subset of the vertex set of H, i.e. the vertex set of Γ. Since furthermore the facets of
ΓR,B and Γ correspond, we have that the vertex set of ΓR,B is equal to that of Γ.

Consequently, the simplicial complexes Γ and ΓR,B have the same vertex and facet
sets, which proves Γ = ΓR,B.

Example 30. Let Γ be a path of three vertices. Let B = BΓ (see Theorem 23) and
R = RΓ (see Theorem 26).

Then ΓR,B = Γ.

Note: Simpler constructions with smaller cycles and pieces are often possible (as shown
in the next example), but the above construction is guaranteed to work.

Example 31. Let Γ be as in Theorem 30. Let Left play cycles of length 3, and Right
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cycles of length 4. For the board B′ given in Fig. 6, it is easy to check that ΓR′,B′ = Γ,
where R′ is the ruleset which forbids overlap between pieces.

1

2

3

Figure 6: Smaller board B′

The following theorem summarizes our results about illegal complexes of iSP-games.

Theorem 32. A given simplicial complex Γ is the illegal complex of some iSP-game
(R,B) if and only if Γ has no isolated vertices.

Proof. By Theorem 21 we have that if Γ is the illegal complex of an iSP-game, then Γ
has no isolated vertices.

Conversely, if Γ has no isolated vertices, then by Theorem 29, we have that Γ is the
illegal complex of some iSP-game.

We will now consider legal complexes. The first result shows that every simplicial
complex is the legal complex of some iSP-game and board.

Theorem 33 (Invariant Game from Legal Complex). Given any (L,R)-labelled
simplicial complex ∆, we can construct an iSP-game (R,B) such that ∆ = ∆R,B and the
sets of Left, respectively Right, positions is L, respectively R.

Proof. We will take advantage of the disjunctive sum of two SP-games corresponding to
the join of their legal complexes (see Theorem 17).

Let U = {v1, . . . , v`} be the set of vertices contained in all facets of ∆ and let ∆′ =
〈F1 \ U, . . . , Fk \ U〉 where F1, . . . Fk are the facets of ∆. Note that U could be empty or
be the entire vertex set. Then ∆ = ∆′ ∗ 〈U〉.

We will construct iSP-games (R1, B1) and (R2, B2) with ∆R1,B1 = ∆′ and ∆R2,B2 =
〈U〉. Then (R1, B1) + (R2, B2) is an iSP-game with legal complex ∆.

First, given ∆′ let Γ′ = F(N (∆′)), i.e. the simplicial complex whose facets correspond
to the minimal non-faces of ∆′.

Let the vertex set of Γ′ be bipartitioned into L and R the same way that the vertex
set of ∆′ is. Let R1 be the Γ′-ruleset and B1 be the Γ′-board, so that ΓR1,B1 = Γ′.

Let i be a vertex in ∆′. Since ∆′ by construction has at least one facet that does not
contain i we have that i is also a vertex of Γ′. Thus the underlying rings of Γ′ and ΓR1,B1

are the same, and it immediately follows that

∆R1,B1 = N (F(ΓR1,B1)) = N (F(Γ′)) = ∆′.
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Secondly, we construct R2 and B2 as follows: Let n be the number of vertices in 〈U〉
and (re)label the vertices 1, . . . , n. Let the board B2 be a disjoint union of n cycles of
size 3 and 4 and label these 1, . . . , n so that cycle i will have size 3 if the vertex i in 〈U〉
belongs to L, and size 4 if the vertex i belongs to R.

Let R2 be the SP-ruleset in which Left plays cycles of length 3, and Right plays cycles
of length 4. Note that R2 is invariant.

It is easy to see that 〈U〉 = ∆R2,B2 .

In the above proof, we constructed the iSP-game as a disjunctive sum of two iSP-
games. If it is desired for some reason that a single ruleset and board are constructed, an
alternative proof can be found in the PhD thesis of the second author [16].

The following example demonstrates this construction.

Example 34. Consider the complex ∆ = 〈ab, bc〉, where the vertices are partitioned as
L = {a, b} and R = {c}. In this case U = {b} and ∆′ = 〈a, c〉.

For ∆′ we have Γ′ = 〈ac〉, thus the graph H is P2. Since n = 2, in the SP-ruleset R1

Left will play cycles of length n4 + 4 = 20 with one cycle of length n3 = 8 added to a
vertex, while Right plays cycles of length n4 + 5 = 21 with a cycle of length 8 added to a
vertex, and pieces may not have distance 2.

The board B1 is given in the top half of Fig. 7. Dashed, blue cycles consist of 20
vertices, and dotted, red cycles of 21 vertices. The smaller solid cycles consist of 8 vertices.
It is now easy to check that ∆R1,B1 = ∆.

For 〈U〉, the ruleset R2 is that Left may only play cycles of length 3, and Right only
cycles of length 4, and the board is a cycle of length 3 (bottom half of Fig. 7).

a c

b

Figure 7: Constructing B from ∆ = 〈ab, bc〉

The sum (R1, B1) + (R2, B2) is then the game (R,B) where in R Left may play cycles
of length 3 or cycles of length 20 with an added cycle of length 8, Right cycles of length
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4 or cycles of length 21 with an added cycle of length 8, and no two pieces may have
distance 2, and the board B is the disjoint union of the boards B1 and B2.

Then ∆ = ∆R,B.

Concluding our discussion of iSP-games, we have the following result.

Theorem 35 (Every SP-Game Tree Belongs To An iSP-Game). Given an SP-
game (R,B), there exists an iSP-game (R′, B′) so that their game trees are isomorphic.

Proof. Let ∆ = ∆R,B with L the vertices corresponding to Left basic positions, and
similarly R. Then by Theorem 33 we know that there exists an iSP-game (R′, B′) such
that ∆ = ∆R′,B′ with the same bipartition. Since ∆R,B = ∆R′,B′ , we have by Theorem 15
that the game trees of R played on B and R′ played on B′ are isomorphic.

This in particular implies that under most winning conditions (such as normal play
or misère play) the game values of R played on B and R′ played on B′ are the same,
implying that we can replace one by the other.

3 Independence Games

Many of the games we have previously considered have illegal complexes that are graphs.
This special class of SP-games is of further interest to us. For example, this class corre-
sponds to flag complexes (see below for more).

Definition 36. An SP-ruleset R is called an independence ruleset if for any board B
the illegal complex ΓR,B is a graph without isolated vertices (i.e. a pure one-dimensional
simplicial complex). An SP-game (R,B) is called an independence game if R is an
independence ruleset.

Consider the illegal complex ΓR,B of an independence game R on a board B. Let Γ′R,B

be the graph on the vertex set x1, x2, . . . , xm, y1, y2, . . . , yn (corresponding to the basic
positions of R played on B) with edges those of ΓR,B. Thus the difference between ΓR,B

and Γ′R,B are isolated vertices corresponding to basic positions that are always legal. For
many independence games we have Γ′R,B = ΓR,B.

The independence complex of a graph H is a simplicial complex with vertex set
that of the graph and faces those sets of vertices that are independent in H, i.e. no two
vertices are adjacent. The term ‘independence game’ was chosen for this class of games
since the independent sets of Γ′R,B correspond to the legal positions of R played on B, i.e.
the faces of ∆R,B. Thus in this case ∆R,B is the independence complex of the graph Γ′R,B.

Many SP-games, such as Col and Snort, are independence games. NoGo is an
example of an SP-game that is not an independence game. Even though ΓNoGo,B is a
graph for some boards (for example when B is the graph on two vertices connected by
an edge, i.e. the path of length one, P2), there are many others for which this is not the
case. For example, ΓNoGo,P3 , given in Fig. 8, has two-dimensional faces.
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x1

x2

x3

y1

y2

y3

Figure 8: The Illegal Complex ΓNoGo,P3

One nice property of independence games is that playing an independence game R on
a board B is equivalent to forming independent sets of the graph Γ′R,B while Left picks
vertices in L and Right in R.

A flag complex ∆ is a complex whose minimal non-faces all have size 2 (see for
example [14]). In the case of independence games, since ΓR,B is a graph without isolated
vertices, we have that ∆R,B is flag.

Further note that the Γ-ruleset in the case of Γ being a graph is always an indepen-
dence ruleset (since minimal illegal positions are always pairs of pieces played). Using
Theorem 33 this implies the following.

Proposition 37 (iSP-Games of Flag Complexes). Given any SP-game (R,B) such
that ΓR,B is a non-empty graph, there exists an invariant independence game (R′, B′)
such that ∆R,B = ∆R′,B′. In the case that ΓR,B has no isolated vertices, we also have
ΓR,B = ΓR′,B′.

Proof. By Theorem 33 there exists an iSP-ruleset R′ and board B′ such that ∆R,B =
∆R′,B′ . The ruleset R′1 is the Γ-ruleset of Γ′R,B which, as mentioned above, is an indepen-
dence ruleset. The ruleset R′2 has no illegal positions, and thus is an independence ruleset
trivially.

If ΓR,B has no isolated vertices, then the underlying rings of ∆R,B and ∆R′,B′ are the
same, thus

ΓR′,B′ = F(N (∆R′,B′)) = F(N (∆R,B)) = ΓR,B.

Equivalently, this proposition also states that given an SP-ruleset R and board B such
that the minimal non-faces of ∆R,B are all 1- and 2-element sets, there exists an SP-ruleset
R′ whose legal complex is always flag and a board B′ such that ∆R,B = ∆R′,B′ .

As a direct consequence of Theorem 37, applying Theorem 15, we have that these
games also have isomorphic game trees.

Corollary 38. Given any SP-game (R,B) such that ΓR,B is a non-empty graph, there
exists an invariant independence game (R′, B′) such the game trees of (R,B) and (R′, B′)
are isomorphic.
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4 Further Questions and Work

In this section, we will be discussing some potential further questions and avenues to
explore.

The Γ-board and pieces of the Γ-rulesey have many more vertices than Γ itself. Thus
we are interested in whether constructions of a ruleset R and board B are possible for
every simplicial complex Γ without isolated vertices in which the pieces that Left and
Right play occupy only one vertex so that Γ = ΓR,B. This seems unlikely though, thus
an interesting question is for which class of simplicial complexes such a construction is
possible.

Similarly, we are also interested in for which simplicial complexes ∆ we can find a
ruleset R and board B with pieces only a single vertex so that ∆ = ∆R,B.

Simplicial trees and forests, which are generalizations of graph trees and forests, are
flag complexes (see [14, Lemma 9.2.7]). Since many properties of simplicial trees are
known (see for example [10] and [11]) it seems that this class of flag complexes provides
a good start to studying whether simpler constructions are possible.

Finally, it is of interest if each game value possible under normal play conditions is
also the game value of some SP-game. This problem has received attention for specific
SP-rulesets (for Domineering see for example [17, 23], for Col and Snort see [3]),
and was recently positively answered for a non-SP-game (see [7]). Since SP-games are
much easier to understand than many other combinatorial games, if the answer to this
question is positive, it would provide an excellent new tool for studying combinatorial
games. Whether or not this is the case, a similar, but stronger, question is if the simplest
game (essentially the one with smallest game tree) in each equivalence class containing an
SP-game is itself an SP-game. Knowing that each simplicial complex is the legal complex
of some SP-game has been indispensable in the exploration of those two questions (see
[15]).
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resolving the Duchêne-Rigo conjecture. Theoret. Comput. Sci., 412:729–735, 2011.

[21] Thomas J. Schaefer. On the complexity of some two-person perfect-information
games. J. Comput. System Sci., 16(2):185–225, 1978.

[22] Aaron N. Siegel. Combinatorial game theory, volume 146 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2013.

[23] Jos W. H. M. Uiterwijk and Michael Barton. New results for Domineering from
combinatorial game theory endgame databases. Theoret. Comput. Sci., 592:72–86,
2015.

the electronic journal of combinatorics 26(3) (2019), #P3.34 24


	Introduction
	Combinatorial Game Theory
	Combinatorial Commutative Algebra
	Game Complexes and Ideals

	Invariant Games
	Independence Games
	Further Questions and Work

