$1 / k$-Eulerian polynomials and k-inversion sequences

Ting-Wei Chao
Institute of Mathematics, Academia Sinica, Taipei, Taiwan.
twchao@gate.sinica.edu.tw
Shi-Mei Ma ${ }^{\dagger}$
School of Mathematics and Statistics
Northeastern University at Qinhuangdao
Hebei, P. R. China.
shimeimapapers@163.com

Jun Ma*
Department of mathematics Shanghai jiao tong university
Shanghai, P. R. China.
majun904@sjtu.edu.cn
Yeong-Nan Yeh ${ }^{\ddagger}$
Institute of Mathematics
Academia Sinica
Taipei, Taiwan.
mayeh@math.sinica.edu.tw

Submitted: Jan 20, 2019; Accepted: Aug 7, 2019; Published: Aug 16, 2019
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}, \ldots\right)$ be a sequence of positive integers. An s-inversion sequence of length n is a sequence $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of nonnegative integers such that $0 \leqslant e_{i}<s_{i}$ for $1 \leqslant i \leqslant n$. When $s_{i}=(i-1) k+1$ for any $i \geqslant 1$, we call the s-inversion sequences the k-inversion sequences. In this paper, we provide a bijective proof that the ascent number over k-inversion sequences of length n is equidistributed with a weighted variant of the ascent number of permutations of order n, which leads to an affirmative answer of a question of Savage (2016). A key ingredient of the proof is a bijection between k-inversion sequences of length n and $2 \times n$ arrays with particular restrictions. Moreover, we present a bijective proof of the fact that the ascent plateau number over k-Stirling permutations of order n is equidistributed with the ascent number over k-inversion sequences of length n.

Keywords: Eulerian polynomials; s-inversion sequences; Ascents; Permutations
Mathematics Subject Classifications: 05A05, 05A15

[^0]
1 Introduction

Let \mathfrak{S}_{n} be the symmetric group on the set $[n]=\{1,2, \ldots, n\}$. Let

$$
\pi=\pi(1) \pi(2) \cdots \pi(n) \in \mathfrak{S}_{n}
$$

A descent (resp. excedance, ascent) in π is an index $i \in[n-1]$ such that $\pi(i)>\pi(i+1)$ (resp. $\pi(i)>i, \pi(i)<\pi(i+1)$). A left-to-right minimum in π is an index i such that $\pi(i)<\pi(j)$ for any $j<i$ or $i=1$. Let $\operatorname{Asc}(\pi)$ and $\operatorname{Lrm}(\pi)$ denote the set of ascents and left-to-right minima of π, respectively. For example, Asc (324165) $=\{2,4\}$ and $\operatorname{Lrm}(324165)=\{1,2,4\}$. Let des $(\pi)($ resp. exc (π), asc $(\pi), \operatorname{lrmin}(\pi)$, cyc $(\pi))$ denote the number of descents (resp. excedances, ascents, left-to-right minima, cycles) of π. It is well known that descents and excedances are equidistributed over \mathfrak{S}_{n}. The classical Eulerian polynomial is defined by

$$
A_{n}(x)=\sum_{\pi \in \mathfrak{G}_{n}} x^{\operatorname{exc}(\pi)}
$$

The exponential generating function of $A_{n}(x)$ is given as follows:

$$
A(x, z)=1+\sum_{n \geqslant 1} A_{n}(x) \frac{z^{n}}{n!}=\frac{1-x}{e^{z(x-1)}-x} .
$$

In [11], Savage and Schuster introduced the concept of s-inversion sequences in study of lecture hall polytopes. Let $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}, \ldots\right)$ be a sequence of positive integers. An \mathbf{s}-inversion sequence of length n is a sequence $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of nonnegative integers such that $0 \leqslant e_{i}<s_{i}$ for $1 \leqslant i \leqslant n$. Let $\mathrm{I}_{\mathrm{n}}^{(\mathrm{s})}$ denote the set of s-inversion sequences of length n. An ascent in $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is an index $i \in\{0,1, \ldots, n-1\}$ such that

$$
\frac{e_{i}}{s_{i}}<\frac{e_{i+1}}{s_{i+1}}
$$

with the convention that $e_{0}=0$ and $s_{0}=1$. Let $\operatorname{Asc}(\mathbf{e})$ be the set of ascents of \mathbf{e} and let $\operatorname{asc}(\mathbf{e})=|\operatorname{Asc}(\mathbf{e})|$.

The s-inversion Eulerian polynomial is defined by

$$
E_{n}^{(\mathbf{s})}(x)=\sum_{\left.\mathbf{e} \in I_{n}^{(\mathbf{s}}\right)} x^{\operatorname{asc}(\mathbf{e})}
$$

Let

$$
\mathcal{P}_{n}^{\mathbf{s}}=\left\{\lambda \in \mathbb{R}^{n} \left\lvert\, 0 \leqslant \frac{\lambda_{1}}{s_{1}} \leqslant \frac{\lambda_{2}}{s_{2}} \leqslant \cdots \frac{\lambda_{n}}{s_{n}} \leqslant 1\right.\right\}
$$

be the s-lecture hall polytope. Savage and Schuster [11, Theorem 5] showed that the Ehrhart series of $\mathcal{P}_{n}^{\mathrm{s}}$ is

$$
\frac{E_{n}^{(\mathbf{s})}(x)}{(1-x)^{n+1}}
$$

Following [13, Section 3], the polynomial $E_{n}^{(\mathbf{s})}(x)$ is the h^{*}-polynomial of $\mathcal{P}_{n}^{\mathbf{s}}$. For some special cases of \mathbf{s}, the s-inversion Eulerian polynomial has been extensively studied. For example, for $\mathbf{s}=(1,4,3,8,5,12, \ldots)$, i.e., $s_{2 i}=4 i$ and $s_{2 i-1}=2 i-1$ for $i \geqslant 1$, Chen et al. [4] proved that the ascent number over $\mathrm{I}_{2 \mathrm{n}}^{(\mathrm{s})}$ is equidistributed with the descent number over P_{n}, where P_{n} is the set of signed permutations on the multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$.

In the following discussion, we always assume that $s_{i}=(i-1) k+1$ for any $i \geqslant 1$, where k is a positive integer. For convenience, we write $\mathrm{I}_{\mathrm{n}}^{(\mathrm{s})}$ as $I_{n, k}$. In other words,

$$
I_{n, k}=\left\{\mathbf{e} \in \mathbb{Z}^{n}: 0 \leqslant e_{i} \leqslant(i-1) k\right\} .
$$

As usual, we call the s-inversion sequences the k-inversion sequences. Following [12], the $1 / k$-Eulerian polynomial $E_{n, k}(x)$ is defined by

$$
E_{n, k}(x)=\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}
$$

The exponential generating function of $E_{n, k}(x)$ is given as follows:

$$
\sum_{n \geqslant 0} E_{n, k}(x) \frac{z^{n}}{n!}=\sqrt[k]{A(x, k z)}
$$

Using (1), Savage and Viswanathan [12, Section 1.5] found that

$$
\begin{equation*}
\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{exc}(\pi)} k^{n-\operatorname{cyc}(\pi)} \tag{1}
\end{equation*}
$$

By using the fundamental transformation of Foata and Schützenberger [6], the pairs of statistics (exc , cyc) and (asc, lrmin) are equidistributed over \mathfrak{S}_{n}. Thus

$$
\begin{equation*}
\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{asc}(\pi)} k^{n-\operatorname{lrmin}(\pi)} . \tag{2}
\end{equation*}
$$

It is well known that any permutation $\pi \in \mathfrak{S}_{n}$ can be encoded by its inversion sequence $\theta(\pi)=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in I_{n, 1}$, where $e_{i}=\mid\left\{j \mid j<i\right.$ and $\left.\pi_{j}>\pi_{i}\right\} \mid$. Moreover, the map $\theta: \mathfrak{S}_{n} \mapsto I_{n, 1}$ is a bijection.

Proposition 1. For any $n \geqslant 1$, we have

$$
\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}=\sum_{\mathbf{e} \in I_{n, 1}} x^{n-1-\operatorname{asc}(\mathbf{e})} k^{n-\max (\mathbf{e})},
$$

where $\max (\mathbf{e})=\left|\left\{i \mid e_{i}=i-1\right\}\right|$.
Proof. For any $\pi \in \mathfrak{S}_{n}$, let $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)=\theta(\pi)$. Then $i \in \operatorname{Asc}(\pi)$ if and only if $e_{i} \geqslant e_{i+1}$, and $i \in \operatorname{Lrm}(\pi)$ if and only if either $i=1$ or $e_{i}=i-1$. Moreover, when $e_{i} \geqslant e_{i+1}$, we have

$$
(i+1) e_{i}-i e_{i+1} \geqslant(i+1) e_{i}-i e_{i}=e_{i} \geqslant 0
$$

when $e_{i}<e_{i+1}$, we have $e_{i}+1 \leqslant e_{i+1}$ and

$$
(i+1) e_{i}-i e_{i+1} \leqslant(i+1) e_{i}-i\left(e_{i}+1\right)=e_{i}-i<0
$$

This tells us that $e_{i} \geqslant e_{i+1}$ if and only if $i \notin \operatorname{Asc}(\mathbf{e})$. Hence,

$$
\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{asc}(\pi)} k^{n-\operatorname{lrmin}(\pi)}=\sum_{\mathbf{e} \in I_{n, 1}} x^{n-1-\operatorname{asc}(\mathbf{e})} k^{n-\max (\mathbf{e})},
$$

and it follows from (2)) that

$$
\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}=\sum_{\mathbf{e} \in I_{n, 1}} x^{n-1-\operatorname{asc}(\mathbf{e})} k^{n-\max (\mathbf{e})} .
$$

Recently, Savage [10] gave a survey for the study of lecture hall partitions. In particular, she posed the following question.

Question 2 ([10, p. 466]). Is there a bijective proof of (1)?
A bijective proof of (1) may arouse interests in the study of the connections between s-lecture hall polytope and other structures. In this paper, we give a bijective proof of (1). It suffices to present a bijective proof of (2). The method is to present a series of three bijections: the first bijection maps k-inversion sequences to $2 \times n$ arrays with particular restrictions. The second bijection maps these $2 \times n$ arrays to k-colored permutations $B=\binom{\mathbf{c}}{\pi}$ in which $\pi \in \mathfrak{S}_{n}$ and \mathbf{c} is a map from $[n]$ to $[k]$ satisfying $1 \leqslant c(\pi(i)) \leqslant k$ if $i \notin \operatorname{Lrm}(\pi)$, otherwise $c(\pi(i))=1$. The final bijection maps k-colored permutations to themselves, but in a way that will create the correct correspondence between ascents in the original k-inversion sequence and ascents in the final k-colored permutation.

2 A bijective proof of (2)

Given an inversion sequence $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in I_{n, k}$. Let

$$
c_{i}=\left\{\begin{array}{ll}
1 & \text { if } \quad e_{i}=0 \\
\left\lceil\frac{e_{i}}{i-1}\right\rceil & \text { if } \\
e_{i} \geqslant 1
\end{array} \text { and } b_{i}=e_{i}-\left(c_{i}-1\right)(i-1)+1\right.
$$

for any $i=1,2, \ldots, n$. Denote by $A(\mathbf{e})$ the following array

$$
\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) .
$$

Lemma 3. For any $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in I_{n, k}$, we have $A(\mathbf{e}) \in \mathcal{A}_{n, k}$, where $\mathcal{A}_{n, k}$ is the set of $2 \times n$ arrays

$$
A=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right)
$$

such that $c_{1}=b_{1}=1$ and for any $2 \leqslant i \leqslant n$,

$$
c_{i} \in\{1,2, \ldots, k\} \text { and } b_{i} \in \begin{cases}\{1,2, \ldots, i\} & \text { if } c_{i}=1 \\ \{2,3, \ldots, i\} & \text { if } c_{i} \geqslant 2 .\end{cases}
$$

Proof. Let $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in I_{n, k}$. For each $i=1,2, \ldots, n$, we have $0 \leqslant e_{i} \leqslant k(i-1)$. If $e_{i}=0$, then $c_{i}=1$; if $e_{i} \geqslant 1$, then $0<\frac{e_{i}}{i-1} \leqslant k$ for any $i \geqslant 2$, and so $c_{i}=\left\lceil\frac{e_{i}}{i-1}\right\rceil \in$ $\{1,2, \ldots, k\}$.

When $c_{i}=1$, we have $b_{i}=e_{i}+1$. If $e_{i}=0$, then $b_{i}=1$. If $e_{i}>0$, then $0<\frac{e_{i}}{i-1} \leqslant 1$ since $c_{i}=\left\lceil\frac{e_{i}}{i-1}\right\rceil=1$, and so $0<e_{i} \leqslant i-1$. This implies that $1<b_{i} \leqslant i$. Thus, if $c_{i}=1$, then $b_{i} \in[i]$.

When $c_{i} \geqslant 2$, we have $c_{i}-1<\frac{e_{i}}{i-1} \leqslant c_{i}$. This implies that $\left(c_{i}-1\right)(i-1)<e_{i} \leqslant c_{i}(i-1)$. Hence, $1<b_{i} \leqslant i$, and so $A(\mathbf{e}) \in \mathcal{A}_{n, k}$.

Define a map $\varphi_{n}: I_{n, k} \mapsto \mathcal{A}_{n, k}$ by letting $\varphi_{n}(\mathbf{e})=A(\mathbf{e})$ for any $\mathbf{e} \in I_{n, k}$. For any $A \in \mathcal{A}_{n, k}$, we say that an index i is an ascent of A if either $(i) c_{i}<c_{i+1}$ or (ii) $c_{i}=c_{i+1}$ and $b_{i}<b_{i+1}$. Let Asc (A) be the set of ascents of A and let asc $(A)=|\operatorname{Asc}(A)|$.

Example 4. Take $n=17$ and $k=2$. Let

$$
\mathbf{e}=(0,1,3,0,5,10,3,7,16,15,0,3,13,1,2,20,12) \in I_{17,2}
$$

We have

$$
A=A(\mathbf{e})=\left(\begin{array}{lllllllllllllllll}
1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 2 & 2 & 1 & 2 & 6 & 4 & 8 & 9 & 7 & 1 & 4 & 2 & 2 & 3 & 6 & 13
\end{array}\right) \in \mathcal{A}_{17,2} .
$$

It is clear that $\operatorname{Asc}(A)=\{1,2,4,5,7,8,11,12,14,15\}$ and asc $(A)=10$.
The following lemma is fundamental.
Lemma 5. The map φ_{n} is a bijection from $I_{n, k}$ to $\mathcal{A}_{n, k}$. For any $\mathbf{e} \in I_{n, k}$, we have

$$
\operatorname{Asc}(\mathbf{e})=\operatorname{Asc}\left(\varphi_{n}(\mathbf{e})\right) .
$$

Therefore,

$$
\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}=\sum_{A \in \mathcal{A}_{n, k}} x^{\operatorname{asc}(A)} .
$$

Proof. For any

$$
A=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) \in \mathcal{A}_{n, k},
$$

let $\theta_{n}(A)=\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right)$, where $e_{i}^{\prime}=b_{i}+\left(c_{i}-1\right)(i-1)-1$. It is clear that the map θ_{n} is the inverse of φ_{n}.

For any $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in I_{n, k}$, if $i \in \operatorname{Asc}(\mathbf{e})$, then $\frac{e_{i}}{k(i-1)+1}<\frac{e_{i+1}}{k i+1}$. For any $i \in[n]$, let

$$
c_{i}=\left\{\begin{array}{ll}
1 & \text { if } \quad e_{i}=0 \\
\left\lceil\frac{e_{i}}{i-1}\right\rceil & \text { if }
\end{array} e_{i} \geqslant 1 . \text { and } b_{i}=e_{i}-\left(c_{i}-1\right)(i-1)+1 .\right.
$$

Since $e_{i}=b_{i}+\left(c_{i}-1\right)(i-1)-1$, we get

$$
\begin{aligned}
& e_{i}(k i+1)-e_{i+1}(k(i-1)+1) \\
= & (k i+1)\left(\left(c_{i}-c_{i+1}\right)(i-1)+b_{i}-b_{i+1}\right)+k\left(b_{i+1}-1\right)-\left(c_{i+1}-1\right) .
\end{aligned}
$$

When $c_{i}<c_{i+1}$, we have $c_{i+1} \geqslant 2, b_{i+1} \geqslant 2$ and $b_{i} \leqslant i$. So,

$$
e_{i}=\left(c_{i}-1\right)(i-1)+b_{i}-1 \leqslant c_{i}(i-1)
$$

and

$$
e_{i+1}=\left(c_{i+1}-1\right) i+b_{i+1}-1 \geqslant\left(c_{i+1}-1\right) i+1
$$

Hence,

$$
\begin{aligned}
& e_{i+1}(k(i-1)+1)-e_{i}(k i+1) \\
\geqslant & \left(\left(c_{i+1}-1\right) i+1\right)(k(i-1)+1)-c_{i}(i-1)(k i+1) \\
= & k i(i-1)\left(c_{i+1}-c_{i}-1\right)+(k-1)(i-1)+\left(c_{i+1}-c_{i}\right) i+c_{i} \\
> & 0 .
\end{aligned}
$$

When $c_{i}>c_{i+1}$, we have $c_{i} \geqslant 2, c_{i+1}<k, b_{i} \geqslant 2$. Moreover, we have $b_{i+1} \leqslant i$, since $b_{i+1}=i+1$ if and only if $c_{i+1}=k$. So,

$$
e_{i}=\left(c_{i}-1\right)(i-1)+b_{i}-1 \geqslant\left(c_{i}-1\right)(i-1)+1
$$

and

$$
e_{i+1}=\left(c_{i+1}-1\right) i+b_{i+1}-1 \leqslant c_{i+1} i-1 .
$$

Hence,

$$
\begin{aligned}
& e_{i+1}(k(i-1)+1)-e_{i}(k i+1) \\
\leqslant & \left(c_{i+1} i-1\right)(k(i-1)+1)-\left(\left(c_{i}-1\right)(i-1)+1\right)(k i+1) \\
= & (k i+1)(i-1)\left(c_{i+1}-c_{i}+1\right)+\left(c_{i+1}+k-2 k i-2\right) \\
< & 0 .
\end{aligned}
$$

When $c_{i}=c_{i+1}$ and $b_{i}<b_{i+1}$, we have

$$
\begin{aligned}
e_{i} & =\left(c_{i}-1\right)(i-1)+b_{i}-1 \\
& =\left(c_{i+1}-1\right)(i-1)+b_{i}-1 \\
& \leqslant\left(c_{i+1}-1\right)(i-1)+b_{i+1}-2 \\
& =e_{i+1}-c_{i+1} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& e_{i+1}(k(i-1)+1)-e_{i}(k i+1) \\
\geqslant & e_{i+1}(k(i-1)+1)-\left(e_{i+1}-c_{i+1}\right)(k i+1) \\
= & (k i+1) c_{i+1}-k e_{i+1} \\
\geqslant & (k i+1) c_{i+1}-k i c_{i+1}=c_{i+1}>0 .
\end{aligned}
$$

When $c_{i}=c_{i+1}$ and $b_{i} \geqslant b_{i+1}$, we have

$$
\begin{aligned}
e_{i} & =\left(c_{i}-1\right)(i-1)+b_{i}-1 \\
& =\left(c_{i+1}-1\right)(i-1)+b_{i}-1 \\
& \geqslant\left(c_{i+1}-1\right)(i-1)+b_{i+1}-1 \\
& =e_{i+1}-c_{i+1}+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& e_{i+1}(k(i-1)+1)-e_{i}(k i+1) \\
\leqslant & e_{i+1}(k(i-1)+1)-\left(e_{i+1}-c_{i+1}+1\right)(k i+1) \\
= & (k i+1)\left(c_{i+1}-1\right)-k e_{i+1} \\
= & k\left(1-b_{i+1}\right)+c_{i+1}-1 \leqslant 0,
\end{aligned}
$$

in which the last inequality is easily checked by using Lemma 3. Thus, we have $i \in \operatorname{Asc}$ (e) if and only if $i \in \operatorname{Asc}\left(\varphi_{n}(\mathbf{e})\right)$.

A block k-colored permutation on the set $[n]$ is a pair $B=\binom{\mathbf{c}}{\pi}$ such that $\pi \in \mathfrak{S}_{n}$ and \mathbf{c} is a map from $[n]$ to $[k]$ which satisfies $1 \leqslant c(\pi(i)) \leqslant k$ if $i \notin \operatorname{Lrm}(\pi)$, otherwise $c(\pi(i))=1$. Let $\mathcal{B}_{n, k}$ be the set of block k-colored permutations on the set $[n]$. We write an element $B=\binom{\mathbf{c}}{\pi}$ in $\mathcal{B}_{n, k}$ as the following $2 \times n$ array

$$
B=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{cccc}
c(\pi(1)) & c(\pi(2)) & \ldots & c(\pi(n)) \\
\pi(1) & \pi(2) & \ldots & \pi(n)
\end{array}\right) .
$$

For example, consider the permutation $\pi=324165$ and let $k=3$. Then the following 2×6 array

$$
B=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{llllll}
1 & 1 & 3 & 1 & 1 & 2 \\
3 & 2 & 4 & 1 & 6 & 5
\end{array}\right)
$$

is a block 3 -colored permutation on the set [6].
Given an array

$$
A=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) \in \mathcal{A}_{n, k},
$$

we construct a permutation in \mathfrak{S}_{n} by the following Algorithm B. Let

$$
\pi^{(i)}=\pi^{(i)}(1) \pi^{(i)}(2) \cdots \pi^{(i)}(i)
$$

denote the permutation in \mathfrak{S}_{i} obtained by the algorithm at time i.

Algorithm B.

- Step 1. Let $\pi^{(1)}(1)=b_{1}$.
- Step 2. At time $i \geqslant 2$, suppose that $\pi^{(i-1)}$ is determined. For each $j=1,2, \ldots, i-1$, if $\pi^{(i-1)}(j) \geqslant b_{i}$, then let $\pi^{(i)}(j)=\pi^{(i)}(j)+1$; otherwise, let $\pi^{(i)}(j)=\pi^{(i-1)}(j)$. Finally, set $\pi^{(i)}(i)=b_{i}$. Thus we get

$$
\pi^{(i)}=\pi^{(i)}(1) \pi^{(i)}(2) \cdots \pi^{(i)}(i-1) \pi^{(i)}(i) \in \mathfrak{S}_{i} .
$$

Iterating Step 2 until $i=n$, we obtain a permutation $\pi^{(n)} \in \mathfrak{S}_{n}$. Let \mathbf{c} be a map from $[n]$ to \mathbb{N} such that $c(\pi(i))=c_{i}$ and let $B_{A}=\binom{\mathbf{c}}{\pi}$. Then

$$
B_{A}=\binom{\mathbf{c}}{\pi^{(n)}}=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n} \\
\pi^{(n)}(1) & \pi^{(n)}(2) & \ldots & \pi^{(n)}(n)
\end{array}\right) .
$$

Example 6. Let A be the 2×17 array given in Example 4. By Algorithm B, we have

and so

$$
B_{A}=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{lllllllllllllllll}
1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
9 & 12 & 11 & 5 & 7 & 15 & 10 & 16 & 17 & 14 & 1 & 8 & 4 & 2 & 3 & 6 & 13
\end{array}\right) .
$$

Lemma 7. For any $A \in \mathcal{A}_{n, k}$, we have $B_{A} \in \mathcal{B}_{n, k}$.

Proof. Fix an array $A=\left(\begin{array}{cccc}c_{1} & c_{2} & \ldots & c_{n} \\ b_{1} & b_{2} & \ldots & b_{n}\end{array}\right) \in \mathcal{A}_{n, k}$. For each $i \in[n]$, let

$$
A^{(i)}=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{i} \\
b_{1} & b_{2} & \ldots & b_{i}
\end{array}\right) .
$$

Then $A^{(i)} \in \mathcal{A}_{i, k}$. We prove the lemma by induction. For each i, suppose that

$$
B_{A^{(i)}}=\binom{\mathbf{c}^{(i)}}{\pi^{(i)}}=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{i} \\
\pi^{(i)}(1) & \pi^{(i)}(2) & \ldots & \pi^{(i)}(i)
\end{array}\right)
$$

Clearly, $B_{A^{(1)}}=\binom{1}{1} \in \mathcal{B}_{1, k}$. Suppose that $B_{A^{(i)}} \in \mathcal{B}_{i, k}$. Let us consider $A^{(i+1)}$. By
Algorithm B, we have

$$
\operatorname{Lrm}\left(\pi^{(i+1)}\right)=\left\{\begin{array}{lll}
\operatorname{Lrm}\left(\pi^{(i)}\right) \cup\{i+1\} & \text { if } & b_{i+1}=1 \\
\operatorname{Lrm}\left(\pi^{(i)}\right) & \text { if } & b_{i+1} \geqslant 2
\end{array}\right.
$$

Note that $c_{i+1}=1$ if $b_{i+1}=1$. By induction hypothesis, we obtain $B_{A^{(i+1)}} \in \mathcal{B}_{i+1, k}$.
Define a map $\alpha_{n}: \mathcal{A}_{n, k} \mapsto \mathcal{B}_{n, k}$ by letting $\alpha_{n}(A)=B_{A}$ for any $A \in \mathcal{A}_{n, k}$. For any $B \in \mathcal{B}_{n, k}$, we say that an index i is an ascent of B if either $(i) c(\pi(i))<c(\pi(i+1))$ or (ii) $c(\pi(i))=c(\pi(i+1))$ and $\pi(i)<\pi(i+1)$. Let Asc (B) be the set of ascents of B and $\operatorname{asc}(B)=|\operatorname{Asc}(B)|$. For example, for the array $B=B_{A}$ that is given in Example 6, we have $\operatorname{Asc}(B)=\{1,2,4,5,7,8,11,12,14,15\}$ and $\operatorname{asc}(B)=10$.

Lemma 8. The map $\alpha_{n}: \mathcal{A}_{n, k} \mapsto \mathcal{B}_{n, k}$ is a bijection. For any $A \in \mathcal{A}_{n, k}$, we have $\operatorname{Asc}(A)=\operatorname{Asc}\left(\alpha_{n}(A)\right)$. Therefore,

$$
\sum_{A \in \mathcal{A}_{n, k}} x^{\operatorname{asc}(A)}=\sum_{B \in \mathcal{B}_{n, k}} x^{\operatorname{asc}(B)} .
$$

Proof. Given an array

$$
B=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{cccc}
c(\pi(1)) & c(\pi(2)) & \ldots & c(\pi(n)) \\
\pi(1) & \pi(2) & \ldots & \pi(n)
\end{array}\right) \in \mathcal{B}_{n, k}
$$

we first construct a sequence $b_{1}, b_{2}, \ldots, b_{n}$ by the following Algorithm B*. Let

$$
\pi^{(n-i+1)}=\pi^{(n-i+1)}(1) \pi^{(n-i+1)}(2) \cdots \pi^{(n-i+1)}(n-i+1)
$$

denote the permutation in \mathfrak{S}_{n-i+1} obtained by the algorithm at time i.

Algorithm B*.

- Step 1. Let $\tilde{\pi}^{(n)}(j)=\pi(j)$ for any $j=1,2, \ldots, n$.
- Step 2. At time $i \geqslant 1$, suppose that

$$
\tilde{\pi}^{(n-i+1)}=\tilde{\pi}^{(n-i+1)}(1) \tilde{\pi}^{(n-i+1)}(2) \cdots \tilde{\pi}^{(n-i+1)}(n-i+1)
$$

is determined. Set $b_{n-i+1}=\tilde{\pi}^{(n-i+1)}(n-i+1)$. For each $j=1,2, \ldots, n-i$, if $\tilde{\pi}^{(n-i+1)}(j)>b_{n-i+1}$, then let $\tilde{\pi}^{(n-i)}(j)=\tilde{\pi}^{(n-i+1)}(j)-1$; otherwise, let $\tilde{\pi}^{(n-i)}(j)=$ $\tilde{\pi}^{(n-i+1)}(j)$. We have

$$
\tilde{\pi}^{(n-i)}=\tilde{\pi}^{(n-i)}(1) \tilde{\pi}^{(n-i)}(2) \cdots \tilde{\pi}^{(n-i)}(n-i) \in \mathfrak{S}_{n-i} .
$$

Iterating Step 2 until $i=n$, we obtain a sequence $b_{1}, b_{2}, \ldots, b_{n}$. Let $c(\pi(i))=c_{i}$ for each i. We obtain a $2 \times n$ array $A=\left(\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{n} \\ b_{1} & b_{2} & \ldots & b_{n}\end{array}\right)$. It is clear that $b_{i}=1$ if and only if $i \in \operatorname{Lrm}(\pi)$. Hence, $A \in \mathcal{A}_{n, k}$. For example, let us consider the array

$$
B=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{llllll}
1 & 1 & 3 & 1 & 1 & 2 \\
3 & 2 & 4 & 1 & 6 & 5
\end{array}\right) \in \mathcal{B}_{6,3} .
$$

By Algorithm B*, we have

$\tilde{\pi}^{(6)}$	3	2	4	1	6	5	$b_{6}=5$
$\tilde{\pi}^{(5)}$	3	2	4	1	5		$b_{5}=5$
$\tilde{\pi}^{(4)}$	3	2	4	1			$b_{4}=1$
$\tilde{\pi}^{(3)}$	2	1	3				$b_{3}=3$
$\tilde{\pi}^{(2)}$	2	1					$b_{2}=1$
$\tilde{\pi}^{(1)}$	1						$b_{1}=1$

and so

$$
A=\left(\begin{array}{llllll}
1 & 1 & 3 & 1 & 1 & 2 \\
1 & 1 & 3 & 1 & 5 & 5
\end{array}\right) \in \mathcal{A}_{6,3} .
$$

Define a map $\theta_{n}: \mathcal{B}_{n, k} \mapsto \mathcal{A}_{n, k}$ by letting $\theta_{n}(B)=A$ for any $B \in \mathcal{B}_{n, k}$. We claim that

$$
\theta_{n}\left(\alpha_{n}(A)\right)=A
$$

for any $A \in \mathcal{A}_{n, k}$. We prove this claim by induction on n. Clearly,

$$
\theta_{1}\left(\alpha_{1}\left(\binom{1}{1}\right)\right)=\binom{1}{1} .
$$

Fix an array $A=\left(\begin{array}{lllll}c_{1} & c_{2} & \ldots & c_{n} & c_{n+1} \\ b_{1} & b_{2} & \ldots & b_{n} & b_{n+1}\end{array}\right) \in \mathcal{A}_{n+1, k}$. Suppose that

$$
B=\alpha_{n+1}(A)=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{ccccc}
c(\pi(1)) & c(\pi(2)) & \ldots & c(\pi(n)) & c(\pi(n+1)) \\
\pi(1) & \pi(2) & \ldots & \pi(n) & \pi(n+1)
\end{array}\right)
$$

and

$$
A^{\prime}=\theta_{n+1}(B)=\left(\begin{array}{ccccc}
c_{1} & c_{2} & \ldots & c_{n} & c_{n+1} \\
b_{1}^{\prime} & b_{2}^{\prime} & \ldots & b_{n}^{\prime} & b_{n+1}^{\prime}
\end{array}\right) .
$$

For the array A, suppose that

$$
\pi^{(n)}=\pi^{(n)}(1) \pi^{(n)}(2) \cdots \pi^{(n)}(n)
$$

is the permutation obtained by Algorithm \mathbf{B} at time n, and for the array B suppose that

$$
\tilde{\pi}^{(n)}=\tilde{\pi}^{(n)}(1) \tilde{\pi}^{(n)}(2) \ldots, \tilde{\pi}^{(n)}(n)
$$

is the permutation obtained by Algorithm \mathbf{B}^{*} at time 2. Note that $\pi(n+1)=b_{n+1}$ at the time $n+1$ of Algorithm B and $b_{n+1}^{\prime}=\pi(n+1)$ at the time 1 of Algorithm \mathbf{B}^{*}. So, we have $b_{n+1}=b_{n+1}^{\prime}$ and $\tilde{\pi}^{(n)}=\pi^{(n)}$. Furthermore, let

$$
A^{(n)}=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n} \\
b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right) \in \mathcal{A}_{n, k}
$$

and

$$
\binom{\mathbf{c}^{(n)}}{\pi^{(n)}}=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n} \\
\pi^{(n)}(1) & \pi^{(n)}(2) & \ldots & \pi^{(n)}(n)
\end{array}\right)
$$

Algorithm B tells us that $\alpha_{n}\left(A^{(n)}\right)=\binom{\mathbf{c}^{(n)}}{\pi^{(n)}}=\binom{\mathbf{c}^{(n)}}{\tilde{\pi}^{(n)}}$. Algorithm \mathbf{B}^{*} tells us that

$$
\theta_{n}\left(\binom{\mathbf{c}^{(n)}}{\tilde{\pi}^{(n)}}\right)=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n} \\
b_{1}^{\prime} & b_{2}^{\prime} & \ldots & b_{n}^{\prime}
\end{array}\right)
$$

By the induction hypothesis, we have $\theta_{n}\left(\alpha_{n}\left(A^{(n)}\right)\right)=A^{(n)}$. Hence,

$$
\theta_{n+1}\left(\alpha_{n+1}(A)\right)=A,
$$

which implies that $\alpha_{n}: \mathcal{A}_{n, k} \mapsto \mathcal{B}_{n, k}$ is a bijection. For any $A \in \mathcal{A}_{n, k}$, by using Algorithm \mathbf{B}, we immediately get $\operatorname{Asc}(A)=\operatorname{Asc}\left(\alpha_{n}(A)\right)$.

Let $B=\binom{\mathbf{c}}{\pi} \in \mathcal{B}_{n, k}$. Note that $1 \in \operatorname{Lrm}(\pi)$. Suppose that $\operatorname{Lrm}(\pi)=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ with $1=k_{1}<k_{2}<\ldots<k_{r}$ and let $k_{r+1}=n+1$. For each $i=1,2, \ldots, r$, let τ_{i} be the subsequence $\pi\left(k_{i}\right) \pi\left(k_{i}+1\right) \ldots \pi\left(k_{i+1}-1\right)$ of π. We call the sequence

$$
\tau_{1}, \tau_{2}, \ldots, \tau_{r}
$$

the left-to-right minimum decomposition of π and the subsequence τ_{i} the i-th block of π. For convenience, let $l_{i}=k_{i+1}-k_{i}$, which is called the length of τ_{i}, and let $\tau_{i, j}=\pi\left(k_{i}+j-1\right)$ for $i=1,2, \ldots, r$ and $j=1,2, \ldots l_{i}$. Thus, we have $\tau_{i}=\left(\tau_{i, 1}, \tau_{i, 2}, \ldots, \tau_{i, l_{i}}\right)$. We now define a total order in the set $\left\{\left.\binom{c\left(\tau_{i, j}\right)}{\tau_{i, j}} \right\rvert\, j=1,2, \ldots, l_{i}\right\}$: for any j_{1}, j_{2} with $j_{1} \neq j_{2}$, we say
$j_{1} \prec j_{2}$ if the indices j_{1} and j_{2} satisfy either $(i) c\left(\tau_{i, j_{1}}\right)<c\left(\tau_{i, j_{2}}\right)$ or $(i i) c\left(\tau_{i, j_{1}}\right)=c\left(\tau_{i, j_{2}}\right)$ and $\tau_{i, j_{1}}<\tau_{i, j_{2}}$. Let ϕ_{i} be an increasing bijection from the set $\left\{\left.\binom{c\left(\tau_{i, j}\right)}{\tau_{i, j}} \right\rvert\, j=1,2, \ldots, l_{i}\right\}$ to the set $\left\{\tau_{i, j} \mid j=1,2, \ldots, l_{i}\right\}$, i.e.,

$$
\phi_{i}\left(\binom{c\left(\tau_{i, j_{1}}\right)}{\tau_{i, j_{1}}}\right)<\phi_{i}\left(\binom{c\left(\tau_{i, j_{2}}\right)}{\tau_{i, j_{2}}}\right)
$$

if $\binom{c\left(\tau_{i, j_{1}}\right)}{\tau_{i, j_{1}}} \prec\binom{c\left(\tau_{i, j_{2}}\right)}{\tau_{i, j_{2}}}$ for any $j_{1} \neq j_{2}$. For any $j=1,2, \ldots, l_{i}$, let

$$
\tilde{\tau}_{i, j}=\phi_{i}\left(\binom{c\left(\tau_{i, j}\right)}{\tau_{i, j}}\right) .
$$

Then we get a sequence $\tilde{\tau}_{i}$ as follows:

$$
\tilde{\tau}_{i}=\left(\tilde{\tau}_{i, 1}, \tilde{\tau}_{i, 2}, \ldots, \tilde{\tau}_{i, l_{i}}\right)
$$

Since $\tau_{i, 1}$ is a left-to-right minimum of π, we have $c\left(\tau_{i, 1}\right)=1$, and so

$$
\tilde{\tau}_{i, 1}=\phi_{i}\left(\binom{c\left(\tau_{i, 1}\right)}{\tau_{i, 1}}\right)=\tau_{i, 1}
$$

Moreover, $\tilde{\tau}_{i, j}<\tilde{\tau}_{i, j+1}$ if and only if the index j satisfies either $(I) c\left(\tau_{i, j}\right)<c\left(\tau_{i, j+1}\right)$ or (II) $c\left(\tau_{i, j}\right)=c\left(\tau_{i, j+1}\right)$ and $\tau_{i, j}<\tau_{i, j}$. Finally, let

$$
\tau=\tilde{\tau}_{1,1} \cdots \tilde{\tau}_{1, l_{1}} \tilde{\tau}_{2,1} \cdots \tilde{\tau}_{2, l_{2}} \cdots \tilde{\tau}_{r, 1} \cdots \tilde{\tau}_{r, l_{r}} \in \mathfrak{S}_{n}
$$

and

$$
\tilde{B}=\binom{\mathbf{c}^{\prime}}{\tau}=\left(\begin{array}{cccccccccc}
c\left(\tilde{\tau}_{1,1}\right) & \ldots & c\left(\tilde{\tau}_{1, l_{1}}\right) & c\left(\tilde{\tau}_{2,1}\right) & \ldots & c\left(\tilde{\tau}_{2, l_{2}}\right) & \ldots & c\left(\tilde{\tau}_{r, 1}\right) & \ldots & c\left(\tilde{\tau}_{r, l_{r}}\right) \\
\tilde{\tau}_{1,1} & \ldots & \tilde{\tau}_{1, l_{1}} & \tilde{\tau}_{2,1} & \ldots & \tilde{\tau}_{2, l_{2}} & \ldots & \tilde{\tau}_{r, 1} & \ldots & \tilde{\tau}_{r, l_{r}}
\end{array}\right) .
$$

We immediately get the following lemma.
Lemma 2.1. For any $B=\binom{\mathbf{c}}{\pi} \in \mathcal{B}_{n, k}$, let $\tilde{B}=\binom{\mathbf{c}^{\prime}}{\tau}$. Then $\tilde{B} \in \mathcal{B}_{n, k}, \operatorname{Lrm}(\pi)=\operatorname{Lrm}(\tau)$, $\operatorname{Asc}(B)=\operatorname{Asc}(\tau)$ and $c^{\prime}(i)=c(i)$ for any $i=1,2, \ldots, n$.

Example 9. Consider

$$
B=\binom{\mathbf{c}}{\pi}=\left(\begin{array}{lllllllllllllllll}
1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
9 & 12 & 11 & 5 & 7 & 15 & 10 & 16 & 17 & 14 & 1 & 8 & 4 & 2 & 3 & 6 & 13
\end{array}\right) .
$$

The left-to-right minimum decomposition of π is

$$
\tau_{1}=9,12,11 ; \tau_{2}=5,7,15,10,16,17,14 ; \tau_{3}=1,8,4,2,3,6,13
$$

For the block τ_{1}, we have $\binom{1}{9} \prec\binom{1}{12} \prec\binom{2}{11}$ and list the increasing bijection ϕ_{1} in the following table:

j	1	2	3
$\binom{c\left(\tau_{1, j}\right)}{\tau_{1, j}}$	$\binom{1}{9}$	$\binom{1}{12}$	$\binom{2}{11}$
$\phi_{1}\left(\binom{c\left(\tau_{1, j}\right)}{\tau_{1, j}}\right)$	9	11	12

Table 1. The increasing bijection ϕ_{1}.
Hence,

$$
\tilde{\tau}_{1}=(9,11,12) .
$$

For the block τ_{2}, we have $\binom{1}{5} \prec\binom{1}{10} \prec\binom{1}{16} \prec\binom{2}{7} \prec\binom{2}{14} \prec\binom{2}{15} \prec\binom{2}{17}$ and list the increasing bijection ϕ_{2} in the following table:

j	1	4	5	2	7	3	6
$\binom{c\left(\tau_{2, j}\right)}{\tau_{2, j}}$	$\binom{1}{5}$	$\binom{1}{10}$	$\binom{1}{16}$	$\binom{2}{7}$	$\binom{2}{14}$	$\binom{2}{15}$	$\binom{2}{17}$
$\phi_{2}\left(\binom{c\left(\tau_{2, j}\right)}{\tau_{2, j}}\right)$	5	7	10	14	15	16	17

Table 2. The increasing bijection ϕ_{2}.
Hence,

$$
\tilde{\tau}_{2}=(5,14,16,7,10,17,15) .
$$

For the block τ_{3}, we have $\binom{1}{1} \prec\binom{1}{2} \prec\binom{1}{3} \prec\binom{1}{8} \prec\binom{1}{13} \prec\binom{2}{4} \prec\binom{2}{6}$ and list the increasing bijection ϕ_{3} in the following table:

j	1	4	5	2	7	3	6
$\binom{c\left(\tau_{3, j}\right)}{\tau_{3, j}}$	$\binom{1}{1}$	$\binom{1}{2}$	$\binom{1}{3}$	$\binom{1}{8}$	$\binom{1}{13}$	$\binom{2}{4}$	$\binom{2}{6}$
$\phi_{3}\left(\binom{c\left(\tau_{1, j}\right)}{\tau_{3, j}}\right)$	1	2	3	4	6	8	13

Table 3. The increasing bijection ϕ_{3}.
Hence,

$$
\tilde{\tau}_{3}=(1,4,8,2,3,13,6)
$$

So $\tau=9,11,12,5,14,16,7,10,17,15,1,4,8,2,3,13,6$ and

$$
\tilde{B}=\binom{\mathbf{c}}{\tau}=\left(\begin{array}{lllllllllllllllll}
1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 2 \\
9 & 11 & 12 & 5 & 14 & 16 & 7 & 10 & 17 & 15 & 1 & 4 & 8 & 2 & 3 & 13 & 6
\end{array}\right) .
$$

Define a map $\beta_{n}: \mathcal{B}_{n, k} \mapsto \mathcal{B}_{n, k}$ by letting $\beta_{n}(B)=\tilde{B}$ for any $B \in \mathcal{B}_{n, k}$.
Lemma 10. The map β_{n} is a bijection from $\mathcal{B}_{n, k}$ to itself.
Proof. We establish the inverse ψ_{n} of β_{n} as follows. For any

$$
B=\binom{\mathbf{c}}{\tau}=\left(\begin{array}{cccc}
c(\tau(1)) & c(\tau(2)) & \ldots & c(\tau(n)) \\
\tau(1) & \tau(2) & \ldots & \tau(n)
\end{array}\right) \in \mathcal{B}_{n, k},
$$

let $\tau_{1}, \tau_{2}, \ldots, \tau_{r}$ be the left-to-right minimum decomposition of τ. Suppose that

$$
\tau_{i}=\left(\tau_{i, 1}, \tau_{i, 2}, \ldots, \tau_{i, l_{i}}\right)
$$

where l_{i} is the length of the subsequence τ_{i}. Recall that ϕ_{i} is the increasing bijection from from the set $\left\{\left.\binom{c\left(\tau_{i, j}\right)}{\tau_{i, j}} \right\rvert\, j=1,2, \ldots, l_{i}\right\}$ to the set $\left\{\tau_{i, j} \mid j=1,2, \ldots, l_{i}\right\}$. Let $\binom{c\left(\tilde{\pi}_{i, j}\right)}{\tilde{\pi}_{i, j}}=\phi_{i}^{-1}\left(\tau_{i, j}\right)$ for each $j=1,2, \ldots, l_{i}$ and
$\psi_{n}(B)=\binom{\mathbf{c}^{\prime}}{\pi}=\left(\begin{array}{ccccccccc}c\left(\tilde{\pi}_{1,1}\right) & \ldots & c\left(\tilde{\pi}_{1, l_{1}}\right) & c\left(\tilde{\pi}_{2,1}\right) & \ldots & c\left(\tilde{\pi}_{2, l_{2}}\right) & \ldots & c\left(\tilde{\pi}_{r, 1}\right) & \ldots \\ \tilde{\pi}_{1,1} & \ldots & \tilde{\pi}_{1, l_{1}} & \tilde{\pi}_{2,1} & \ldots & \tilde{\pi}_{2, l_{2}} & \ldots & \left.\tilde{\pi}_{r, l_{r}}\right) \\ \tilde{\pi}_{r, 1} & \ldots & \tilde{\pi}_{r, l_{r}}\end{array}\right)$.
For example, let us consider the array

$$
B=\binom{\mathbf{c}}{\tau}=\left(\begin{array}{lllllllllllllllll}
1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 2 \\
9 & 11 & 12 & 5 & 14 & 16 & 7 & 10 & 17 & 15 & 1 & 4 & 8 & 2 & 3 & 13 & 6
\end{array}\right) \in \mathcal{B}_{17,2}
$$

The left-to-right minimum decomposition of τ is

$$
\tau_{1}=9,11,12 ; \tau_{2}=5,14,16,7,10,17,15 ; \tau_{3}=1,4,8,2,3,13,6 .
$$

For the block τ_{1}, the increasing bijection ϕ_{1} is listed in Table 1. Hence, we have

$\tau_{1, j}$	9	11	12
$\binom{c\left(\tilde{\pi}_{1, j}\right)}{\tilde{\pi}_{1, j}}=\phi_{1}^{-1}\left(\tau_{1, j}\right)$	$\binom{1}{9}$	$\binom{1}{12}$	$\binom{2}{11}$.

For the block τ_{2}, the increasing bijection ϕ_{2} is listed in Table 2. Hence, we have

$\tau_{2, j}$	5	14	16	7	10	17	15
$\binom{c\left(\tilde{\pi}_{2, j}\right)}{\tilde{\pi}_{2, j}}=\phi_{2}^{-1}\left(\tau_{2, j}\right)$	$\binom{1}{5}$	$\binom{2}{7}$	$\binom{2}{15}$	$\binom{1}{10}$	$\binom{1}{16}$	$\binom{2}{17}$	$\binom{2}{14}$.

For the block τ_{3}, the increasing bijection ϕ_{3} is listed in Table 3. Hence, we have

$\tau_{3, j}$	1	4	8	2	3	13	6
$\binom{c\left(\tilde{\pi}_{3, j}\right)}{\tilde{\pi}_{3, j}}=\phi_{3}^{-1}\left(\tau_{3, j}\right)$	$\binom{1}{1}$	$\binom{1}{8}$	$\binom{2}{4}$	$\binom{1}{2}$	$\binom{1}{3}$	$\binom{2}{6}$	$\binom{1}{13}$.

Thus,

$$
\psi_{17}(B)=\left(\begin{array}{lllllllllllllllll}
1 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\
9 & 12 & 11 & 5 & 7 & 15 & 10 & 16 & 17 & 14 & 1 & 8 & 4 & 2 & 3 & 6 & 13
\end{array}\right) .
$$

The proof of (2): By Lemma 5 and Lemma 8, we have

$$
\sum_{\mathbf{e} \in I_{n, k}} x^{\operatorname{asc}(\mathbf{e})}=\sum_{A \in \mathcal{A}_{n, k}} x^{\operatorname{asc}(A)}=\sum_{B \in \mathcal{B}_{n, k}} x^{\operatorname{asc}(B)} .
$$

By Lemma 2.1 and Lemma 10, we obtain

$$
\sum_{B \in \mathcal{B}_{n, k}} x^{\operatorname{asc}(B)}=\sum_{\binom{\mathbf{c}}{\pi} \in \mathcal{B}_{n, k}} x^{\operatorname{asc}(\pi)}=\sum_{\pi \in \mathfrak{G}_{n}} x^{\operatorname{asc}(\pi)} k^{n-\operatorname{lrmin}(\pi)} .
$$

$3 \boldsymbol{k}$-inversion sequences and \boldsymbol{k}-Stirling permutations

A k-Stirling permutation of order n is a permutation of the multiset

$$
\{\underbrace{1, \ldots, 1}_{k}, \underbrace{2, \ldots, 2}_{k}, \ldots, \underbrace{n, \ldots, n}_{k}\}
$$

such that for each $i, 1 \leqslant i \leqslant k n$, all entries between the two occurrences of i are larger than i. Let $\mathcal{Q}_{n}^{(k)}$ be the set of k-Stirling permutations of order n and write an element σ in $\mathcal{Q}_{n}^{(k)}$ as $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k n}$. For example, $\mathcal{Q}_{2}^{(2)}=\{1122,1221,2211\}$. It is easy to obtain that the cardinality $\left|\mathcal{Q}_{n}^{(k)}\right|$ of $\mathcal{Q}_{n}^{(k)}$ is $\prod_{i=1}^{n}((i-1) k+1)$, and so $\left|\mathcal{Q}_{n}^{(k)}\right|=\left|I_{n, k}\right|$.

Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k n} \in \mathcal{Q}_{n}^{(k)}$. For any integer $a \in[n]$, we say that a is an ascent plateau of σ if there is an index $i \in\{1,2, \ldots,(n-1) k\}$ such that

$$
\sigma_{i-1}<\sigma_{i}=\sigma_{i+1}=\ldots=\sigma_{i+k-1}=a .
$$

Let $A P(\sigma)$ be the set of all ascent plateaus of σ and $a p(\sigma)=|A P(\sigma)|$.
In [8], Ma and Yeh provided a constructive proof that the number of ascent plateaus of 2-Stirling permutations of order n is equidistributed with a weighted variant of the number of excedances in permutations of length n, where the weight is $2^{n-\mathrm{cyc}(\pi)}$. Very recently, Duh et al. [5, Lemma 8] established a bijection between 2 -colored permutations and Stirling permutations. Expanding [5, Lemma 8] and combining Lemma 5 and Lemma 8, in this section, we will present a bijective proof that the ascent plateau number over k Stirling permutations of order n is equidistributed with the ascent number over k-inversion sequences of length n.

Given a $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k n} \in \mathcal{Q}_{n}^{(k)}$, a left-to-right minimum in σ is an index $i \in[k n-1]$ such that $\sigma(i)<\sigma(j)$ for any $j<i$ or $i=1$. Denote by $\operatorname{Lrm}(\sigma)$ the set of left to right minimums of σ and $\operatorname{Lrm}^{*}(\sigma)=\left\{\sigma_{i} \mid i \in \operatorname{Lrm}(\sigma)\right\}$. A block of σ is a substring which begins with a left-to-right minimum, and contains exactly this one left-to-right minimum; moreover, the substring is maximal, i.e., not contained in any larger such substring. It is easily derived by induction that any k-Stirling permutation has a unique decomposition as a sequence of blocks.

Example 11. Consider the 3 -stirling permutation $\sigma=334666443225552777111 \in \mathcal{Q}_{7}^{(3)}$. We have $\operatorname{Lrm}(\sigma)=\{1,10,19\}, \operatorname{Lrm}^{*}(\sigma)=\{3,2,1\}, A P(\sigma)=\{6,5,7\}$. The block decomposition of σ is [334666443][225552777][111].
Lemma 12. There is a bijection $\Phi=\Phi_{n}^{(k)}$ from $\mathcal{Q}_{n}^{(k)}$ to $\mathcal{B}_{n, k}$ such that

$$
\operatorname{Lrm}^{*}(\sigma)=\operatorname{Lrm}^{*}(\pi) \text { and } A P(\sigma)=A s c^{*}(\pi),
$$

where the permutation π satisfies $\Phi(\sigma)=\binom{\mathbf{c}}{\pi}, \operatorname{Lrm}^{*}(\pi)=\{\pi(i) \mid i \in \operatorname{Lrm}(\pi)\}$ and $\operatorname{Asc}^{*}(\pi)=\{\pi(i+1) \mid i \in \operatorname{Asc}(\pi)\}$.
Proof. We construct the bijection $\Phi=\Phi_{n}^{(k)}$ from $\mathcal{Q}_{n}^{(k)}$ to $\mathcal{B}_{n, k}$ as follows.
When $n=1$, let $\Phi_{1}^{(k)}(\underbrace{1 \cdots 1}_{k})=1$. Fix $n \geqslant 2$, and assume that $\Phi_{n-1}^{(k)}$ is the bijection between $\mathcal{Q}_{n-1}^{(k)}$ to $\mathcal{B}_{n-1, k}$. Let $\sigma^{\prime} \in \mathcal{Q}_{n}^{(k)}$ be obtained from some $\sigma \in \mathcal{Q}_{n-1}^{(k)}$ by inserting the substring $\underbrace{n n \cdots n}_{k}$ into σ. By the assumption, we have

$$
\Phi_{n-1}^{(k)}(\sigma)=\binom{\mathbf{c}}{\pi} \in \mathcal{B}_{n-1, k}, \operatorname{Lrm}^{*}(\sigma)=\operatorname{Lrm}^{*}(\pi) \text { and } A P(\sigma)=\operatorname{Asc}^{*}(\pi)
$$

If $\underbrace{n n \cdots n}_{k}$ is placed at the front of σ, that is, $\sigma^{\prime}=\underbrace{n n \cdots n}_{k} \sigma$ then we let $\Phi_{n}^{(k)}\left(\sigma^{\prime}\right)=$ $\left(\begin{array}{ll}1 & \mathbf{c} \\ n & \pi\end{array}\right)$. Note that $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\{n\} \cup \operatorname{Lrm}^{*}(\sigma), A P\left(\sigma^{\prime}\right)=A P(\sigma)$ and

$$
\operatorname{Lrm}^{*}(n \pi)=\{n\} \cup \operatorname{Lrm}^{*}(\pi), A s c^{*}(n \pi)=A s c^{*}(\pi)
$$

In this case, we have $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}(n \pi)$ and $A P\left(\sigma^{\prime}\right)=A s c^{*}(n \pi)$.
Otherwise, suppose σ^{\prime} is obtained from by inserting $\underbrace{n n \cdots n}_{k}$ into the i-th block of σ. Let $m \in \operatorname{Lrm}(\sigma)$ be the left-to-right minimum contained in the i-th block of σ. There are three possible cases. We construct $\Phi_{n}^{(k)}\left(\sigma^{\prime}\right)=\binom{\mathbf{c}^{\prime}}{\pi^{\prime}}$ as follows:

1. If $\underbrace{n n \cdots n}_{k}$ is inserted at the end of the i-th block, then let π^{\prime} be obtained by inserting the integer n at the end of the i-th block of π and

$$
c^{\prime}(j)=\left\{\begin{array}{lll}
c(j) & \text { if } & j \neq n \\
k & \text { if } & j=n
\end{array} .\right.
$$

Note that $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}(\sigma), A P\left(\sigma^{\prime}\right)=\{n\} \cup A P(\sigma)$ and

$$
\operatorname{Lrm}^{*}\left(\pi^{\prime}\right)=\operatorname{Lrm}(\pi), A s c^{*}\left(\pi^{\prime}\right)=\{n\} \cup A s c^{*}(\pi)
$$

In this case, we have $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}\left(\pi^{\prime}\right)$ and $A P\left(\sigma^{\prime}\right)=A s c^{*}\left(\pi^{\prime}\right)$.
2. If $\underbrace{n n \cdots n}_{k}$ is inserted immediately before the p-th σ_{m} for some $p=2,3, \ldots, k$, then let π^{\prime} be obtained by inserting the integer n at the end of the i-th block of π and

$$
c^{\prime}(j)=\left\{\begin{array}{lll}
c(j) & \text { if } & j \neq n \\
k+1-p & \text { if } & j=n
\end{array} .\right.
$$

Note that $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}(\sigma), A P\left(\sigma^{\prime}\right)=\{n\} \cup A P(\sigma)$ and

$$
\operatorname{Lrm}^{*}\left(\pi^{\prime}\right)=\operatorname{Lrm}(\pi), A s c^{*}\left(\pi^{\prime}\right)=\{n\} \cup A s c^{*}(\pi)
$$

In this case, we have $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}\left(\pi^{\prime}\right)$ and $A P\left(\sigma^{\prime}\right)=A s c^{*}\left(\pi^{\prime}\right)$.
3. If $\underbrace{n n \cdots n}_{k}$ is inserted immediately before the p-th integer $b, b \neq \sigma_{m}$, for some $p=1,2, \ldots, k$, then let π^{\prime} be obtained by inserting n into the i-th block of π such that n is immediately before b and

$$
c^{\prime}(j)=\left\{\begin{array}{lll}
c(j) & \text { if } & j \neq n \\
p & \text { if } & j=n
\end{array} .\right.
$$

Note that $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}(\sigma)$ and $\operatorname{Lrm}^{*}\left(\pi^{\prime}\right)=\operatorname{Lrm}^{*}(\pi)$. When $b \in A P(\sigma)$, we have $A P\left(\sigma^{\prime}\right)=(A P(\sigma) \backslash\{b\}) \cup\{n\}$ and $A s c^{*}\left(\pi^{\prime}\right)=\left(A s c^{*}(\pi) \backslash b\right) \cup\{n\}$; When $b \notin A P(\sigma)$, we have $A P\left(\sigma^{\prime}\right)=A P(\sigma) \cup\{n\}$ and $\operatorname{Asc}^{*}\left(\pi^{\prime}\right)=A s c^{*}(\pi) \cup\{n\}$. In this case, we have $\operatorname{Lrm}^{*}\left(\sigma^{\prime}\right)=\operatorname{Lrm}^{*}\left(\pi^{\prime}\right)$ and $A P\left(\sigma^{\prime}\right)=A s c^{*}\left(\pi^{\prime}\right)$.
The above argument shows that $\Phi_{n}^{(k)} \in \mathcal{B}_{n, k}$, and that $\Phi_{n}^{(k)}$ is injective from $\mathcal{Q}_{n}^{(k)}$ to $\mathcal{B}_{n, k}$. Lemmas 5 and 8 tells us that $\left|I_{n, k}\right|=\left|\mathcal{B}_{n, k}\right|$, and so the cardinality of $\mathcal{Q}_{n}^{(k)}$ is the same as that of $\mathcal{B}_{n, k}$. Thus, $\Phi_{n}^{(k)}$ must be a bijection between $\mathcal{Q}_{n}^{(k)}$ and $\mathcal{B}_{n, k}$. By induction, we see that $\Phi_{n}^{(k)}$ is the desired bijection between k-Stirling permutations and block k-colored permutations.
Example 13. Consider $\sigma=226662555133444311 \in \mathcal{Q}_{6}^{(3)}$. The correspondence between σ and $\Phi_{6}^{(3)}(\sigma)=\left(\begin{array}{llllll}1 & 3 & 1 & 1 & 3 & 2 \\ 2 & 5 & 6 & 1 & 4 & 3\end{array}\right)$ is built up as follows:

$$
\left.\begin{array}{rl}
111 & \Leftrightarrow\binom{1}{1} \\
222111 & \Leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) \\
222133311 & \Leftrightarrow\left(\begin{array}{ll}
1 & 1 \\
2 \\
2 & 1
\end{array}\right)
\end{array}\right) .
$$

Theorem 14. $\Psi_{n}=\varphi_{n}^{-1} \circ \alpha_{n}^{-1} \circ \beta_{n}^{-1} \circ \Phi_{n}^{(k)}$ is a bijection from $\mathcal{Q}_{n}^{(k)}$ to $I_{n, k}$ such that $a p(\sigma)=\operatorname{asc}\left(\Psi_{n}(\sigma)\right)$.
Proof. Combining Lemmas 5, 8, 2.1, 10 and 12, we have Ψ_{n} is a bijection from $\mathcal{Q}_{n}^{(k)}$ to $I_{n, k}$ such that $a p(\sigma)=\operatorname{asc}\left(\Psi_{n}(\sigma)\right)$.
Corollary 15. For any $n \geqslant 1$ and $k \geqslant 1$, we have $\sum_{\sigma \in \mathcal{Q}_{n}^{(k)}} x^{a p(\sigma)}=\sum_{\mathbf{e} \in I_{n, k}} x^{\text {asc }(\mathbf{e})}$.

Acknowledgements

We would like to thank the referees for recommending various improvements of the manuscript.

References

[1] M. Bousquet-Mélou and K. Eriksson, Lecture hall partitions, Ramanujan J., 1(1) (1997), 101-111.
[2] M. Bousquet-Mélou and K. Eriksson, Lecture hall partitions, II. Ramanujan J., 1(2) (1997), 165-185.
[3] M. Bousquet-Mélou and K. Eriksson, A refinement of the lecture hall theorem, J. Comb. Theory, Ser. A, 86(1) (1999), 63-84.
[4] W.Y.C. Chen, A.J.X. Guo, P.L. Guo, H.H.Y. Huang, and T.Y. H. Liu, s-Inversion sequences and P-partitions of type B, SIAM J. Discrete Math., 30 (2016), 16321643.
[5] G.-H. Duh, Y.-C. Roger Lin, S.-M. Ma, Y.-N. Yeh, Some statistics on Stirling permutations and Stirling derangements, Discrete Math., 341(9), 2018, 2478-2484.
[6] D. Foata and M. P. Schützenberger, Théorie géometrique des polynômes eulériens, Lecture Notes in Math. vol. 138, Springer, Berlin, 1970.
[7] S.-M. Ma and T. Mansour, The $1 / k$-Eulerian polynomials and k-Stirling permutations, Discrete Math., 338 (2015), 1468-1472.
[8] S.-M. Ma and Y.-N. Yeh, Stirling permutations, cycle structure of permutations and perfect matchings, Electron. J. Combin., 22(4) (2015), \#P4.42.
[9] T.W. Pensyl and C.D. Savage, Rational lecture hall polytopes and inflated Eulerian polynomials, Ramanujan J., 31 (2013), 97-114.
[10] C.D. Savage, The mathematics of lecture hall partitions, J. Combin. Theory Ser. A, 144 (2016), 443-475.
[11] C.D. Savage and M.J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences, J. Combin. Theory Ser. A 119 (2012), 850-870.
[12] C.D. Savage and G. Viswanathan, The $1 / k$-Eulerian polynomials, Electron. J. Combin., 19 (2012), \#R9.
[13] R.P. Stanley, A monotonicity property of h-vectors and h^{*}-vectors, European J. Combin., 14(3) (1993), 251C258.

[^0]: *Supported by NSFC grant 11571235.
 †'Supported by NSFC grant 11401083.
 ${ }^{\ddagger}$ Supported by NSC grant 107-2115-M-001-009-MY3.

